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Abstract

We prove that the intermediate Jacobian of the Klein quartic 3-fold X is not isomor-
phic, as a principally polarized abelian variety, to a product of Jacobians of curves. As
corollaries we deduce (using a criterion of Clemens-Griffiths) that X, as well as the gen-
eral smooth quartic 3-fold, is irrational. These corollaries were known: Iskovskih-Manin
[IM] proved that every smooth quartic 3-fold is irrational. However, the method of proof
here is different than that of [IM] and is significantly simpler.

1 Introduction

A smooth quartic 3-fold is a smooth, degree 4 hypersurface Y in complex projective space
P4. For such a Y there is a Hodge decomposition

H3(Y ;C) = H2,1(Y )⊕H1,2(Y )

and an attached intermediate Jacobian

J(Y ) :=
H1,2(Y )∗

i(H3(Y ;Z))

where the embedding i : H3(Y ;Z) → H1,2(Y )∗ is defined by sending α ∈ H3(Y ;Z) to the
linear functional ω 7→

∫
α ω. The complex torus J(Y ) is a 30-dimensional abelian variety. It

has a principal polarization defined by the Hermitian form

Q(α, β) := 2i

∫
Y
α ∧ β̄.

The Klein quartic 3-fold X is the smooth, degree 4 hypersurface

X := {[x0 : · · · : x4] : x30x1 + x31x2 + x32x3 + x33x4 + x34x0 = 0} ⊂ P4.

X admits a non-obvious faithful action of Z/61ZoZ/5Z by automorphisms; see §2. We will
use these symmetries to prove the following.

∗Supported in part by National Science Foundation Grant No. DMS-181772 and the Eckhardt Faculty
Fund.
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Theorem 1.1 (Intermediate Jacobian). The intermediate Jacobian J(X) of the Klein
quartic 3-fold X is not isomorphic, as a principally polarized abelian variety, to a product of
Jacobians of smooth curves.

A short argument using resolution of singularities (Corollary 3.26 of [CG]) gives the
Clemens-Griffiths criterion : if Y is rational then J(Y ) is isomorphic as a principally polarized
abelian variety (henceforth p.p.a.v.) to a product of Jacobians of smooth curves. Theorem 1.1
thus implies:

Corollary 1.2 (Irrationality of Klein). The Klein quartic 3-fold is irrational: it is not
birational to P3.

The intermediate Jacobian determines a period mapping J :M4,3 → A30 from the moduli
space of smooth quartic 3-folds to the moduli space of 30-dimensional principally polarized
abelian varieties. J is a holomorphic map between quasiprojective varieties. Since the target
A30 is the quotient of a bounded symmetric domain by an arithmetic lattice, Theorem 3.10 of
Borel [Bo] gives that J is in fact a morphism. Let P ⊂ A30 denote the subvariety consisting
of products of Jacobians of smooth curves. Then J−1(P) is a subvariety of M4,3. Theorem
1.1 implies that the inclusion J−1(P) ⊂M4,3 is strict. The irreducibility ofM4,3 then gives:

Corollary 1.3 (Irrationality is general). The general smooth quartic 3-fold is irrational.1

Context. Corollaries 1.2 and 1.3 are not new. Iskovskih-Manin [IM] proved in 1971 that any
smooth quartic 3-fold X is irrational. In contrast, Segre had constructed in [Se] (see also §9
of [IM]) examples of such X that are unirational: there is a dominant rational map P3 99K X.
Iskovskih-Manin prove their theorem by developing the “method of maximal singularities” to
prove that any birational map X 99K X has finite order, and noting that this is of course not
true for P3. This initiated the modern theory of birational superrigidity; see, e.g. Cheltsov
[Ch] for a survey and details. More recently, Colliot-Thélène-Pirutka [CP], building on a
method of Voisin using the Chow group of 0-cycles, proved that the very general smooth
quartic 3-fold is not stably rational.

Around the same time as Iskovskih-Manin, Clemens-Griffiths [CG] used their criterion
mentioned above to prove that any smooth cubic 3-fold Y is irrational, even though any such
Y is unirational. The bulk of their proof is showing that J(Y ) is not a product of Jacobians
of curves.

Intermediate Jacobians have been used (via the Clemens-Griffiths criterion) to prove
irrationality for many 3-folds, but not (as far as we can tell) for smooth quartic 3-folds; see
Beauville’s survey [B1], in particular the table on page 6. The proof of Theorem 1.1 uses
the symmetry of X in a crucial way, and follows an idea of Beauville (see [B1, B2], and also
Zarhin [Z]) to whom we owe an intellectual debt. It may be worth noting that the proofs of
all of the results in this paper use technology available already in 1972.

Acknowledgements. I thank Nick Addington and Jeff Achter for useful discussions, and
Ronno Das and János Kollár for corrections on an earlier version of this paper. I am also
extremely grateful to Curt McMullen, whose many useful comments on an earlier version of
this paper greatly improved its exposition.

1In other words, there is a subvariety V ( M4,3 such that each X ∈ M4,3 \ V is irrational.
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2 Proof of Theorem 1.1

In this note we always work in the category of principally polarized abelian varieties. The
polarization is crucial for the proofs that follow. For any p.p.a.v A, denote by Aut(A) the
group of automorphisms of A respecting the polarization; in particular Aut(A) is finite (see,
e.g. [BL], Corollary 5.1.9). Without the polarization this is no longer true: consider the
automorphism of A := C2/Z[i]2 induced by (z, w) 7→ (2z + w, z + w), which is an infinite
order algebraic automorphism of A.

Recall that the Jacobian Jac(C) of a smooth, projective curve C is a p.p.a.v., with
polarization induced by the intersection pairing on H1(C;Z). We will need the following.

Lemma 2.1. Let C be any smooth, projective curve of genus g ≥ 2 and let Jac(C) denote its
Jacobian. Assume that the biholomorphic automorphism group Aut(C) has odd order. Then
for any G ⊂ Aut(Jac(C)) the following hold.

1. Any cyclic subgroup of G has order at most 4g + 2.

2. If g ≥ 4 and if G is metacyclic (meaning that G has a cyclic normal subgroup N CG
such that G/N is cyclic) then |G| ≤ 9(g − 1).

Proof. For any smooth projective curve C of genus g ≥ 2 the natural map ρ : Aut(C) →
Aut(Jac(C)) is injective; see, e.g. [FM], Theorem 6.8. The classical Torelli theorem gives
that ρ is surjective if C is hyperelliptic, and otherwise [Aut(Jac(C)) : ρ(Aut(C))] = 2, the
remaining automorphism being the standard involution that every p.p.a.v has. Since |G| is
assumed to be odd, there is a subgroup G̃ ⊂ Aut(C) such that ρ : G̃→ G is an isomorphism.
Both parts of the lemma now follow from the corresponding statements for subgroups of
Aut(C); see e.g. Theorem 7.5 of [FM] (which is classical) and Proposition 4.2 of [Sch], a
result of Schweizer.

Proof of Theorem 1.1. Let X be the Klein quartic 3-fold, and let ζ := e2πi/(3
5+1) = e2πi/244.

The group G := Z/61Z o Z/5Z acts on X by automorphisms via the maps

φ([x0 : x1 : x2 : x3 : x4]) := [ζx0 : ζ−3x1 : ζ9x2 : ζ−27x3 : ζ81x4]

ψ([x0 : x1 : x2 : x3 : x4]) := [x1 : x2 : x3 : x4 : x0]

of order 61 and 5, respectively 2; in fact G ∼= Aut(X) (see [GLMV], Theorem B), but we
will not need this. For any smooth, degree d ≥ 3 hypersurface in Pn, n > 1, the action
of Aut(X) on H3(X;Z) is faithful (see, e.g., Chap.1, Cor. 3.18 of [H]). Since in addition
Aut(X) preserves the Hodge decomposition of H3(X;C), it follows that Aut(X), hence G,
acts faithfully on J(X) by p.p.a.v automorphisms.

Suppose that X is rational. The Clemens-Griffiths criterion gives an isomorphism of
p.p.a.v.:

A := J(X) ∼= An1
1 × · · · ×A

nr
r (2.1)

2The somewhat surprisingly large order automorphism φ is based on Klein, and as far as we can tell was
first written down by Z. Zheng in [Zh], Lemma 3.2.
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where each Ai := Jac(Ci) is the Jacobian of a smooth, projective curve Ci and where Ai 6∼= Aj
if i 6= j. They also show (Corollary 3.23 of [CG]) that each Ai is irreducible 3, and that the
decomposition of any p.p.a.v into a product of p.p.a.v as in (2.1) is unique.

Now, G acts on A as p.p.a.v. automorphisms. The uniqueness of the decomposition (2.1)
implies that each Ani

i is G-invariant. Note that

30 = dim(A) =
r∑
i=1

ni dim(Ai). (2.2)

Since each Ai is irreducible, the action of G on Ani
i gives a representation

G→ Aut(Ani
i ) ∼= Aut(Ai)

ni o Sni

whose composition with the projection to Sni records the permutation of the direct factors
of Ani

i .
Since the G-action on A is faithful and Z/61Z has prime order, there exists some i

(after re-labeling assume i = 1) so that Z/61Z acts faithfully on An1
1 . By the orbit-stabilizer

theorem, the orbit of any direct factor A1 of An1
1 under the prime order subgroup Z/61Z ⊂ G

has 1 or 61 elements; but the latter is impossible by (2.2) since dim(A1) ≥ 1. Thus Z/61Z
leaves each individual direct factor A1 invariant.

Fix such a direct factor B ∼= A1 on which Z/61Z acts faithfully (such a factor must exist
since Z/61Z acts faithfully on An1

1 , as noted above). Recall that B ∼= A1
∼= Jac(C1) for some

smooth projective curve C1 of genus g ≥ 1. Note that in fact g ≥ 2 since otherwise dim(B) =
1 and so A1 does not admit a p.p.a.v. automorphism of order > 6. Thus Lemma 2.1(1)
applies, giving

61 ≤ 4 · genus(C1) + 2 = 4 dim(B) + 2

and so dim(A1) = dim(B) = genus(C1) ≥ 15. Again by the orbit-stabilizer theorem, the
orbit of B in the set of direct factors of An1

1 under the prime order subgroup Z/5Z ⊂ G has
1 or 5 elements. Since dim(B) = genus(C1) ≥ 15 and n1 · genus(C1) ≤ 30, the latter is not
possible; that is, B is Z/5Z-invariant, and so G-invariant.

Now, the definition of φ and ψ above give thatG ∼= Z/61ZoZ/5Z is a nontrivial semidirect
product; that is, G is not a direct product. For any homomorphism µ : C o D → E of a
nontrivial semidirect product of finite simple groups (e.g. cyclic groups of prime order) to
any group, if µ is not faithful on D then it is not faithful on C (and indeed µ is trivial in
this case). Since the Z/61Z-action on B is faithful, it follows that the Z/5Z action on B is
faithful. From this it follows that the G-action on B is faithful (consider the kernel K of the
G-action, and note that K ∩ Z/61Z = 0 and so K < Z/5Z, so that K is trivial).

Note that

|G| = 61 · 5 = 305 > 261 = 9 · (30− 1) > 9(genus(C1)− 1). (2.3)

Since genus(C1) ≥ 15 ≥ 4 and since G is metacyclic, Lemma 2.1(2) applies. Its conclusion
contradicts (2.3). Thus X is not rational.

Remark 2.2. One might hope to replace the use of Lemma 2.1(2) by something simpler,
such as the Hurwitz bound |Aut(C)| ≤ 84(g− 1). However, a quick check of the numerology
shows that this is not enough to obtain a contradiction.

3A p.p.a.v A is irreducible if any morphism A′ → A of p.p.a.v is 0 or an isomorphism.
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