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These are notes following an exposition of Sturmfels ([3], Ch. 3 of [4]) on Bernstein’s result
([1], [3], [4]) relating common roots of polynomials in (C∗)n with mixed volumes of Newton
polytopes.

1 COUNTING COMMON ROOTS OF POLYNOMIALS

Here is a basic question in algebraic geometry:

Question 1.1. Given a system of polynomial equations f1, . . . fn in n variables with coefficients
in C, how many common roots do they have?

Note that we set the number of equations equal to the number of variables since we want a
finite number of solutions. Here is the usual (generic) answer:

Theorem 1.2. (Bézout)
For “generic” f1, . . . , fn , there are d1 · · · · ·dn common roots, where di = deg fi counted with mul-
tiplicity.

As mentioned, this is good for “most” choices of f1, . . . , fn and these give distinct roots. How-
ever, we probably need a different method if we want to count the number of distinct roots.
Even in the n = 2 case, it is unclear what is a practical way to do this. It is also hard to find the
actual roots even if we were able to find the number of roots.

Here is a simple example where the expected number of common roots fails:

Example 1.3. (Sturmfels [3])
Let n = 2, g = g (x, y) = a1 + a2x + a3x y + a4 y , and h = h(x, y) = b1 + b2x2 y + b3x y3. For a
generic choice of coefficients ai ,b j , it turns out that g and h only have 4 distinct common
roots. This is smaller than what we expect from Bézout’s theorem.
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2 CONNECTIONS WITH POLYTOPES

In the case where we want to count roots in (C∗)n , there is some interesting combinatorial
structure associated to these roots. From now on, we will focus on the n = 2 case. Note that
there are analogous methods which work for larger n and even Laurent polynomials. The
main new tool we will use are Newton polytopes, which are defined as follows:

Definition 2.1. A Newton polytope N ( f ) of a polynomial f ∈ C[x1, . . . , xn] is the convex hull
in Rn of the lattice points recording the degree of each monomial.

Here are some examples of Newton polytopes:

Example 2.2. • Suppose that f (x) = ar xr + . . .+as xs with r ≤ s. Then, the Newton poly-
tope is the line segment in R connecting r and s. Note that there are generally s − r
nonzero roots of f , which is also the length of this line segment. What we will do with
polytopes later will generalize this.

• In Example 1.3, we have that N (g ) = conv{(0,0), (1,0), (1,1), (0,1)} and N (h) = conv{(0,0), (2,1), (1,2)}.

Admittedly, it seems a bit unclear why we should think about the Newton polytope when
we’re thinking about common zeros of polynomials with ≥ 2 variables. We’ll give a bit of mo-
tivation for this although it isn’t necessarily directly related to the main result we will discuss.

The main general connection that the Newton polygon has to do with the structure of the
hypersurface Z f := ( f = 0) ⊂ (C∗)n has to do with the the map log : (C∗)n −→ Rn sending
x = (x1, . . . , xn) 7→ (log |x1|, . . . , log |xn |). Here are some facts related to this connection:

Fact 2.3. (p. 194 – 197 of [2])

• The “typical” picture of log Z f (e.g. think about f (x, y) = x + y +1) is bounded by walls
made up of translated normal cones to the Newton polygon N ( f ). These actually end
up being “limiting directions” of log Z f as we go further along (Proposition 1.9 of [2]).

• The vertices of the Newton polygon N ( f ) correspond to connected components of
Rk − log Z f containing an affine convex cone (Corollary 1.8 on p. 196 of [2]). This starts
from considering convergence properties of the Laurent series of 1

f .

3 COUNTING WITH VOLUMES

In the single variable example in Example 2.2, the number of roots is (usually) given by the
length of the line segment which makes up the Newton polytope. The main result giving the
relation we would like to discuss generalizes this to higher dimensions. Following Sturmfels’
exposition [3], we will discuss the two-dimensional case via Example 1.3.
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Theorem 3.1. (Bernstein [3], [1])
Given a “generic” choice of polynomials g ,h ∈ C[x, y], the number of solutions to g = h = 0 in
(C∗)2 is equal to the mixed volume M (N (g ), N (h)) of the Newton polytopes of g and h.

The term that stands out here is “mixed volume”. Given polygons (2-dimensional polytopes)
P and Q, the mixed volume is defined as M (P,Q) := Area(P +Q)−Area(P )−Area(Q), where
P +Q = {p+q : p ∈ P, q ∈Q}. Taking P and Q to be the Newton polygons from Example 1.3, we
have a diagram for P +Q with a subdivision induced by fixed translates of P and Q.

The mixed area is the area of the complement of the translates of P and Q. That is, they are
the sums of the parallelograms with edges from P and Q). This subdivision will come up later.

Remark 3.2. In general, the mixed area is formally defined in a way similar to a determi-
nant/volume except that the relations are symmetric instead of skew-symmetric. They also
say something about how P and Q are oriented relative to each other since the mixed area
changes after we keep the same shapes but just rotate one of them. There is also a more ex-
plicit way to define them involving volumes of linear combinations of polytopes, but we will
not discuss them here.

We will now sketch the proof of Theorem 3.1.

Proof. (Proof sketch for Theorem 3.1)
Step 1: Case where g and h only have two distinct monomial terms.

Without loss of generality, we may assume that one of the terms is a constant for each of
g and h since we’re looking for solutions in (C∗)2 (factor out monomials). Write g (x, y) =
xa1 yb1 − c1 and h(x, y) = xa2 yb2 − c2 for ai ,b j ∈Z and ck ∈ R∗. So, we would like to find com-
mon roots/solutions to xa1 yb1 = c1 and xa2 yb2 = c2. Since we’re assuming x, y ∈ (C∗)2, we
can take log on both sides to get a linear system of equations from ai log x +bi log y = logci .
Then, we can apply an element of SL2(Z) on the left to get an equivalent linear system asso-

ciated to a matrix of the form

(
r1 r2

0 r3

)
. This clearly has r1r2 = det

(
a1 b1

a2 b2

)
. This is the area

of N (g )+N (h) since the Newton polygons are the lines from the origin to each (ai ,bi ). Note
that the general case actually eventually reduces to this.

Step 2: A family of systems of equations and power series

In order to look at Example 1.3, we will consider a family of systems of equations and consider
our original system of equations to be a generic element of this family. More specifically, we
will look at the toric deformations given by multiplying the terms by powers of t . So, we will
look at g t (x, y) = a1t v1 +a2xt v2 +a3x y t v3 +a4 y t v4 and ht (x, y) = b1t w1 +b2x2 y t w2 +b3x y2t w3

for some fixed “generic” choice of vi and w j . We will explain this in more detail once we look
at how to solve this system of equations in terms of t .
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Given a fixed value of t , common roots of g t and ht are of the form (x(t ), y(t )). As a function
of three variables (x, y, t ), the roots form a curve in (C∗)3. In a neighborhood of the origin, we
can write the algebraic functions x(t ) and y(t ) as (Puiseux) power series of the form

x(t ) = x0t v + higher order terms

and
y(t ) = y0t w + higher order terms

for some v, w ∈Q and x0, y0 6= 0.

Figuring out suitable v, w ∈ Q such that substituting x(t ) and y(t ) into g and h make the
lowest order term equal to 0 gives the connection to Newton polytopes. It also explains the
genericity condition on vi and w j . Substituting the expansions for x(t ) and y(t ) above into
g = g (x, y) and h = h(x, y), we have

g t (x(t ), y(t )) = a1t v1 +a2x0t v+v2 +a3x0 y0t v+w+v3 +a4 y0t w+v4 + higher order terms

and

ht (x(t ), y(t )) = b1t w1 +b2x2
0 y0t 2v+w+w2 +b3x0 y2

0 t v+2w+w3 + higher order terms .

Since x0, y0 6= 0, we need the lowest order terms to appear at least twice in order for them to
cancel out and make the coefficient of the lowest order term 0. The genericity condition on
vi and w j states that it is attained exactly twice. The resulting inequalities involving linear
forms is how this relates to polytopes.

Let’s go back to polytopes and look at P = N (g t (x, y)) and Q = N (ht (x, y)). A lower facet is
a facet (i.e. a 2-dimensional face) of P +Q which has a vector (u, v) ∈ Q2 such that (u, v,1)
is an inward-pointing normal vector to P +Q. In other words, it minimizes a linear form
ux1 + v x2 + x3 and is essentially a face of the polytope we can see from below. The lower hull
is the union of all the lower facets of P +Q. This is everything we can see from below. The
lower hull actually has a bijection with N (g )+N (h) via the projection π : R3 −→ R2 sending
(x, y, t ) 7→ (x, y).

The projection∆ := {π(F ) : F a lower facet of P+Q} induces a subdivision of N (g )+N (h). This
is called a mixed subdivision of P and Q. Each cell of a mixed subdivision is of the form F1+F2:

• F1 = {(ui , vi )} a point of of N (g ) (i.e. xui y vi a monomial of g ), F2 the projection of a
facet of Q

• F1 the projection of an edge of P , F2 the projection of an edge of Q (mixed cells) Note
that the sum of the areas of the mixed cells is mixed area M (N (g ), N (h)). This follows
from subdividing the projection of P +Q via π : R3 −→ R2 into the cell types described
here.
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• F1 the projection of a facet of P , F2 = {(ui , vi )} a point of N (h) (i.e. xui y vi a monomial
of h)

Putting this together with the power series exponent considerations, we obtain one side of
the following lemma.

Lemma 3.3. ([3]) A pair (u, v) ∈ Q2 is a pair of orders of the lowest terms in a series solution
(x(t ), y(t )) of the equations g t (x, y) = ht (x, y) = 0 if and only if (u, v,1) is the normal vector to a
mixed lower facet of the polytope P +Q.

We will not cover the other implication of this lemma (which involves a version of the implicit
function theorem).

Step 3: Obtaining solutions
Finally, we relate the mixed cell decomposition above with finding actual solutions. Since
each mixed cell is a sum of line segments/edges from each Newton polytope (for g and h),
we have that the each edge is a Newton polytope of a binomial of two terms of g or h which
we write as N (g ′) and N (h′). Each mixed cell is associated to g ′ = h′ = 0. Substituting the
power series expansions of x(t ) and y(t ) from above we have

g t (x, y) = g ′(x0, y0)t a + higher order terms

and
ht (x, y) = h′(x0, y0)t b + higher order terms

for some a,b ∈Q. Summarizing, we have

Lemma 3.4. (Lemma 2.4 of [3]) Let (u, v) as in the Lemma 3.3. Then, the corresponding choices
of (x0, y0) ∈ (C∗)2 are exactly the nonzero roots of g ′(x0, y0) = h′(x0, y0) = 0.

Step 1 implies that the number of nonzero roots in this lemma is Area(N (g ′)+N (h′)). Since
these roots give the leading coefficients of the power series for x(t ) and y(t ) and every solu-
tion actually comes from a mixed cell, we can get all our solutions from the series. Counting
over mixed cells, this gives us M (N (g ), N (h)).

It is interesting that this can give us an algorithm for obtaining roots in this case. Note that
different mixed cells can give us different numbers of roots.
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