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1 Introduction

Let K be a nonarchimedean local field, for example the p-adic numbers Qp (char(K) = 0)

or the field of Laurent series over a finite field Fp((t)) (char(p) > 0) . Let G = PGLn(K),

or more generally the K-points of any absolutely simple, connected, algebraic K-group of

adjoint form.

There is a natural way to associate to each cocompact lattice Γ in G a finite simplicial

complex BΓ, as follows. Bruhat-Tits theory (see below) provides a contractible, rankK G-

dimensional simplicial complex XG on which G acts by simplicial automorphisms. The

lattice Γ acts properly discontinuously on XG with quotient a simplicial complex BΓ.
1

Margulis proved (see, e.g., [Ma]) that rankK G ≥ 2 implies that every lattice Γ in G is

arithmetic. We also note that char(K) = 0 implies every lattice in G(K) is cocompact. In

this paper we explore one aspect of the theme that, since the complex BΓ is constructed

using number theory, it should have remarkable properties. Here we concentrate on the

extremal nature of the symmetry of BΓ and all of its covers.

Our first theorem shows that the simplicial structure of BΓ realizes all simplicial sym-

metries of any simplicial complex homeomorphic to BΓ. For any simplicial complex C we

denote by Aut(C) the group of simplicial automorphisms of C. We denote by |C| the sim-

plicial complex C thought of as a topological space, without remembering the simplicial

structure.

Theorem 1.1. Let K be a nonarchimedean local field, and let G be the K-points of an

absolutely simple, connected algebraic K-group of adjoint form. Let Γ be a cocompact

∗BF is supported in part by the NSF.
1If Γ has torsion, one needs to barycentrically subdivide each simplex in XG in order to make the

quotient a true (not orbi) simplicial complex.
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lattice in G, and let BΓ be the quotient by Γ of the Bruhat-Tits building XG associated to

G. Suppose C is any simplicial complex homeomorphic to |BΓ|. Then there is an injective

homomorphism

Aut(C) −→ Aut(BΓ).

Of course the simplicial structure on the space |BΓ| coming from the Bruhat-Tits build-

ing is not the unique simplicial structure satisfying Theorem 1.1. One can, for example,

take all the top-dimensional simplices of BΓ and subdivide them in the same way, so that

the triangulation restricted to any maximal simplex gives a fixed simplicial isomorphism

type. Each of these new triangulations of |BΓ| has automorphism group Aut(BΓ). We call

such a simplicial structure on BΓ an arithmetic simplicial structure.

Our first main result is a rigidity theorem characterizing arithmetic simplicial struc-

tures among all simplicial structures on |BΓ|. It gives a universal constraint on the sym-

metry of the universal covers of all other simplicial structures on |BΓ|.

Theorem 1.2. Let G and Γ as in Theorem 1.1 be given. Further assume that rankK G ≥

2. Fix a normalization of Haar measure µ on G. Then there exists a constant N ≥ 1,

depending only on µ(G/Γ), with the following property: Let C be any simplicial complex

homeomorphic to |BΓ|, and let Y be the universal cover of C (which therefore inherits a

Γ-equivariant simplicial structure from C). Then either:

1. [Aut(Y ) : Γ] < N , so in particular Aut(Y ) is finitely generated, or

2. C is an arithmetic simplicial structure, and so Aut(Y ) is uncountable and acts tran-

sitively on the set of chambers of XG.

Remarks.

1. Theorem 1.2 is not true in the case that rankK G = 1, i.e. when XG is a tree. An

example is given in Section 5. The obstruction in this case is the fact that Aut(XG)

is “far” from G.

2. One is tempted to weaken the hypotheses of Theorem 1.1 and Theorem 1.2, for

example to only require that C is homotopy equivalent to |BΓ| rather than homeo-

morphic to it. However the conclusion of each theorem is not true in this case, even

for C of the same dimension as |BΓ|. One can see this by taking, for any given n ≥ 2,
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a triangulation of the closed disk D2 by dividing D2 into n equal sectors based at

the origin. This triangulation is invariant by the 2π/n rotation. Now let C be the

complex obtained by attaching the central vertex of D2 to some vertex of BΓ. It is

clear that Aut(C) contains Z/nZ. Since n ≥ 2 was arbitrary, the conclusions both

of Theorem 1.1 and of Theorem 1.2 do not hold.

3. Theorem 1.1 (resp. Theorem 1.2) is a simplicial analogue of a theorem of Farb-

Weinberger from Riemannian geometry, given in [FW1] (resp. [FW2]). However, the

mechanism giving rigidity is different here. Further, the type of generality achieved

in the theorems in [FW2] seems not to be possible in the simplicial setting, since

counterexamples abound, as the previous remark indicates.

One consequence of Theorem 1.2 is the following. Suppose BΓ has more than one top-

dimensional simplex; this can always be achieved by passing to a finite index subgroup of Γ.

Now build a new triangulation C of |BΓ| by subdividing the top-dimensional simplices of

BΓ, so that the resulting triangulations on some pair of such simplices are not simplicially

isomorphic. Then Theorem 1.2 implies that [Aut(Y ) : Γ] <∞.

Another way to think of this is that, if we paint the (open) top-dimensional simplices

of BΓ with colors, and if we use at least 2 distinct colors, the group of color-preserving

automorphisms of the universal cover of BΓ is discrete, and contains Γ as a subgroup of

finite index. This result is actually an ingredient in the proof of Theorem 1.2, and so is

proven first. Such a result does not hold when rankK G = 1. We give explicit examples of

this failure in Section 5.

Homeo(XG). The ideas we use to prove the results above can be used to compute the

group Homeo(XG) of homeomorphisms of the topological space XG. To state the theorem,

we will need to consider the topological group Homeo+(Dn) of orientation-preserving

homeomorphisms of the closed n-dimensional ball Dn.

Theorem 1.3. Let K be a nonarchimedean local field, and let G be the K-points of an

absolutely simple, connected algebraic K-group of adjoint form. Let XG be the Bruhat-Tits

building associated to XG. Let C denote the set of maximal simplices of XG. Then there

is an isomorphism of topological groups

Homeo(XG) ≈ A⋊Aut(XG)
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where A is torsion free, and is isomorphic to a subgroup of
∏
σ∈C Homeo+(Ddim(XG))

(endowed with the box topology) that we identify at the end of Section 3.

Outline of paper. After giving some preliminary material on Euclidean buildings in §2,

we prove the main results in §4.1. In §5 we give an explicit example of a BΓ satisfying the

hypotheses of Theorem 1.1 and Theorem 1.2 and a non-example in the rank one case. In

particular A is torsion free.

Standing assumption. All simplicial structures considered in this paper are assumed

to be locally finite.

Acknowledgments. We are indebted of G. Prasad for reading the paper carefully and

several important comments. In particular he suggested Proposition 4.1, which greatly

simplified the paper. We would also like to thank T. Church, K. Wortman and S. Wein-

berger for many helpful comments.

2 Geometry and automorphisms of Euclidean buildings

We now recall some facts from Bruhat-Tits theory which will be needed in this paper. We

refer the reader to [AB], [We] and to [Ti2] for these facts and definitions of terms.

2.1 The building XG

Let K be a nonarchimedean local field. Let G be the adjoint form of an absolutely almost

simple, connected, simply connected algebraic group defined over K with positive K-rank.

Let G = G(K).

The Bruhat-Tits theory associates a contractible simplicial complex XG to G on which

G acts by simplicial automorphisms. This is easiest to describe if we work with the simply

connected cover of G. So let G̃ be the simply connected cover of G and let G̃ = G̃(K).

Let

r := rankK(G)

An Iwahori subgroup I of G̃ is the normalizer of a Sylow pro-p-subgroup of G̃. These

subgroups are conjugate to each other since the Sylow subgroups are conjugate. The

Euclidean (or affine) building XG associated with G is a simplicial complex defined as
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follows. The vertices of XG correspond bijectively with maximal compact subgroups of G̃.

A collection of maximal compact subgroups gives a simplex in XG precisely when their

intersection contains an Iwahori subgroup. XG is a contractible simplicial complex whose

dimension equals rankKG. In particular, if rankKG = 1 then XG is a tree.

We will need the following properties of XG.

1. XG is thick; that is, any i-simplex of XG with i < r := dim(XG) is contained in at

least three (i+ 1)-simplices.

2. Given any apartment (maximal flat) A in XG, any (r−1)-dimensional simplex lying

in A is contained in precisely two r-simplices of A.

3. Any two simplices of XG are contained in a common apartment.

2.2 The action of G

The groups G̃ and G act simplicially on XG by conjugation. The stabilizer in G̃ of any

vertex of XG is a maximal compact subgroup of G̃. There are r + 1 orbits of vertices of

XG under the G̃-action. In this way each vertex is given a type. The action of G̃ on XG is

type-preserving, and is transitive on the set of chambers (simplicies of maximal dimension)

in XG.

Let G+ be the normal subgroup of G generated by all the unipotent radicals of K-

parabolic subgroups of G. The group G+ is the image of G̃ under the covering map G̃ → G.

For example, if G = PGLn(K) then G+ = PSLn(K); see e.g. [Ma, Chapter I]. The covering

map restricted to the unipotent subgroups is injective since the kernel of the covering map

is the center of G̃. The subgroup G+ is cocompact in G, and indeed is finite index when

char(K) = 0. Further, G+ acts by type-preserving automorphisms on XG.

Denote by Autalg(G) the group of algebraic automorphisms of G. This group is the

semidirect product of G with the group of automorphisms of the Dynkin diagram for (the

Lie algebra corresponding to) G. This is a group of order 2 (if Dynkin diagram is not

D4) and is S3 (if Dynkin diagram is D4); see Theorem 2.8 and the discussion on page 90

of [PR]. Let AutG(K) denote the group of field automorphisms σ of K such that σG and

G are K-isomorphic, where σG is the group obtained fromG by applying σ to the defining

equations. The group G is a locally compact topological group under the topology coming
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from that of K. We then have (see [BT]) that the group of automorphisms of G, which

we denote by Aut(G), is an extension of Autalg(G) by AutG(K); that is, the sequence

1 → Autalg(G) → Aut(G) → AutG(K) → 1

is exact. If G is a K-split algebraic group, then Aut(G) = Autalg(G)⋊Aut(K), see [Ti1,

5.8, 5.9, 5.10] and references there.

From the description of XG given above, one sees that the group Aut(G) acts on the

XG by simplicial automorphisms, giving a representation

ρ : Aut(G) → Aut(XG).

The central theorem about automorphisms of buildings is the following.

Theorem 2.1 (Tits [Ti1]). Assume that rankKG > 1. Then the representation

ρ : Aut(G) → Aut(XG)

is an isomorphism.

Note that G, which is a subgroup of finite index in Autalg(G), is a normal subgroup

of Aut(XG). The group Aut(XG) is a locally compact group with respect to the compact-

open topology. This topology coincides with the topology on Aut(XG) determined by the

property that the sequences of neighborhoods about the identity map correspond to sets of

automorphisms that are the identity on larger and larger balls in XG. On the other hand,

the groups G and AutG(K) inherit a topology from the topology on K. The isomorphism

given in Theorem 2.1 is an isomorphism of topological groups.

2.3 Apartments and root subgroups

The apartments (maximal flats) in XG correspond to maximal diagonalizable subgroups in

G̃. Suppose S is a maximal diagonalizable subgroup of G̃, and let A be the corresponding

apartment in XG. Then S acts on A by translation. The root subgroups corresponding to

S acts on XG as follows. Any root subgroup determines a family of parallel hyperplanes

in A. If u lies in the root subgroup it will fix a half-apartment of A, i.e. one component of

the complement of some hyperplane P in A. Moreover, P is an intersection of apartments,

and the action of the root group is transitive on the link of P ( see §1.4 and §2.1 of [Ti2]

or, alternatively, Proposition 18.17 of [We]). In particular we have the following.
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Fact 2.2. Let G be as above. Then for any (r− 1)-simplex σ of XG, and for any three r-

simplices α1, α2, α3 having σ as their common intersection, there exists an element φ ∈ G+

so that φ(α1) = α1 and φ(α2) = α3.

As an example consider G = PGL2(Qp). Then XG is a (p + 1)-regular tree. Let ℓ

be the apartment in XG corresponding to the diagonal group of G. In this case ℓ is a

bi-infinite geodesic in XG. Let ℓ(0) be the vertex corresponding to PGL2(Zp), i.e. the

vertex corresponding to the standard lattice Z2
p. The geodesic ray ℓ([0,∞)) is a half-

apartment based at ℓ(0). The above fact gives that subgroup of the root group fixing

the half apartment [0,∞) acts transitively on the set of vertices adjacent to 0 minus the

unique neighbor 1 of 0 in [0,∞). The representatives of this subgroup may be taken to be

the representatives of nontrivial cosets in Zp/pZp if we identify the root group with the

additive group Qp.

In this paper we will assume that rankKG > 1. In this case work of Margulis, and of

Venkataramana [Ve] in the positive characteristic case, implies that any lattice Γ in such

a G is arithmetic. See [Ma].

3 Topological (non)rigidity of XG

The following is a kind of topological rigidity result for XG: it gives that the topologi-

cal structure of XG remembers the simplicial structure. It is worth mentioning that in

section 3 we only need Y to be a locally compact simplicial complex homeomorphic to

XG.

Proposition 3.1. Let f : XG → XG be a homeomorphism. Then f maps k-dimensional

simplices of XG onto k-dimensional simplices for each 0 ≤ k ≤ dim(XG). Hence there is

a natural homomorphism

ψ : Homeo(XG) → Aut(XG).

Proof. To prove the proposition we first need to make the following.

Definition 3.2 (k-manifold point). For 0 ≤ k ≤ dim(XG) we define a k-manifold point

by backwards induction, as follows: For k = dim(XG) we define a k-manifold point to

be any point x ∈ XG that has a neighborhood homeomorphic to Rk. Now suppose we

have defined ℓ-manifold points for each ℓ > k. Let XG(ℓ) denote the set of all ℓ-manifold
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points in XG. Then x ∈ XG is called a k-manifold point if x has a neighborhood in

XG \
⋃
k<ℓ≤dimXG

XG(ℓ) which is homeomorphic to Rk.

As mentioned above, the semisimplicity of G gives that XG is a thick building: for each

k < dim(XG), every k-dimensional simplex of XG is the face of at least three (k + 1)-

dimensional simplices of XG. From this we clearly have the following:

x ∈ XG is a k-manifold point if and only if x lies in the interior of a k-simplex of XG.

Since being a k-manifold point is clearly a topological property for any fixed k, it

follows that any homeomorphism f : XG → XG maps k-manifold points to themselves,

and therefore f maps open k-simplices into open k-simplices, for each 0 ≤ k ≤ dim(XG).

Applying the same argument to f−1, we see that f maps each open k-simplex of XG

homeomorphically onto an open k-simplex of XG.

Since f is a homeomorphism it preserves adjacencies between simplices, and so f

induces a simplicial automorphism of XG. This association of f to the simplicial auto-

morphism it induces is clearly a homomorphism. ⋄

In contrast to rigidity, it is easy to see that the kernel of ψ is huge. Indeed it clearly

contains the infinite product, over all maximal simplices σ, of the group of homeomor-

phisms of the closed dim(XG)-disk which are the identity on ∂σ. On the other hands we

have the following.

Proposition 3.3. The kernel of ψ is torsion free.

Proof. Suppose ϕ ∈ ker(ψ) and that ϕ has finite order. We will argue inductively on

the dimension k ≥ 0 that ϕ is the identity on the k-skeleton of XG. Since ψ(ϕ) = id, we

get ϕ(v) = v for any vertex v ∈ XG. Now assume that ϕ is identity on each j-simplex of

XG for each j < k. Let D be any k-simplex of XG. Since ψ(ϕ) = id, we have from the

definition of ψ that ϕ(D) ⊆ D. By induction we have that ϕ(x) = x for each x ∈ ∂D.

Let τ := ϕ|D. Suppose that τ 6= id. Since ϕ is torsion, after raising τ to a power we

can (and will) assume that τ has order p for some prime p.

Since we have a p-group 〈τ〉 acting on a closed disk D, we can apply Smith Theory to

this action. The pair (D, ∂D) is of course a homology k-ball. By Smith’s Theorem (see,

e.g. [Br], Theorem III.5.2), the pair (Fix(τ),Fix(τ |∂D) is a mod-p homology r-ball for some
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0 ≤ r ≤ k. Since τ |∂D = id by the induction hypothesis, we have that Fix(τ |∂D) = ∂D, it

follows that r = k.

Now suppose that Fix(τ) 6= D. Pick x ∈ D in the complement of Fix(τ). Then radial

projection away from x to ∂D gives a homotopy equivalence of pairs

(Fix(τ),Fix(τ |∂D)) ≃ (∂D, ∂D).

But this contradicts the fact that (Fix(τ),Fix(τ |∂D)) is a mod-p homology k-disk with

k > 0, since as such, we have

Hk(Fix(τ),Fix(τ |∂D);Z/pZ) = 0 6= Hk(D, ∂D;Z/pZ).

Thus it must be that Fix(τ) = D; that is, τ = id. We have just proven that ϕ|D = id

for each k-simplex D of XG, so by the induction on k we have ϕ = id, as desired. ⋄

The homomorphism ψ : Homeo(XG) → Aut(XG) gives an exact sequence

1 → A→ Homeo(XG)
ψ
→ Aut(XG) → 1

where A is the kernel of ψ. Proposition 3.3 says precisely that A is torsion free. The

injective homomorphism

A→
∏

σ∈C

Homeo+(Ddim(XG))

given by f 7→ (f |σ)σ∈C obviously has image those (hσ)σ∈C such that hτ agrees with hη on

τ ∩ η. This proves Theorem 1.3.

4 Proving extremal symmetry

4.1 Proof of Theorem 1.1

We begin the proof of Theorem 1.1 with the following.

The following was suggested to us by G. Prasad. It suggests that Theorem 1.1 is

actually a consequence of the topology of XG rather than rigidity of the lattice Γ.

Proposition 4.1. Let Y be a locally finite simplicial complex whose geometric realization

is homeomorphic to the geometric realization of XG. Then Y is a simplicial subdivision of

XG.
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Proof. For a simplicial complex Z we denote by Zk the k-skeleton of Z. We need to

show that (XG)
k ⊂ Y k. This statement is obvious for k = dimXG. We now assume that

the statement is proven for each i > k, and we show it is then true for k. Note that

(XG)
k =

⋃

ℓ≤k

(XG)
ℓ.

Since the property of having a neighborhood homeomorphic to Rℓ is clearly invariant

by homeomorphism, we see that if ℓ ≤ k and x ∈ (XG)
ℓ then x is not an interior point of

a j-simplex of Y for any j > k. Hence Xk
G ⊂ Y k, as we wanted to show. ⋄

With the above in hand we can now prove Theorem 1.1.

Proof. [Proof of Theorem 1.1] Let Y be the lift of the simplicial structure of C to

the universal cover Y of C. The given homeomorphism of C with the geometric real-

ization |BΓ| lifts to a Γ-equivariant homeomorphism Y → XG. By Proposition 4.1 this

homeomorphism is just the inclusion of a simplicial subdivision. Any φ ∈ Aut(C) lifts

to a Γ-equivariant element φ̃ ∈ Aut(Y ). Since Y is a simplicial subdivision of XG, the

simplicial automorphism φ̃ induces a unique element ι(φ̃) ∈ Aut(XG). Thus we have a

homomorphism

ι : Aut(Y ) → Aut(XG)

which is clearly injective. Since ι is Γ-equivariant and injective, it follows that ι induces

an injective homomorphism ι : Aut(C) → Aut(BΓ), as desired. ⋄

It is worth mentioning that the injective homomorphism ι : Aut(Y ) → Aut(XG)

is continuous and proper with respect to the compact-open topology. We will identify

Aut(Y ) with ι(Aut(Y )) and consider Aut(Y ) as a subgroup of Aut(XG) in the sequel.

4.2 Characterizing XG among all simplicial structures

For the rest of this section we assume that G, Γ and BΓ are as in the statement of

Theorem 1.2, in particular rankK G ≥ 2.

Note that any simplicial automorphism of BΓ induces an automorphism of π1(BΓ) = Γ,

well-defined up to conjugacy. We thus have a homomorphism

ν : Aut(BΓ) → Out(Γ)
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where Out(Γ) is the group of outer automorphisms of Γ, i.e. the quotient of Aut(Γ) by

inner automorphisms. The following is probably well-known to experts.

Theorem 4.2. Let G, Γ and BΓ be as above. Then ν, defined above, is an isomorphism.

Proof. We first show that ν is injective. To see this, note that as BΓ is a K(Γ, 1) space,

any f∗ ∈ Out(Γ) is induced by some self-homotopy equivalence f of BΓ, unique up to free

homotopy. Suppose f∗ ∈ ker(ν), so that f is homotopically trivial. Suppose f ∈ ker(ν).

Since BΓ is aspherical and f∗ acts trivially (up to conjugation) on π1(BΓ), it follows that

f is freely homotopic to the identity map. Metrize BΓ so that it has the path metric

induced by giving each simplex the standard Euclidean metric; XΓ then inherits a unique

path metric making the covering XΓ → BΓ a local isometry.

Since since BΓ is compact and f is homotopic to the identity, each track in this

homotopy moves points of BΓ some uniformly bounded distance D. Thus f has some lift

f̃ ∈ Aut(XG) such that f̃ moves each point of XG at most a distance D. We claim that

the only element of Aut(XG) that moves all points of XG at most a uniformly bounded

distance is the identity automorphism. Given this claim, it follows that f̃ , and hence f ,

is the identity, so that ν is injective.

The claim is well known, but for completeness we indicate a proof. The building

XG admits a nonpositively curved (in the CAT(0) sense) metric with the property that

Aut(XG) = Isom(XG). Now, the boundary ∂XG of XG as a nonpositively curved space,

namely the set of Hausdorff equivalence classes of infinite geodesic rays, can be identified

with the spherical Tits building associated to G (see [We, Theorem 8.24 and Chapter 28]) .

By the nonpositive curvature condition, infinite geodesic rays inXG either stay a uniformly

bounded distance from each other, hence represent the same equivalence class in ∂XG, or

diverge with distance between point being unbounded. If an element φ ∈ Aut(XG) moves

all points of XG a uniformly bounded distance, it follows that φ induces the identity map

on ∂XG. But the natural homomorphism Aut(XG) → Aut(∂XG) is injective (see [Ti1]

or [We, Theorem 12.30 and Section 28.29]), from which it follows that φ is the identity,

proving the claim.

We now show that ν is surjective, and thus is an isomorphism. To see this, note that

by the assumptions on G, we can apply the Margulis Superrigidity Theorem (see [Ma]),

proved in positive characteristic by Venkataramana [Ve], to the lattice Γ in G. This

gives in particular that Γ satisfies strong (Mostow-Prasad) rigidity, which means that any
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automorphism of Γ can be extended to a continuous homomorphism of G. Note that the

group of continuous automomorphisms of G is precisely Aut(XG). Thus, given any h ∈

Out(Γ), there is some h′ ∈ Aut(XG) extending (a representative of) h, and so preserving

Γ in G. Thus h′ descends to the desired automorphism of BΓ, proving that ν is surjective.

We have thus shown that ν is an isomorphism. ⋄

The following result, crucial to our proof of Theorem 1.2, gives the consequence dis-

cussed at the end of the introduction.

Proposition 4.3 (Coloring rigidity). Let the notation and assumptions be as above. Then

precisely one of the following holds:

(i) Aut(Y ) is discrete.

(ii) G+ ⊆ ι(Aut(Y )), where ι is the monomorphism in Proposition 3.3.

Proof. Recall that ι(Aut(Y )) is a closed subgroup of Aut(XG) with respect to the

compact-open topology. The continuity of ι, together with the fact that ι is injective,

implies that if ι(Aut(Y )) is discrete then Aut(Y ) is discrete, in which case (i) would hold.

Assuming that (i) does not hold, we show that (ii) holds. Since (i) does not hold, the

above paragraph shows that Aut(Y ) is not discrete. Thus there is a sequence of elements

ϕn ∈ Aut(Y ) such that {gn = ι(ϕn)} converges to the identity in Aut(XG).

Note that Γ ⊆ Aut(Y ) and, with this abuse of notation, ι(Γ) = Γ. Note that H :=

G ∩ ι(Aut(Y )) is a closed normal subgroup of ι(Aut(Y )) containing Γ. We claim that H

is indiscrete. Assume the contrary and let gn be as above. Since {gn} converges to the

identity it follows that gnγg
−1
n → γ for any γ ∈ Γ. Since H is normal and discrete, and

since Γ ⊂ H, it follows that gnγg
−1
n = γ for n large enough.

By the assumption rankKG ≥ 2, the group G has Kazhdan’s property (T), and so the

lattice Γ in G is finitely generated. Hence there exists some n0 such that if n > n0 then

gnγg
−1
n = γ for all γ ∈ Γ.

We now show gn is the identity if n > n0. Recall from Theorem 4.2 that Aut(BΓ) and

Out(Γ) are isomorphic. This together with the fact that gn centralizes Γ if n > n0, which

we showed in the previous paragraph, imply that such gn induces the trivial isometry of

BΓ. Note now that gn centralizes Γ so the action of gn on XG is trivial. Thus gn is identity

if n ≥ n0, which is a contradiction. Hence H is indiscrete.
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Recall that G/Γ has a finite G-invariant measure and Γ ⊂ H, hence G/H has a finite

G-invariant measure, namely the direct image of the measure on G/Γ under the natural

map G/Γ → G/H. We showed above that H is an indiscrete subgroup of G. Now [Ma,

Chapter II, Theorem 5.1] states that such a subgroup must contain G+, as we wanted to

show. ⋄

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Recall from Proposition 4.1 that Y is a simplicial subdivision

of XG. There is nothing to prove if Aut(Y ) is discrete, so suppose that this is not the

case. By Proposition 4.3, there exists a subgroup H ⊆ Aut(Y ) such that ι : H → G+ is

an isomorphism.

Let C be a chamber which is a fundamental domain for the standard action of G+ on

XG. Then C is simplicially subdivided by Y. Since G+ acts transitively on chambers, we

have that if C ′ is any chamber of XG then there is some ϕ ∈ H such that ι(ϕ)(C) = C ′.

Hence ϕ(C) = C ′. The proof of the theorem is now complete. ⋄

5 Explicit examples

In this section we give explicit examples of the arithmetic complexes to which Theorem

1.1 and Theorem 1.2 apply. We then give examples non-example in the rank one case.

An explicit example where Theorem 1.1 and Theorem 1.2 apply. The explicit

construction of these examples is given [LSV], using lattices constructed in [CS]. These

examples were constructed as explicit examples of “Ramanujan complexes”. Similar (ex-

plicit) constructions of complexes for which the above theorems holds are possible in

characteristic zero using lattices constructed in [CMSZ1], [CMSZ2] and [MS].

Let G = PGL3(F2((y))). We want to describe a quotient of XG by a lattice Γ which

is a congruence subgroup of a lattice Γ′, where Γ′ acts simply transitively on the vertices

of XG. Note that the building XG is in fact a clique complex : a set of (k + 1) vertices

are the vertices of a simplex if and only if every 2 of these vertices are the vertices of an

edge. This property holds for quotient complexes as well. Thus, in order to describe the

simplicial complex BΓ it suffices to describe the Cayley graph of Γ′/Γ with an explicit set

of generators.
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Let t be a generator for the field of 16 elements whose minimal polynomial is t4+ t+1.

In other words, F16 = F2[t]/(t
4 + t+ 1). The following set S of seven matrices generates

PGL3(F16). The clique complex corresponding to the Cayley graph of PGL3(F16) with

respect to this set of generators is the complex obtained by taking the quotient of XG

by a lattice Γ, as above. This lattice is a congruence subgroup of a lattice Γ′ which is

constructed using a division algebra which splits at all places except at 1/y and 1/(y+1),

at which it remains a division algebra.

The set S consists of the following seven matrices:




t+ t3 t2 t+ t2

t t3 1 + t+ t2

t+ t2 1 + t2 1 + t3







1 + t+ t2 + t3 t+ t2 1 + t2

1 + t t2 + t3 1

1 + t2 t t3







1 + t2 + t3 1 + t2 t

1 + t+ t2 t+ t3 t2

t 1 + t t2 + t3







t+ t2 + t3 t 1 + t

1 1 + t+ t2 + t3 t+ t2

1 + t 1 + t+ t2 t+ t3







1 + t3 1 + t 1 + t+ t2

t2 1 + t2 + t3 1 + t2

1 + t+ t2 1 1 + t+ t2 + t3







t3 1 + t+ t2 1

t+ t2 t+ t2 + t3 t

1 t2 1 + t2 + t3







t2 + t3 1 t2

1 + t2 1 + t3 1 + t

t2 x+ x2 t+ t2 + t3




An example in the rank one case. We begin with an example of an (arithmetic)

lattice Λ in G = PGL2(Q5), given by a symmetric generating set of Λ with 6 elements,

which acts simply transitively on XG. In other words XG, which is a 6-regular tree, is the

Cayley graph of Λ. This lattice Λ is also used in [LPS] to construct explicit examples of

“Ramanujan graphs”. Let

H(Z) = {α = a0 + a1i+ a2j+ a3k : ai ∈ Z}
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where i2 = j2 = k2 = −1 and ij = −ji = k. For any α ∈ H(Z) we let α = a0−a1i−a2j−a3k

and let N(α) = αα. Let

Λ′ = {α ∈ H(Z) : N(α) = 5k, k ∈ Z and α ≡2 1}.

Now let

Λ = Λ′/ ∼

where

α ∼ β if 5k1α = ±5k2β for some k1, k2 ∈ Z.

Note that Λ is an (arithmetic) subgroup of PGL2(Q5) and [α][α] = 1. It is easy to see,

and is shown in [LPS, Section 3], that Λ is actually a free group on {α1, α2, α3}, where

N(αi) = 5 and a0 > 0 for each i = 1, 2, 3. We identify XG with the Caley graph of Λ with

respect to the generating set S = {α1, α1, α2, α2, α3, α3}.

Now let Γ be the kernel of the map Λ → Z/4Z given by αi 7→ i for i = 1, 2, 3. Then

BΓ = XG/Γ is the Cayley graph of Z/4Z with respect to this generating set; that is, it is

the complete graph with 4 vertices. We now color the edges of BΓ with 3 different colors

so that the edges emanating from a vertex have 3 different colors, and we lift this to a

coloring of XG using the Γ action.

Fix an arbitrarily large ball in XG. Consider the automorphism φ of the tree XG which

fixes this ball pointwise and flips two rays corresponding to α1 and α3 emanating from

a vertex on the sphere and is the identity everywhere else. Then φ lies in the group of

color-preserving automorphisms of this tree. As the large ball was chosen arbitrarily, this

argument proves that the group of color-preserving automorphisms of XG is not discrete.

Of course we can replace different “colors” by different simplicial isomorphism types of

triangulations of the corresponding simplices. We thus have a contrast with the conclusion

of Theorem 1.2.
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