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Abstract. In the first half of the paper we introduce the notion of the universal
unitary completion of a continuous representation of a p-adic reductive group on a
locally convex p-adic vector space, and prove that such a completion exists under
appropriate hypotheses. The problem of studying unitary completions has been

raised by Breuil in connection with his work on a possible “p-adic local Langlands

correspondence” for GL2, and we relate our construction to certain conjectures of
Breuil for the group GL2(Qp). In particular, we show that the universal unitary

completion of the locally analytic parabolic induction of a locally algebraic character
coincides with the universal unitary completion of the corresponding locally algebraic
induction, provided that the character being induced satisfies a “non-critical slope”

condition. (See Proposition 2.5 below.)
In the second half of the paper we consider a certain unitary Banach space repre-

sentation of GL2(Qp) obtained by p-adically completing the cohomology of classical

modular curves. The mere existence of this representation implies that those locally
algebraic parabolically induced representations of GL2(Qp) that arise from classi-
cal finite slope newforms have a non-trivial universal unitary completion (verifying

a conjecture of Breuil for these representations), while applying Proposition 2.5 in

this context enables us to give a new construction of p-adic L-functions attached to
p-stabilized newforms of non-critical slope. Combining our construction with a rep-

resentation theoretic definition of L-invariants due to Breuil [5], we are able to give
a simple proof of the Mazur-Tate-Teitelbaum exceptional zero conjecture (in terms

of Breuil’s definition of the L-invariant).

The object of this note is two-fold. In its first half we consider the following
problem in the representation theory of p-adic groups: When does a topologically
irreducible continuous representation of a p-adic reductive group G on a p-adic
topological vector space (perhaps satisfying some additional hypotheses) admit
an embedding into a unitary representation of G on a p-adic Banach space? If
G = GL2(Qp) and the representation considered is admissible locally algebraic,
this problem has been raised by Breuil in connection with his ideas on a “p-adic
Local Langlands correspondence for GL2(Qp)” [4, 5].

In the second half of the paper we explain a representation theoretic point of
view on p-adic L-functions attached to modular forms. As an application, we prove
a version of the Mazur-Tate-Teitelbaum exceptional zero conjecture [16, p. 46],
using the representation theoretic definition of the L-invariant given by Breuil in
[5] (which provides a reinterpretation of the definition given by Darmon [9] and
Orton [18] in the weight two and higher weight cases respectively).

The two halves of the paper are more closely related than they might appear at
first glance. Indeed, the local tools discussed in the first half play a vital role in the
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argument of the second half. Conversely, the global results of the second half shed
some light on the local problems discussed in the first half.

Let us now describe the contents of the note in more detail. In Section 1 we
present a general framework in which to consider the problem of unitary comple-
tions of G-representations. In particular, given a G-representation on a reflexive
Fréchet space V that admits a generating semi-norm (in the sense of Definition 1.13)
we construct an associated G-representation V b, equipped with a continuous G-
equivariant injection V b → V , whose strong dual is the universal unitary completion
of the contragredient G-representation on the strong dual V ′b . (See Lemma 1.11.)
In the case when V is dual to a finitely generated admissible locally algebraic rep-
resentation π of G, we observe (Proposition 1.17) that V b is dual to the completion
π̂ of π with respect to a finite type lattice. If furthermore π is irreducible and of
the form “algebraic tensor absolutely cuspidal”, then we show (Proposition 1.18)
that π̂ is non-zero if and only if the central character of π is unitary.

In Section 2 we restrict to the case G = GL2(Qp), and consider irreducible
admissible locally algebraic representations π whose smooth factor is principal series
or special. In this case Breuil [4] has made a precise conjecture as to whether or not
π̂ is non-zero (see Conjecture 2.2). Briefly, this conjecture states the only possible
obstruction to π̂ being non-zero is presented by the exponents appearing in the
Jacquet module JB(π) (where B is a Borel subgroup of G). (This conjecture is now
known to be a theorem in many cases, thanks to recent work of Berger and Breuil
[2] and Colmez [8].)

Associated to the admissible locally algebraic representation π one can construct,
via locally analytic parabolic induction, an admissible locally analytic representa-
tion πla that contains it. (There is one choice of πla in the special case, while there
are two choices in the principal series case.) Under a “non-critical slope” hypothe-
sis, we show (Proposition 2.5) that the natural G-equivariant map π → π̂ extends
uniquely to a G-equivariant map πla → π̂. The remainder of Section 2 elaborates
on the relation of Proposition 2.5 to Conjecture 2.2, and to certain other ideas and
results of [4]. The proof of Proposition 2.5 is given in Section 3.

Suppose now that the locally algebraic representation π of GL2(Qp) under consid-
eration is of the form Wk−2⊗πp, where Wk−2 is the contragredient to the (k−2)nd
symmetric power of the standard representation of GL2, and πp is the local factor
at p of a newform f of weight k. In this case one can use global considerations
to verify Conjecture 2.2 for π. Indeed, in Section 4 we recall the construction of a
unitary Banach space representations H̃1

c (Kp) of GL2(Qp) (where Kp is the tame
level of the newform f giving rise to π), which has the property that π embeds into
H̃1

c (Kp). (In fact we get two embeddings, unique up to multiplication by a scalar,
one for each choice of sign; see Proposition 4.3.) Since π̂ is the universal unitary
completion of π, the existence of this embedding certainly implies that π̂ 6= 0. Fur-
thermore, assuming that we can find a p-stabilized newform g attached to f (the
newform giving rise to π) that is of non-critical slope, Proposition 2.5 shows that the
embeddings of π into H̃1

c (Kp) extend to embeddings of πla into this space (where
the choice of πla is adapted to the choice of g). Using these embeddings, we are able
to give a new construction of the p-adic L-function attached to g (Proposition 4.9).

In [5], Breuil has made a detailed investigation of the closure of the image of π in
H̃1

c (Kp), in the case when πp is special. In particular, he has shown that this image
is classified by a certain invariant L (the L-invariant of Darmon and Orton discussed
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above). In Section 5 we give a proof of the Mazur-Tate-Teitelbaum exceptional zero
conjecture for such f using this description of the L-invariant, and the viewpoint
on p-adic L-functions developed in Section 4.

Acknowledgments. I would like to thank Christophe Breuil for helpful correspon-
dence in which he explained the beautiful ideas underlying his preprints [4, 5], as
well as a referee for suggestions that improved the discussion of Section 1. Finally,
I would like to thank Wilfred Schmid for a wonderful lecture he gave at Northwest-
ern in the Fall of 2002, in which he explained his approach to the study of classical
automorphic L-functions via automorphic distributions [19]. It is this lecture that
inspired the construction of p-adic L-functions provided by Proposition 4.9.

1. Unitary completions

In this section we generalize and axiomatize some constructions from [4, 5].
Throughout this section, we fix a p-adic reductive group G – more precisely, G

is the group of Qp-valued points of a connected, reductive, linear algebraic group
defined over Qp. We also fix a p-adic local field K that will serve as our field
of coefficients. All locally convex topological vector spaces will be assumed to be
defined over K (whether or not this is explicitly stated). We let OK denote the
ring of integers in K. We refer to [20] for an explanation of the terminology from
p-adic functional analysis that we use.

As in [4], a G-representation on a K-Banach space U will be called unitary if
the topology of U may be defined by a G-invariant norm.

Definition 1.1. Let V be a locally convex topological K-vector space equipped with
a continuous G-action, and let U be a K-Banach space equipped with a unitary
G-action. We say that a given continuous K-linear G-equivariant continuous map
V → U realizes U as a universal unitary completion of V if any continuous K-
linear G-equivariant map V → W , where W is a K-Banach space equipped with a
unitary G-action, factors uniquely through the given map V → U.

The usual arguments with universal properties shows that U (equipped with its
map V → U) is unique up to unique isomorphism. We will denote U by V̂ if it
exists, and (by abuse of language) sometimes refer to V̂ as the universal unitary
completion of V . (There should be no confusion with the traditional notation for
the completion of V , since all V that we have cause to consider will be complete.)
We will refer to the universal continuous G-equivariant map

(1.2) V → V̂

as the canonical map from V to V̂ . If we takeW in Definition 1.1 to be the closure of
the image of V under the canonical map, and apply the universal mapping property
of V̂ , then we find that W = V̂ , and thus that the canonical map (1.2) has dense
image.

It is obvious that the formation of V̂ (when it exists) is functorial in V .

Lemma 1.3. The G-representation V admits a universal unitary completion if
and only if the set of commensurability classes of G-invariant open lattices1 in V ,

1In the sense used in [20] – i.e. a lattice in a K-vector space is a spanning OK -submodule.

Note that, with this usage, a lattice need not be separated.
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ordered by inclusion, contains a minimal element (i.e. if V contains a G-invariant
open lattice that is absorbed by any other G-invariant open lattice).

Proof. This is clear. Briefly, if V does admit a universal unitary completion V̂ ,
then we take the required lattice to be the preimage under the canonical map of
the unit ball of V̂ (with respect to some G-invariant norm defining the topology
of V̂ ). Conversely, given such a lattice L, the completion of V with respect to the
gauge of L is a universal unitary completion of V . �

It is quite possible for a G-representation on a non-zero convex space V to
admit the zero space as its universal unitary completion. Indeed, it is a non-trivial
question in general to determine if V̂ is non-zero. Proposition 1.5 below gives a
useful necessary and sufficient condition for this to be the case.

Let C(G,K) denote the space of continuous K-valued functions on G, equipped
with its right regular G-action, and let Cb(G,K) denote the G-invariant subspace of
C(G,K) consisting of bounded functions. The sup norm makes Cb(G,K) a unitary
Banach G-representation.

Lemma 1.4. If U is a non-zero unitary Banach G-representation, then there is a
non-zero continuous G-equivariant map U → Cb(G,K) (where the target is endowed
with the topology induced by sup-norm).

Proof. Let u′ be a non-zero element of the dual space U ′. By Frobenius reciprocity,
u determines a non-zero continuous G-equivariant map U → C(G,K); explicitly, an
element u ∈ U maps to the function fu : g 7→ 〈u′, gu〉 on G. If the G-action on U is
unitary, one sees that this map factors through the inclusion Cb(G,K) ⊂ C(G,K),
and that the resulting non-zero map U → Cb(G,K) is continuous. �

Proposition 1.5. If V is a convex K-vector space equipped with a continuous G-
action that admits a universal unitary completion, then V̂ is non-zero if and only
if there is a non-zero continuous G-equivariant map V → Cb(G,K).

Proof. If such a map exist, then it must factor through (1.2), forcing V̂ to be
non-zero. Conversely, if V̂ 6= 0, then apply Lemma 1.4 to V̂ to obtain a non-zero
continuous G-equivariant map V̂ → Cb(G,K). Composing this with (1.2) we obtain
the required non-zero continuous G-equivariant map V → Cb(G,K). �

Suppose now that V is topologically irreducible as a G-representation. If V̂ exists
and is non-zero, then the map (1.2) is non-zero (since it has dense image) and G-
equivariant, and so must be injective (since its source is topologically irreducible
and its target is Hausdorff). Pulling back a G-invariant norm from V̂ to V , we see
that V admits a G-invariant norm. In particular, if V has a central character, then
we see that this central character must be unitary.

The Jacquet module functors defined in [11] provide additional necessary condi-
tions for V̂ (when it exists) to be non-zero. We suppose that V is a compact type
locally analytic G-representation for which V̂ exists. Let P be a parabolic subgroup
of G, with unipotent radical N and Levi quotient M , and let JP (V ) denote the
Jacquet module (with respect to P ) of V , as defined in [11, §3.4] – it is a com-
pact type convex K-space equipped with a locally analytic action of M . Let N0

be some compact open subgroup of N , let ZM denote the center of M , and write
Z+

M := {z ∈ ZM | zN0z
−1 ⊂ N0}. Let δ denote the modulus character of P (which
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is trivial on N , and so induces a character of M = P/N, which we also denote by
δ; concretely, δ(m) = [mN0m

−1 : N0]).

Lemma 1.6. Let χ be a locally analytic K-valued character of ZM . If, in the above
situation, the χ-eigenspace of JP (V ) is non-zero, and if V̂ 6= 0, then | χ(z)δ−1(z) |≤
1 for all z ∈ Z+

M .

Proof. As already noted, the assumption that V̂ 6= 0 implies that V admits a
G-invariant norm. The lemma thus follows from [11, Prop. 3.4.9, Lem. 4.4.2]. �

We now return to the general situation, focusing on the case when V is reflexive.

Lemma 1.7. If V is a reflexive convex K-space equipped with a continuous G-
representation, then the set of commensurability classes of G-invariant open lattices
in V contains a minimal element if and only if the set of commensurability classes
of G-invariant closed and bounded (equivalently compact, since V is reflexive [20,
Prop. 15.3 (iii)]) OK-submodules of V ′b contains a maximal element. (We equip V ′b
with the contragredient G-action.)

Proof. This follows immediately from the theory of bipolarity [20, §13]. �

In the context of Lemma 1.7, the G-action on V ′b is again continuous, and so we
may reverse the roles of V and V ′b . If V ′b admits a universal unitary completion,
then Lemma 1.7 shows that V admits a compact G-invariant OK-submodule B
that is maximal (up to commensurability); equivalently, B absorbs any G-invariant
bounded OK-submodule of V .

Definition 1.8. In the preceding situation, define V b := K ⊗OK
B, equipped with

the finest convex topology for which the natural map B → V b is continuous. (Since
any two choices of B are commensurable, we see that V b is well-defined, up to
natural isomorphism, independent of the choice of B.)

The G-action on B induces a continuous G-action on V b. The formation of V b

(when it exists) is evidently functorial in V .
We have the canonical map

(1.9) V ′b → (V ′b )̂,

while the inclusion of B in V induces a G-equivariant continuous K-linear map

(1.10) V b → V.

Lemma 1.11. Let V be a reflexive convex K-space equipped with a continuous
G-action for which V ′b admits a universal unitary completion.

(i) The map (1.10) is continuous and injective.
(ii) The maps (1.9) and (1.10) are mutually dual.

Proof. Claim (i) is immediate. To prove (ii), consider the strong dual of (1.10):

(1.12) V ′b → (V b)′b.

The results of [22] show that (V b)′b is a Banach space, with unit ball the polar of B,
and that V b is naturally identified (via double duality) with ((V b)′b)

′. Thus (1.10)
and (1.12) are mutually dual. The preimage of the unit ball of (V b)′b under (1.12)
is the polar of B in V ′b , which by construction of B (and the theory of bipolar-
ity) coincides with the preimage of the unit ball of (V ′b )̂ under (1.9). Thus (1.12)
and (1.9) are naturally isomorphic. �
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Definition 1.13. If V is a K-Fréchet space equipped with a continuous G-action,
then a continuous semi-norm q on V is called a generating semi-norm if the set of
translates gq of q (as g ranges over all elements of G) serves to define the topology
of V . (Here gq(v) := q(g−1v) for all v ∈ V .)

This definition could be applied to arbitrary locally convex K-spaces equipped
with a continuous G-action. However, if G0 is a compact open subgroup of G, then
any continuous semi-norm on V is bounded above by a G0-invariant continuous
semi-norm [10, Lem. 6.5.4]. Thus if V admits a generating semi-norm q, we may
assume that q is G0-invariant, and so conclude (since G/G0 is countable) that the
topology of V is definable by a countable set of semi-norms. Hence V is metrizable.
If V is furthermore reflexive, then it is necessarily Fréchet [3, Cor., p. IV.23].

Proposition 1.14. If V is reflexive K-Fréchet space equipped with a continuous
G-action that admits a generating semi-norm, then V ′b admits a universal unitary
completion (and so V b is defined).

Proof. Let q be a generating semi-norm, and set Bq = {v ∈ V | q(gv) ≤ 1 for all g ∈
G}. By definition Bq is a bounded G-invariant OK-submodule of V . Since the
G-action on V is continuous, Bq is evidently also closed. If B is any bounded
G-invariant OK-submodule of V , and we choose a ∈ K× so that | s(v) | ≤ | a |
for all v ∈ B, then clearly a−1B ⊂ Bq. Thus Bq absorbs all bounded G-invariant
OK-submodules of V , and the proposition follows from Lemmas 1.3 and 1.7. �

Lemma 1.15. If V is a K-Fréchet space equipped with a continuous G-action and
W is a closed G-invariant subspace of V , then the restriction of any generating
semi-norm on V to W is a generating semi-norm on W .

Proof. This follows from the fact that any set of continuous semi-norms on V that
defines the topology of V restricts to a set of continuous semi-norms on W that
defines the topology of W (by definition of the subspace topology on W ). �

Example A. We will show that universal unitary completions always exist for
finitely generated G-representations equipped with their finest convex topology.

Definition 1.16. If V is a K-vector space equipped with a representation of G,
then we say that a G-invariant lattice in V is of finite type if it is finitely generated
as an OK [G]-module.

Clearly V contains a finite type lattice if and only if it is finitely generated (as a
K[G]-module). Furthermore, any two finite type lattices are then commensurable.

Proposition 1.17. If V is a finitely generated G-representation equipped with its
finest convex topology, then the completion of V with respect to any finite type lattice
of V is a universal unitary completion of V .

Proof. This follows from Lemma 1.3, the fact that any lattice in V is open (since
V is equipped with its finest convex topology), and the fact that any G-invariant
lattice in V contains a finite-type sublattice (since V is finitely generated). �

Recall that a locally algebraic representation V of G is called admissible if it is
admissible as a locally analytic representation of G; see [10, Def. 6.3.9] for example.
Such a representation V is necessarily equipped with its finest convex topology [10,
Cor. 6.3.7]. If V is irreducible, then it admits a central character, and as remarked
above, a necessary condition for V̂ 6= 0 is that this central character be unitary.
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Proposition 1.18. Let V be an irreducible admissible locally algebraic representa-
tion of G, and write V ∼−→ U⊗W , where U is an admissible smooth representation
of G and W is a finite dimensional algebraic representation of G (as we may, by
[10, Prop. 6.3.11]). If U is absolutely cuspidal, then V̂ 6= 0 if and only if the cen-
tral character of V is unitary. (Recall that U is said to be absolutely cuspidal if it
cannot be embedded into the induction from P of a smooth M -representation, for
any proper parabolic subgroup P of G with Levi factor M [6, §5].)

Proof. The “only if” direction has already been noted (and does not require U to
be absolutely cuspidal). Suppose now that the central character of V is unitary and
that U is absolutely cuspidal. If we fix non-zero elements ǔ and W̌ in the smooth
dual to U and the dual to W respectively, then ǔ⊗ w̌ is in the topological dual to
V . By Frobenius reciprocity, the dual vector ǔ⊗ w̌ induces a G-equivariant map

(1.19) V → C(G,K);

explicitly, v ∈ V maps to the function fv : g 7→ 〈ǔ ⊗ w̌, gv〉. Note that (1.19) is
non-zero, since ǔ⊗ w̌ 6= 0.

Under the hypothesis of the proposition, we claim that (1.19) factors through the
inclusion of Cb(G,K) into C(G,K), and thus induces a map V → Cb(G,K) (which is
necessarily continuous, since V is equipped with its finest convex topology). Indeed,
it suffices to show that fv is bounded when v is of the form u⊗ w for some u ∈ U
and w ∈ W . In this case we see that fv(g) = 〈ǔ, gu〉〈w̌, gw〉 for all g ∈ G. Since U
is absolutely cuspidal, the matrix coefficient 〈ǔ, gu〉 is compactly supported modulo
the center of G [6, Thm. 5.3.1]. Thus the same is true of fv. Since V has a unitary
central character, we conclude that fv is bounded, as claimed. The proposition now
follows from Proposition 1.5. �

It is immediate from the definition of absolutely cuspidal, together with [11,
Prop. 4.3.4 (ii)], that the smooth factor of an irreducible admissible locally alge-
braic representation V is absolutely cuspidal if and only if JP (V ) = 0 for all proper
parabolic subgroups P of G. The preceding proposition thus shows that in the ex-
treme case when V has no non-vanishing Jacquet modules, the necessary condition
of Lemma 1.6 is also sufficient.2

If the smooth factor of V is not absolutely cuspidal, then the question of whether
or not V̂ is non-zero is more subtle (as the necessary condition of Lemma 1.6 shows).
This question, in the case when G = GL2(Qp), will be considered in detail in the
next section.

Example B. In [4, 5], the spaces O(k) and O(k,L) are defined (for k ≥ 2 and
L ∈ K). The first is the space of rigid analytic functions on the p-adic upper half-
plane Ω := Cp \ Qp, equipped with a “weight k” action of GL2(Qp). The second
is the space of log-rigid analytic functions on Ω, equipped with a “weight 2 − k”
action of GL2(Qp); one takes the branch of the p-adic logarithm to be logL, where
logL(p) = L. These are nuclear (and so reflexive) Fréchet spaces equipped with
continuous actions of GL2(Qp), and for fixed k and L, differentiating k − 1 times
induces a short exact sequence

(1.20) 0 →Wk−2⊗K | det |−(k−2)/2→ O(k,L) → O(k) → 0;

2As a referee has emphasized, in the context of the Proposition 1.18 it is easy to see that V̂ is

not an admissible Banach space representation of G. In light of Breuil’s ideas regarding “p-adic

Local Langlands”, one expects V̂ to admit a rich family of admissible quotients.
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here Wk−2 is the contragredient to the (k− 2)nd symmetric power of the standard
two dimensional representation of GL2(Qp), embedded (with the indicated twist)
into O(k,L) as the subspace of polynomial functions on Ω of degree at most k− 2.

One easily checks that if U is a covering of Qp in Cp satisfying condition (20)
of [4, p. 34], then the formula q(F ) := ||F|ΩU

|| (using the notation of [4]) defines
a generating semi-norm (in fact norm) on each of O(k) and O(k,L), and thus that
O(k)b and O(k,L)b, as defined above, coincide with the same spaces as defined in
[4] and [5]. For k > 2 and any choice of L, the map

O(k,L)b → O(k)b

induced by the surjection of (1.20) is a closed embedding;3 when k = 2 it is surjective
(with kernel equal to W0

∼−→ K).
Example C. Suppose that G is quasi-split, and let B be a Borel subgroup of

G. Let N denote the unipotent radical of B, and fix a maximal torus T of G
contained in B, so that B = TN . Let B be the opposite Borel to B, chosen so
that B

⋂
B = T . Let χ : T → K× be a locally analytic character of T , which we

also regard as a character of B via the natural projection B → T , and consider the
locally analytic parabolic induction

IndG
B
χ := {f ∈ Cla(G,K) | f(bg) = χ(b)f(g) for all b ∈ B, g ∈ G}.

The right regular G-action endows IndG
B
χ with a continuous action of G.

Proposition 1.21. The G-representation IndG
B
χ is a strongly admissible locally

analytic representation of G (in the sense of [21]), whose strong dual (which is
thus a nuclear, and hence reflexive, Fréchet space) admits a generating semi-norm.

Proof. If G0 is a hyperspecial maximal compact open subgroup of G, then G =
BG0, and so restriction of functions from G to G0 induces a G0-equivariant closed
embedding IndG

B
χ → Cla(G0,K). Since Cla(G0,K) is a strongly admissible G0-

representation (essentially by definition; see the discussion following [10, Def. 6.2.1],
for example), we see that the same is true of its closed subrepresentation IndG

B
χ.

Since a locally analytic G-representation is strongly admissible if and only if it
is strongly admissible as a G0-representation (again by definition), we see that
IndG

B
χ is a strongly admissible locally analytic G-representation. In particular, it

is of compact type, and so its strong dual is a nuclear Fréchet space.
Let (X,X, φ) be a chart centered at the identity of the p-adic analytic group

N ; that is, X is a compact open neighbourhood of the identity of N , X is an
affinoid rigid analytic space over Qp isomorphic to a closed polydisk, and φ is a
locally analytic isomorphism φ : X ∼−→ X(Qp). To save writing, we will also write
simply X to denote this chart. As in [10, §2.1], we let Can(X,K) denote the Banach
space of rigid analytic K-valued functions on X; the isomorphism φ allows us to see
Can(X,K) as a BH-subspace of Cla(X,K) (in the sense of [10, Def. 1.1.4]), and thus
also of Cla

c (N,K) (since Cla(X,K) is a closed subspace of Cla
c (N,K)). If t ∈ T , then

conjugation by t induces a locally analytic automorphism of N , which we denote

3That one obtains an injection follows from the fact that Wk−2⊗K | det |−(k−2)/2 admits no
GL2(Qp)-invariant norm, when k > 2. That this injection is in fact a closed embedding is proved
in [5, Thm. 3.3.3].
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by σt. Thus (tXt−1,X, φ ◦ σt−1) is also a chart of N . To save writing, we will
denote this chart simply by tXt−1, and will denote the corresponding BH-subspace
of Cla

c (N,K) by Can(tXt−1,K). We remark that the theory of roots shows that
the set of neighbourhoods of the identity {tXt−1}t∈T is cofinal in the set of all
neighbourhoods of the identity.

The discussion of [13, §5] shows that Cla
c (N,K) embeds as a closed subspace of

IndG
B
χ, and hence that Can(X,K) embeds as a BH-subspace of IndG

B
χ. One checks

that if t ∈ T , then

(1.22) tCan(X,K) = Can(tXt−1,K).

(Here the action of t on the left-hand side is defined via the action of t on the
ambient G-representation IndG

B
χ.) The final sentence of the preceding paragraph,

together with (1.22) and the fact that G acts transitively on the space B\G, shows
that IndG

B
χ =

∑
g∈G gCan(X,K). Thus the gauge of the polar in (IndG

B
χ)′b of the

unit ball Can(X,OK) of Can(X,K) is a generating semi-norm for (IndG
B
χ)′b. �

2. Completing parabolically induced representations of GL2(Qp).

Take G = GL2(Qp), and K as in Section 1. Let B denote the standard upper
triangular Borel in GL2(Qp), let T denote the diagonal maximal torus in B, and
let B denote the lower triangular Borel (so that B

⋂
B = T ). Let χ be a locally

algebraic K-valued character of T of the form χ = θψk−2, for some k ≥ 2, where θ is
smooth and ψk−2 is the highest weight of the irreducible representation Wk−2 of G
(the contragredient to the (k−2)nd symmetric power of the standard representation

of G) with respect to B. (Explicitly, ψk−2 :
(
a

d

)
7→ d−(k−2).) Let I(χ) denote

the locally algebraic induction of χ from B to G; alternatively, I(χ) is the tensor
product over K of Wk−2 and the smooth induction of θ from B to G.

Write θ in the form θ :
(
a

d

)
7→ θ1(a)θ2(d), for two smooth characters θ1 and

θ2 of Q×
p . Write α = θ1(p) and β = pθ2(p). The central character of I(χ) takes(

p
p

)
to αβp−(k−1).

Let θ′
(
a

d

)
=| d/a | θ2(a)θ1(d), and define χ′ to be the locally algebraic

character χ′ = θ′ψk−2. (Note that the α and β for χ′ are equal to the β and α
for χ.)

If θ1|Z×p = θ2|Z×p and α/β = p±1, then we say that we are in the special case. In
this case, the representation I(χ) is reducible. If α/β = p−1, then I(χ) contains
a unique finite dimensional subrepresentation, isomorphic to a twist of Wk−2, and
the quotient is isomorphic to a twist of Wk−2 tensored with St (the Steinberg
representation), which we denote by π(χ). If α/β = p, then I(χ) has a unique
finite dimensional quotient, isomorphic to a twist of Wk−2, and the kernel of the
projection onto this quotient is isomorphic to π(χ′). From now on, when we are in
the special case we always assume that χ is chosen so that α/β = p−1.

If α/β 6= p±1, then we say that we are in the principal series case. In this case,
the representation I(χ) is irreducible, and we write π(χ) = I(χ). The theory of
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intertwining operators shows that in this case there is an isomorphism π(χ) ∼−→
π(χ′).

We let π̂(χ) denote the completion of π(χ) with respect to a finite type lattice.
Proposition 1.17 shows that π̂(χ) is the universal unitary completion of π(χ).

Lemma 2.1. The following two conditions are necessary in order for π̂(χ) to be
non-zero:

(i) The central character of π(χ) is unitary; that is, | αβ |=| pk−1 | .
(ii) Each of α and β lie in OK .

Proof. It was observed in Section 1 that (i) is a necessary condition for π to admit
a non-zero universal unitary completion. In the special case, since α/β = p−1, it is
clear that (i) implies (ii). Thus we assume for the remainder of the proof that we
are in the principal series case. We will compute JB(I(χ)), and apply Lemma 1.6.

Since I(χ) ∼−→ (IndG
B
θ)sm ⊗K Wk−2 (where the left-hand factor is the smooth

parabolic induction of θ from B to G), it follows from [11, Props. 4.3.4 (ii), 4.3.6]
that there is an isomorphism of T -representations JB(I(χ)) ∼−→ JB((IndG

B
θ)sm)⊗

ψk−2. The theory of Jacquet modules of smooth representations [6] shows that
JB((IndG

B
θ)sm) is two dimensional, and that it has a non-zero θδ-eigenspace, and

also a non-zero θ′δ-eigenspace. (Below we will give a direct proof that these
eigenspaces are non-zero.) Thus JB(I(χ)) has non-zero χδ- and χ′δ-eigenspaces.

If we take the compact open subgroup N0 of Lemma 1.6 to be {
(

1 x
0 1

)
| x ∈

Zp}, then we see that the matrix t =
(
p 0
0 1

)
conjugates N0 into itself. Applying

Lemma 1.6 twice, with the character labelled χ in the statement of that result
taken to be χδ and χ′δ in turn, we find that | α |=| χ(t) | ≤ 1 and also that
| β |=| χ′(t) | ≤ 1. This proves the lemma.

We finish with a direct proof that the θδ-eigenspace of JB((IndG
B
θ)sm) is non-

zero. Let N denote the unipotent radical of B, and let K(θ) denote K regarded
as a T -module via the character θ. The discussion of [13, §5] shows that there is
a natural B-equivariant embedding Csm

c (N,K(θ)) → IndG
B
θ. (The target denotes

the locally analytic parabolic induction of θ from B to G.) Since θ is a smooth
character of T , this embedding factors through the inclusion (IndG

B
θ)sm → IndG

B
θ

of the smooth parabolic induction into the locally analytic parabolic induction.
Applying the left-exact functor JB , and taking into account [11, Lemma 3.5.2], we
see that the θδ-eigenspace of JB((IndG

B
θ)sm) is non-zero. The theory of intertwining

operators provides an isomorphism (IndG
B
θ)sm

∼−→ (IndG
B
θ′)sm. Replacing θ by θ′

in the preceding argument shows that the θ′δ-eigenspace of JB((IndG
B
θ)sm) is also

non-zero. �

The following conjecture is due to Breuil [4].

Conjecture 2.2. The necessary conditions of Lemma 2.1 are also sufficient: if
these conditions hold, then π̂(χ) is non-zero.

If we take into account the method of proof of Lemma 2.1, one can could rephrase
the conjecture as saying that the necessary conditions of Lemma 1.6 are also suffi-
cient; i.e. that the characters appearing in the Jacquet module of π(χ) are the only
possible obstruction to its unitarizability.
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This conjecture has been proved in the special case by Teitelbaum [23] and
Grosse-Klönne [14], and recently in the unramified principal series case by Berger
and Breuil [2]. We note that there is one subcase of the principal series case
(what one might call the ordinary case) in which the conjecture is trivial to prove.
Namely, if α is a p-adic unit, then the character χ is unitary, and so the continuous
induction (as considered in [22], for example) Icont(χ) of χ from B to G is a unitary
Banach space representation of G containing I(χ). (Because χ is unitary, the
sup norm over B\G is a well-defined G-invariant norm on Icont(χ).) Similarly, if
| α |=| pk−1 |, then β is a p-adic unit, and we may embed I(χ) ∼−→ I(χ′) in the
unitary representation Icont(χ′).

Given χ as above, we let I la(χ) denote the locally analytic induction of χ from B
toG; by Proposition 1.21 this is a strongly admissible locally analytic representation
of G. It contains I(χ) as a closed subrepresentation. We may identify I la(χ) with
the space of locally analytic functions f : Qp → K, satisfying an appropriate
regularity condition at infinity, with the G-action defined by

(2.3)
(
a b
c d

)
f(x) =

θ1(a+ cx)
θ2(a+ cx)

(a+ cx)k−2 θ2(ad− bc)
(ad− bc)k−2

f(
b+ dx

a+ cx
);

I(χ) is then identified with the subspace of functions that are locally polynomial
of degree at most k − 2.

In the principal series case we write πla(χ) = I la(χ). In the special case (recall
that in this case we assume that α/β = p−1) we let πla(χ) denote the quotient of
I la(χ) by the invariant subspace consisting of polynomials of degree at most k− 2.
In both cases, the closed embedding I(χ) → I la(χ) induces a closed embedding

(2.4) π(χ) → πla(χ).

The following result gives some hint as to the structure of π̂(χ), or more precisely,
of its locally analytic vectors.

Proposition 2.5. Suppose that χ satisfies the conditions of Lemma 2.1, and that
furthermore | α |>| pk−1 | . Then the following equivalent conditions hold:

(i) Any G-equivariant K-linear map π(χ) → U , where U is a unitary Banach
space representation, extends uniquely to a continuous K-linear G-equivariant map
πla(χ) → U.

(ii) The natural map π(χ) → π̂(χ) extends uniquely to a continuous K-linear
G-equivariant map πla(χ) → π̂(χ).

(iii) The map (2.4) induces an isomorphism of universal unitary completions
π̂(χ) ∼−→ π̂la(χ).

We give our proof of this result in the following section. In [2] Berger and Breuil
give an explicit description of π̂(χ) (as a quotient of a certain parabolic induction
of χ – see p. 25, Def. 4.2.4, and Thm. 4.3.1 of [2]), using which they are able to
give a direct proof of this result [2, p. 42]. Nevertheless, it seems worthwhile to
give our original proof, since it is more representation theoretic in nature than that
of [2], and it exhibits an interesting relationship between the classical technique
of Amice-Vélu and Vishik and the representation theory of parabolically induced
representations.
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In the remainder of this section, we elaborate further on Conjecture 2.2, Propo-
sition 2.5, and their relations to some of the ideas and results of [4, 5], in each of
the two cases: special and principal series.

The special case. The special case has been discussed extensively by Breuil in
his paper [4]. We recall the key points of that discussion.

In the special case, condition (i) of Lemma 2.1 implies condition (ii), and all
the π(χ) satisfying (ii) (that are in the special case!) are unitary twists one of the
other. The same is true of all the πla(χ), and these representations are all unitary
twists of the representation Σ(k) defined in [4]; write πla(χ) = Σ(k)⊗K ω, for some
unitary character ω of GL2(Qp). The results of Morita [17] then show that πla(χ) is
dual to the representation O(k)⊗K ω−1, where O(k) is the GL2(Qp)-representation
considered in Section 1.

Dualizing the closed embedding (2.4) yields a surjection

O(k)⊗K ω−1 → π(χ)′b,

which can be identified with (the twist by ω−1 of) the residue map from rigid
analytic functions on Ω onto the space of harmonic cocycles on the Bruhat-Tits
tree of GL2(Qp) considered in [23]. Proposition 2.5 implies that this surjection
induces an isomorphism

O(k)b ⊗K ω−1 ∼−→ π(χ)′bb ,

a result originally proved in [23] and [14]. As we noted above, in those papers it
is furthermore proved that O(k)b 6= 0, and thus that Conjecture 2.2 holds in the
special case. (Note that this conjecture is obviously invariant under unitary twists).

Breuil has noted [4, Prop. 4.6.5] that when k > 2, the unitary Banach space
representation π̂(χ) is not an admissible Banach space G-representation (in the
sense of [22]). For each k > 2 and L ∈ K, dualizing the surjection of (1.20), and
twisting by ω, yields a closed embedding of strongly admissible locally analytic
GL2(Qp)-representations

πla(χ) → πla(χ,L)

(where the target is defined to be the strong dual of O(k,L) ⊗K ω−1). Dualizing
the closed embedding O(k,L)b ⊗K ω → O(k)b ⊗K ω yields a surjection of unitary
Banach space GL2(Qp)-representations

π̂(χ) ∼−→ (O(k)b ⊗K ω−1)′ → (O(k,L)b ⊗K ω−1)′.

Let π̂(χ,L) denote the target of this surjection. (This is equal to B(k,L) ⊗K ω,
where B(k,L) is the unitary Banach space GL2(Qp)-representation defined in [4].)

Breuil makes the following conjecture [4, Conj. 1.1.8]:

Conjecture 2.6. (i) The natural map πla(χ,L) → π̂(χ,L) identifies the source
with the space of locally analytic vectors in the target.

(ii) The unitary Banach space GL2(Qp)-representation π̂(χ,L) is admissible.

Note that part (i) of this conjecture in particular implies that π̂(χ,L) is non-
zero. Together with part (ii), it furthermore implies that π̂(χ,L) is topologically
irreducible [4, Thm. 1.1.9]. In fact, Colmez [8] has recently proved that π̂(χ,L)
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is non-zero, admissible, and topologically irreducible for all L (without, however,
proving part (i) of the conjecture).

Thus for each π(χ) in the special case with k > 2, there exists a family of topo-
logically irreducible quotients of π̂(χ) depending on the parameter L. According
to Breuil’s p-adic local Langlands philosophy, these representations π̂(χ,L) cor-
respond to those irreducible potentially semi-stable representations of GQp

with
Hodge-Tate weights 0, k − 1 that are not potentially crystalline. (Such representa-
tions are classified by their associated Weil group representation and Hodge-Tate
weights, encoded in the character χ, together with their L-invariant, which should
be encoded in the parameter L on which π̂(χ,L) depends.)

When k = 2, one may make analogous constructions to those above so as to
obtain for each L ∈ K a closed embedding of strongly admissible locally analytic
GL2(Qp)-representations πla(χ) → πla(χ,L) and a map π̂(χ) → π̂(χ,L) of unitary
Banach space GL2(Qp)-representations. In this case, though, this latter map is not
a surjection, but rather is a closed embedding (since the map O(2,L)b → O(2)b

is not a closed embedding, but is rather a surjection). When k = 2, the analogue
of Conjecture 2.6 was proved by Breuil [4, §4.5]; note though that π̂(χ,L) is not
topologically irreducible in this case (for example, because it contains π̂(χ) as a
closed subrepresentation).

We conclude our discussion of the special case by noting that the space πla(χ,L)
has a concrete interpretation as a space of functions [4, Prop. 2.2.1]. As remarked
above, we may identify πla(χ) with the space of locally analytic functions on Qp,
having a pole of order at most k− 2 at infinity, and with the GL2(Qp)-action being
given by the formula (2.3). We may identify πla(χ,L) with the space of locally
analytic functions on Qp, whose singularity at infinity is at worst the sum of a pole
of order k − 2 and a term of the form P (x) logL(x), where P (x) is a polynomial
of degree at most k − 2 (with | x |>> 0). The GL2(Qp)-action is given by a
modification of the formula (2.3): if a function f(x) has a logarithmic singularity

of the form P (x) logL x for | x |>> 0, then
(
a b
c d

)
f(x) is defined by adding the

following term to the expression in (2.3):

(2.7) −1
2
θ1(a+ cx)
θ2(a+ cx)

(a+ cx)k−2 θ2(ad− bc)
(ad− bc)k−2

P (
b+ dx

a+ cx
) logL(

ad− bc

(a+ cx)2
).

The principal series case. Suppose that π(χ) is in the principal series case,
and that neither α nor β is a p-adic unit.

Proposition 2.5, together with the isomorphism π(χ) ∼−→ π(χ′) discussed above,
shows that both πla(χ) and πla(χ′) map into π̂(χ). If πla(χ, χ′) denotes the sum
of πla(χ) and πla(χ′) amalgamated along their common closed subspace π(χ), then
these maps glue to give a map

(2.8) πla(χ, χ′) → π̂(χ).

The following conjecture is due to Breuil. It is extracted from the introduction
to [4], and from a letter from Breuil to the author.

Conjecture 2.9. (i) The map (2.8) identifies the source with the locally analytic
vectors in the target.
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(ii) The unitary Banach space GL2(Qp)-representation π̂(χ) is admissible.

Part (i) of this conjecture in particular implies that π̂(χ) 6= 0, i.e. Conjecture 2.2
for π(χ). An argument analogous to that which proves [4, Thm. 1.1.9] shows that
this conjecture also implies the topological irreducibility of π̂(χ). As was noted
above, in the case when θ is unramified, Conjecture 2.2 has recently been proved
[2]. In this reference Berger and Breuil furthermore prove that for such χ the
unitary Banach space representation π̂(χ) is admissible and topologically irreducible
(without, however, establishing part (i) of Conjecture 2.9).

According to Breuil’s local Langlands philosophy, the representations π̂(χ) (for
χ in the principal series case with α and β both non-units) correspond to those
irreducible potentially crystalline representations of GQp for which the associated
representation of the Weil group is abelian.4

3. Proof of Proposition 2.5

We first note that Propositions 1.17, 1.21, and 1.14 (together with Lemma 1.15,
in the special case) show that each of π(χ) and πla(χ) admit a universal unitary
completion. The equivalence of the conditions in the statement of Proposition 2.5
is then clear.

We turn to proving (i). In fact, we will prove the analogous statement in which
π(χ) and πla(χ) are replaced by I(χ) and I la(χ). In the principal series case this
is simply a change of notation. In the special case, the representations π(χ) and
πla(χ) are quotients of I(χ) and I la(χ) respectively by the same finite dimensional
subspace, and so the statement for I(χ) and I la(χ) implies the corresponding state-
ment for π(χ) and πla(χ).

We begin by recalling (from Example C of Section 1) that for any character
χ = θψk−2 of T as in Section 2,

I la(χ) := {f ∈ Cla(G,K) | f(bg) = χ(b)f(g) for all b ∈ B, g ∈ G}.

(As always, we regard χ as a character of B via the natural projection B → T .)
The support of any element of I la(χ) is clearly invariant under left-multiplication by
elements of B, and so may be identified with a closed subset of the quotient B\G.
Since this quotient is compact, and since functions in I la(χ) are locally analytic,
we see that the support of any element of I la(χ) is a compact open subset of B\G.
If Ω is an open subset of B\G, then we let I la(χ)(Ω) denote the closed subspace of
I la(χ) consisting of functions whose support lies in Ω.

Let N denote the unipotent radical of B; we identify N with Qp via the map

x 7→ nx :=
(

1 x
0 1

)
. Write N0 := {nx | x ∈ Zp} ⊂ N . The embedding N → B\G

realizes the source as an open subset of the target, and thus realizes N0 as a compact
open subset of the target.

If for any integer r ≥ 1 we set

G0(r) := {
(
a b
c d

)
∈ GL2(Zp) | c ≡ 0 mod pr},

4Actually we have omitted the crystalline representation with Hodge-Tate weights 0, k−1 with

k > 2 for which ap (the trace of Frobenius) is equal to p(k−2)/2 + pk/2, as well as all of its twists.

Breuil’s philosophy accounts for these representations as well, in a rather surprising way – see [4,
Rem. 1.3.4].
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then G0(r) is a compact open subgroup of G that admits an Iwahori decomposition

with respect to B and B. Namely, if we write N(r) = {
(

1 0
x 1

)
| x ∈ prZp} and

T0 := GL2(Qp)
⋂
T = {

(
a 0
0 d

)
| a, d ∈ Z×p }, then G0(r) = N0T0N(r).

Write T+ := {
(
a 0
0 d

)
∈ T | a

d
∈ Zp}. If t ∈ T+, then one sees that tN0t

−1 ⊂

N0, while t−1N(r)t ⊂ N(r) for any r ≥ 1. Taking into account these formulas, the
inclusion T0 ⊂ T+, and the fact that G0(r) is a subgroup of G for each r ≥ 1, we
see that if for any r ≥ 1 we write G+(r) := N0T

+N(r), then G+(r) is a submonoid
of G. Write B+ := G+(r)

⋂
B = N0T

+; it is a submonoid of B, independent of the
choice of r, that generates B as a group.

One sees that BN0G
+(1) ⊃ BN0, and thus that I la(χ)(N0) is a G+(1)-invariant

closed subspace of I la(χ). Write I(χ)(N0) := I(χ)
⋂
I la(χ)(N0) (the intersection

taking place in the ambient space I la(χ)).

Lemma 3.1. Let U be a K-Banach space equipped with a continuous G-action.
For any integer r ≥ 1, the restriction maps LG(I la(χ), U) → LG+(r)(I la(χ)(N0), U)
and LG(I(χ), U) → LG+(r)(I(χ)(N0), U) are both isomorphisms.

Proof. Let V be any closed subspace of I la(χ) satisfying the following two condi-
tions: (i) V is G-invariant; (ii) V is local: that is, if F ∈ V and if Ω is a compact
open subset of B\G, then the restriction F|Ω of F to Ω also lies in V . (The two
examples of such a V that we have in mind are I la(χ) itself and I(χ).) Then
V (N0) := V

⋂
I la(χ)(N0) is G+(1)-invariant, and we will prove that the restriction

map

(3.2) LG(V,U) → LG+(r)(V (N0), U)

is an isomorphism for any r ≥ 1.
Since the G-translates of N0 cover B\G, and since V is local, we see that V (N0)

generates V as a G-representation. The map (3.2) is thus certainly injective, and
we must show that it is also surjective.

Let V (N) denote the B-invariant closed subspace of V consisting of elements
whose support is contained in N . Since V is local, the natural map K[N ] ⊗K[N0]

V (N0) → V (N) is an isomorphism, and hence (taking into account the fact that
B+ generates B as a group) restriction induces an isomorphism

(3.3) LB(V (N), U) ∼−→ LB+(V (N0), U).

Let LB(V (N), U)◦ denote the subspace of the source of (3.3) consisting of maps
φ satisfying the following condition:

(3.4) For each n ∈ N , there exists a neighbourhood Ω of the identity in N such
that, for any F ∈ V whose support lies in Ω, the element nF lies in V (N), and
φ(nF ) = nφ(F ).

Note that LG+(r)(V (N0), U) is a subspace of the target of (3.3).
Claim 3.5. The image of LG+(r)(V (N0), U) under the inverse of the isomor-

phism (3.3) (which consists of elements of the source whose restrictions to V (N0)
are N(r)-equivariant) is contained in LB(V (N), U)◦.
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Choose t ∈ T+ such that n ∈ tN(r)t−1, and take Ω = tN0t
−1. Since tG0(r)t−1 is

a subgroup of G, we see that tN0t
−1, regarded as a compact open subset of B\G, is

invariant under the action of tN(r)t−1. Thus if F is any element of V with support
contained in Ω, the same is true of nF . In particular, we see that nF ∈ V (N), as
required.

Now let φ be an element of LB(V (N), U) whose restriction to V (N0) is N(r)-
equivariant. If the support of F is contained in Ω, we compute that

φ(nF ) = tφ(t−1ntt−1F ) = t(t−1nt)φ(t−1F ) = nφ(F ).

(The first and third equalities hold because φ is B-equivariant by assumption. The
second equality holds because t−1F is supported on N0, since F was assumed to be
supported on Ω, while t−1nt lies in N(r), and φ is assumed to be N(r)-equivariant
on V (N0).) This proves the claim.

Claim 3.6. The image of the restriction map LG(V,U) → LB(V (N), U) is equal
to LB(V (N), U)◦.

Since any element of LG(V,U) is G+(r)-equivariant when restricted to V (N0),
it follows from Claim 3.5 that the restriction to V (N) of any element of LG(V,U)
lies in LB(V (N), U)◦. We must show that any element of LB(V (N), U)◦ may be
extended to an element of LG(V,U).

For g ∈ G, let gV (N) denote the closed subspace of V obtained by translating
V (N) by g. If w denotes a representative of the non-trivial element of the Weyl
group of G, then since N and Nw together cover B\G, and since V is local, the
closed embeddings of V (N) and wV (N) into V induce a continuous surjection

(3.7) V (N)
⊕

wV (N) → V,

which must be strict, since the source and target are of compact type. More gen-
erally, the closed embeddings of gV (N) into V for each g ∈ G together induce a
continuous K-linear surjection

(3.8)
⊕
g∈G

gV (N) → V.

(More canonically, this is the G-equivariant map K[G] ⊗K V (N) → V induced
by the inclusion of V (N) into V and the G-action on V .) Since (3.7) is a strict
surjection, the same is true of (3.8).

Now fix φ ∈ LB(V (N), U)◦, and for each g ∈ G, define φg : gV (N) → U via
φg(gF ) = gφ(F ). The maps φg induce a continuous K-linear map

(3.9)
⊕
g∈G

φg :
⊕
g∈G

gV (N) → U.

(More canonically, this is the G-equivariant map K[G]⊗K V (N) → U induced by
the map φ : V (N) → U and the G-action on U .) We must show that (3.9) factors
through (3.8), to yield a map φ̃ : V → U . The map φ̃ will then be a G-equivariant
extension of φ by construction, and will also be continuous, since (3.8) is strict.

To prove the required factorization, we must show that if (g1F1, . . . , glFl) is
any finite sequence with gi ∈ G and Fi ∈ V (N) such that

∑
i giFi = 0 (the sum
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taking place in V ), then
∑

i giφ(Fi)
?= 0. Since V is local, it suffices to show that

each point x of B\G has a compact open neighbourhood Ωx such that if Ω′x is a
neighbourhood of x contained in Ωx then

(3.10)
∑

i

giφ(Fi|Ω′xg−1
i

) ?= 0.

Indeed, we can then partition B\G into a disjoint union of such neighbourhoods, say
B\G =

∐s
j=1 Ω′xj

, and writing Fi =
∑s

j=1 Fi|Ω′xj
g−1

i
, we conclude that

∑
i giφ(Fi) =∑

i

∑s
j=1 giφ(Fi|Ω′xj

g−1
i

) =
∑s

j=1

∑
i giφ(Fi|Ω′xj

g−1
i

) = 0, as required.

If x = Bg for some g ∈ G, then replacing (g1F1, . . . , glFl) by (gg1F1, . . . , gglFl),
we see that it suffices to treat the case when x equals the identity coset, which we
identify with the identity e of N , under the open immersion N → B\G. If e is
not in the domain of giFi, for some i, then taking the sought-after neighbourhood
Ωe of e to be sufficiently small, we will have that (giFi)|Ωe

= 0, or equivalently,
Fi|Ωeg−1

i
= 0, and hence the ith summand will contribute zero to the sum (3.10).

Thus we may furthermore assume that e is in the support of each giFi for each i.
Also, by choosing Ωe so as to be contained in N , we may assume without loss of
generality that giFi is supported on N .

Since the support of Fi lies in N by assumption, we see that gi ∈ BN = NB, and
so we may write gi = nibi for some ni ∈ N, bi ∈ B. Take Ωe to be the intersections
of the neighbourhoods Ω corresponding to the elements n−1

i in condition (3.4).
Then

φ(Fi|Ωeg−1
i

) = φ(g−1
i (giFi)|Ωe

) = φ(b−1
i n−1

i (giFi)|Ωe
)

= b−1
i n−1

i φ((giFi)|Ωe
) = g−1

i φ((giFi)|Ωe
).

(Here the third equality follows from the fact that φ is B-equivariant, together with
hypothesis (3.4).) Thus∑

i

giφ(Fi|Ωeg
−1
i ) =

∑
i

gig
−1
i φ((giFi)|Ωe

) = φ((
∑

i

giFi)|Ωe
) = 0,

since
∑

i giFi = 0 by assumption.
The surjectivity of (3.2) follows from Claims 3.5 and 3.6 taken together. �

Now let U be a K-Banach space equipped with a unitary G-representation, and
fix some integer r ≥ 1. Restriction of continuous linear maps yields the following
commutative diagram:

(3.11) LG(I la(χ), U) //

��

LG(I(χ), U)

��
LG+(r)(I la(χ)(N0), U) // LG+(r)(I(χ)(N0), U).

Our goal is to prove that top horizontal arrow is an isomorphism under the hy-
potheses of Proposition 2.5. Lemma 3.1 implies that both vertical arrows are iso-
morphisms, and so it suffices to prove that the bottom horizontal arrow is an
isomorphism. We turn our efforts to this task.
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We first recall an important result due to Vishik and Amice-Vélu (Lemma 3.14
below).

Let A denote the Tate algebra of rigid analytic functions on the closed unit disk
over K; thus A := {

∑∞
i=0 aix

i | ai ∈ K, limi→∞ | ai |= 0}. Let ||–||A denote the
usual Gauss norm on A; i.e. ||

∑∞
i=0 aix

i||A = sup{| ai |}i≥0. With respect to this
norm A becomes a Banach space over K.

We let A≤k−2 denote the finite dimensional subspace of A consisting of poly-
nomials of degree ≤ k − 2, and let Clp≤k−2(Zp,K) denote the closed subspace of
Cla(Zp,K) consisting of functions that are locally polynomial of degree ≤ k − 2.

If F ∈ A, b ∈ Zp, and m ≥ 0, we write F|b+pmZp
to denote the element of

Cla(Zp,K) defined by F on the compact open subset b+ pmZp of Zp, and by zero
at all other points of Zp. If F ∈ A≤k−2 then F|b+pmZp

lies in Clp≤k−2(Zp,K).

Definition 3.12. If φ ∈ L(Cla(Zp,K), U) (respectively φ ∈ L(Clp≤k−2(Zp,K), U)),
then φ is called α-tempered (for some α ∈ K×) if for all F (x) ∈ A (respectively
F (x) ∈ A≤k−2), all b ∈ Zp, and all m ≥ 0, we have

||φ
(
F (
x− b

pm
)
)
||U ≤ C|α|−m||F (x)||A

for some (equivalently any) choice of norm ||–||U defining the topology on U and
some positive constant C (both independent of the choice of F , b, or m). We let
L(Cla(Zp,K), U)α−temp (respectively L(Clp≤k−2(Zp,K), U)α−temp) denote the sub-
space of L(Cla(Zp,K), U) (respectively of L(Clp≤k−2(Zp,K), U)) consisting of α-
tempered maps.

We remark that α-tempered distributions are also said to be “tempered of order
≤ h”, if h is the p-adic valuation of α.

Restricting maps from Cla(Zp,K) to Clp≤k−2(Zp,K) induces a map

(3.13) L(Cla(Zp,K), U)α−temp → L(Clp≤k−2(Zp,K), U)α−temp

Lemma 3.14. If α ∈ K× satisfies | α |>| pk−1 |, then the restriction map (3.13)
is an isomorphism.

Proof. This is the classical result of Vishik and Amice-Vélu. (See [1] and [24], and
also the proof of [16, Thm., p. 13].) �

We return to the consideration of I la(χ), for some character χ as in Section 2.
Restricting functions in I la(χ) to N0 induces isomorphisms

(3.15) I la(χ)(N0)
∼−→ Cla(N0,K) ∼−→ Cla(Zp,K)

(where the second isomorphism is induced via the identification of Zp and N0 given
by x 7→ nx). Restricting (3.15) to I(χ)(N0) induces an isomorphism

(3.16) I(χ)(N0)
∼−→ Clp≤k−2(Zp,K)

The isomorphism (3.15) allows us to transport the G+(1)-action on the source to

a G+(1)-action on Cla(Zp,K). Concretely, if F (x) ∈ Cla(Zp,K) and g =
(
a b
c d

)
∈

G+(1), then one computes for any x ∈ Zp that
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(3.17)

(gF )(x) =


0 if

b+ dx

a+ cx
6∈ Zp

(a+ cx)k−2 θ1(a+ cx)
θ2(a+ cx)

θ2(ad− bc)
(ad− bc)k−2

F (
b+ dx

a+ cx
) if

b+ dx

a+ cx
∈ Zp.

Since I(χ) is a G-invariant closed subspace of I la(χ), the isomorphism (3.16) shows
that Clp≤k−2(Zp,K) is a G+(1)-invariant closed subspace of Cla(Zp,K); this also
may be checked directly from the formula (3.17) for the G+(1)-action on this space.

It is useful to also define an action of G0(1) on A. Namely, if F (x) ∈ A and

g =
(
a b
c d

)
∈ G0(1), then we define

(3.18) (gF )(x) = (a+ cx)k−2 θ2(ad− bc)
(ad− bc)k−2

F (
b+ dx

a+ cx
)

Note that the norm ||–||A is invariant under this G0(1)-action, and that A≤k−2 is
a G0(1)-invariant subspace of A. Comparing formulas (3.17) and (3.18), we find

that if g =
(
a b
c d

)
∈ G0(1) and F (x) ∈ A, then

(3.19) g(F (x)|Zp
) =

θ1(a+ cx)
θ2(a+ cx)

(gF (x))|Zp

for any x ∈ Zp.

Lemma 3.20. Suppose that χ becomes unitary when restricted to the center of G
(i.e. the subgroup of T consisting of diagonal matrices), or equivalently, that I la(χ)
has a unitary central character. As usual write α = χ(p), and let C denote either
Cla(Zp,K) or Clp≤k−2(Zp,K); correspondingly, let AC denote either A or A≤k−2,
respectively.

If U is a K-Banach space and φ ∈ L(C, U) then the following are equivalent:
(i) φ is α-tempered.
(ii) There exists a positive constant C such that ||φ(b(F|Zp

))||U ≤ C||F ||A for all
F ∈ AC and b ∈ B+. (Here ||–||U is some fixed choice of norm defining the topology
of U .)

Proof. Write B′ := {
(
pm −b
0 1

)
| m ≥ 0, b ∈ Zp}; note that B′ is a submonoid of

B+. If F ∈ AC , then we compute using (3.17) that(
pm −b
0 1

)
F (x)|Zp

= αmF (
x− b

pm
)|b+pmZp

.

Thus (fixing a norm ||–||U defining the topology of U) we find that φ is α-tempered
if and only if there exists a positive constant C such that

(3.21) ||φ(b′(F|Zp
))||U ≤ C||F ||A

for all F ∈ A and b′ ∈ B′.
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Clearly (ii) implies condition (3.21). Conversely, suppose that (3.21) holds. Any
element of B+ may be written in the form zb′t0, where z lies in the center of G,

b′ ∈ B′, and t0 ∈ T0. Writing t0 =
(
a 0
0 d

)
, and taking into account (3.21), (3.19),

the fact that T0 acts isometrically on A, and that χ|ZG
is unitary by assumption,

we deduce that

||φ(zb′t0(F|Zp
))||U = ||χ(z)

θ1(a)
θ2(a)

φ(b′(t0F )|Zp
)||U = ||φ(b′(t0F )|Zp

)||U

≤ C||t0F ||A = ||F ||A

for any F ∈ AC . Thus (3.21) is equivalent to condition (ii), and the lemma fol-
lows. �

Lemma 3.22. In the situation of Lemma 3.20, suppose that U is equipped with a
unitary B+-action. Then LB+(C, U) ⊂ L(C, U)α−temp.

Proof. Fix a B+-invariant norm ||–||U defining the topology of U . If φ ∈ LB+(C, U)
then the map AC → U defined by F 7→ φ(F|Zp

) is continuous, and so there is a
positive constant C such that ||φ(F|Zp

)||U ≤ C||F ||A for all F ∈ AC . For any
b ∈ B+, F ∈ AC , we compute that

||φ(bF|Zp
)||U = ||bφ(F|Zp

)||U = ||φ(F|Zp
)||U ≤ C||F |||Zp

(using the B+-equivariance of φ and the B+-invariance of ||–||U .) Thus φ satisfies
condition (ii) of Lemma 3.20, and so by that lemma is α-tempered. �

Lemma 3.23. In the situation of Lemma 3.20, suppose that U is equipped with
a unitary G-action, and that | α |<| pk−1 |. If r is chosen so that the conduc-
tor of each of θ1|Z×p and θ2|Z×p divides pr, then the map (3.13) (which is an iso-
morphism by Lemma 3.14) restricts to an isomorphism LG+(r)(Cla(Zp,K), U) →
LG+(r)(Clp≤k−2(Zp,K), U).

Proof. Since B+ ⊂ G+(r), Lemma 3.22 gives the inclusions

LG+(r)(Cla(Zp,K), U) ⊂ L(Cla(Zp,K), U)α−temp

and
LG+(r)(Clp≤k−2(Zp,K), U) ⊂ L(Clp≤k−2(Zp,K), U)α−temp.

The isomorphism of Lemma 3.14 thus restricts to an injection

(3.24) LG+(r)(Cla(Zp,K), U) → LG+(r)(Clp≤k−2(Zp,K), U),

which we must show is again an isomorphism.
Given φ lying in the target of (3.24), let φ̃ denote its unique extension to an ele-

ment of L(Cla(Zp,K), U)α−temp. We must show that φ̃ is again G+(r)-equivariant.
In other words, for any g ∈ G+(r), we must show that

(3.25) g−1φ̃(gF ) ?= φ̃(F )
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for all F ∈ Cla(Zp,K). Since φ is G+(r)-equivariant, both sides of (3.25) restrict to
φ on Clp≤k−2(Zp,K). Thus to show that they coincide, it suffices to show that

(3.26) F 7→ g−1φ̃(gF )

is also an α-tempered map.
Fix a G-invariant norm ||–||U defining the topology of U . Since φ̃ is α-tempered,

Lemma 3.20 (ii) gives a positive constant C such that

(3.27) ||φ̃(bF|Zp
)||U ≤ C||F ||A

for all b ∈ B+, F ∈ A. If g ∈ G+(r) and b in B+, then we may write gb = b′n for
some b′ ∈ B+, n ∈ N(r), and so compute

||g−1φ̃(gbF|Zp
)||U = ||φ̃(gbF|Zp

)||U = ||φ̃(b′nF|Zp
)||U

= ||φ̃(b′(nF )|Zp
)||U ≤ C||nF ||A = C||F ||A.

(Here we have used the G-invariance of ||–||U , as well as (3.19) applied to n and F
(taking into account our choice of r), the inequality (3.27) applied to nF , and the
fact that N(r) acts isometrically on A.) Again appealing to Lemma 3.20, we see
that (3.26) is α-tempered, as required. �

Taking into account the isomorphisms (3.15) and (3.16), we see that Lemma 3.23
implies that under the hypotheses of Proposition 2.5, the bottom horizontal arrow
of (3.11) is an isomorphism, as required, and so Proposition 2.5 is proved.

4. p-adic L-functions

Let A denote the adèles of Q, and let Af , Ap
f , have their usual meaning. Fix a

prime-to-p natural number N , and let Kp be the following compact open subgroup
of GL2(Ap

f ):

Kp = {
(
a b
c d

)
∈

∏
` 6=p

GL2(Z`) | c ≡ 0 mod N, d ≡ 1 mod N}.

Let us embed C× into GL2(R) in the usual way, by choosing a real linear isomor-
phism C ∼−→ R2, and regarding C× as the subgroup of the group of real linear
automorphisms of C consisting of complex linear automorphisms.

If Kp is a compact open subgroup of GL2(Qp) then the quotient

Y (KpKp) := GL2(Q)\GL2(A)/C×KpKp

is a classical modular curve. For example, if we take Kp to be the kernel of the
reduction map GL2(Zp) → GL2(Z/pn), then this quotient is isomorphic to the
modular curve that classifies elliptic curves over C with a Γ1(N)-level structure
and a full level p structure (the Weil pairing of which is allowed to have arbitrary
determinant). In general, if we take Kp to be a compact open subgroup of GL2(Zp),
and use the isomorphism GL2(R)/C× ∼−→ C\R together with strong approximation
for SL2, we obtain an isomorphism

Y (KpKp) = GL2(Q)\GL2(A)/C×KpKp
∼−→ Γ1(N)\(X ×GL2(Zp)/Kp),
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where X denotes the upper half-plane of C \R, and as usual Γ1(N) = {
(
a b
c d

)
∈

SL2(Z) | a ≡ d ≡ 1 mod N, c ≡ 0 mod N}.
Define M(Kp) = lim

←−
s

lim
−→
Kp

H1
c (Y (KpKp),OK/p

s), where s and Kp range over the

directed sets of non-negative integers and compact open subgroups of GL2(Qp) re-
spectively, and define H̃1

c (Kp) = K ⊗OK
M(Kp). By construction, M(Kp) is a

p-adically complete and separated OK-module. Thus H̃1
c (Kp) is naturally a K-

Banach space, if we equip it with the norm whose unit ball is equal to M(Kp)
(in other words, the gauge of M(Kp)). The group GL2(Qp) acts on right on the
projective system of arithmetic quotients Y (KpKp), and hence on M(Kp). Thus
GL2(Qp) acts unitarily on the Banach space H̃1

c (Kp). This representation is fur-
ther equipped with actions of the Hecke algebra Hp of Kp in GL2(Ap

f ) and of the
connected component group π0 = {±1} of GL2(R), that commute with one another
and with the GL2(Qp)-action.

Proposition 4.1. The unitary Banach space representation H̃1
c (Kp) is admissible.

Proof. This is [5, Lem. 2.1.2]. It is also a special case of [12, Prop. 2.2.6]. �

We let H̃1
c (Kp)± denote the ±1-eigenspace for π0 on H̃1

c (Kp). Each of these
spaces is again an admissible unitary Banach space representation of GL2(Qp),
equipped with a commuting Hp-action.

Let Γ denote the normalizer in GL2(Q) of Kp. (We regard GL2(Q) as being
embedded diagonally in GL2(Ap

f ).) There is a natural map Γ → π0 × (Hp)× ×
GL2(Qp): the projection onto the first factor is given by the sign of the determinant,
the projection onto the second factor is given by mapping an element in GL2(Ap

f )
that normalizes Kp to its double coset in Hp, and the projection onto the third
factor is given by the inclusion GL2(Q) → GL2(Qp). In this way we may regard
H̃1

c (Kp), and hence its dual H̃1
c (Kp)′, as a Γ-module.

The following proposition describes the theory of modular symbols, as it applies
to the completed cohomology space H̃1

c (Kp). Let D0 denote the OK-module of
degree zero divisors on P1(Q). The natural action of GL2(Q) on D0 induces in
particular an action of Γ on D0. Recall that P1(Q) appears as the boundary of the
standard completion of the upper half-plane X. For any compact open subgroup
Kp of GL2(Qp), we let X(KpKp) denote the usual compactification of Y (KpKp);
thus X(KpKp) = Y (KpK

p)
⋃
C(KpK

p), where C(KpK
p) is the set of cusps. (If

Kp ⊂ GL2(Zp), then C(KpK
p) = Γ1(N)\(P1(Q)×GL2(Zp)/Kp).)

Proposition 4.2. The standard pairings between one dimensional compactly sup-
ported cohomology classes on the open curves Y (KpKp), and one dimensional ho-
mology classes taken relative to the set of cusps C(KpKp) on the compactified curves
X(KpKp), induces a Γ-equivariant OK-linear map D0 → (H̃1

c (Kp))′, whose image
lies in the closed unit ball of the target (taken with respect to norm that is dual to
the norm on H̃1

c (Kp) given by the gauge of M(Kp)).

Proof. Given elements a, b ∈ P1(Q), the geodesic in the upper half-plane that joins
a and b gives rise to an element of H1(X(KpKp), C(KpKp);OK/p

s), for any choice
of Kp and s, and we obtain a map D0 → H1(X(KpKp), C(KpKp);OK/p

s) by
mapping a − b to this element. The pairing between this relative homology group
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and the corresponding compactly supported cohomology group thus induces a OK-
bilinear pairing

D0 ×H1
c (GL2(Q)\GL2(A)/C×KpKp,OK/p

s) → OK/p
s

for each choice of Kp and s. The functorial nature of this pairing shows that it is
Γ-equivariant, and that it is compatible with change of Kp and s. Thus, passing to
the inductive limit in Kp and the projective limit in s, we obtain a Γ-equivariant
OK-bilinear pairing

D0 ×M(Kp) → OK ,

and consequently a Γ-equivariant OK-linear map as in the statement of the propo-
sition. �

Let us fix for the duration of this section a newform f of weight k and tame
conductor N5 that is defined over K. If we fix an embedding K → C, then f
gives rise to an automorphic representation π = π∞ ⊗K πp ⊗K πp of GL2(A) =
GL2(R)×GL2(Qp)×GL2(Ap

f ), where the infinite component π∞ is defined over C,
while the finite component πp ⊗ πp is defined over K. Since f is assumed to have
tame conductor N , the space (πp)Kp

is thus a one dimensional Hp-representation,
on which Hp acts through a character that we will denote by λ. If εN denotes the
conductor-N part of the nebentypus of f , then the central character of πp takes(
p

p

)
to εN (p)pk−2.

If V is any representation of GL2(Qp), then for each choice of sign ±1, we let
V ±,λ denote the GL2(Qp)-representation V equipped with commuting actions of π0

and Hp, defined as follows: the non-trivial element of π0 acts through the chosen
sign ±1, while Hp acts through the character λ.

Proposition 4.3. For each choice of sign, we obtain a π0 × Hp × GL2(Qp)-
equivariant embedding (Wk−2⊗Kπp)±,λ → H̃1

c (Kp)±, unique up to scalar multiples.

Proof. For each choice of compact open subgroup Kp of GL2(Qp), write VW̌k−2
:=

GL2(Q)\(GL2(A)/C×KpKp × W̌k−2); this is a local system of K-vector spaces
on the modular curve GL2(Q)\GL2(A)/C×KpKp. If we write H1

c (Kp,VW̌k−2
) :=

lim
−→
Kp

H1
c (GL2(Q)\GL2(A)/C×KpKp,VW̌k−2

), then [12, (4.3.7)] shows that there is

an isomorphism

(4.4) Wk−2 ⊗K H1
c (Kp,VW̌k−2

) ∼−→ H̃1
c (Kp)Wk−2−lalg,

while classical Eichler-Shimura theory shows that the space

HomGL2(Qp)(πp,H
1
c (Kp,VW̌k−2

)H
p=λ)

is two dimensional, and that under the action of π0 it decomposes as the direct sum
of one dimensional ±-eigenspaces. The proposition follows. �

The homomorphism Γ → π0 × (Hp)× × GL2(Qp) described above allows us to
define a Γ-action on (Wk−2 ⊗K πp)±,λ, and hence a contragredient Γ-action on
((Wk−2 ⊗K πp)±,λ)′b and on ((Wk−2 ⊗K πp)±,λ)′bb .

5i.e. conductor equal to N times a power of p
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Corollary 4.5. For each choice of sign we obtain a Γ-equivariant map D0 →
((Wk−2 ⊗K πp)±,λ)′bb .

Proof. Since the GL2(Qp)-action on H̃1
c (Kp)± is unitary, Lemma 1.11 shows that

the dual of the map of Proposition 4.3 factors through the natural map

((Wk−2 ⊗K πp)±,λ)′bb → ((Wk−2 ⊗K πp)±,λ)′b

of (1.10). Composing the resulting map (H̃1
c (Kp)±)′ → ((Wk−2 ⊗K πp)±,λ)′bb with

the map of Proposition 4.2 yields the corollary. �

In the case when πp is special and unramified, the maps of Corollary 4.5 were
constructed by Breuil in [5, Lem. 4.2.2].

Suppose now that πp is principal series or special. Then we may choose χ as
in Section 2 such that Wk−2 ⊗K πp = π(χ). We let α, β, θ1, θ2 and χ′ have the
same meanings as in Section 2. A consideration of central characters shows that
αβ = εN (p)pk−1. Note that the necessary conditions of Lemma 2.1 are satisfied for
a representation π(χ) arising in this way from a newform.

Proposition 4.6. Conjecture 2.2 is true for those representations π(χ) that arise
from newforms that are principal series or special locally at p.

Proof. Proposition 4.3 shows that π(χ) embeds into the non-zero unitary represen-
tation H̃1

c (Kp)± (for either choice of sign and an appropriate choice of Kp). �

Of course in the unramified principal series or special case, the results of [2],
[14], and [23] establish Conjecture 2.2 without any global restriction on χ.

Now suppose furthermore that the newform f is of finite slope at p. Then we
may assume that θ1 is unramified (by replacing χ by χ′ if necessary). If in fact
p divides the conductor of f and we are in the principal series case, then θ2 is
ramified, and so the condition that θ1 be unramified uniquely determines χ. If p
divides the conductor of f and we are in the special case, we again have a unique
choice for χ, since in the special case we insist that α/β = p−1. In either of these
cases, the Up-eigenvalue of f is equal to α. If the conductor of f is prime to p, then
both θ1 and θ2 are unramified, and we have two choices for χ (namely a pair χ and
χ′, in the notation of Section 2). Fixing one of the two choices for χ corresponds
to choosing one of the two p-old Up-eigenforms attached to f ; namely, the one with
Up-eigenvalue equal to α.

We let g denote f in the case when p divides the conductor of f , and let g denote
the p-oldform attached to f with Up-eigenvalue α, in the case when the conductor
of f is prime-to-p. In all cases g is a Up-eigenform with eigenvalue α.

Corollary 4.7. If | α |>| pk−1 |, then the embeddings

π(χ)±,λ = (Wk−2 ⊗K πp)±,λ → H̃1(Kp)±

of Proposition 4.3 extend uniquely to (π0,GL2(Qp),Hp)-equivariant maps

πla(χ)±,λ → H̃1
c (Kp)±.

Proof. This follows from Proposition 2.5. �
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Dualizing the maps of Corollary 4.7, and taking into account Proposition 4.2, we
obtain Γ-equivariant maps D0 → (πla(χ)±,λ)′ (one for each choice of sign), lifting
the maps of Corollary 4.5. In particular, the element ∞− 0 of D0 gives rise to a
pair of functionals

(4.8) µ±g : πla(χ) → K.

If we identify I la(χ) as a space of locally analytic functions on Q×
p , as in Section 2,

then we obtain a closed embedding Cla(Z×p ,K) → πla(χ), by identifying elements of
the source as locally analytic functions on Qp that are supported on Z×p . Restricting
the functionals µ±g to Cla(Z×p ) thus gives rise to a pair of distributions on Z×p .

Proposition 4.9. The distributions on Z×p obtained by restricting µ±g coincide
(up to a non-zero scalar multiple) with the Mazur-Tate-Teitelbaum distributions
[16] that compute the p-adic L-function of g.6

Proof. It follows from Lemma 3.22 that µ±g are α-tempered, while by their very con-
struction, the Mazur-Tate-Teitelbaum distributions defining the p-adic L-function
of g are α-tempered. (See [16, Thm., p. 13].) Thus it suffices to show that the distri-
butions µ±g coincide with the Mazur-Tate-Teitelbaum distributions when evaluated
on functions that are locally polynomial of degree ≤ k − 2.

As in Section 3, let A≤k−2 denote the space of polynomials in one variable over
K of degree ≤ k − 2. Suppose that b ∈ Z×p , that pm is a positive power of p, and
that F (x) is an element of A≤k−2. As in Section 3, we let F (x)|b+pmZp

denote the
element of Clp≤k−2(Zp,K) defined by F (x) on b + pmZp, and defined to be zero
elsewhere. Fix a choice of sign ±, let 〈– , –〉±1 : D0 × H̃1

c (Kp) → K denote the
Γ-equivariant pairing provided by Proposition 4.2, and let φ±1 : π(χ) → H̃1

c (Kp)±

denote the embedding of Proposition 4.3. Using the formula (3.17) and the fact

that
(
pm −b
0 1

)
, when thought of as an element of GL2(Q), lies in Γ (in fact, even

in Kp), we compute that

(4.10)
∫

b+pmZ×p
F (x)dµ±g = 〈∞ − 0, φ±1 (F (x)|b+pmZp

)〉±1

= 〈∞ − 0, α−m

(
pm −b
0 1

)
φ±1 (F (b+ pmx)|Zp

)〉±1

= α−m〈
(
p−m bp−m

0 1

)
(∞− 0), φ±1 (F (b+ pmx)|Zp

)〉±1

= α−m〈∞ − b

pm
, φ±1 (F (b+ pmx)|Zp

)〉±1 .

To analyze this expression, we must unwind the definition of the pairing 〈– , –〉±1 ,
which we do through a series of commutative diagrams.

6We take the auxiliary integer “M” of that paper to be 1; this is no loss of generality, since
the Mazur-Tate-Teitelbaum distributions on Z×p × Z×M associated to g may be constructed out

of the Mazur-Tate-Teitelbaum distributions on Z×p attached to the collection of modular forms

obtained by twisting g by all characters of Z×M . We have also scaled the distribution of [16] by an

appropriate complex period Ω±g .
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We identify Wk−2 with a space of functions on G in the usual way: write w̌0 =
(0, 1)k−2 ∈ Symk−2K2 ∼−→ W̌k−2, and define w(g) = 〈w̌0, gw〉 for g ∈ G. If we
write I(θ) := (IndG

B
θ)sm, then multiplication of functions induces an isomorphism

(whose existence has been recalled several times already)

(4.11) Wk−2 ⊗K I(θ) ∼−→ I(χ).

Restricting the functions w(g) to those g of the form nx :=
(

1 x
0 1

)
for x ∈

Zp, we also obtain an identification of Wk−2 with the space A≤k−2. Multiplying
elements of Wk−2, thought of as elements of A≤k−2 in this way, by locally constant
functions on Zp induces an isomorphism

(4.12) Wk ⊗K Csm(Zp,K) ∼−→ Clp≤k−2(Zp,K).

(As in Section 3, we let Clp≤k−2(Zp,K) denote the subspace of Cla(Zp,K) consisting
of functions that are locally polynomial of degree ≤ k − 2.)

We may apply the discussion of Section 3 to the representation I(θ) just as well
as to I(χ). The isomorphism (3.16) thus yields an isomorphism

(4.13) Csm(Zp,K) ∼−→ I(θ)(N0),

which fits in the commutative diagram of isomorphisms

(4.14) Wk−2 ⊗K Csm(Zp,K) ∼
(4.12)

//

∼idWk−2⊗(4.13)

��

Clp≤k−2(Zp,K)

∼(3.16)

��
Wk−2 ⊗K I(θ)(N0)

∼
(4.11)

// I(χ)(N0).

We employ the notation introduced in the proof of Proposition 4.3. As recalled
in that proof, for each choice of sign ±, classical Eichler-Shimura theory gives a
(G(Qp),Hp)-equivariant embedding φ±2 : (πp)±,λ → H1

c (Kp,VW̌k−2
)±, unique up

to multiplication by a scalar. (Here H1
c (Kp,VW̌k−2

)± denotes the ±-eigenspace for
the action of π0 on H1

c (Kp,VW̌k−2
).) By its construction, the embedding φ±1 of

Proposition 4.3 is obtained by composing the map (4.4) with idWk−2 ⊗ φ±2 . Thus
we obtain a commutative diagram

(4.15) Wk−2 ⊗ I(θ)

��

∼
(4.11)

// I(χ)

��
Wk−2 ⊗ πp

∼ //

idWk−2⊗φ±2
��

π(χ)

φ±1
��

Wk−2 ⊗H1
c (Kp,VW )± // H̃1

c (Kp)±,

in which the upper vertical arrows are the defining surjections (either isomorphisms
in the principal series case, or surjections with finite dimensional kernels in the
special case), and the bottom horizontal arrow is induced by (4.4).
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Pulling back a compactly compacted cohomology class to the upper half-plane,
and then integrating over a geodesic joining two cusps, we obtain a pairing D0 ×
H1

c (Kp,VW̌k−2
) → W̌k−2, or equivalently, a pairing

〈– , –〉2 : D0 ×Wk−2 ⊗K H1
c (Kp,VW̌k−2

) → K.

Passing to ±-eigenspaces under the action of π0, this yields pairings

〈– , –〉±2 : D0 ×Wk−2 ⊗K H1
c (Kp,VW̌k−2

)± → K.

The diagram

(4.16) D0 ×Wk−2 ⊗K H1
c (Kp,VW̌k−2

)±

〈– ,–〉±2 **VVVVVVVVVVVVVVVVVVVV
// D0 × H̃1

c (Kp)±

〈– ,–〉±1
��
K

in which the horizontal arrow is induced by (4.4), also commutes; indeed, the di-
agonal arrow is constructed by trivializing VW , and then integrating over geodesics
joining cusps, while an examination of the proof of [12, Thm. 2.2.19] shows that
the horizontal arrow is similarly constructed by trivializing VW (after choosing an
integral model and reducing modulo powers of p), while the vertical arrow is again
constructed by integrating over geodesics joining cusps.

Let 1|Zp
denote the constant function 1 with domain Zp. Using the commutative

diagrams (4.14), (4.15), and (4.16), we compute that

α−m〈∞ − b

pm
, φ±1 (F (b+ pmx)|Zp

)〉±1 = α−m〈∞ − b

pm
, F (b+ pmx)⊗ φ±2 (1|Zp

)〉±2 .

Combining this with (4.10), we see that

(4.17)
∫

b+pmZp

F (x)dµ±g = α−m〈∞ − b

pm
, F (b+ pmx)⊗ φ±2 (1|Zp

)〉±2

for any F (x) ∈ A≤k−2 ∼−→Wk−2.
If we fix an embedding K → C, then the modular form g defines an element of

cg ∈ H1
c (Kp,VWk−2)⊗K C, defined to be the cohomology class of the holomorphic

VWk−2-valued one-form g(τ)dτ(τ, 1)k−2. (Here (τ, 1)k−2 is regarded as an element of
Symk−2 C2 ∼−→ W̌k−2⊗K C.) If we let c±g denote the ±-eigencomponent of cg, then
φ±2 (1|Zp

) = Ω±c±g for some non-zero scalars Ω±. (To see this, note that φ±2 (1|Zp
) is

a Up-eigenclass with eigenvalue α, and a Hp-eigenclass with character λ, while the
same is true of c±g .) From (4.17) we compute

(4.18)
∫

b+pmZp

F (x)dµ±g = Ω±α−m〈∞ − b

pm
, F (b+ pmx)⊗ c±g 〉±2 .

If we don’t pass to ±-eigencomponents, then we compute that

(4.19) 〈∞ − b

pm
, F (b+ pmx)⊗ cg〉2 =

∫ ∞

b/pm

g(τ)〈(τ, 1)k−2, F (b+ pmx)〉dτ,
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where the pairing 〈(τ, 1)k−2, F (b+pmx)〉 denotes the natural pairing W̌k−2⊗K C×
Wk−2 → C. We furthermore compute that

〈(τ, 1)k−2, F (b+ pmx)〉 = 〈
(

1 τ
0 1

)
w̌0, F (b+ pmx)〉

= 〈w̌0,

(
1 −τ
0 1

)
F (b+ pmx)〉 = F (b− pmτ)

(where the final equality follows from the way in which the isomorphism A≤k−2 ∼−→
Wk−2 was defined). Substituting this into (4.19), we find that

〈∞ − b

pm
, F (b+ pmx)⊗ cg〉2 =

∫ ∞

b/pm

g(τ)F (b− pmτ)dτ,

for any F ∈ A≤k−2. Comparing this formula, along with (4.18), to the construction
of [16], we find that µ±g does indeed coincide (up to multiplication by a non-zero
scalar) with the corresponding distribution that computes the p-adic L-function
of g. �

Let us remark that Proposition 4.9 and the maps (4.8) show that the distributions
defining the p-adic L-function of g extend from distributions on Z×p to distributions
on Qp (or more precisely, to elements in the dual of I la(χ)). In the case when πp is
special, this was noted in [5, §5.2].

5. L-invariants and the Mazur-Tate-Teitelbaum conjecture

In the discussion of the preceding section, suppose that the finite slope newform
f is special at p. Corollary 4.7 yields a pair of Γ-equivariant morphisms

(5.1) D0 → (π(χ)±,λ)′bb
∼−→ (πla(χ)±,λ)′bb ,

which up to twisting we may regard as a pair of Γ-equivariant morphisms D0 →
O(k)b. By applying the functor HomΓ(D0, –) to the short exact sequence (1.20),
and analyzing the result of applying the coboundary map

HomΓ(D0,O(k)) → Ext1Γ(D0,Wk−2⊗K | det |−(k−2)/2)

to the morphisms (5.1), Breuil in [5] proves the following result:

Theorem 5.2. There is a unique L ∈ K so that each of the maps of (5.1) arises
from a Γ-equivariant map D0 → (πla(χ,L)λ,±)′bb .

Theorem 5.2 has a dual version, which states that there is a unique value of L
for which one can find π0 ×Hp ×GL2(Q)p-equivariant maps

(5.3) πla(χ,L)±,λ → H̃1
c (Kp)±

extending the maps of Corollary 4.7. Furthermore, Breuil shows that these exten-
sions (5.3) are unique.7

7Breuil actually proves this statement with Γ replaced by the intersection GL2(Q)
⋂

Kp. This

weakens the equivariance claim, but strengthens the uniqueness claim.
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Let Lf denote the unique value of L that satisfies the conclusion of Theorem 5.2.
Theorem 5.2 then implies that the element ∞− 0 ∈ D0 induces functionals

(5.4) µ±f : πla(χ,Lf ) → K

extending the functionals (4.8). (We write the subscript as f rather than g, since
in the special case f = g.)

Breuil observes in [5] that a result of Orton [18] proves that when k is even,
f has trivial nebentypus, and the Up-eigenvalue of f equals p(k−2)/2, then the
element −Lf satisfies the Mazur-Tate-Teitelbaum conjecture for f . We close this
note by explaining how this follows formally from Theorem 5.2, even without the
assumption of trivial nebentypus.

Recall that πla(χ,Lf ) can be identified with a certain space of locally analytic
functions on Q×

p ; in particular, the function xi logLf
(x) supported on Qp \ pZp

belongs to this space of functions, for 0 ≤ i ≤ k − 2.

Proposition 5.5. (i) Let χ be a locally algebraic character as in Section 2 with
k even and for which π(χ) is in the special case, such that α = p(k−2)/2 (so that

β = pk/2, and the central character of π(χ) is trivial on
(
p

p

)
). If µ ∈ πla(χ)′

is a continuous functional on πla(χ) that is invariant under the action of
(
p

1

)
,

then ∫
Z×p
x(k−2)/2dµ = 0.

(ii) If in addition to the hypotheses of (i) the functional µ extends in a
(
p

1

)
-

invariant fashion to a continuous functional on πla(χ,L) for some L ∈ K, then∫
Z×p
x(k−2)/2 logL x dµ = −L

∫
Zp

x(k−2)/2 dµ.

Proof. If one computes
∫

Zp
x(k−2)/2dµ by writing the domain of integration as the

union of Z×p and pZp, one obtains the formula of (i). (Use the matrix
(
p

1

)
to

“scale” pZp back to Zp.)
Assume now that the hypothesis of (ii) holds. If one takes into account the

formulas (2.3) and (2.7) giving the action of GL2(Qp) on elements of πla(χ,L), as
well as the fact that the polynomial x(k−2)/2 ∈ I(χ) has zero image in π(χ), and
computes the value of ∫

Qp\pZp

x(k−2)/2 logL x dµ

by writing the domain of integration as the union of Z×p and Qp \Zp, one finds that

(5.6)
∫

Z×p
x(k−2)/2 logL x dµ = L

∫
Qp\pZp

x(k−2)/2 dµ.
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(Use the matrix
(

1
p

)
to “scale” Qp\Zp back to Qp\pZp.) Finally, again taking

into account the fact that the element x(k−2)/2 ∈ I(χ) has zero image in π(χ), as
well as the vanishing statement of (i), one finds that∫

Qp\pZp

x(k−2)/2 dµ = −
∫

Zp

x(k−2)/2 dµ.

Combined with (5.6), this gives the formula of (ii). �

Corollary 5.7. Suppose that f is a newform on Γ1(N)
⋂

Γ0(p) of even weight k,
such that α = p(k−2)/2 (and hence such that εN (p) = 1). Then

(5.8)
∫

Z×p
x(k−2)/2dµf = 0

and

(5.9)
∫

Z×p
x(k−2)/2 logLf

x dµf = −Lf

∫
Zp

x(k−2)/2 dµf .

Proof. This follows immediately from Proposition 5.5 and the fact that ∞−0 ∈ D0

is invariant under
(
p

1

)
(which lies in Γ). �

By proposition 4.9, the left-hand side of (5.8) is the value of the p-adic L-function
of f at k/2. Thus (5.8) exhibits the “exceptional zero” of the p-adic L-function.
Again by Proposition 4.9, the left-hand side of (5.9) gives the derivative of the
p-adic L-function of f at k/2, while the proof of Proposition 4.9 shows that the
integral on the right-hand side of (5.9) gives the (suitably normalized) special value
of the classical L-function of f at k/2. Thus we have established the Mazur-Tate-
Teitelbaum conjecture for f , if we define the L-invariant of f to be −Lf .

Note that this L-invariant is obviously “local” in the original sense of [16], in so
far as it is invariant under twisting by characters of conductor prime to p that are
trivial on p. In fact, it follows immediately from Breuil’s construction that Lf is
invariant under arbitrary twisting of f by Dirichlet characters. If f is any newform
of even weight k that is special at p, then the twist fε of f by a Dirichlet character
ε will satisfy the hypothesis of Corollary 5.7 for some choice of ε. Assuming that
we can choose ε such that furthermore L(fε, 1) 6= 0, we see that the value of Lf

can be “detected” via the Mazur-Tate-Teitelbaum formula (5.9) (applied to fε).
This allows a comparison between the Breuil-Darmon-Orton definition of Lf and
other definitions of Lf with respect to which the Mazur-Tate-Teitelbaum conjec-
ture has been proved – namely, the “Coleman L-invariant”, in terms of which the
Mazur-Tate-Teitelbaum conjecture has been proved by Stevens, and the “Fontaine
L-invariant”, in terms of which the Mazur-Tate-Teitelbaum conjecture has been
proved by Kato-Kurihara-Tsuji. (The introduction to [7] provides a useful survey
of these definitions of the L-invariant, and the various means of comparing them.)8

8In fact, it is an easy consequence of Colmez [8] and of Kato’s explicit reciprocity law for the
p-adic L-function of f that Lf , as defined above, agrees with the Fontaine-Mazur definition of the

L-invariant of f via the local-at-p Galois representation attached to f [15].
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