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1. Introduction

Let ρ̄ : GQ → GL2(k) be an absolutely irreducible modular Galois representation
over a finite field k of characteristic p. Assume further that ρ̄ is p-ordinary and
p-distinguished in the sense that the restriction of ρ̄ to a decomposition group at p
is reducible and non-scalar. The Hida family H(ρ̄) of ρ̄ is the set of all p-ordinary
p-stabilized newforms f with mod p Galois representation isomorphic to ρ̄. (If ρ̄
is unramified at p, then one must also fix an unramified line in ρ̄ and require that
the ordinary line of f reduces to this fixed line.) These newforms are a dense set of
points in a certain p-adic analytic space of overconvergent eigenforms, consisting of
an intersecting system of branches (i.e. irreducible components) T(a) indexed by
the minimal primes a of a certain Hecke algebra.

To each modular form f ∈ H(ρ̄) one may associate the Iwasawa invariants
µan(f), λan(f), µalg(f) and λalg(f). The analytic (resp. algebraic) λ-invariants
are the number of zeroes of the p-adic L-function (resp. of the characteristic power
series of the dual of the Selmer group) of f , while the µ-invariants are the exponents
of the powers of p dividing the same objects. In this paper we prove the following
results on the behavior of these Iwasawa invariants as f varies over H(ρ̄).

Theorem 1. Fix ∗ ∈ {alg, an}. If µ∗(f0) = 0 for some f0 ∈ H(ρ̄), then µ∗(f) = 0
for all f ∈ H(ρ̄). (We then write simply µ∗(ρ̄) = 0.)

It is conjectured by Greenberg that if a p-ordinary modular form f of weight
two has a residually irreducible Galois representation, then µan(f) = µalg(f) =
0; Theorem 1 thus shows that this conjecture is equivalent to the corresponding
conjecture for modular forms of arbitrary weight.

Theorem 2. Fix ∗ ∈ {alg, an} and assume that µ∗(ρ̄) = 0. Let f1, f2 ∈ H(ρ̄) lie
on the branches T(a1),T(a2) respectively. Then

(1.1) λ∗(f1)− λ∗(f2) =
∑

`|N1N2

e`(a2)− e`(a1);

here the sum is over all primes dividing the tame level of f1 or f2 and e`(aj) is a
certain explicit non-negative invariant of the branch T(aj) and the prime `.

The first (resp. second) theorem corresponds to Theorems 3.7.5 and 4.3.3 (resp.
Theorems 3.7.7 and 4.3.4) with trivial twist by the mod p cyclotomic character.

Note that the right-hand side of (1.1) is identical both algebraically and analyt-
ically. In particular, using work of Kato on the main conjecture of Iwasawa theory
for modular forms, we obtain the following result.

Corollary 1. Assume that µalg(ρ̄) = µan(ρ̄) = 0. If the main conjecture holds for
some f0 ∈ H(ρ̄), then it holds for all f ∈ H(ρ̄).
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The corollary in particular reduces the main conjecture to the case of mod-
ular forms of weight two, together with the conjecture on the vanishing of the
µ-invariant. We also obtain the following result on the variation of λ-invariants in
a Hida family.

Corollary 2. Fix ∗ ∈ {alg, an} and assume that µ∗(ρ̄) = 0.
(1) λ∗(·) is constant on branches of H(ρ̄).
(2) λ∗(·) is minimized on the branches of H(ρ̄) of minimal tame level.

Although we give an extensive summary of our methods in the following sections,
we give a brief indication now of our approach. On the analytic side, our results are
obtained by specialization of a two-variable p-adic L-function. Our construction is
inspired by those of [22, 28], although we are able to obtain somewhat better control
over the canonical periods. This control of canonical periods in families and over
varying tame level (see Section 3 especially Theorem 3.6.2) is the key technical
input needed for our Iwasawa theoretic applications. On the algebraic side we use
a theory of residual Selmer groups to relate the Iwasawa invariants of the modular
forms in H(ρ̄).

This work was motivated by the paper [15] of Greenberg and Vatsal where Theo-
rems 1 and 2 were obtained for p-ordinary modular forms of weight two. Our results
here help to illuminate the results of [15]; indeed, if two congruent elliptic curves
have different λ-invariants, it follows from these results that they must lie on two
branches of the associated Hida family with different ramification behavior. One
may thus think of the change of λ-invariants in terms of “jumps” as one moves from
one branch to another at crossing points (which necessarily occur at non-classical1

eigenforms).

1.1. Iwasawa theory. The papers [12] of Greenberg and [27] of Mazur introduce
the following point of view on Iwasawa theory: If X is a p-adic analytic family of
p-adic representations of GQ interpolating a collection of motivic representations,
then there should exist an analytic function (or perhaps a section of an invertible
sheaf) L, which we call a p-adic L-function, defined on X and a coherent sheaf H
on X, such that the zero locus of L coincides with the codimension one part of
the support of H (thought of as a Cartier divisor on X). The function L should
p-adically interpolate the (suitably modified) values at s = 1 of the classical L-
functions attached to the Galois representations at motivic points of X, while at
such a motivic point x ∈ X, the fiber Hx should coincide with an appropriately
defined Selmer group of the motive attached to x.

The L-function considered above is what is usually known as the analytic p-adic
L-function in classical Iwasawa theory; the equation of the codimension one part of
the support of H is usually known as the algebraic p-adic L-function. The equality
of the zero locus of L with the divisorial part of the support of H is thus a statement
of the main conjecture of Iwasawa theory for the family of Galois representations
X.

In this paper, we restrict to the case of two dimensional nearly ordinary mod-
ular representations, in which case the space X can be described via Hida theory.
Consider a nearly ordinary residual representation; such a representation may be
written in the form ρ̄ ⊗ ωi : GQ → GL2(k), where ρ̄ is as above, ω denotes the

1To avoid circumlocutions, we adopt the convention that weight one is a non-classical weight.
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mod p cyclotomic character and 0 ≤ i ≤ p− 1. As ρ̄ is ordinary, we may (and do)
fix a p-stabilization of ρ̄⊗ ωi: a choice of one dimensional Gp-invariant quotient of
ρ̄⊗ ωi.

Consider the universal deformation space Y n.ord
Σ parameterizing all nearly ordi-

nary deformations of the p-stabilized representation ρ̄⊗ωi which are unramified at
primes in Σ ∪ {p} for some fixed finite set of primes Σ. Any such deformation is
of the form ρ ⊗ ωi ⊗ χ, where ρ is an ordinary deformation of ρ and χ is a char-
acter of Γ := 1 + pZp. (We regard χ as a Galois character by composing it with
the projection onto Γ of the p-adic cyclotomic character.) If we let Y ord

Σ denote
the universal deformation space parameterizing all ordinary deformations of the
p-stabilized representation ρ̄ which are unramified at primes in Σ∪{p}, then Y n.ord

Σ

is equal to the product (as formal schemes) of Y ord
Σ and Spf (Zp[[Γ]]) . By results of

Wiles and Taylor-Wiles [37, 34], as strengthened by Diamond [6], the deformation
spaces Y n.ord

Σ can be identified with various local pieces of the universal ordinary
Hecke algebra constructed by Hida (at least under mild hypotheses on ρ̄).

If we allow Σ to vary, the spaces Y n.ord
Σ form a formal Ind-scheme over W (k) pa-

rameterizing nearly ordinary deformations of ρ̄ of arbitrary conductor. Let Y n.ord

be an irreducible component of this formal Ind-scheme; we may write Y n.ord as
the product of Y ord (an irreducible component of the the formal Ind-scheme pa-
rameterizing ordinary deformations of ρ̄) and Spf (Zp[[Γ]]). The motivic points are
dense on Y n.ord and all have the same tame conductor, which we will denote by
N . If Tnew

N denotes the new-quotient of the Hida Hecke algebra of level N , then
Y ord corresponds to a minimal prime a of Tnew

N ; we set Xord = Spf (Tnew
N /a) and

Xn.ord = Spf (Tnew
N /a [[Γ]]). (We point out that Xord is nearly the same as Y ord

– and hence Xn.ord is nearly the same as Y n.ord. Indeed, Xord is a finite cover of
Y ord and maps isomorphically to it after inverting p.)

The generalities of Iwasawa theory discussed above apply to this space Xn.ord.
In Section 3 we give a construction of the analytic p-adic L-function on Xn.ord;
as is usual, we regard it as a “function of two-variables” – one variable moving
along Xord and the other along Spf (Zp[[Γ]]) . An important feature of the situation
we consider is that the nearly ordinary deformation space contains many different
irreducible components. The main goal of this paper is to describe how to pass
Iwasawa theoretic information (such as knowledge of the main conjecture) between
components.

In our discussion of Selmer groups we do not go so far as to construct a coherent
sheaf of Selmer groups over the space Xn.ord. For this, the reader should refer to
recent and forthcoming work of Ochiai [30] in which a “two-variable main conjec-
ture” is formulated for each fixed tame level. Moreover, Ochiai shows that this
two-variable main conjecture is equivalent to the one-variable main conjecture for
each classical modular form in the family. In particular, he deduces our Corollary 1
for modular forms of a fixed tame level. His method has the advantage that he
does not need any assumption on the µ-invariant, but has the disadvantage that it
only applies to forms on a fixed branch of the Hida family.

1.2. Two-variable p-adic L-functions. To establish the analytic parts of The-
orems 1 and 2, we make use of a two-variable p-adic L-function (playing the role
of L above). As already remarked upon in 1.1, one variable is a parameter of wild
character space (i.e. the standard cyclotomic variable) and the second variable runs
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through the Hida family (which is a finite cover of weight space) of some fixed resid-
ual representation ρ̄. Of the many constructions of two-variable p-adic L-functions
(see [14], [33], [31]), our construction follows most closely that of Mazur [28] and
Kitigawa [22], with two main differences.

The first difference is that by using the fact that the Hecke algebras are known to
be Gorenstein (as in [37]) we may construct these L-function with fewer assumptions
on ρ̄. The second difference is that we do not limit ourselves to working solely on
a part of the Hida family parameterizing newforms of some fixed tame level.

For each branch Y of the Hida family we construct a two-variable L-function
along Y , which at each classical point specializes to the p-adic L-function of the
corresponding newform computed with respect to its canonical period. (Actually,
the two-variable L-function is defined not on Y , but on the partial normalization X
of Y discussed above in 1.1.) However, for any finite set of primes Σ not containing
p, we also construct a two-variable L-function along YΣ (the Hida family of ρ̄ with
ramification only at the primes of Σ). If we specialize this two-variable p-adic L-
function at a classical point, we obtain a non-primitive p-adic L-function attached
to the corresponding newform (i.e. the usual p-adic L-function stripped of its Euler
factors at primes of Σ). In fact, we prove that this non-primitivity occurs in families:
the p-adic L-function on the Hida family YΣ, restricted to some branch Y , is equal
to the p-adic L-function of that branch stripped of its two variable Euler factors at
the primes of Σ.

With this construction in hand, the analytic part of Theorem 1 follows immedi-
ately. Indeed, the vanishing of the analytic µ-invariant for any particular form f in
the Hida family is equivalent to the vanishing of the µ-invariant of the two-variable
p-adic L-function along the branch Y containing f , which in turn is equivalent to
the vanishing of the µ-invariant of the non-primitive two-variable L-function on YΣ

for any sufficiently large choice of Σ (i.e. such that YΣ contains Y ). This last con-
dition is independent of f and so is equivalent to the vanishing of the µ-invariant
for every modular form in the family.

The analytic part of Theorem 2 also follows from this construction. The analytic
λ-invariant of a modular form f is equal to the λ-invariant of the two-variable L-
function attached to the branch containing f . To compare the λ-invariants of two
branches, we choose Σ large enough so that YΣ contains both of these branches. We
then relate each λ-invariant to the λ-invariant of the two-variable p-adic L-function
attached to YΣ. As explained above, the difference of the two λ-invariants is then
realized in terms of the λ-invariants of certain Euler factors. The quantity e`(ai)
appearing in the formula of Theorem 2 is precisely the λ-invariant of the Euler
factor at ` along the branch corresponding to ai.

1.3. Residual Selmer groups. Let ρ̄ : GQ → GL2(k) be as above. For any
f ∈ H(ρ̄), say with Fourier coefficients in the finite extension K of Qp, Greenberg
has defined the Selmer group Sel(Q∞, ρf ) as the subgroup of H1(Q∞, Af ) cut out
by local conditions, all of which are as strong as possible except for the condition
at p; here Q∞ is the cyclotomic Zp-extension of Q and Af is (K/OK)2 with Galois
action via ρf . If one defines Sel(Q∞, ρ̄) in the analogous way, one is confronted
with the fundamental problem that the π-torsion on Sel(Q∞, ρf ) may be larger
than Sel(Q∞, ρ̄); this is, of course, precisely the reason why congruent modular
forms need not have isomorphic Selmer groups.
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In [15] this issue is overcome by introducing non-primitive Selmer groups of ρ̄;
essentially, if f1, f2 ∈ H(ρ̄) have tame levels N1 and N2 respectively, then the
π-torsion on Sel(Q∞, ρf1) and Sel(Q∞, ρf2) can both be compared to the non-
primitive Selmer group of ρ̄ obtained by ignoring the local conditions at primes
dividing N1N2.

Although this approach can also be made to work in the higher weight case, we
proceed somewhat differently. Following Mazur [26], we allow non-strict, but not
necessarily vacuous, local conditions S on the cohomology of ρ̄, resulting in a family
of residual Selmer groups SelS(Q∞, ρ̄). We show that for any f ∈ H(ρ̄) there is a
local condition S(f) such that

SelS(f)(Q∞, ρ̄) ∼= Sel(Q∞, ρf )[π].

It follows that the Iwasawa invariants of f can be recovered from the residual Selmer
group SelS(f)(Q∞, ρ̄).

In fact, if the tame level of f coincides with the conductor of ρ̄, then we show
that SelS(f)(Q∞, ρ̄) agrees with the naive residual Selmer group Sel(Q∞, ρ̄). Since
such f always exist by level lowering, we are then able to use duality results to
show that the difference

dimk SelS(f)(Q∞, ρ̄)− dimk Sel(Q∞, ρ̄)

is precisely given by the dimensions of the local conditions S(f). The main algebraic
results follow from this.

We note that, unlike on the analytic side, Hida theory plays little overt role
in these algebraic computations. In particular, in [36], these methods have been
applied more generally for algebraic groups other than GL2. The key inputs are
automorphic descriptions of the Galois representation at ramified primes, level low-
ering results and the fact that the Selmer groups of interest are Λ-cotorsion; the
remainder of the argument is essentially formal.

1.4. L-functions modulo p. In the paper [25], Mazur raises the question of
whether one can define a mod p L-function attached to the residual representa-
tion ρ̄ and a choice of tame conductor N (divisible by the tame conductor of ρ̄).
The construction discussed in 1.2 gives a positive answer to this question, with the
caveat that the appropriate extra data is not simply a choice of tame conductor N ,
but rather the more precise data of a component Y of the universal deformation
space of ρ̄. We may then specialize the p-adic L-function at the closed point of
the partial normalization X of Y on which it is defined, so as to obtain a mod p
L-function attached to ρ̄ and Y .

We also show that the dimension of SelS(f)(Q∞, ρ̄) over k depends only on the
component Y of the Hida family that contains f ; we thus simply write λalg(Y ) to
denote this dimension. Assuming that both the analytic and algebraic µ-invariant
of ρ̄ vanish, Theorem 2 then shows that the main conjecture for any member of
H(ρ̄) is equivalent to the following mod p main conjecture (for one, or equivalently
every, choice of Y ):

Mod p Main Conjecture. Let Y be a branch of H(ρ̄). Then the mod p L-function
Lp(Y ) of Y is non-zero, λalg(Y ) is finite and

λ
(
Lp(Y )

)
= λalg(Y ).
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1.5. Overview of the paper. In the following section, we recall the Hida theory
used in this paper. In particular, we discuss the Hida family attached to a residual
representation ρ̄, its decomposition into irreducible components and the various
Galois representations attached to this family with an emphasis on the integral
behavior.

In the third section, we construct two-variable p-adic L-functions on the Hida
family of ρ̄ and on each of its irreducible components. By relating these two con-
structions to each other and to the construction of classical p-adic L-functions, we
obtain proofs of the analytic parts of Theorems 1 and 2.

In the fourth section, we prove the algebraic parts of Theorems 1 and 2 via the
theory of residual Selmer groups and the use of level lowering to reduce to the
minimal case.

In the final section we give applications to the main conjecture. We discuss some
explicit examples to illustrate the general theory, including the congruence modulo
11 between the elliptic curve X0(11) and the modular form ∆.

1.6. Acknowledgments. The authors wish to thank Ralph Greenberg, Masato
Kurihara, Barry Mazur and Chris Skinner for helpful conversations.

Notation. We fix an algebraic closure Q̄ of Q and write GQ to denote the Galois
group of Q̄ over Q. If Σ is a finite set of places of Q, we write QΣ for the maximal
extension of Q in Q̄ unramified away from Σ. We fix an odd prime p and let Q∞
denote the cyclotomic Zp-extension of Q in Q̄. For each prime ` of Q (resp. place
v of Q∞) fix a decomposition group G` ↪→ GQ (resp. Gv ↪→ GQ∞) with inertia
group I` (resp. Iv) such that Gv ⊆ G` whenever v divides `; note that I` = Iv for
a place v dividing a prime ` 6= p. Let vp denote the unique place of Q∞ above p.

We write ε : GQ → Z×p for the p-adic cyclotomic character. We let Γ denote the
group of 1-units in Z×p ; the cyclotomic character induces a canonical isomorphism

Gal(Q∞/Q)
∼=−→ Γ. If O is a Zp-algebra, we let ΛO denote the completed group

ring O[[Γ]]; we simply write Λ for ΛZp . We denote the natural map Z×p → Zp[[Z×p ]]
by γ 7→ 〈γ〉p; this restricts to the natural map Γ → Λ×.

Recall that Λ is a complete regular local ring of dimension two, non-canonically
isomorphic to the power series ring Zp[[T ]]. (Such an isomorphism is obtained by
choosing a topological generator γ of Γ and mapping 〈γ〉p to T + 1.) We let L
denote the field of fractions of Λ.

We let ∆ denote the group of cyclotomic units of Zp; there is then an isomorphism
Γ×∆ ∼= Z×p . We let ω denote the inclusion of ∆ in Z×p , so that

Hom(∆,Z×p ) = {ωi | 0 ≤ i ≤ p− 2}.

If Zp,(i) denotes Zp regarded as a ∆-module via the character ωi, then there is a
natural isomorphism of Zp[∆]-algebras Zp[∆] ∼=

∏p−2
i=0 Zp,(i). Combining this with

the natural isomorphism Zp[[Z×p ]] ∼= Zp[∆] ⊗Zp Λ, we obtain an isomorphism of
Zp[[Z×p ]]-algebras

Zp[[Z×p ]] ∼=
p−2∏
i=0

Λ(i),

where Λ(i) denotes a copy of Λ, enhanced to a Zp[[Z×p ]]-algebra by having ∆ act
through ωi.
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If N is a natural number prime to p, then we will write Z×p,N := (Z/N)× × Z×p .
We will have occasion to consider the completed group ring Zp[[Z×p,N ]]. In this
situation, we will extend the diamond bracket notation introduced above and write
x 7→ 〈x〉Np to denote the natural map Z×p,N → Zp[[Z×p,N ]]×.

2. Hida theory

2.1. The universal ordinary Hecke algebra. Fix a positive integer N relatively
prime to p. We begin by briefly recalling the basic properties of TN , the universal
ordinary Hecke algebra of tame level N (denoted by h0 (N ,Zp) in [17]) acting
on ordinary p-adic modular forms of tame level N , arbitrary p-power level and
arbitrary weight. We first fix some notation.

For each integer k ≥ 2, let Sk(Np∞, R) denote the union over all r ≥ 0 of
the spaces of weight k cusp forms on Γ1(Npr) whose Fourier coefficients lie in a
fixed Zp-algebra R. We make Sk(Np∞, R) into a Zp[[Z×p ]]-module by letting Z×p
act via the product of the nebentypus action and the character γ 7→ γk. Let
Sk(Np∞, R)ord be the subspace of these cusps forms on which Up acts invertibly.
If κ is a homomorphisms from Γ = 1 + pZp to R×, we let Sk(Np∞, R)ord[κ] denote
the R-submodule of Sk(Np∞, R)ord on which Γ acts by the character κ.

If ℘ is a height one prime of Λ, then we set O(℘) := Λ/℘. Let κ℘ : Γ → O(℘)×

be the character induced by the embedding Γ → Λ×. We say that ℘ is classical
of weight k ≥ 2, if it is of residue characteristic zero and if there is a finite index
subgroup Γ′ of Γ such that κ℘, when restricted to Γ′, coincides with the character
γ 7→ γk ∈ Z×p ⊂ O(℘)×.

More generally, if ℘ is a height one prime ideal of a finite Λ-algebra T, then
we again write O(℘) := T/℘. We say ℘ is classical of weight k, if ℘′ := ℘

⋂
Λ is

classical of weight k and write κ℘ := κ℘′ : Γ → O(℘′)× ⊂ O(℘)×.
The algebra TN is defined to be commutative algebra of endomorphisms of

Sk(Np∞, R)ord generated over Zp[[Z×p ]] by the Hecke operators T` (resp. U`) for
primes ` - Np (resp. primes ` | Np), together with the diamond operators 〈a〉 for
a ∈ (Z/N)×. By definition TN is a Zp[[Z×p ]]-algebra. The map (Z/N)× → T×N
defined via a 7→ 〈a〉 allows us to extend this to a structure of Zp[[Z×p,N ]]-algebra on
TN .

Theorem 2.1.1.

(1) The algebra TN is free of finite rank over Λ = Zp[[Γ]].
(2) If ℘ is a classical height one prime in Λ of weight k, then TN/℘TN is

canonically identified with the the quotient of the full Hecke algebra that
acts faithfully on Sk(Np∞,O(℘))ord[κ℘].

Proof. See [18, Thm. 3.1, Cor. 3.2] and [17, Thm. 1.1, Thm. 1.2]. �

Remark 2.1.2. It follows from part (2) of the above theorem, together with the
usual duality between spaces of modular forms and Hecke algebras, that classical
height one primes in TN are in one-to-one correspondence with Galois conjugacy
classes of p-ordinary normalized Hecke eigenforms of tame level N and weight k ≥ 2
(defined over an algebraic closure of Q̄p). For such an eigenform f , we denote the
corresponding prime ideal by ℘f and for a classical height one prime ideal ℘ in TN ,
we denote the corresponding eigenform by f℘.
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The new quotient Tnew
N of TN is defined to be the quotient of TN that acts

faithfully on the space of newforms. The following theorem of Hida summarizes its
basic properties.

Theorem 2.1.3.
(1) Tnew

N is a finite and reduced torsion free Λ-algebra.
(2) The classical height one primes of Tnew

N correspond (under pull-back) to
those classical height one primes ℘ of TN for which the corresponding nor-
malized eigenform f℘ is of tame conductor N .

(3) If ℘ is a classical height one prime ideal of Λ, then Tnew
N ⊗Λ Λ℘ is a finite

étale extension of the discrete valuation ring Λ℘.

Proof. Parts (1) and (2) follow from the results of [18]. See, in particular, Corol-
laries 3.3 and 3.7. Part (3) is a rewording of [17, Cor. 1.4]. �

2.2. Galois representations. In this section we recall the basic facts regarding
Galois representations attached to Hida families. As above, we fix a tame level N
prime to p. Recall that L denotes the field of fractions of Λ.

Theorem 2.2.1. There is a continuous Galois representation

ρ : GQ → GL2(Tnew
N ⊗Λ L),

characterized by the following properties:
(1) ρ is unramified away from Np.
(2) If ` is a prime not dividing Np then ρ(Frob`) has characteristic polynomial

equal to X2 − T`X + 〈`〉Np`
−1 ∈ Tnew

N [X]. (Recall that 〈`〉Np denotes the
unit in Zp[[Z×p,N ]] corresponding to the element ` ∈ Z×p,N .)

The representation ρ satisfies the following additional properties:
(3) ρ is absolutely irreducible.
(4) The determinant of ρ is equal to the following character:

GQ → Ẑ× → Z×p,N

x7→〈x〉Npx−1
p−→ Zp[[Z×p,N ]]× ⊂ (Tnew

N )×.

(Here the first arrow is the full cyclotomic character, and xp denotes the
image of x under the projection Z×p,N → Z×p .)

(5) The space of Ip-coinvariants of ρ is free of rank one over Tnew
N ⊗Λ L and

Frobp acts on this space through the eigenvalue Up ∈ Tnew
N .

Proof. See [17, Thm. 2.1] and [14, Thm. 2.6]. �

Remark 2.2.2. The representation ρ encodes all of the representations attached
to the classical modular forms occurring in the Hida family determined by Tnew

N .
Indeed, if T̂new

N denotes the normalization of Tnew
N , then we may descend ρ to

a two dimensional representation defined over T̂new
N (see [18, Theorem 2.1]). If

℘ is a classical height one prime ideal in Tnew
N , then we have an isomorphism

(Tnew
N )℘

∼= (T̂new
N )℘, by part (3) of Theorem 2.1.3, and consequently we may de-

scend ρ to a two dimensional representation over (Tnew
N )℘. Reducing this repre-

sentation modulo the maximal ideal of this local ring, we obtain a representation
ρ̄℘ : GQ → GL2(O(℘)[1/p]). Part (2) of Theorem 2.2.1 shows that this is the
usual absolutely irreducible two dimensional Galois representation attached to the
newform f℘.
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From the Galois representation ρ, we may also construct various related Galois
representations corresponding to the minimal and maximal primes of Tnew

N .
We consider first the case of minimal primes. Note that Tnew

N ⊗ΛL ∼=
∏

a(T
new
N )a

where the product is taken over all minimal primes of Tnew
N . For a a fixed minimal

prime ideal of Tnew
N , let ρa denote the representation

ρa : GQ → GL2((Tnew
N )a)

obtained by composing ρ with the projection Tnew
N ⊗Λ L → (Tnew

N )a.
Since ρa takes values in a field, we may define its tame conductor by the usual

formula. That is, if ρa acts on the two dimensional (Tnew
N )a-vector space V, then

the exponent of a prime ` 6= p in the tame conductor is equal to

dimV − dimVI`
+

∫ ∞
0

(
dimV − dimVIu

`

)
du,

where {Iu
` }u≥0 denotes the usual filtration of I` by higher ramification groups,

indexed by the upper numbering. (Note that this formula is often expressed in
terms of invariants under the ramification groups, rather than coinvariants. One
obtains the same value with either formulation, since dimVIu

`
= dimVIu

` for any
value of u.)

Proposition 2.2.3. If a is any minimal prime of Tnew
N , then the tame conductor

of ρa is equal to N .

Proof. Write T̂ to denote the normalization of Tnew
N /a; this is the component of the

normalization of Tnew
N cut out by the minimal prime a. Since it is Cohen-Macaulay

(being normal and of dimension two) and finite over Λ, it is in fact finite flat over
Λ by [24, Thm. 23.1].

Let V denote a two dimensional vector space over the fraction field of Tnew
N /a on

which ρa acts and let M be a free rank two T̂-lattice in V invariant under GQ. If
℘ is a classical height one prime of Tnew

N containing a, then as was observed above,
the injection

(Tnew
N /a)℘ → T̂℘

is an isomorphism. Moreover, GQ acts on the O(℘)[1/p]-vector space V (℘) :=
(M/℘M)[1/p] via the usual Galois representations ρ̄℘ attached to newform f℘ of
tame conductor N .

The ratio of the tame conductor of ρa and the tame conductor of ρ̄℘ (that is, N)
is equal to

(2.1)
∏
` 6=p

` dim V (℘)I`
−dimVI` ;

furthermore, each of the exponents appearing in this expression is non-negative
(i.e. dimV (℘)I`

bounds dimVI`
from above). (See [23, §1]). Thus to prove the

proposition, we must show that dimV (℘)I`
= dimVI`

for each prime ` 6= p.
If dimV (℘)I`

= 2, then ` does not divide N . In this case, ρa is unramified
at `, and so dimVI`

= 2 as well. Conversely, if dimVI`
= 2, then the same is

true of dimV (℘)I`
(since the latter dimension bounds the former dimension from

above). If dimV (℘)I`
= 0, then also dimVI`

= 0 (again, since the latter dimension
is bounded above by the former). Thus it remains to show that if dimV (℘)I`

> 0,
then dimVI`

> 0. This we now do.
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Note that the formula (2.1) (and the fact that the tame conductor of V (℘)
is equal to N , and thus is independent of the particular choice of ℘ containing a)
shows that dimV (℘)I`

is independent of the choice of the classical height one prime
℘ containing a. Thus we may assume that dimV (℘)I`

is positive for every classical
height one prime ℘ containing a. There is a natural map I` → Zp(1), given by
projection onto the p-Sylow subgroup of the tame quotient of I`. Let J` denote the
kernel of this projection. Since J` has order prime to p, it acts on M through a finite
quotient of order prime to p and so certainly dimVJ`

= dimV (℘)J`
for any classical

height one prime ℘. Let σ denote a topological generator of Zp(1) and consider
the matrix ρa(σ) − I acting on VJ`

. (Here I denotes the identity matrix.) By
assumption, the determinant of this matrix (which lies in T̂) lies in ℘T̂ for every
classical height one prime ℘ of T̂. Thus it lies in ℘′T̂ for every classical height
one prime ℘′ of Λ. (Recall that these primes are unramified in T̂, by part (3) of
Theorem 2.1.3.) Since T̂ is finite flat over Λ, we see that this determinant vanishes
and thus ρa(σ) admits a non-zero coinvariant quotient of VJ`

. This proves that
dimVI`

> 0 as required. �

As a byproduct of the proof of the preceding proposition, we also obtain the
following useful result.

Proposition 2.2.4. Let ℘ be a classical height one prime ideal in Tnew
N and let L

denote a choice of two dimensional (Tnew
N )℘-lattice on which ρ acts. (In particular,

L/℘L is a two dimensional O(℘)[1/p]-vector space on which ρ̄℘ acts.) If ` is any
prime distinct from p, then LI`

is a free (Tnew
N )℘-module and there are natural

isomorphisms LI`
⊗Λ L → (L⊗Λ L)I`

and LI`
/℘LI`

→ (L/℘L)I`
.

Proof. We let a denote the minimal ideal contained in ℘ (unique since (Tnew
N )℘ is

a discrete valuation ring) and employ the notation introduced in the proof of the
preceding proposition. The lattice L is a free rank two (Tnew

N )℘-module, which we
may regard as being embedded in a GQ-equivariant fashion in V.

For general reasons, the composite surjection L → L/℘L → (L/℘L)I`
induces

an isomorphism LI`
/℘LI`

∼= (L/℘L)I`
. Thus a minimal set of generators for LI`

as a (Tnew
N )℘-module contains at most dim(L/℘L)I`

elements. On the other hand
the surjection V → VI`

induces a surjection LI`
⊗Λ L → VI`

and hence LI`
⊗Λ

L is of dimension at least dimVI`
. The proof of Proposition 2.2.3 shows that

dim(L/℘L)I`
= dimVI`

and hence (taking into account the fact that (Tnew
N )℘ is a

discrete valuation ring) we may conclude that LI`
is free over (Tnew

N )℘ of rank equal
to dimVI`

. Thus the surjection LI`
⊗Λ L → VI`

is an isomorphism as claimed. �

We now turn to the Galois representations attached to maximal ideals. If m is a
maximal ideal of Tnew

N , then the localization (Tnew
N )m is a direct factor of Tnew

N and
so (Tnew

N )m⊗ΛL is a direct factor of Tnew
N ⊗ΛL. We let ρm denote the representation

ρm : GQ → GL2((Tnew
N )m ⊗Λ L)

obtained by composing ρ with the projection Tnew
N ⊗Λ L → (Tnew

N )m ⊗Λ L.
The next result describes the residual representation ρ̄m attached to a maximal

ideal of Tnew
N .

Theorem 2.2.5. If m is a maximal ideal of Tnew
N , then attached to m is a semi-

simple representation ρ̄m : GQ → GL2(Tnew
N /m), uniquely determined by the prop-

erties:
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(1) ρ̄m is unramified away from Np.
(2) If ` is a prime not dividing Np then ρ̄m(Frob`) has characteristic polynomial

equal to X2 − T`X + 〈`〉Np`
−1 mod m ∈ (Tnew

N /m)[X].
Furthermore, ρ̄m satisfies the following condition:
(3) The restriction of ρ̄m to Gp has the following shape (with respect to a suit-

able choice of basis): (
χ ∗
0 ψ

)
,

where χ and ψ are (Tnew
N /m)×-valued characters of Gp such that ψ is un-

ramified and ψ(Frobp) = Up mod m.

Proof. The representation ρ̄m is constructed in the usual way, by choosing an inte-
gral model for ρ over T̂new

N , reducing this model modulo a maximal ideal m̂ lifting
m, semi-simplifying and then descending (if necessary) from T̂new

N /m̂ to Tnew
N /m.

The stated properties follow from the corresponding properties of ρ. �

Proposition 2.2.6. If m is a maximal ideal of Tnew
N for which the associated

residual representation ρ̄m is irreducible, then ρm admits a model over (Tnew
N )m

(which we denote by the same symbol)

ρm : GQ → GL2((Tnew
N )m),

unique up to isomorphism.

Proof. This follows from the irreducibility of ρ̄m and the fact that the traces of ρm

lie in (Tnew
N )m. (See [2].) �

Definition 2.2.7. If k is a field of characteristic p and ρ̄ : GQ → GL2(k) is a contin-
uous representation for which ρ̄|Gp

is reducible, then we say that ρ̄ is p-distinguished
if the semisimplification of ρ̄|Gp

is non-scalar (i.e. if the two characters appearing
as Jordan-Hölder factors of the reducible representation ρ̄|Gp

are distinct).

Let 〈ε〉p : GQ → Zp[[Z×p ]]× denote the character obtained by composing the
p-adic cyclotomic character ε : GQ → Z×p with the map 〈 〉p : Z×p → Zp[[Z×p ]]×.

Proposition 2.2.8. Let m be a maximal ideal of Tnew
N for which the associated

residual representation ρ̄m is irreducible and let L denote a choice of a free rank
two (Tnew

N )m-module on which the representation ρm acts. (Such an L exists by
Proposition 2.2.6.) Let L0 denote the maximal submodule of L on which Ip acts
through the character 〈ε〉pε−1. If ρ̄m is p-distinguished, then each of L0 and L/L0

is free of rank one over (Tnew
N )m and the Gp-action on L/L0 is unramified.

Proof. Theorem 2.2.1 shows that L0 ⊗Λ L is a one-dimensional direct summand of
L⊗ΛL and thatGp acts on this space and on (L⊗ΛL)/(L0⊗ΛL) through a character.
Thus Gp acts on each of L0 and L/L0 through a character. By assumption, L/mL
is a p-distinguished representation of Gp and so (L/L0)/m(L/L0) must be one-
dimensional over TN/m. The proposition now follows by Nakayama’s Lemma. �

Suppose that m is a maximal ideal of Tnew
N satisfying the hypothesis of the

preceding proposition. As in the statement of that proposition, let L denote a
choice of free rank two (Tnew

N )m-module on which the representation ρm acts and let
L0 be the maximal submodule of L on which Ip acts through the character 〈ε〉pε−1.
The group GQ then acts on the quotient L/mL via the residual representation ρ̄m.
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Since the space L/L0 is a free rank one quotient of L on which the Gp-action is
unramified (by Proposition 2.2.8), we see that (L/L0)/m(L/L0) is a one dimensional
unramified quotient of L/mL.

Definition 2.2.9. If k is a finite field of characteristic p and ρ̄ : GQ → GL2(k) is
a continuous Galois representation acting on a two dimensional k-vector space V ,
then a p-stabilization of ρ̄ is a choice of a one dimensional quotient of V on which
the Gp-action is unramified.

Definition 2.2.10. The discussion preceding Definition 2.2.9 shows that if m is a
maximal ideal of Tnew

N for which ρ̄m is irreducible and p-distinguished, then the quo-
tient (L/L0)/m(L/L0) (in the notation of that discussion) forms a p-stabilization of
ρ̄m. We refer to this as the canonical p-stabilization of ρ̄m attached to the maximal
ideal m.

2.3. The reduced Hida algebra.

Definition 2.3.1. For any level N , we let T′N denote the Λ-subalgebra of TN

generated by the Hecke operators T` for ` prime to Np, together with the operator
Up.

Since T′N is a subalgebra of the finite flat Λ-algebra TN , it is certainly finite
and torsion free over Λ. It turns out that T′N is also reduced. (Being reduced is
a standard property of Hecke algebras in which we omit the operators indexed by
the primes dividing the level.) In fact, we can be somewhat more precise.

If M is a divisor of N , then restricting the action of the prime-to-N Hecke
operators to p-ordinary forms of level dividing M yields a surjective map of Λ-
algebras T′N → T′M . Composing this with the composite T′M ⊂ TM → Tnew

M

yields a map

(2.2) T′N → Tnew
M .

Taking the product of these maps over all divisors M of N , we obtain a map

(2.3) T′N →
∏

M |N

Tnew
M .

Proposition 2.3.2.
(1) The map (2.3) is injective and induces an isomorphism after localizing at

any classical height one prime ideal of Λ (and hence also after tensoring
over Λ with its fraction field L).

(2) If ℘ is a classical height one prime ideal of Λ, then T′N ⊗Λ Λ℘ is a finite
étale extension of the discrete valuation ring Λ℘.

Proof. Part (1) follows from the theory of newforms for ordinary families developed
in [18]. Part (2) then follows from part (1) together with part (3) of Theorem 2.1.3.

�

Taking the product of the Galois representations

GQ → GL2(Tnew
M ⊗Λ L)

given by Theorem 2.2.1, as M ranges over all divisors of N , and taking into account
part (1) of the preceding proposition, we obtain a Galois representation

ρ : GQ → GL2(T′N ⊗Λ L)
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satisfying the analogue of Theorem 2.2.1.
Just as in the preceding section, we may reduce ρ modulo a height one prime

ideal ℘ or a maximal ideal m of T′N . We denote the corresponding residual represen-
tations by ρ̄℘ and ρ̄m respectively. Similarly, we may localize T′N at any maximal
ideal m and obtain a corresponding representation

ρm : GQ → GL2((T′N )m ⊗Λ L).

If ρ̄m is irreducible, then the analogue of Proposition 2.2.6 holds (by the same
appeal to the results of [2]) and so we obtain a uniquely determined representation

ρm : GQ → GL2((T′N )m).

2.4. The reduced Hida algebras attached to ρ̄. If k is a finite field of character-
istic p and ρ̄ : GQ → GL2(k) is a continuous two dimensional Galois representation
defined over k, then we say that ρ̄ is p-ordinary if ρ̄ restricted to Gp has an un-
ramified quotient of dimension one over k. Clearly ρ̄ admits a p-stabilization, in
the sense of Definition 2.2.9, if and only if ρ̄ is p-ordinary. If ρ̄ is furthermore p-
distinguished (in the sense of Definition 2.2.7), then ρ̄ admits at most two choices
of p-stabilization (and does admit two such choices precisely when the determinant
of ρ̄ is unramified at p).

Let us now fix such a representation ρ̄ : GQ → GL2(k) and let V be a two
dimensional k-vector space on which ρ̄ acts. We assume that ρ̄ is irreducible, odd,
p-ordinary and p-distinguished and we fix a choice of p-stabilization of ρ̄. We
assume that k is equal to the field generated by the traces of ρ̄. (If it were not,
we could replace k by this field of traces and descend ρ̄ to the smaller field – see
[29, Section 6].) Finally, we suppose that ρ̄ is modular (i.e. that it arises as the
residual representation attached to a modular form of some weight and level defined
over Q̄p). Our goal in this section is to define, for Σ a finite set of primes, the
reduced ordinary Hecke algebra TΣ(ρ̄) attached to a modular p-ordinary residual
representation and to describe its basic properties.

We let N(ρ̄) denote the tame conductor of ρ̄. If ` 6= p is prime, then define

m` = dimk V I`

and for any finite set of primes Σ that does not contain p, write

N(Σ) = N(ρ̄)
∏
`∈Σ

`m` .

Theorem 2.4.1. There is a unique maximal ideal m of T′N(Σ) such that ρ̄m, with
its canonical p-stabilization, is isomorphic to ρ̄, with its given p-stabilization.

Proof. The uniqueness is clear. The existence follows from the assumption that ρ̄
is modular and the results of [5]. �

Proposition 2.4.2. If m denotes the maximal ideal of T′N(Σ) of the preceding
theorem, then there is a unique maximal ideal n of TN(Σ) satisfying the following
conditions:

(1) n lifts m.
(2) T` ∈ n for each ` ∈ Σ.
(3) The natural map of localizations (T′N(Σ))m → (TN(Σ))n is an isomorphism

of Λ-algebras.
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In particular, (T′N(Σ))m is a finite flat Λ-algebra. Also, the image of T` in the
localization (TN(Σ))n vanishes for each ` ∈ Σ.

Proof. This is a variant of [37, Prop. 2.1.5] and is proved in an analogous manner.
The second to last claim follows from the rest of the proposition together with
part (1) of Theorem 2.1.1. �

Definition 2.4.3. We let TΣ(ρ̄) (or simply TΣ, if ρ̄ is understood) denote the
localization of T′N(Σ) at the maximal ideal whose existence is guaranteed by Theo-
rem 2.4.1. We let ρΣ : GQ → GL2(TΣ) denote the Galois representation attached
to this local factor of T′N(Σ) as discussed in Section 2.3. Recall that ρΣ is character-
ized by the following property: If ` is a prime not dividing N(Σ)p, then ρΣ(Frob`)
has trace equal to T` ∈ TΣ.

Taking into account Proposition 2.4.2, we see that TΣ is a reduced and finite
flat Λ-algebra. Note that if Σ ⊂ Σ′, then N(Σ) | N(Σ′) and the natural surjection
T′N(Σ′) → T′N(Σ) induces a surjection TΣ′ → TΣ. The Galois representations ρΣ′

and ρΣ are evidently compatible with this surjection.
We refer to SpecTΣ as the universal p-ordinary family of newforms, or sometimes

simply “the Hida family” attached to ρ̄ and our chosen p-stabilization that is mini-
mally ramified outside Σ. Localizing ρΣ over SpecTΣ, we obtain a two dimensional
vector bundle on which GQ acts, which we refer to as the universal family of Galois
representations over SpecTΣ. If Σ ⊂ Σ′, then the surjection TΣ → TΣ′ induces
a closed embedding SpecTΣ → SpecTΣ′ and the universal family of Galois repre-
sentations on the target pulls back to the universal family of Galois representations
on the source. If we consider all Σ simultaneously, then we obtain an Ind-scheme

“lim−→
Σ

” SpecTΣ

and a family of two dimensional Galois representations lying over it. We refer to
this Ind-scheme as the universal p-ordinary family of newforms, or simply “the Hida
family” attached to ρ̄ and its chosen p-stabilization.

The Hida family corresponding to Σ = ∅ will play a special role; we refer to it
as the minimal Hida family attached to ρ̄ and our chosen p-stabilization.

When ρ̄ is irreducible after restriction to the quadratic field of discriminant
(−1)(p−1)/2p, the results of Wiles and Taylor–Wiles [37, 34], as strengthened by Di-
amond [6], in fact allow us to identify the rings TΣ, and their accompanying Galois
representations ρΣ, with certain universal deformation rings, and their accompa-
nying universal Galois representations, attached to the residual representation ρ̄.
Specifically, let RΣ denote the universal deformation ring parameterizing lifts of ρ̄
which are p-ordinary and whose tame conductor coincides with that of ρ̄ at primes
not in Σ ∪ {p}. The representation ρΣ induces a map RΣ → TΣ, which by [6] is
an isomorphism after tensoring with the quotient of Λ by any classical height one
prime; it follows that in fact RΣ → TΣ is an isomorphism, as claimed.

2.5. Branches. We now prove some results concerning the irreducible components
of the Hida family attached to ρ̄.

Definition 2.5.1. If a is a minimal prime ideal in TΣ for any Σ as above, then
we write T(a) := TΣ/a. Note that T(a) is a local domain, finite over Λ. We
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write K(a) to denote the fraction field of T(a). (Thus there is an isomorphism
K(a) ∼= T(a)⊗Λ L.) We let ρ(a) denote the Galois representation

ρ(a) : GQ → GL2(T(a))

induced by ρΣ.

Proposition 2.5.2. If a is a minimal prime of TΣ for any Σ as above, then there
is a unique divisor N(a) of N(Σ) and a unique minimal prime a′ ⊆ Tnew

N(a) sitting
over a such that

TΣ
//

��

T′N(Σ)
//
∏

M |N(Σ) T
new
N(a)

��
TΣ/a

= // T(a) // Tnew
N(a)/a

′

commutes.

Proof. Since TΣ is finite over Λ, the minimal primes of TΣ are in bijection with
the local components of TΣ ⊗Λ L. Since TΣ is a local factor of T′N(Σ), these local
components are included in the local components of T′N(Σ) ⊗Λ L. By part (1) of
Proposition 2.3.2, we have that

T′N(Σ) ⊗Λ L ∼=
∏

M |N(Σ)

Tnew
M ⊗Λ L.

The local components of
∏

M |N(Σ) T
new
M ⊗ΛL are in one-to-one correspondence with

its minimal primes. Thus our given minimal prime a gives rise to a minimal prime
of this ring. However, any such minimal prime corresponds to a minimal prime a′

in Tnew
N(a) for some N(a) | N(Σ), which establishes the proposition. �

Definition 2.5.3. For a minimal prime ideal a of TΣ, we refer to N(a) (of the
preceding proposition) as the tame conductor attached to a (or to the irreducible
component of SpecTΣ corresponding to a). Moreover, set T(a)◦ := Tnew

N(a)/a
′.

Remark 2.5.4. Proposition 2.5.2 gives rise to an embedding of local domains
T(a) → T(a)◦. (Note that T(a)◦ is local since it is a complete finite Λ-algebra and
hence a product of local rings. Being a domain, it must be local.)

We next observe that at the generic point of the a-component of SpecTΣ, the
universal Galois representation has conductor equal to the conductor of a.

Corollary 2.5.5. The tame conductor of the Galois representation ρ(a) equals
N(a). (Here we define the tame conductor by regarding ρ(a) as a Galois represen-
tation defined over the field of fractions K(a) of T(a).)

Proof. This follows from Propositions 2.2.3 and 2.5.2. �

The next result deals with the classical height one primes in TΣ.

Proposition 2.5.6. Let ℘ be any classical height one prime ideal of TΣ.
(1) The ring TΣ is étale over Λ (and so regular) in a neighborhood of ℘; conse-

quently, ℘ contains a unique minimal prime a of TΣ and the natural map
of localizations (TΣ)℘ → T(a)℘ is an isomorphism.
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(2) Thinking of ℘ as a height one prime of T(a), the map T(a) → T(a)◦ is
an isomorphism in a neighborhood of ℘. Consequently, there is a unique
height one prime ℘′ of T(a)◦ that pulls back to ℘ under this map and the
map of localizations T(a)℘ → T(a)◦℘′ is an isomorphism.

Proof. Both claims follow directly from Proposition 2.3.2. �

In the situation of the preceding proposition, we write O(℘)◦ := O(℘′); this is
a finite extension of O(℘). Recall that we have defined the classical newform f℘′

attached to the height one prime ideal ℘′ of T(a)◦ (thought of as a classical height
one prime of Tnew

N(a)). We write f℘ := f℘′ ; part (2) of Theorem 2.1.3 implies that
f℘ lies in Sk(N(a)p∞,O(℘)◦)ordnew[κ℘].

2.6. Hecke eigenvalues. In this section, we will give two lemmas that describe
Hecke eigenvalues at primes dividing the level in terms of the corresponding Galois
representation. The first lemma treats the case of a single modular form and the
second discusses the case of a Hida family.

Let f denote a classical newform over Q̄p of some weight and of tame level N .
Let ρf denote the p-adic Galois representation attached to f , let Vf denote its
underlying space and let a`(f) denote its Hecke eigenvalues. If ` does not divide
N , then ρf is unramified at ` and a`(f) is equal to the trace of ρf (Frob`). The
following lemma describes a`(f) for ` dividing N in terms of ρf .

Lemma 2.6.1. If ` is a prime dividing N , then the following are equivalent:
(1) a`(f) is a non-unit.
(2) a`(f) = 0.
(3) VI`

= 0.
If these equivalent conditions do not hold, then we have that VI`

is one dimensional
and a`(f) is equal to the eigenvalue of Frob` acting on this line.

Proof. This is standard. �

Fix a tame level N and a maximal ideal n in Tnew
N . Let V denote the free rank

two Tnew
N ⊗Λ L-module on which ρn acts. The following lemma describes T` for `

dividing N in terms of ρn.

Lemma 2.6.2. If ` is a prime dividing N , then the following are equivalent:
(1) T` lies in the maximal ideal n.
(2) T` ≡ 0 mod ℘ for some classical height one prime ideal ℘ of (Tnew

N )n.
(3) T` ≡ 0 mod ℘ for every classical height one prime ideal ℘ of (Tnew

N )n.
(4) T` = 0 in (Tnew

N )n.
(5) VI`

= 0.
If these equivalent conditions do not hold, then we have that VI`

is free of rank one
over (Tnew

N )n ⊗Λ L and T` is equal to the eigenvalue of Frob` acting on this free
rank one module.

Proof. It is clear that (4) =⇒ (3) =⇒ (2) =⇒ (1). Also, Condition (1) implies
that a`(f℘) is contained in the maximal ideal of O(f℘) = O(℘) for each classical
height one prime ℘ of (Tnew

N )n. By Lemma 2.6.1, a`(f℘) = 0 for each such prime and
thus (1) implies (3). Proposition 2.2.4, together with Lemma 2.6.1, shows that (3)
and (5) are equivalent. Lastly, Lemma 2.6.3 (below), together with Theorem 2.1.3,
establishes that (3) implies (4).
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Suppose now that these equivalent conditions do not hold. Then, Proposi-
tion 2.2.4 and Lemma 2.6.1 show that the space VI`

is free of rank one over
(Tnew

N )n ⊗Λ L as claimed. Now let A` ∈ (Tnew
N )n ⊗Λ L denote the eigenvalue of

Frob` acting on this module. By Proposition 2.2.4, A` ∈ (Tnew
N )℘ for each classical

height one prime ℘ of Tnew
N . By Lemma 2.6.1, we see that T` − A` lies in the

maximal ideal of this ring for each such prime ℘. Then, by Lemma 2.6.3 (below)
and Theorem 2.1.3, T` = A`. �

Lemma 2.6.3. Let T be a reduced finite free Λ-algebra such that T ⊗Λ Λ℘ is an
étale extension of Λ℘ for every classical height one prime ℘ of Λ. If x ∈ T ⊗ L
lies in the maximal ideal of T℘′ for every classical height one prime ℘′ of T, then
x = 0.

Proof. Let ℘ be a classical height one prime of Λ. Since T ⊗Λ Λ℘ is étale over Λ,
we see that ℘T⊗Λ Λ℘ =

⋂
℘′ ℘

′T℘′ , where the intersection runs over all height one
primes ℘′ of T lying over ℘. Our assumption on x thus implies that x ∈ ℘T⊗Λ Λ℘

for all classical height one primes ℘ of Λ. As T is free over Λ, the lemma follows
once we note that

⋂
℘ ℘Λ℘ = 0 (the intersection taking place in L). Indeed, the

numerator of any element in this intersection lies in an infinite number of height
one primes of Λ and so vanishes. �

2.7. Λ-adic modular forms and Euler factors. For each minimal prime a of
TΣ, we can define a formal q-expansion along the partial normalization SpecT(a)◦

of the component SpecT(a) of SpecTΣ that interpolates the q-expansions of the
newforms f℘ obtained from the classical primes ℘ in SpecT(a). Namely, if we write
T (a)◦ = Tnew

N(a)/a
′, as in Definition 2.5.3, then we define f(a, q) ∈ T(a)◦[[q]] via

f(a, q) =
∑
n≥1

(Tn mod a′)qn.

(Here we have written Tn rather than Ur
pTn′ , when n is of the form n = n′pr with

(n′, p) = 1, for the sake of uniformity of notation.)
An alternative way of describing this formal q-expansion along SpecT(a)◦ is to

describe the corresponding Euler factors.

Definition 2.7.1. Let a be a minimal prime of TΣ. As above, write T(a)◦ ∼=
Tnew

N(a)/a
′, For each prime ` 6= p, define the reciprocal Euler factor E`(a, X) ∈

T(a)◦[X] via the usual formula:

E`(a, X) :=

{
1− (T` mod a′)X + 〈`〉N(a)p`

−1X2 if ` is prime to N(a)
1− (T` mod a′)X otherwise.

For the sake of completeness, define Ep(a, X) = (1− (Up mod a′)X).

In terms of these reciprocal Euler factors, the formal q-expansion f(a, q) is char-
acterized by the fact that its “formal Mellin transform” is equal to the formal
Dirichlet series ∏

`

E`(a, `−s)−1.

We will now give a Galois theoretic description of these reciprocal Euler factors.
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Proposition 2.7.2. Let a be a minimal prime of TΣ and let V denote a two
dimensional K(a)-vector space on which the Galois representation ρ(a) acts. If
` 6= p is prime, then the Euler factor E`(a, X) ∈ K(a)[X] is equal to the determinant
det(Id−Frob`X | VI`

).

Proof. This follows from Lemma 2.6.2. �

Since T(a)◦ ⊂ T(a)[1/p], we may in particular regard the reciprocal Euler fac-
tors E`(a, X) and the formal q-expansion f(a, q) as varying over SpecT(a)[1/p].
Let us close this section by signaling a phenomena which will be fundamental to
all that follows: the reciprocal Euler factors E`(a, X) (or equivalently the formal
q-expansions f(a, q)) do not extend in a well-defined fashion over SpecTΣ[1/p].
In general, if ℘ is a (necessarily non-classical) height one prime lying in the in-
tersection of two different components of SpecTΣ[1/p], say SpecT(a1)[1/p] and
SpecT(a2)[1/p], then E`(a1, X) and E`(a2, X) (and hence f(a1, q) and f(a2, q))
may have different specializations in O(℘)[1/p][X] (resp. O(℘)[1/p][[q]]) for certain
values of ` dividing N(a1) or N(a2).

3. Two-variable p-adic L-functions

3.1. Canonical periods. For any level M , we let X1(M) denote the closed mod-
ular curve of level Γ1(M) and let C1(M) denote its set of cusps. Let Lk(R) denote
the set of polynomials of degree less than or equal to k − 2 with coefficients in R
and let L̃k(R) denote the associated local system on X1(M).

For N prime to p, let T∗N,r,k (resp. TN,r,k) denote the Hecke algebra correspond-
ing to p-ordinary modular forms (resp. cusp forms) on Γ1(Npr) of weight k. To
ease notation, we write

H1(Npr; L̃k(Zp)) := H1(X1(Npr); L̃k(Zp))

and
H1(Npr, {cusps}; L̃k(Zp)) := H1(X1(Npr);C1(Npr); L̃k(Zp)).

We then have a short exact sequence of T∗N,r,k-modules:

0 → H1(Npr; L̃k(Zp)) → H1(Npr, {cusps}; L̃k(Zp)) → H̃0(C1(Npr); L̃k(Zp)) → 0.

(This is a part of the relative homology sequence of the pair (X1(Npr), C1(Npr));
the tilde over the H0 denotes reduced homology.)

If we localize the above sequence at a maximal ideal m in T∗N,r,k corresponding to
an irreducible residual GQ-representation, then the localization of H̃0(C1(Npr);Zp)
will vanish and the two H1 terms will become isomorphic. Passing to ordinary parts
(an exact functor) yields an isomorphism

H1(Npr; L̃k(Zp))ordm
∼= H1(Npr, {cusps}; L̃k(Zp))ordm(3.1)

of (TN,r,k)m
∼= (T∗N,r,k)m-modules. We write (MN,r,k)m to denote these isomorphic

modules.
There is an action of complex conjugation on X1(Npr) which induces an ac-

tion on these homology group. We will use a superscript of ± to indicate the
±-eigenspaces for this action; since p is odd, we have (MN,r,k)m = (MN,r,k)+m ⊕
(MN,r,k)−m.

The following proposition is fundamental to the construction of the canonical
period.
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Proposition 3.1.1. Let m be a maximal ideal of TN,r,k whose residual representa-
tion is irreducible and p-distinguished. Then (MN,r,k)±m is a free (TN,r,k)m-module
of rank 1. In particular, there exists an isomorphism of (TN,r,k)m-modules

(MN,r,k)±m
αN,r,k∼= (TN,r,k)m(3.2)

(although αN,r,k is only well-defined up to a p-adic unit).

Proof. We consider first the case k = 2 and r = 1. Set M := MN,1,2 and T :=
TN,1,2. Let J1(Np) denote the Jacobian ofX1(Np). By [37, Thm. 2.1], the ordinary
m-torsion J1(Np)(Q̄)[m]ord is free of rank 2 over T/m. Since

J1(Np)(Q̄)[m] ∼= H1(Np;Fp)[m],

by dualizing, we have that (MN )m⊗T/m is free of rank 2 over T/m. As (MN )m⊗Qp

is free of rank 2 over Tm ⊗Qp, it follows that (MN )m is free of rank 2 over Tm.
Passing to ±-subspaces establishes the proposition for k = 2.

The case k > 2 or r > 1 can be deduced from the case k = 2 and r = 1 by Hida
theory. We will give the details in Section 3.3 immediately after Proposition 3.3.1.

�

Fix a p-ordinary and p-distinguished eigenform f defined over Q̄p of weight k
on Γ1(Npr) whose corresponding maximal ideal in TN,r,k is m. By the duality
between spaces of cusp forms and Hecke algebras, the eigenform f gives rise to a
morphism of Zp-algebras

(3.3) (TN,r,k)m → O(f);

here O(f) is the finite extension of Zp in Q̄p generated by the Fourier coefficients of
f . Composing (3.3) with the fixed map αN,r,k of (3.2) then yields an O(f)-valued
functional

H1(Npr; L̃k(O(f)))±m
δ±f→ O(f).

On the other hand, integration yields a map

H1(Npr; L̃k(C))±
ω±f−→ C.

If we fix an isomorphism ı : Q̄p
∼= C, then this integration map factors through

H1(Npr; L̃k(C))±m′ , where m′ is the maximal ideal in TN,r,k⊗Zp,ı C obtained as the
kernel of the C-algebra map

TN,r,k ⊗Zp,ı C → C

induced by composing (3.3) with ı. By the multiplicity one theorem, the functionals
δ±f (extended to C) and ω±f differ by a non-zero constant and we have

ω±f = Ω±f · δ
±
f

with Ω±f ∈ C×. The constant Ω±f is the canonical period of f . It is well-defined up
to a p-adic unit. (The ambiguity arises from the choice of the map αN,r,k in (3.2)).

Remark 3.1.2. The constructions given here are dual (but equivalent) to the ones
given by Vatsal in [35], since here we are working with homology while Vatsal used
cohomology.



20 MATTHEW EMERTON, ROBERT POLLACK AND TOM WESTON

3.2. One variable p-adic L-functions. The advantage of describing (MN,r,k)m

as a relative homology group is that the corresponding relative homology classes
admit a description via modular symbols. More precisely, for fixed r, there is a
map

P1(Q) → H1(Npr, {cusps}; L̃k(Zp))

defined by sending the element a ∈ P1(Q) to the homology class corresponding
to the image of the path [∞, a] on the modular curve X1(Np). By projecting to
ordinary parts and localizing at m, we obtain a map

P1(Q) → (MN,r,k)m,

which we denote by a 7→ {∞, a}. This map allows us to define an (MN,r,k)m-valued
measure on Z×p in the usual way.

Definition 3.2.1. For any open subset a+ prZp of Z×p , we define

µk(a+ prZp) = U−r
p {∞, a/pr} ∈ (MN,r,k)m.

Proposition 3.2.2. The function µk is a measure (i.e. it is additive).

Proof. This is standard. �

For f an eigenform of weight k on Γ1(Npr), let ℘f denote the corresponding
height one prime ideal of TN,r,k and let m be the unique maximal ideal containing
℘f . By decomposing µk into its ±-parts and applying the map αN,r,k of (3.2),
we may view µ±k as taking values in TN,r,k. Thus µ±k mod ℘f is O(f)-valued and
moreover, it is precisely the p-adic L-function attached to f computed with respect
to the canonical period Ω±f . That is, µ±k mod ℘f interpolates the special values
L(f, χ, 1)/Ω±f where χ is a finite order character of Z×p such that χ(−1) = ±1.

3.3. Canonical periods in families. In [35], it is proven that if f and g are
p-ordinary eigenforms of weight k whose residual representations are isomorphic,
then their respective p-adic L-functions are congruent. More precisely, it is proven
that one can simultaneously choose canonical periods Ωf and Ωg so that the p-adic
L-functions computed with respect to these periods are congruent.

We will now describe how one can simultaneously choose canonical periods for
all modular forms in a Hida family so that the associated single variable p-adic
L-functions vary p-adic analytically in k. These constructions are originally due
to Mazur [28] and Kitigawa [22]. Using results of Wiles in [37], we have extended
these constructions to a wider class of modular forms.

Let TN be the universal ordinary Hecke algebra defined in Section 2 and let T∗N
be the corresponding Hecke algebra defined with respect to all ordinary modular
forms rather than just cusp forms. Let m ⊆ T∗N be a maximal ideal whose residual
representation is irreducible.

For each r ≥ 0, we have an isomorphism

H1(Npr;Zp)ordm
∼= H1(Npr, {cusps};Zp)ordm

and passing to the projective limit in r, we obtain a corresponding isomorphism of
(TN )m

∼= (TN )∗m-modules

lim←−
r

H1(Npr;Zp)ordm
∼= lim←−

r

H1(Npr, {cusps};Zp)ordm .
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We denote these isomorphic modules by (MN )m. As before, there is an action of
complex conjugation that yields a decomposition (MN )m = (MN )+m ⊕ (MN )−m.

The following proposition is the Hida-theoretic analogue of Proposition 3.1.1.

Proposition 3.3.1. If ρ̄m is irreducible and p-distinguished, then (MN )±m is a free
(TN )m-module of rank 1.

Proof. Let ℘2 denote the product of all classical height one primes ℘ of weight 2 in
TN such that κ℘ is trivial. Then, by [17, Thm. 3.1],

(MN )m ⊗TN/℘2
∼= (MN,1,2)m2(3.4)

where m2 is the maximal ideal in TN,1,2 induced by m. By Proposition 3.1.1 (applied
in the case k = 2 and r = 1), we know that (MN,1,2)m2 is a free TN,1,2

∼= TN/℘2-
module of rank 2. Since (MN )m ⊗Qp is free of rank 2 over (TN )m ⊗Qp, it follows
that (MN )m is free of rank 2 over (TN )m. Passing to ±-subspaces then establishes
the proposition. �

Using Proposition 3.3.1, we now complete the proof of Proposition 3.1.1 for
arbitrary k and r. (Note that the proof of Proposition 3.3.1 only relied upon
Proposition 3.1.1 in the already established case of k = 2 and r = 1 and so these
arguments are not circular.)

Proof of Proposition 3.1.1. Let ℘N,r,k denote the product of all classical height one
primes ℘ of weight k in TN such that κ℘ restricted to 1 + prZp is trivial. Then, by
[19, Theorem 1.9],

(MN )m ⊗TN/℘N,r,k
∼= (MN,r,k)mN,r,k

(3.5)

where mN,r,k is the maximal ideal in TN,r,k induced by m. By Proposition 3.3.1,
(MN )m is free of rank two over TN . Thus (MN,r,k)mN,r,k

is free of rank two over
TN,r,k

∼= TN/℘N,r,k. Passing to ±-subspace then completes the proof. �

We now assume that the hypotheses of Proposition 3.3.1 are satisfied. Thus we
may choose an isomorphism

(3.6) (TN )m

αN∼= (MN )±m.

Using the notation of the above proof, if we consider αN modulo ℘N,r,k, we get an
isomorphism

(TN,r,k)mN,r,k

αN,r,k∼= (M±N,r,k)mN,r,k
.

For a given modular form f of level Npr and of weight k in the Hida family cor-
responding to (TN )m, we then define its canonical period to be the one computed
with respect to αN,r,k.

Note that the usual ambiguity of the canonical period coming from the choice of
isomorphism αN,r,k is controlled across the entire Hida family by the single choice
of αN identifying (MN )±m with (TN )m. In the following section, we show that under
these choices of canonical periods, the p-adic L-functions enjoy good congruence
properties; that is, they interpolate into a two-variable p-adic L-function.



22 MATTHEW EMERTON, ROBERT POLLACK AND TOM WESTON

3.4. Two variable p-adic L-functions. Recall, that for each r ≥ 1, we have a
map

P1(Q) → H1(Npr, {cusps};Zp).

This map is compatible with varying r and so projecting to ordinary parts, localizing
at m and passing to the limit, we obtain a map

P1(Q) → (MN )m,

which we again denote by a 7→ {∞, a}.

Definition 3.4.1. For any open subset a+ prZp of Z×p , we define

µ(a+ prZp) = U−r
p {∞, a/pr} ∈ (MN )m.

Proposition 3.4.2. The function µ is a measure (i.e. it is additive).

Proof. This is standard. �

Recall that the completed group ring Zp[[Z×p ]] may naturally be regarded as the
space of Zp-valued measures on Z×p . We may thus regard µ as defining an element

L(m, N) ∈ (MN )m⊗̂ZpZp[[Z×p ]].

(Here the tensor product is completed with respect to the usual (i.e. profinite topol-
ogy) on Zp[[Z×p ]] and the m-adic topology on (MN )m.) We may decompose L(m, N)
under the action of complex conjugation to get a pair of elements

L±(m, N) ∈ (MN )±m⊗̂ZpZp[[Z×p ]].

We now assume that the hypotheses of Proposition 3.3.1 are satisfied. Thus we
may identify (TN )m with (MN )±m and so regard

L±(m, N) ∈ (TN )m⊗̂ZpZp[[Z×p ]] ∼= (TN )m[[Z×p ]].

We will refer to L±(m, N) as the two-variable p-adic L-function attached to (TN )m.
Note that it is well-defined up to a unit in (TN )m.

If we fix a tame character ωi for some 0 ≤ i ≤ p − 2, then we may project
L±(m, N) onto the “ωi-part” of Zp[[Z×p ]] and obtain

L(m, N, ωi) ∈ (TN )m⊗̂ZpΛ(i).

(Here we choose the sign ± to equal (−1)i, since it is well-known, and easily checked,
that otherwise the projection is trivial.)

For any height one prime ℘ in (TN )m, we may reduce L±(m, N, ωi) modulo ℘
to obtain an element

L±(m, N, ωi)(℘) ∈ ((TN )m/℘) ⊗̂ZpΛ(i)
∼= O(℘)⊗̂ZpΛ(i),

which is well-defined up to a unit in O(℘). Also, we may reduce modulo m to obtain
an element

L̄±(m, N, ωi) ∈ ((TN )m/m) ⊗̂ZpΛ(i)
∼= k ⊗̂ZpΛ(i),

which is well-defined up to an element of k×.
The following proposition describes the manner in which the two-variable p-

adic L-function L±(m, N, ωi) interpolates the one-variable p-adic L-functions of
the modular forms in the Hida family corresponding to (TN )m.
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Proposition 3.4.3. If ℘ is a classical height one prime ideal in (TN )m, then

L±(m, N, ωi)(℘) ∈ O(℘)⊗̂ZpΛ(i)

is the usual analytic p-adic L-function attached to the corresponding normalized
eigenform

f℘ ∈ Sk(Np∞,O(℘))ord[κ℘]
(computed with respect to the canonical period described in Section 3.3).

Proof. This comparison follows immediately from our given constructions of one
and two-variable p-adic L-functions together with the isomorphism in (3.5). �

Remark 3.4.4. Note that the normalized eigenform f℘ appearing in the statement
of Proposition 3.4.3 need not be a newform and thus L±(m, N, ωi)(℘) may not be a
“primitive” p-adic L-function. This issue will be explored in the following section.

Remark 3.4.5. The following remark answers a question asked by the referee; it
will not be used elsewhere in the paper.

Note that the formula of Definition 3.4.1 works equally well to define an (MN )m-
valued measure on Zp. Integrating the constant function 1 on Zp with respect
to this measure yields an element of (MN )m; explicitly, this is just the element
{∞, 1} ∈ (MN )m. This element in fact lies in (MN )+m, and thus (via our chosen
identification of (MN )+m with (TN )m) gives rise to an element of (TN )m, which we
denote by L∗(m, N, 1). Any easy computation (using the fact that Zp = Z×p

⋃
pZp)

shows that (1 − U−1
p )L∗(m, N, 1) = L+(m, N, 1). (Note that the ‘1’ in the third

argument stands for the trivial character ω0.) Thus L∗(m, N, 1) coincides with the
“improved p-adic L-function” of [14], computed with respect to a canonical period.

3.5. Two variable p-adic L-functions on branches of the Hida family. Fix
an irreducible modular Galois representation ρ̄ : GQ → GL2(k) that is both p-
ordinary and p-distinguished. We choose also a p-stabilization on ρ̄ (which we will
suppress in our discussion and notation). Furthermore, fix a finite set of primes Σ
and consider the Hecke algebra TΣ associated to ρ̄ as in Section 2.4.

Proposition 2.4.2 yields an isomorphism TΣ
∼= (TN(Σ))n for a certain maximal

ideal n of TN(Σ). The construction of the preceding section thus defines a two-
variable p-adic L-function

L(n, N(Σ), ωi) ∈ (TN(Σ))n⊗̂ZpΛ(i).

The isomorphism TΣ
∼= (TN(Σ))n then yields elements

LΣ(ρ̄, ωi) ∈ TΣ⊗̂ZpΛ(i),

LΣ(ρ̄, ωi)(℘) ∈ O(℘)⊗Zp Λ(i),

LΣ(ρ̄, ωi) ∈ k⊗̂ZpΛ(i),

as defined in the previous section, which are well-defined up to units in TΣ, O(℘)
and k respectively.

We now note that there are two different ways that one can naturally attach
a modular form to a classical height one prime ideal ℘ of TΣ. First, via the
isomorphism of Proposition 2.4.2, this prime corresponds to a classical height one
prime ideal of TN(Σ) which we again call ℘. By part (2) of Theorem 2.1.1, this prime
gives rise to a normalized eigenform f℘ of tame level N(Σ). On the other hand,
by Proposition 2.5.6, ℘ also corresponds to a classical height one prime of Tnew

N(a)
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which we denote by ℘new. (Here a is the unique minimal prime of TΣ contained in
℘.) By part (2) of Theorem 2.1.3, this prime gives rise to a normalized newform
fnew

℘ := f℘new of tame level N(a).
In general, f℘ and fnew

℘ are not equal. Indeed, they are eigenforms for different
Hecke algebras: fnew

℘ is an eigenform for TN(a) while f℘ is an eigenform for TN(Σ).
Proposition 2.4.2 makes it clear how they are related: f℘ is the normalized oldform
obtained from fnew

℘ by “removing the Euler factor” at each of the primes ` ∈ Σ.
Note that Proposition 3.4.3 shows that LΣ(ρ̄, ωi) interpolates the p-adic L-

functions attached to the modular forms f℘ for ℘ a classical height one prime
of TΣ. In particular, these are “non-primitive” p-adic L-functions.

We now seek to construct a two variable p-adic L-function for each minimal
prime a of TΣ, which interpolates the p-adic L-functions of the modular forms
fnew

℘ as ℘new runs through the classical height one primes of T(a). For this, we
recall the natural isomorphism T(a)◦ ∼= Tnew

N(a)/a
′ of Definition 2.5.3, which gives

rise to the composite surjection

(3.7) TN(a) → Tnew
N(a) → Tnew

N(a)/a
′ ∼= T(a)◦.

If we let m denote the maximal ideal of TN(a) obtained as the preimage of the
maximal ideal of T(a)◦ under (3.7), then the construction of the preceding section
yields an L-function L(m, N(a), ωi) ∈ TN(a)⊗̂ZpΛ(i). The surjection (3.7) induces
a corresponding surjection

TN(a)⊗̂ZpΛ(i) → T(a)◦⊗̂ZpΛ(i).

We then denote the image of L(m, N(a), ωi) under this surjection by

L(ρ̄, a, ωi) ∈ T(a)◦⊗̂ZpΛ(i)

and we refer to L(ρ̄, a, ωi) as the two variable p-adic L-function attached to T(a).
The following proposition describes the interpolation property of L(ρ̄, a, ωi).

Proposition 3.5.1. If ℘new is a classical height one prime ideal in T(a),

L(ρ̄, a, ωi)(℘new) ∈ O(℘new)⊗̂ZpΛ(i)

equals the p-adic L-function of fnew
℘ := f℘new computed with respect to a canonical

period.

Proof. This proposition follows immediately from Proposition 3.4.3. �

3.6. Comparisons. We now have a two-variable p-adic L-function LΣ(ρ̄, ωi) de-
fined over the entire Hida algebra TΣ and, for each minimal prime a of TΣ, we
have a two-variable p-adic L-function L(ρ̄, a, ωi) defined on the branch T(a). It is
natural then to compare L(ρ̄, a, ωi) with LΣ(ρ̄, ωi) modulo a.

Each of these p-adic L-functions lies in T(a)◦⊗̂ZpΛ(i). The interpolation property
satisfied by classical p-adic L-functions shows that for any height one prime ℘ of TΣ

containing a, the L-functions Lp(fnew
℘ ) and Lp(f℘) agree up to multiplication by

a certain product of Euler factors (reflecting the Euler factors removed from fnew
℘

to obtain f℘) and an element of O(℘)[1/p]× (reflecting the ratio of the canonical
period of fnew

℘ and the canonical period of f℘).
We will show that in fact the ratio of these canonical periods lies in (O(℘)◦)×.

Hence, Lp(fnew
℘ ) and Lp(f℘) agree up to multiplication by a product of Euler factors

and the inevitable ambiguity of a unit of O(℘)◦. Furthermore, we will show that
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this occurs uniformly in Hida families; in other words, that LΣ(ρ̄, ωi) mod a and
L(ρ̄, a, ωi) agree up to multiplication by a product of Euler factors and a unit in
T(a)◦.

We begin by defining the relevant Euler factors. Recall the Euler factors E`(a, X)
in T(a)◦[X] defined in Section 2.7. Since ` is prime to p, we may regard ` as an
element of Z×p and so obtain a corresponding unit element 〈`〉p ∈ Zp[[Z×p ]]. Thus

E`(a, 〈`〉−1
p ) ∈ T(a)◦[[Z×p ]] ∼= T(a)◦⊗̂ZpZp[[Z×p ]].

For 0 ≤ i ≤ p− 2, we write 〈`〉p,i to denote the projection of 〈`〉p ∈ Zp[[Z×p ]] under
the surjection Zp[[Z×p ]] → Λ(i). We write E`(a, 〈`〉−1

p,i ) to denote the corresponding
element of T(a)◦⊗̂ZpΛ(i).

Definition 3.6.1. If a is a minimal prime of TΣ, then we write

EΣ(a) :=
∏
`∈Σ

E`(a, 〈`〉−1
p ) ∈ T (a)◦⊗̂ZpZp[[Z×p ]]

and
EΣ(a, ωi) :=

∏
`∈Σ

E`(a, 〈`〉−1
p,i ) ∈ T (a)◦⊗̂ZpΛ(i).

Since LΣ(ρ̄, ωi) and L(ρ̄, a, ωi) are constructed using modular symbols of lev-
els N(Σ) and N(a) respectively, in order to compare them, we will need to be
able to compare the corresponding Hecke algebras. Recall that by construction
TΣ = (T′N(Σ))m′ for a certain maximal ideal m′ of T′N(Σ) and that n is a certain
maximal ideal of TN(Σ) lying over m′ with the property that the map (T′N(Σ))m′ →
(TN(Σ))n is an isomorphism. We let m denote the preimage in TN(a), under the
surjection (3.7), of the maximal ideal of T(a)◦. Altogether, we have the following
diagram of maps between the various Hecke algebras:

(3.8) (T′N(Σ))m′

��

∼= // (TN(Σ))n

(TN(a))m // T(a)◦.

By inverting the upper horizontal isomorphism, we obtain a map (TN(Σ))n →
T(a)◦. This is a homomorphism of T′N(Σ)-algebras when we equip the source and
target with the T′N(Σ)-algebra structure provided by the diagram (3.8).

We write (MN(Σ))n and (MN(a))m to denote the modules of p-adic modular sym-
bols constructed in Section 3.3 for the indicated choice of tame level and localized
at the indicated maximal ideal. The following result provides the key to compar-
ing the L-functions LΣ(ρ̄, ωi) mod a and L(ρ̄, a, ωi). We postpone its proof to the
Section 3.8.

Theorem 3.6.2. There is an isomorphism of T(a)◦-modules

T(a)◦ ⊗(TN(Σ))n
(MN(Σ))n

∼= T(a)◦ ⊗(TN(a))m
(MN(a))m,

compatible with the action of complex conjugation.
Moreover, the induced map on the corresponding spaces of measures taking values

in these modules sends the measure L(n, N(Σ)), which takes values in the source of
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the isomorphism, to the measure L(m, N(a))EΣ(a), which takes values in the target
of the isomorphism.

Corollary 3.6.3. There is a unit u ∈ T(a)◦ such that

LΣ(ρ̄, ωi) ≡ u · L(ρ̄, a, ωi)EΣ(a, ωi) (mod a).

Proof. This follows immediately from the preceding theorem. �

3.7. Iwasawa invariants. If we choose an isomorphism

(3.9) Λ ∼= Zp[[T ]],

and hence an isomorphism (TN )m⊗̂ZpΛ(i)
∼= (TN )m[[T ]], we may then regard

L(m, N, ωi) as an element of Tm[[T ]]. We are, of course, interested in the Iwasawa
invariants of such power series. We begin this section by reviewing the definitions
and basic properties of such invariants.

Definition 3.7.1. If R is a ring and f(T ) ∈ R[[T ]] is a one-variable power series
with coefficients in R, then we define the content of f(T ) to be the ideal I(f(T )) ⊂ R
generated by the coefficients of f(T ).

The proof of the next lemma is straightforward.

Lemma 3.7.2. Let f(T ) ∈ R[[T ]].
(1) If α is any automorphism of R[[T ]], then I(f(T )) = I(α(f(T ))).
(2) If u(T ) ∈ R[[T ]]×, then I(u(T )f(T )) = I(f(T )).
(3) If f(T ) = g(T )h(T ) in R[[T ]], then if any two of these three power series

have unit content, so does the third.
(4) If φ : R→ S is a morphism of rings then I(φ(f(T ))) = φ(I(f(T ))).

In particular, regarding L(m, N, ωi) as a power series, we may consider its con-
tent I(L(m, N, ωi)), an ideal of (TN )m. Parts (1) and (2) of the preceding lemma
show that this ideal is in fact independent of the choice of the isomorphisms (3.6)
and (3.9).

For each height one prime ℘, we may likewise form the corresponding ideal
I(L(m, N, ωi)(℘)) in O(℘). By part (4) of Lemma 3.7.2, this ideal equals the image
of I(L(m, N, ωi)) under the surjection (TN )m → (TN )m/℘ ∼= O(℘). We also have
that I(L̄(m, N, ωi)) is an ideal of k and is thus either zero or all of k. Again,
we have that this ideal equals the image of I(L(m, N, ωi)) under the surjection
(TN )m → (TN )m/m ∼= k.

The next result is an immediate consequence of the fact that (TN )m is a local
ring.

Proposition 3.7.3. Fix i such that 0 ≤ i ≤ p− 2. The following are equivalent:
(1) I(L(m, N, ωi)) = (TN )m.
(2) I(L(m, N, ωi)(℘)) = O(℘) for some height one prime ℘ of (TN )m.
(3) I(L(m, N, ωi)(℘)) = O(℘) for every height one prime ℘ of (TN )m.
(4) I(L̄(m, N, ωi)) is non-zero (and hence equal to k).

We remark that if ℘ is a classical height one prime ideal in (TN )m, then the
length of the quotient O(℘)/I(L(m, N, ωi)(℘)) is related to the usual µ-invariant
of the p-adic L-function L(m, N, ωi)(℘) ∈ O(℘)[[T ]]. In particular, this µ-invariant
vanishes if and only if I(L(m, N, ωi)(℘)) is the unit ideal of O(℘).
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Analogously, we have well-defined ideals

I(LΣ(ρ̄, ωi)), I(LΣ(ρ̄, ωi)(℘)) and I(LΣ(ρ̄, ωi))

of TΣ, O(℘) and k respectively. The above result applies equally well to these
ideals since they are constructed out of I(L(m, N, ωi)) for some choice of m and N .

We now compute the content of the reciprocal Euler factor EΣ(a, ωi) defined in
Section 3.6.

Lemma 3.7.4. The element EΣ(a, ωi) of T (a)◦⊗̂ZpΛ(i) has unit content.

Proof. Part (3) of Lemma 3.7.2 shows that it suffices to prove that each of the
reciprocal Euler factors E`(a, 〈`〉−1

p,i ) has unit content. If γ is a topological generator
of Γ, then we may write `−1ω(`) = γupn

for some u ∈ Z×p and some integer n ≥ 0.
If we choose our isomorphism (3.9) so that 〈γ〉p 7→ 1 + T , then we see that

E`(a, 〈`〉−1
p,i ) =
(1− (T` mod a′)ω−i(`)(1 + T )upn

+ 〈`〉N(a)pω
−2i(`)`−1(1 + T )2upn

)
if ` is prime to N(a)

(1− (T` mod a′)ω−i(`)(1 + T )upn

) otherwise.

In the second case either the constant term is a unit (if T` is not a unit) or else
the coefficient of T pn

is a unit (if T` is a unit). In the first case, we may compute
the content after making the substitution (1 +T )u 7→ 1 +T , in which case one sees
immediately that the coefficient of T 2pn

is a unit. �

The following theorem establishes that if the µ-invariant vanishes for one form
in a Hida family, then it vanishes for every form in that family.

Theorem 3.7.5. The following are equivalent:

(1) µ(Lp(f, ωi)) = 0 for some newform f in the Hida family of ρ̄.
(2) µ(Lp(f, ωi)) = 0 for every newform f in the Hida family of ρ̄.
(3) L(ρ̄, a, ωi) has unit content for some irreducible component T(a) of the Hida

family of ρ̄.
(4) L(ρ̄, a, ωi) has unit content for every irreducible component T(a) of the Hida

family of ρ̄.

Proof. Let T(a) be an irreducible component of the Hida family of ρ̄ and let ℘
be a classical height one prime ideal of T(a). Since L(ρ̄, a, ωi) modulo ℘ equals
Lp(f℘, ω

i) and T(a)◦ is a local ring, we deduce from Proposition 3.7.3 that the
following are equivalent: L(ρ̄, a, ωi) has unit content; Lp(f℘, ω

i) has unit content
(i.e. trivial µ-invariant) for one classical height one prime ℘ of T(a); Lp(f℘, ω

i) has
unit content for every classical height one prime ℘ of T(a).

To complete the proof of the proposition, it suffices to show that if T(a1) and
T(a2) are two irreducible components of the Hida family of ρ̄, then L(ρ̄, a1, ω

i) has
unit content if and only if the same holds true for L(ρ̄, a2, ω

i). We may choose Σ
large enough so that each of T(a1) and T(a2) is an irreducible component of TΣ.
Corollary 3.6.3, together with Lemmas 3.7.2 (3) and 3.7.4, then shows that each
of L(ρ̄, a1, ω

i) and L(ρ̄, a2, ω
i) have unit content if and only if the same is true of

LΣ(ρ̄, ωi). �
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If the equivalent conditions of the preceding theorem hold, then we write

µan(ρ̄, ωi) = 0.

(As usual, our notation suppresses the choice of p-stabilization of ρ̄.) In the case
when the µ-invariant vanishes we can further study the λ-invariant of these power
series. (Note that for a local ring which is not a discrete valuation ring one can
only define the λ-invariant for power series of unit content.)

Definition 3.7.6. If A is a local ring and f(T ) ∈ A[[T ]] is a power series having
unit content, then we define the λ-invariant λ(f(T )) to be the smallest degree in
which f(T ) has a unit coefficient.

We remark that if φ : A→ B is a local morphism of complete local rings and if
f(T ) is an element of A[[T ]] having unit content, then λ(f(T )) = λ(φ(f(T ))).

If T(a) is an irreducible component of the Hida family of ρ̄ with µan(ρ̄, ωi) = 0,
then Theorem 3.7.5 shows that L(ρ̄, a, ωi) has unit content. We can therefore define
the analytic λ-invariant of a branch by

λan(ρ̄, a, ωi) = λ(L(ρ̄, a, ωi)).

Our main results on analytic λ-invariants in Hida families are as follows.

Theorem 3.7.7. Assume that µan(ρ̄, ωi) = 0.

(1) For any given irreducible component T(a) of the Hida family of ρ̄, the λ-
invariant of Lp(f℘, ω

i) takes on the constant value of λan(a, ωi) as ℘ varies
over all classical height one primes of T(a).

(2) For any two irreducible components T(a1), T(a2) of the Hida family of ρ̄,
we have that

λan(a1, ω
i)− λan(a2, ω

i) =
∑
` 6=p

(e`(a2, ω
i)− e`(a1, ω

i))

where e`(a, ωi) = λ(E`(a, 〈`〉−1
p,i )).

Proof. The first part follows from Proposition 3.5.1 and Definition 3.7.6. For the
second part, choose Σ large enough so that both T(a1) and T(a2) are irreducible
components of TΣ. Then, by Corollary 3.6.3, we have that

λ(LΣ(ρ̄, ωi)) = λan(aj , ωi) +
∑
`∈Σ

e`(aj , ω
i)

for j = 1, 2. Our formula then follows since e`(a1, ω
i) = e`(a2, ω

i) for ` /∈ Σ. �

3.8. Proof of Theorem 3.6.2. In this section, we present the proof of Theo-
rem 3.6.2. We will utilize the notation introduced prior to the statement of the
theorem and begin the proof by introducing some additional notation.

If M ≥ 1 is an integer, d is a divisor of M and d′ is a divisor of d, then we let
Bd,d′ : X1(M) → X1(M/d) denote the map induced by the map τ 7→ d′τ on the
upper half-plane. This map induces a corresponding map

(Bd,d′)∗ : H1(M, {cusps};Zp) → H1(M/d, {cusps};Zp)

on relative homology groups.
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If ` is any prime distinct from p, then we let e` denote the largest power of `
dividing N(Σ)/N(a). We have the inequality 0 ≤ e` ≤ 2. Also, e` = 0 unless ` ∈ Σ,
while e` = 2 only if ` ∈ Σ and ` is prime to N(a). For each such prime `, we write

ε(`) :=


1 if e` = 0
((B`,1)∗ − `−1T` (B`,`)∗) if e` = 1
((B`2,1)∗ − `−1T` (B`2,`)∗ + `−3〈`〉N(a)p(B`2,`2)∗) if e` = 2.

Now write Σ = {`1, . . . , `n} and for any r ≥ 1 define

εr : H1(N(Σ)pr, {cusps};Zp)ord → H1(N(a)pr, {cusps};Zp)ord

by εr = ε(`n) ◦ · · · ◦ ε(`1).
Let us explain this formula. For any i = 1, . . . , n, write Ni = N(Σ)/`e`1

1 · · · `e`i
i .

In the formula for εr, the map ε(`i) is taken to be the map

H1(Ni−1p
r, {cusps};Zp)ord → H1(Nip

r, {cusps};Zp)ord

given by the stated formula for ε(`i). (The symbol T`i in the formula for ε(`i) is
understood to stand for the corresponding Hecke operator acting in level Nip

r.) It
is easily verified that the map εr is in fact independent of the choice of ordering of
the elements of Σ.

For any tame level M we let (T∗M )′ denote the Λ-subalgebra of the ordinary
Hecke algebra T∗M generated by the Hecke operators prime to M . If we regard the
source and target of εr as (T∗N(Σ))

′-modules via the inclusion (T∗N(Σ))
′ ⊂ T∗N(Σ)

and the natural map (T∗N(Σ))
′ → (T∗N(a))

′ ⊂ T∗N(a), then εr is immediately seen to
be (T∗N(Σ))

′-linear.
As r varies, the sources and targets of the maps εr each form a projective system

and the maps εr are evidently compatible with the projection maps on source and
target. Thus, passing to the limit in r, we obtain a (T∗N(Σ))

′-linear map

ε∞ : lim←−
r

H1(N(Σ)pr, {cusps};Zp)ord → lim←−
r

H1(N(a)pr, {cusps};Zp)ord.

We denote the source and target of this map by MN(Σ) and MN(a) respectively.
We may regard each of the maximal ideals m′, n and m equally well as maximal

ideals of (T∗N(Σ))
′, T∗N(Σ) and T∗N(a). If we localize ε∞ with respect to m′, we obtain

a map

(3.10) (MN(Σ))m′ → (MN(a))m′ .

Now n and m each pull back to m′ under the natural maps T′N(Σ) → TN(Σ) and
T′N(Σ) → TN(a) and so the localizations (TN(Σ))n and (TN(a))m are local factors of
the complete semi-local rings (T′N(Σ))m′⊗T′

N(Σ)
TN(Σ) and (T′N(Σ))m′⊗T′

N(Σ)
TN(a).

Thus the localizations (MN(Σ))n and (MN(a))m appear naturally as direct factors
of (MN(Σ))m′ and (MN(a))m′ respectively, and so the map (3.10) induces a map

(MN(Σ))n → (MN(a))m.

Tensoring the source of this map with T(a)◦ over (TN(Σ))n and the target with
T(a)◦ over (TN(a))m, we obtain a T(a)◦-linear map

(3.11) T(a)◦ ⊗(TN(Σ))n
(MN(Σ))n → T(a)◦ ⊗(TN(a))m

(MN(a))m.

We claim that this map satisfies the requirements of Theorem 3.6.2.
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We first observe that this map satisfies the claimed property with regard to the
L-functions. This follows from an explicit calculation of the effect of the maps ε` on
modular symbols. In fact, one easily shows that for any character χ of conductor
pn and α =

∑
a∈(Z/pn)×

χ(a) {a/pn,∞}, we have that

εr (α) =∏
i s.t. e`i

=1

(1− χ−1(`)`−1T`)
∏

i s.t. e`i
=2

(1− χ−1(`)`−1T` + χ−2(`)`−3〈`〉N(a)p) · α.

(In the left hand side of this equation, the modular symbols {a/pn,∞} are regarded
as lying in H1(N(Σ)pr, {cusps};Zp). On the right hand side, they are regarded as
lying in H1(N(a)pr, {cusps};Zp).) Passing to the limit in r, and taking into account
the fact that χ is an arbitrary Dirichlet character of p-power conductor, we conclude
the the isomorphism (3.11) has the required effect on L-functions.

We now turn to showing that (3.11) is an isomorphism. Note that Proposi-
tion 3.3.1 shows that both source and target are free of rank two over T(a)◦. Thus
to see that this map is an isomorphism, it suffices to check that it induces a surjec-
tion after being reduced modulo the maximal ideal of T(a)◦. To do this, we first
mod out by a classical prime of weight two and then by the full maximal ideal.

Let ℘ denote the classical height one prime in Λ of weight two for which κ℘ is
trivial. If we tensor each side of (3.11) by Λ/℘ over Λ, we obtain the map

(3.12) T(a)◦ ⊗(TN(Σ))n
H1(N(Σ)p;Zp)ordn → T(a)◦ ⊗(TN(a))m

H1(N(a)p;Zp)ordm

induced by localizing the source and target of ε1 at n and m respectively and
then extending scalars to T(a)◦. (Here, as in Proposition 3.3.1, we are using [17,
Thm. 3.1].)

Thus the reduction modulo the maximal ideal of T(a)◦ of (3.11) coincides with
the map

(3.13)
(
TN(a)/m

)
⊗TN(Σ)/n

(
H1(N(Σ)p;Zp)ord/nH1(N(Σ)p;Zp)ord

)
→ H1(N(a)p;Zp)ord/mH1(N(a)p;Zp)ord

of TN(a)/m-vector spaces induced by (3.12).
Rather than showing directly that (3.13) is surjective, we will show that the

corresponding dual map

(3.14) H1(N(a)p;Fp)ord[m] →
(
TN(a)/m

)
⊗TN(Σ)/n

(
H1(N(Σ)p;Fp)ord[n]

)
is injective. (In writing the dual of (3.13) in this form, we have implicitly fixed
an isomorphism of one dimensional TN(a)/m-vector spaces between TN(a)/m and
its TN(Σ)/m

′-linear dual. We will suppress this choice of isomorphism here and
below.) This map may be written as a composite

(3.15)

H1(N(a)p;Fp)ord[m] →
(
TN(a)/m

)
⊗TN(Σ)/n

(
H1(N(a)p;Fp)ord[m′]

)
→

(
TN(a)/m

)
⊗TN(Σ)/n

(
H1(N(Σ)p;Fp)ord[m′]

)
→

(
TN(a)/m

)
⊗TN(Σ)/n

(
H1(N(Σ)p;Fp)ord[n]

)
.

To explain this, we first recall that since the localization (TN(Σ))n is a local factor of
the tensor product (T′N(Σ))m′⊗T′

N(Σ)
TN(Σ) for which the natural map (T′N(Σ))m′ →
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(TN(Σ))n is an isomorphism, the residue field TN(Σ)/n is a local factor of the Artin
local ring TN(Σ)/m

′TN(Σ); write

TN(Σ)/m
′TN(Σ)

∼= TN(Σ)/n×A,

where A denotes the product of the remaining local factors. This decomposition
induces a corresponding decomposition

(3.16) B ∼= B[n]×A⊗TN(Σ)/m′TN(Σ)
B

for any TN(Σ)/m
′TN(Σ)-module B. The third arrow of (3.15) is precisely projection

onto the the first of the two factors in (3.16) with

B =
(
TN(a)/m

)
⊗TN(Σ)/n

(
H1(N(Σ)p;Fp)ord[m′]

)
.

The second arrow is induced by dualizing the reduction modulo m′ of the map (3.10)
and the first arrow is induced from the obvious inclusion, or if the reader prefers,
is obtained by dualizing the surjection(

TN(a)/m
)
⊗TN(Σ)/n

(
H1(N(a)p;Zp)ord/m′H1(N(a)p;Zp)ord

)
→ H1(N(a)p;Zp)ord/mH1(N(a)p;Zp)ord.

Lemma 3.8.1. The map (3.14) is injective if and only if the composite of the first
two arrows of (3.15) is injective.

Proof. The only if statement is clear. In order to prove the other statement, we
first observe that the second arrow of (3.15) is given by the cohomological version
of the map ε1. More precisely, if for each ` ∈ Σ we define

ε∗` :=


1 if e` = 0
B∗`,1 −B∗`,` `

−1T` if e` = 1
B∗`2,1 −B∗`2,` `

−1T` +B∗`2,`2`
−3〈`〉N(a)p if e` = 2

(where B∗d,d′ denotes the map on cohomology induced by the degeneracy map Bd,d′)
and define

ε∗ = ε∗`1 ◦ · · · ◦ ε
∗
`n

: H1(N(a)p;Fp)ord → H1(N(Σ)p;Fp)ord,

then the second arrow of (3.15) is obtained from the map ε∗ by passing to the
kernel of m′ in the source and target and then extending scalars from TN(Σ)/n to
TN(a)/m.

One then checks that any element in the image of ε∗ is annihilated by the Hecke
operators T`, for those ` ∈ Σ. On the other hand, Proposition 2.4.2 shows that
the maximal ideal n is uniquely characterized by the property of containing these
operators. Thus the image of the second arrow of (3.15) lies in the local factor(

TN(a)/m
)
⊗TN(Σ)/n

(
H1(N(Σ)p;Fp)ord[n]

)
of (

TN(a)/m
)
⊗TN(Σ)/n

(
H1(N(Σ)p;Fp)ord[m′]

)
.

This proves the lemma. �

By the preceding lemma, we are reduced to proving that the composite of the
first two arrows of (3.15) is injective. It will be notationally easier to deal with each
of the maps ε`i separately and so we put ourselves in the following more general
situation. We consider a natural number M prime to p and a prime ` distinct from
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p. We define n` = 1 or 2 according to whether or not ` divides M and write
N := `n`M . We let m denote a maximal ideal of TM for which ρ̄m is irreducible
and p-distinguished and let m′ denote the pull back of m under the natural map
T′N → TM . The map ε∗` defined in the proof of Lemma 3.8.1 induces a TM/m-linear
map

(3.17) H1(Mp;Fp)ord[m] → (TM/m)⊗T′N /m′
(
H1(Np;Fp)ord[m′]

)
.

Lemma 3.8.2. The map (3.17) is injective.

The proof of Lemma 3.8.1 shows that elements in the image of (3.17) are an-
nihilated by T` and hence are in fact annihilated by a maximal ideal of the full
Hecke algebra TN . Thus we may apply Lemma 3.8.2 inductively to establish the
injectivity of the composite of the first two arrows of (3.15) and thereby complete
the proof of the theorem.

Proof of Lemma 3.8.2. It will be convenient to bring the residue field TM/m inside
the coefficients of cohomology. To do this, we choose a finite field k containing
TM/m and tensor the source and target of (3.17) with k over Fp to obtain a
map of k ⊗Fp TM/m-modules. The chosen inclusion of TM/m in k determines a
projection

(3.18) k ⊗Fp TM/m → k,

which realizes k as a local factor of k⊗Fp TM/m. Projecting onto this local factor,
we recover our original map (3.17), but rewritten as

(3.19) H1(Mp; k)ord[mk] → H1(Np; k)ord[m′k].

Here we regard the source as a W (k)⊗Zp TM -module and the target as a W (k)⊗Zp

T′N -module. Also, we have written mk to denote the the maximal ideal of W (k)⊗Zp

TM that is the kernel of the composite

W (k)⊗Zp
TM → k ⊗Fp

TM/m → k

(where the second arrow is given by the projection (3.18)) and m′k to denote the
maximal ideal of W (k)⊗Zp T′N that is the kernel of the composite

W (k)⊗Zp T′N → k ⊗Fp T′N/m
′ → k ⊗Fp TM/m → k

(where the second arrow is obtained by tensoring the injection T′N/m
′ → TM/m

by k over Fp and the third arrow is given by the projection (3.18)). We must show
that the map (3.19) is injective.

Our argument will rely on the results of [37, §2.2] which extend a well-known
result of Ihara. Recall that the standard practice for analyzing the map (3.19) is
to factor the map ε∗` and so to write (3.19) as a composite

H1(Mp; k)ord[mk] α`−→ (H1(Mp; k)ord[mk])n`+1 β`−→ H1(Np; k)ord[m′k],

where

α` =

{
(1,−`−1T`) if n` = 1
(1,−`−1T`, `

−3〈`〉Mp) if n` = 2

and

β` =

{
B∗`,1π1 +B∗`,`π2 if n` = 1
B∗`2,1π1 +B∗`2,`π2 +B∗`2,`2π3 if n` = 2
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with πi denoting projection onto the ith factor of the product

(H1(Np; k)ord[mk])n`+1.

The map α` is manifestly injective and, in the case n` = 2, Wiles has shown
that the map β` is also injective. (See in particular the discussion at the top of [37,
p. 497] or the discussion of Wiles’ results provided by [7, §§4.3] and [3, §§4.4, 4.5].)
Thus when n` = 2 the lemma is proved.

However, if n` = 1, then the situation is more complicated. Lemma 2.5 of [37]
provides an exact sequence

H1((M/`)p; k)ordm′k

γ`−→ (H1(Mp; k)ordm′k
)2

β`−→ H1(Np; k)ordm′k
,

where γ` = (B∗`,`,−B∗`,1). (Here the subscript m′k denotes that we have localized at
this maximal ideal.)

Let x ∈ H1(Mp; k)[mk] be an element in the kernel of (3.19). Then (3.8) shows
that we may find y ∈ H1((M/`)p; k) such that (x,−T`x) = (B∗`,`y,−B∗`,1y). In
particular, B∗`,`y = x is annihilated by mk and so is an eigenvector for the full
Hecke algebra TM . The following result shows that B∗`,`y = 0 and hence that
x = 0. This completes the proof of the lemma. �

Lemma 3.8.3. Let D be a natural number prime to p, let ` be a prime distinct from
p and consider the map B∗`,` : H1(Dp; F̄p)ord → H1(D`p; F̄p)ord. If y is a class in
the domain with the property that B∗`,`y is an eigenvector for the full Hecke ring
TD`, corresponding to a maximal ideal for which the attached Galois representation
into GL2(F̄p) is irreducible and p-distinguished, then B∗`,`y = 0.

Proof. We will prove the lemma by comparing the map B∗`,` on cohomology classes
with the corresponding map on modular forms mod p. For such modular forms, the
analogue of the lemma follows immediately from a consideration of q-expansions.
For the comparison with modular forms mod p, we follow the discussion in the
proof of [37, Thm. 2.1].

Let us make some initial reductions in the situation of the lemma. We let
m denote the maximal ideal in F̄p ⊗Fp

TD` describing the action of the Hecke
operators on the eigenvector B∗`,`y. Let m′ denote the intersection of m with
the subring F̄p ⊗Fp T′D` of F̄p ⊗Fp TD`. We may regard each of H1(Dp; F̄p)ord

and H1(D`p; F̄p)ord as F̄p ⊗Fp T′D`-modules (the former via the natural map
F̄p ⊗Fp T′D` → F̄p ⊗Fp T′D) and the map B∗`,` is F̄p ⊗Fp T′D`-linear. If ym′ de-
notes the projection of y onto the localization H1(Dp; F̄p)ordm′ of H1(Dp; F̄p)ord at
m′, then B∗`,`ym′ = B∗`,`y (since B∗`,`y is assumed to be annihilated by m and so in
particular by m′). Also, there is a natural isomorphism

H1(Dp; F̄p)ordm′
∼=

∏
n⊃m′(F̄p⊗FpTD)

H1(Dp; F̄p)ordn ,

where n ranges over all maximal ideals of F̄p ⊗Fp TD containing m′(F̄p ⊗Fp TD).
Thus to show that B∗`,`y = 0, it suffices to show that B∗`,`yn = 0 for each such
maximal ideal n, where yn denotes the projection of y onto H1(Dp; F̄p)ordn . Thus
for the duration of the proof we assume that y ∈ H1(Dp; F̄p)ordn , for some maximal
ideal n of F̄p ⊗Fp

TD lying over m′.
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As in the proof of [37, Thm. 2.1], we consider two cases: that in which the mod
p diamond operators have non-trivial image in (F̄p ⊗Fp TD`)/m and that in which
they have trivial image.

In order to treat the first case, we begin by noting that the commutative diagram

(3.20) H1(Dp; F̄p)ordn

B∗`,` //

∼=
��

H1(D`p; F̄p)ordm

∼=
��

(F̄p ⊗Fp J1(Dp)[p]ord)n

B∗`,` // (F̄p ⊗Fp J1(D`p)[p]ord)m,

in which the lower horizontal arrow is induced by the map of Jacobians arising
by Picard functoriality applied to the degeneracy map B`,` : X1(D`p) → X1(Dp),
allows us to replace curves with coefficients in F̄p with a consideration of p-torsion
in the corresponding Jacobians (tensored by F̄p over Fp). (The superscript ord on
J1(Dp)[p] and J1(D`p)[p`] denotes the localization of these p-torsion modules at
the p-ordinary part of the Hecke algebra, or equivalently, the image of the p-torsion
modules under Hida’s idempotent eord.)

Let ρ̄ : GQ → GL2(F̄p) denote the residual Galois representation attached to
each of m and n. From [37, Thm. 2.1] and its proof we conclude that there are
isomorphisms of Galois modules

(F̄p ⊗Fp TD)n/p(F̄p ⊗Fp TD)n ⊗F̄p
ρ̄ ∼= (F̄p ⊗Fp J1(Dp)[p]ord)n

and

(F̄p ⊗Fp TD`)m/p(F̄p ⊗Fp TD`)m ⊗F̄p
ρ̄ ∼= (F̄p ⊗Fp J1(D`p)[p]ord)m.

Also, passing to p-torsion in the short exact sequence [37, (2.2)] for each of the
maximal ideals m and n yields short exact sequences

0 → (F̄p ⊗Fp J1(Dp)[p]ord)0n → (F̄p ⊗Fp J1(Dp)[p]ord)n →

(F̄p ⊗Fp J1(Dp)[p]ord)E
n → 0

and

0 → (F̄p ⊗Fp J1(D`p)[p]ord)0m → (F̄p ⊗Fp J1(D`p)[p]ord)m →

(F̄p ⊗Fp J1(D`p)[p]ord)E
m → 0.

The lower horizontal arrow B∗`,` of (3.20) is GQ-equivariant and also induces a
morphism between these short-exact sequences.

If B∗`,`y is non-zero, then, since ρ̄ is an irreducible GQ-module, we may find σ ∈
GQ such that σ(B∗`,`y) has non-zero image in (F̄p ⊗Fp J1(D`p)[p]ord)E

m. Replacing
y by the image of σ(y) in (F̄p ⊗Fp J1(Dp)[p]ord)E

n , we are reduced to proving the
following claim.

Claim: If y ∈ (F̄p⊗Fp J1(Dp)[p]ord)E
n is such that B∗`,`y ∈ (F̄p⊗Fp J1(D`p)[p]ord)E

n

is annihilated by m, then B∗`,`y vanishes.

Passing to the special fiber of the Néron model of each of J1(Dp) and J1(D`p)
over Zp[ζp] (where ζp denotes a primitive pth root of unity), the discussion in the
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proof of [37, Thm. 2.1] yields a commutative diagram in which the horizontal arrows
are isomorphisms:

(F̄p ⊗Fp
J1(Dp)[p]ord)E

n

B∗`,`

��

// (H0(Σ1(D)µ,Ω1)⊕H0(Σ1(D)ét,Ω1)
)ord

n

B∗`,`

��
(F̄p ⊗Fp J1(D`p)[p]ord)E

m
// (H0(Σ1(D`)µ,Ω1)⊕H0(Σ1(D`)ét,Ω1)

)ord

m
.

(For any M prime to p, we denote by Σ1(M)µ and Σ1(M)ét the base-change from
Fp to F̄p of the two components of the special fiber of the canonical model of
X1(Mp) over Zp[ζp].) Thus to prove the claim, it suffices to show that if z is a non-
zero element of

(
H0(Σ1(D)µ,Ω1)⊕H0(Σ1(D)ét,Ω1)

)ord

n
, then B∗`,` cannot lie in

the m-eigenspace of
(
H0(Σ1(D`)µ,Ω1)⊕H0(Σ1(D`)ét,Ω1)

)ord

m
. This follows from

the q-expansion principal; more precisely, the q-expansion of B∗`,`z at the cusp ∞
involves only powers of q` and so cannot be an eigenform for the full Hecke algebra
TD`.

The second case (when the mod p diamond operators are trivial modulo m) is
treated similarly, using the corresponding results from the proof of [37, Thm. 2.1].

�

4. Algebraic Iwasawa invariants

4.1. Selmer groups of modular forms. Let f =
∑
anq

n be a p-ordinary and
p-stabilized newform of weight k ≥ 2, tame level N and character χ. Let K denote
the finite extension of Qp generated by the Fourier coefficients of f and let O denote
the ring of integers of K; we write k for the residue field and fix also a uniformizer
π of O. Let

ρf : GQ → GL2(K)

be the corresponding Galois representation, characterized by the fact that the char-
acteristic polynomial under ρf of an arithmetic Frobenius at a prime ` - Np is

X2 − a`X + χ(`)`k−1.

By [14, Thm. 2.6] the restriction of ρf to Gp is of the form

(4.1) ρ|Gp
∼=

(
εk−1χϕ−1 ∗

0 ϕ

)
with ϕ : Gp → O× the unramified character sending an arithmetic Frobenius to ap.

We assume that the semisimple residual representation

ρ̄f : GQ → GL2(k)

is absolutely irreducible. It follows that, up to conjugation by GL2(O), there is a
unique integral model

ρf : GQ → GL2(O)

of ρf , which we now fix. For 0 ≤ i ≤ p − 2, let Af,i denote a cofree O-module of
corank 2 with GQ-action via ρf ⊗ωi. We obtain from (4.1) and [16, Prop. 12.1] an
O[Gp]-equivariant exact sequence

(4.2) 0 → (K/O)(εk−1χωiϕ−1) → Af,i → (K/O)(ωiϕ) → 0.
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We write A′f,i (resp. A′′f,i) for the submodule (resp. quotient module) of Af,i in the
above sequence.

For a place v of Q∞ define

H1
s (Q∞,v, Af,i) =

{
H1(Q∞,v, Af,i) v 6= vp;
im

(
H1(Q∞,vp , Af,i) → H1(Ivp , A

′′
f,i)

)
v = vp.

Following [10], the Selmer group of Af,i is defined by

Sel(Q∞, Af,i) = ker
(
H1(Q∞, Af,i) →

∏
v

H1
s (Q∞,v, Af,i)

)
= ker

(
H1(QΣ/Q∞, Af,i) →

∏
v∈Σ

H1
s (Q∞,v, Af,i)

)
for any finite set of places Σ containing vp, all archimedean places and all places
dividing N . We regard Sel(Q∞, Af,i) as a ΛO-module via the natural action of Γ.

Recall that µalg(f, ωi) (resp. λalg(f, ωi)) is defined to be the largest power of
π dividing (resp. the number of zeroes of) the characteristic power series of the
ΛO-dual of Sel(Q∞, Af,i) (assuming that this Selmer group is ΛO-cotorsion).

Theorem 4.1.1. Let f be a p-ordinary and p-stabilized newform with ρ̄f absolutely
irreducible. Then Sel(Q∞, Af,i) is co-finitely generated, ΛO-cotorsion and has no
proper ΛO-submodules of finite index. Furthermore, µalg(f, ωi) vanishes if and only
if Sel(Q∞, Af,i)[π] is finite. If this is the case, then Sel(Q∞, Af,i) is O-divisible
and

λalg(f, ωi) = dimk Sel(Q∞, Af,i)[π].

Proof. It is shown in [10, Prop. 6] that Selmer groups are always co-finitely gener-
ated. The fact that they are also ΛO-cotorsion for modular forms is proven in [20].
The equivalence of the vanishing of µalg(f, ωi) and the finiteness of Sel(Q∞, Af,i)[π]
is now an immediate consequence of the structure theory of ΛO-modules.

The proof of [13, Prop. 4.14] easily adapts to show that Sel(Q∞, Af,i) has no
proper ΛO-submodules of finite index. (As Af,i need not be self-dual, this also
requires the fact that Sel(Q∞, A∗f,i) is ΛO-cotorsion, which follows since A∗f,i is also
modular.) When Sel(Q∞, Af,i)[π] is finite, the maximal O-divisible ΛO-submodule
of Sel(Q∞, Af,i) has finite index, so that it must coincide with Sel(Q∞, Af,i); that
is, Sel(Q∞, Af,i) is divisible. It now follows again from the structure theory of
ΛO-modules that as O-modules

Sel(Q∞, Af,i) ∼= (K/O)λalg(f,ωi),

which proves the last statement. �

We close this section with a useful result on the local invariants H0(Gv, Af,i) for
places v dividing primes ` 6= p. Let cond`(ρ̄f ) denote the exponent of the highest
power of ` that divides the conductor of ρ̄f .

Lemma 4.1.2. Let v be a place of Q∞ dividing a prime ` 6= p. If cond`(ρ̄f ) =
ord`(N), then H0(Gv, Af,i) is O-divisible for all i.

Proof. By the invariance of the Swan conductor under reduction (see [23, §1]), we
have

cond`(ρf )− cond`(ρ̄f ) = dimk Af [π]I` − dimK V I`

f
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where Vf is a two dimensional K-vector space with GQ-action via ρf . Since
cond`(ρf ) equals ord`(N) by [1], we see that the hypothesis of the lemma is equiv-
alent to the equality

dimk Af [π]I` = dimK V I`

f .

It follows easily from this that AI`

f = AIv

f is O-divisible. As the Gv/Iv-invariants of
an O-divisible Gv/Iv-module are again O-divisible, we conclude that H0(Gv, Af )
is divisible, as claimed. Since ω is unramified at `, the above argument works for
Af,i as well. �

4.2. Residual Selmer groups. Let Ā denote a two-dimensional k-vector space
equipped with a continuous k-linear action of GQ and a k[Gp]-equivariant exact
sequence

(4.3) 0 → Ā′ → Ā→ Ā′′ → 0

with Ā′ and Ā′′ one-dimensional. We make the following assumptions on this data.
(1) Ā is absolutely irreducible as a k[GQ]-module;
(2) The k-vector space Ā′′ is unramified as a Gp-module;
(3) Ā is p-distinguished in the sense that the representation of Gp on Ā is

non-scalar;
(4) Ā is modular: there exists a totally ramified extension K ′ of the field of

fractions of the Witt vectors of k, a p-stabilized newform f ∈ O′[[q]] of
weight k ≥ 2 and a k[GQ]-isomorphism Ā ∼= Af [π′] identifying Ā′ with
A′f [π′] in the notation of the previous section; here π′ is a uniformizer of
the ring of integers O′ of K ′.

We will study Selmer groups of Ā and its cyclotomic twists Ā⊗ ωi with respect to
various local conditions.

Definition 4.2.1. A finite/singular structure S on Ā⊗ωi is a choice of k-subspaces

(4.4) H1
f,S(Q∞,v, Ā⊗ ωi) ↪→ H1(Q∞,v, Ā⊗ ωi)

for each place v of Q∞, subject to the restrictions:
(1) H1

f,S(Q∞,v, Ā⊗ ωi) = 0 for almost all v;
(2) H1

f,S(Q∞,vp , Ā⊗ ωi) = ker
(
H1(Q∞,vp , Ā⊗ ωi) → H1(Ivp , Ā

′′ ⊗ ωi)
)
.

(Note that we are not allowing any variation in the choice of condition at vp). We
define H1

s,S(Q∞,v, Ā⊗ ωi) as the cokernel of (4.4). The S-Selmer group of Ā⊗ ωi

is

SelS(Q∞, Ā⊗ ωi) = ker
(
H1(Q∞, Ā⊗ ωi) →

∏
v

H1
s,S(Q∞,v, Ā⊗ ωi)

)
= ker

(
H1(QΣ/Q∞, Ā⊗ ωi) →

∏
v∈Σ

H1
s,S(Q∞,v, Ā⊗ ωi)

)
for any finite set of places Σ containing p, all archimedean places, all places at
which Ā is ramified and all places for which H1

f,S(Q∞,v, Ā⊗ ωi) does not vanish.

We will be especially interested in two kinds of finite/singular structures. First,
the minimal structure Smin on Ā⊗ ωi is given by

H1
f,Smin

(Q∞,v, Ā⊗ ωi) = 0

for v 6= vp.
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Next let f be a newform as in (4) above. We define the induced structure S(f, i)
on Ā⊗ ωi by setting

H1
f,S(f,i)(Q∞,v, Ā⊗ ωi) = ker

(
H1(Q∞,v, Ā⊗ ωi) → H1

s (Q∞,v, Af,i)
)

for all places v of Q∞. Note that by the definition of H1
s (Q∞,vp

, Af,i) we have that
H1

f,S(f,i)(Q∞,vp , Ā⊗ ωi) is the kernel of the composite map

H1(Q∞,vp , Ā⊗ ωi) → H1(Ivp , Ā
′′ ⊗ ωi) → H1(Ivp , A

′′
f,i);

in fact, since H0(Ivp , A
′′
f,i) is either A′′f (for i = 0) or else zero (for i 6= 0), the latter

map is injective, so that

(4.5) H1
f,S(f,i)(Q∞,vp

, Ā⊗ ωi) = ker
(
H1(Q∞,vp , Ā⊗ ωi) → H1(Ivp , Ā

′′ ⊗ ωi)
)

as required.
Lemma 4.2.2. For v - p we have

H1
f,S(f,i)(Q∞,v, Ā⊗ ωi) = im

(
AGv

f,i /π ↪→ H1(Q∞,v, Ā⊗ ωi)
)

In particular, H1
f,S(f,i)(Q∞,v, Ā⊗ ωi) = 0 if Ā⊗ ωi is unramified at v 6= vp so that

S(f, i) is a finite/singular structure. The natural map

SelS(f,i)(Q∞, Ā⊗ ωi) → Sel(Q∞, Af,i)[π]

is an isomorphism.

Proof. The lemma follows from various exact sequences in cohomology coming from
the exact sequence

0 → Ā⊗ ωi → Af,i
π−→ Af,i → 0

together with Lemma 4.1.2. We leave the details to the reader. �

Proposition 4.2.3. Let Ā be as above. Then there exists a newform f as in (4)
above such that the finite/singular structures Smin and S(Af,i) coincide under the
isomorphism Ā⊗ ωi ∼= Af,i[π′] for any i.

Proof. Let N denote the tame conductor of the Galois representation Ā. As f is
p-distinguished, by [5, Thm. 6.4] there exists a finite totally ramified extension K ′

of K and a (not necessarily unique) p-stabilized newform f ∈ K ′[[q]] of tame level
N and weight 2 satisfying the condition of (4). (The final condition in (4) is in
fact already automatic from the more standard level lowering result [5, Thm. 1.1]
unless Ā is an unramified Gp-module, in which case the Selmer case of [5, Thm.
6.4] ensures the existence of such an f .)

Since the tame conductor of f equals the conductor of Ā, by Lemma 4.1.2, AGv

f,i is
divisible for any place v 6= vp. It then follows from Lemma 4.2.2 that the structure
S(Af,i) on Af,i[π′] ∼= Ā agrees with Smin, as desired. �

The next proposition, which follows from a result of Greenberg, is crucial to our
method.

Proposition 4.2.4. For f be as above there is an exact sequence

0 → SelS(f,i)(Q∞, Ā⊗ ωi) → H1(QΣ/Q∞, Ā⊗ ωi) →∏
v∈Σ

H1
s,S(f,i)(Q∞,v, Ā⊗ ωi) → 0
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for any finite set of places Σ containing vp, all archimedean places and all places
dividing the tame level of f .

Proof. Since Af,i is odd and Sel(Q∞, Af,i) is ΛO-cotorsion, by [15, Prop. 2.1] there
is an exact sequence

0 → Sel(Q∞, Af,i) → H1(QΣ/Q∞, Af,i) →
∏
v∈Σ

H1
s (Q∞,v, Af,i) → 0

with Σ as above. As Sel(Q∞, Af,i) is O-divisible, the π-torsion of this sequence is
an exact sequence

0 → Sel(Q∞, Af,i)[π] → H1(QΣ/Q∞, Af,i)[π] →
∏
v∈Σ

H1
s (Q∞,v, Af,i)[π] → 0.

By Lemma 4.2.2 and the definition of the induced structure, we see that this se-
quence identifies with that of the proposition. (Note that (4.5) shows that the local
conditions agree at the place vp.) �

Our main algebraic theorems are consequences of the next result.

Corollary 4.2.5. Let Ā be as above and let f be a p-stabilized newform of tame
level Nf such that Af [π] ∼= Ā as in (4). Then the sequence

(4.6) 0 → SelSmin(Q∞, Ā⊗ ωi) → Sel(Q∞, Af,i)[π] →
∏

v|Nf

AGv

f,i /π → 0

is exact for any i.

Proof. The exactness of (4.6) follows from the definitions and Lemma 4.2.2 except
for the surjectivity of the last map. For this, by Proposition 4.2.3 there exists a
totally ramified extension K ′/K and a p-stabilized newform f0 over K ′ such that
(Ā⊗ ωi,Smin) ∼= (Af0,i[π′],S(f0, i)). The surjectivity is then a formal consequence
of the exact sequence of Proposition 4.2.4 applied to both Af0,i and Af,i with
Σ = {v | Nfp}. �

4.3. Algebraic Iwasawa invariants. Let Ā be as in the previous section. We
write ρ̄ : GQ → GL2(k) for the corresponding Galois representation. We now use
Corollary 4.2.5 to study the relations between Selmer groups of newforms in the
Hida family of ρ̄. We first consider the behavior of the corresponding finite/singular
structures on Ā.

Lemma 4.3.1. Let f be a newform on the branch T(a) of the Hida family of ρ̄.
Then for any place v, the dimension of H1

f,S(f,i)(Q∞,v, Ā⊗ωi) depends only on the
branch T(a) and i.

Remark 4.3.2. It was pointed out to the authors by Ralph Greenberg that al-
though the dimension of the local condition is constant along branches of Hida
families, it is possible (when the branch is special at v) that the actual subspace
H1

f,S(f,i)(Q∞,v, Ā ⊗ ωi) varies as f varies along the branch T(a). It would be
interesting to determine if such an example actually exists.

Proof. Fix a place v 6= vp dividing the rational prime `. Consider first the unram-
ified G`-representation (Vf )I`

. By the proof of Proposition 2.2.3 the dimension of
this space is constant on the branch T(a). It follows that, as a G`-representation,
the residual representation of (Vf )I`

is independent of f on T(a).
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Consider now the exact sequence

(4.7) 0 → AGv

f,i /π → H1(Q∞,v, Ā⊗ ωi) → H1(Q∞,v, Af,i)[π] → 0.

By [15, Prop. 2.4], H1(Q∞,v, Af,i)[π] has k-dimension equal to the multiplicity of
ω1−i in the residual representation of the unramified G`-representation (Vf )I`

. By
the above discussion this is independent of f on the branch T(a), as claimed. �

For a branch T(a) of the Hida family of ρ̄ and a place v 6= vp, we may now define

δv(a, ωi) := dimk H
1
f,S(f,i)(Q∞,v, Ā⊗ ωi) = dimk A

Gv

f,i /π

for any form f lying on the branch T(a).
We say that

µalg(ρ̄, ωi) = 0
if SelSmin(Q∞, Ā⊗ ωi) is finite dimensional over k; if this is the case we define

λalg(ρ̄, ωi) = dimk SelSmin(Q∞, Ā⊗ ωi).

Theorem 4.3.3. Let ρ̄ be as above. Let f be any newform in the Hida family of
ρ̄. Then µalg(ρ̄, ωi) = 0 if and only if µalg(f, ωi) = 0.

Proof. By Theorem 4.1.1, µalg(f, ωi) vanishes if and only if Sel(Q∞, Af,i)[π] is finite
dimensional. By Corollary 4.2.5 this is equivalent to the finite dimensionality of
SelSmin(Q∞, Ā⊗ ωi), as claimed. �

Theorem 4.3.4. Let ρ̄ be as above. Assume that µalg(ρ̄, ωi) = 0.
(1) Let f be a newform of level Nf lying on the branch T(a) of the Hida family

of ρ̄. Then

λalg(f, ωi) = λalg(ρ̄, ωi) +
∑
v|Nf

δv(a, ωi).

In particular, λalg(f, ωi) depends only on the branch T(a) of f ; we write
λalg(a, ωi) for this value.

(2) Let T(a1) and T(a2) be two branches of the Hida family of ρ̄. Then

λalg(a1, ω
i)− λalg(a2, ω

i) =
∑
v 6=vp

δv(a1, ω
i)− δv(a2, ω

i).

Proof. The first statement is immediate from Corollary 4.2.5 and the definition of
δv(a, ωi). The second statement follows from the first. �

We remark that in Section 5 we will see that the formulas of the preceding
theorem compare well with the formulas of Theorem 3.7.7.

5. Applications to the main conjecture and examples

5.1. The main conjecture. Let O be the ring of integers of a finite extension K
of Qp and let f ∈ O[[q]] be a p-ordinary eigenform such that the residual representa-
tion ρ̄f is irreducible. Let Lalg

p (f, ωi) ∈ ΛO denote a generator of the characteristic
power series of the ΛO-dual of the Selmer group Sel(Q∞, Af,i) of Section 4.1. Let
Lan

p (f, ωi) ∈ ΛO denote the usual p-adic L-function of f ⊗ ωi (computed with re-
spect to some canonical period). The main conjecture of Iwasawa theory in this
context is the following; it is independent of the particular choice of coefficient field
K over which f is defined.
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Conjecture 5.1.1. There is a unit u ∈ Λ×O such that

Lalg
p (f, ωi) · u = Lan

p (f, ωi).

We remark that the Selmer group in the above conjecture is not the Bloch–Kato
Selmer group in which the local condition at p is defined via crystalline periods, but
instead is the Greenberg Selmer group in which the local condition at p is defined
via the ordinary filtration as in Section 4.1. The former group is always contained
in the latter group and the quotient is trivial unless the analytic p-adic L-function
has a trivial zero, in which case it has corank one (see [10, pp. 108-109]). It is for
this reason that in our statement of the main conjecture we do not need to consider
separately the case of trivial zeroes.

The following deep theorem of Kato [20] establishes one divisibility of the main
conjecture.

Theorem 5.1.2 (Kato). There is a u ∈ ΛO ⊗Qp such that

Lalg
p (f, ωi) · u = Lan

p (f, ωi).

In particular, to verify the main conjecture for f ⊗ ωi it suffices to check that

µalg(f, ωi) = µan(f, ωi) and λalg(f, ωi) = λan(f, ωi).

Our results in Sections 3 and 4 yield the following result.

Theorem 5.1.3. Let k be a finite field of characteristic p and let ρ̄ : GQ → GL2(k)
be an irreducible, modular, p-ordinary and p-distinguished representation; as always
we fix a choice of p-stabilization. Suppose that

µalg(f0, ωi) = µan(f0, ωi) = 0 and λalg(f0, ωi) = λan(f0, ωi)

for some f0 in the Hida family attached to ρ̄ and some i. Then

µalg(f, ωi) = µan(f, ωi) = 0 and λalg(f, ωi) = λan(f, ωi)

for every f in the Hida family attached to ρ̄.

Before giving a proof, we first state an immediate corollary of Theorem 5.1.3 and
Kato’s result.

Corollary 5.1.4. Let ρ̄ be as above and suppose that µalg(ρ̄, ωi) = µan(ρ̄, ωi) = 0
for some i. If the main conjecture holds for f0 ⊗ ωi for one form f0 in the Hida
family of ρ̄, then the main conjecture holds for f ⊗ωi for every form f in the Hida
family of ρ̄.

Since every Hida family contains a form of weight two, this corollary in particular
reduces the main conjecture to the case of weight two and to the conjecture on the
vanishing of the µ-invariants.

The proof of Theorem 5.1.3 is based on the following lemma which relates the
invariants e`(a, ωi) and δv(a, ωi) of Theorem 3.7.7 and Section 4.3.

Lemma 5.1.5. Let a1 and a2 be minimal primes of TΣ. For any prime ` 6= p∑
v|`

δv(a1, ω
i)− δv(a2, ω

i) = e`(a2, ω
i)− e`(a1, ω

i)

where the sum is taken over all primes v of Q∞ over `.
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Proof. To prove the lemma it suffices to see that for any minimal prime a of TΣ,
the sum

e`(a, ωi) +
∑
v|`

δv(a, ωi)

is independent of a. For this, fix a classical newform f on the branch T(a). Consider
first the group H1(Q∞,v, Af,i). Since H1(Q∞,v, Af,i) is divisible (as Gv has p-
cohomological dimension one) we have

dimk H
1(Q∞,v, Af,i)[π] = λ

(
charΛO (H1(Q∞,v, Af,i)∨)

)
where M∨ = Hom(M,Qp/Zp).

By [15, Proposition 2.4] we have

charΛO
(
⊕v|`H

1(Q∞,v, Af,i)∨
)

= E`(f, 〈`〉−1
p,i ) · ΛO.

Since E`(f, 〈`〉−1
p,i ) is simply E`(a, 〈`〉−1

p,i ) mod ℘f , we conclude that

(5.1)
∑
v|`

dimk H
1(Q∞,v, Af,i)[π] = e`(a, ωi).

Consider now the exact sequence

0 → AGv

f,i /π → H1(Q∞,v, Ā⊗ ωi) → H1(Q∞,v, Af,i)[π] → 0.

Since the first term has k-dimension δv(a, ωi) and the second term is certainly
independent of a, the lemma now follows from (5.1). �

Proof of Theorem 5.1.3. Let f be a form in the Hida family of ρ̄. The vanishing of
the µ-invariants of f is immediate from that for f0 and Theorems 4.3.3 and 3.7.5.

By Lemma 5.1.5 and Theorems 4.3.4 and 3.7.7 we see also that

λalg(f, ωi)− λalg(f0, ωi) = λan(f, ωi)− λan(f0, ωi).

Since we are assuming the main conjecture for f0 ⊗ ωi, we have that

λalg(f0, ωi) = λan(f0, ωi),

so that it follows that
λalg(f, ωi) = λan(f, ωi)

as desired. �

5.2. Raising the level. We conclude our general discussion with some results on
branches of Hida families. It is well-known (see [8, 9]) which levels can occur among
forms in the Hida family of ρ̄. In the next proposition we list the cases in which
the invariant δv(·, ωi) increases.

Proposition 5.2.1. Let ρ̄ : GQ → GL2(k) be an irreducible, p-ordinary and p-
distinguished modular Galois representation; assume further that ρ̄ is ramified at p.
Let Σ be some finite set of primes not containing p and let ` 6= p be a prime at which
ρ̄ is unramified. Set Σ′ = Σ ∪ {`} and let TΣ, TΣ′ be the Hida algebras associated
to ρ̄. Let a` = Trace ρ̄(Frob`) and c` = det ρ̄(Frob`), both viewed as elements of k.
Then for every branch T(a) of TΣ:

(1) If there is an i such that a` = `−i + `1−i and c` = `1−2i, then there is a
branch T(b) of TΣ′ such that

N(b) = N(a)` and δv(b, ωi) = 1

for all places v dividing `.
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(2) If ` ≡ 1 (mod p) and a` = c` + 1, then there is a branch T(b) of TΣ′

(distinct from the branch provided by (1)) such that

N(b) = N(a)` and δv(b, ωi) = 1

for all places v dividing ` and all i.
(3) If ` ≡ 1 (mod p), a` = 2 and c` = 1, then there are distinct branches T(b1)

and T(b2) of TΣ′ such that

N(b1) = N(b2) = N(a)`2 and δv(b1, ω
i) = δv(b2, ω

i) = 2

for all places v dividing ` and all i.
(4) If ` ≡ −1 (mod p), a` = 0 and c` = −1, then there is a branch T(b) of

TΣ′ such that

N(b) = N(a)`2 and δv(b, ωi) = 1

for all places v dividing ` and all i.

Note in particular that if (3) holds, then (1) and (2) also hold, so that the
proposition exhibits four distinct non-minimal branches of T′Σ for each branch of
TΣ.

Proof. If (1) holds, then one sees easily that the eigenvalues of Frob` on ρ̄ equal
`1−i and `−i. It follows that there exists a ramified representation

τ` : G` → GL2(Zp)

such that τ̄` ⊗ k ∼= ρ̄|G`
and

τ` =
(
ω1−i ∗

0 ω−i

)
.

By [9, Theorem 1] (which applies since ρ̄ is modular of weight 2 by [5, Theorem
1.1]) there exists a newform g of tame level N` in the Hida family of ρ̄ such that
ρg|I`

∼= τ`|I`
. Since ρ̄ ⊗ ωi is unramified at ` with Frobenius eigenvalues ` and 1,

one computes easily that
δv(Ag, ω

i) = 1

for any place v dividing `. In particular, the branch a1 on which g lies satisfies the
requirements of the proposition.

The proofs for (2) (principal series), (3) (either special or principal series) and
(4) (supercuspidal) are entirely similar; the conditions on `, a` and c` are simply
those obtained by combining the conditions of [8, p. 435] for ramified lifts of the
appropriate type to exist with the requirement that ρ̄(Frob`) has a trivial eigenvalue.
Note also that ω|G`

is trivial (resp. quadratic) in (2) and (3) (resp. (4)), so that
the choice of i is irrelevant. Finally, the branches in (1) and (2) (resp. in (3)) are
distinct since one is special at ` and the other is principal series at `. �

It would be interesting to determine when the branches of the preceding propo-
sition intersect. The following proposition uses Λ-adic level raising to give some
insight into this question.

Proposition 5.2.2. We maintain the hypotheses of the previous proposition. Let
a be a minimal prime of TΣ such that

(T` mod a′)2 − `−2〈`〉N(a)p(`+ 1)2
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is not a unit in T(a)◦. (Recall that a′ is a minimal prime of Tnew
N(a) sitting over a

and that T(a)◦ ∼= Tnew
N(a)/a

′.) Then there exists some minimal prime b of TΣ′ with
N(b) = N(a)` and a height one prime ℘ of TΣ′ such that T(a) and T(b) cross at
℘. (That is, both b and the pre-image of a under the natural map TΣ′ → TΣ are
contained in ℘.)

Proof. Attached to the minimal prime a we have the Λ-adic modular form

f(a, q) =
∑
n≥1

(Tn mod a′)qn.

By [4, Theorem 6C], there exists a finite extension R of T(a)◦, a Λ-adic modular
form g(q) =

∑
n≥1 bnq

n ∈ R[[q]] new of level N(a)`, and a height one prime ℘′ of
R such that

(5.2) (Tn mod a′) ≡ bn (mod ℘′)

for each n relatively prime to N(a)`.
The Λ-adic form g(q) corresponds to some minimal prime ideal of TΣ. Indeed,

there is a map Tnew
N(a)` → R that sends Tn to bn. Let b′ ⊆ Tnew

N(a)` denote the kernel
of this map; it is necessarily a minimal prime since both the source and the target
are finite extensions of Λ. The preimage of b′ in

∏
M |N(Σ′) T

new
M is a minimal prime

and thus, by Proposition 2.3.2, corresponds to some minimal prime of T′N(Σ′).
Since the residual representation attached to g(q) equals ρ̄, this minimal prime
yields a minimal prime of TΣ′ which we denote by b. Note that by construction
N(b) = N(a)`.

We thus have a map TΣ′ → R (sending Tn to bn) with kernel b. If let ã denotes
the pre-image of a in TΣ′ , then we also have a map TΣ′ → R with kernel ã (given
by reducing mod ã and then embedding the image T(a) into R). By (5.2), the
reduction of these two maps modulo ℘′ are the same. If we let ℘ denote the kernel
of either of these maps modulo ℘′, then ℘ is a height one prime containing both of
b and ã, as desired. �

The ideal ℘ of the previous proposition could potentially be a prime ideal lying
over the principal ideal (p). It would be interesting to determine whether or not
these branches actually meet at a prime ideal of residue characteristic zero.

5.3. Examples.

Example 5.3.1. Set p = 11 and let f denote the weight 2 newform associated to
the elliptic curve X0(11). It follows from the fact that f is the only newform of
weight 2 and level dividing 11 that T := TΣ(ρ̄f ) ∼= Λ for Σ = ∅. Thus for k ≥ 2,
there is a unique newform fk of weight k and level dividing 11 that is congruent to
f modulo 11. For example, f12 is the 11-ordinary, 11-stabilized oldform of level 11
attached to the Ramanujan ∆-function.

The p-adic L-function of this family was studied in detail in [14]. Also, in [11],
the congruence between X0(11) and ∆ was exploited to gain information about the
Selmer groups of both forms. We review below what is known in these examples
and then go on to study the other branches of this Hida family with tame conductor
greater than one.

We first verify the main conjecture for f . Since X0(11) has split multiplicative
reduction at p = 11, the p-adic L-function Lan

p (f, T ) has a trivial zero at T = 0.
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By the Mazur, Tate and Teitelbaum conjecture (proved by Greenberg and Stevens
[14]) we have an explicit formula for the derivative of Lan

p (f, T ) at 0; that is,

d

dT
Lan

p (f, T )
∣∣∣
T=0

=
Lp(f)
logp(γ)

· L(f, 1)
Ωf

.

(Here, γ is a topological generator of 1+pZp that is implicitly chosen by writing the
p-adic L-function in the T -variable; the appearance of the extra factor of logp(γ)
above is accounted for by the fact that we have written this formula in the T -variable
rather than the more standard s-variable.) One checks that Lp(f) and logp(γ) are
exactly divisible by 11 while L(f, 1)/Ωf is an 11-adic unit. Thus Lan

p (f, T ) is a unit
multiple of T so that λan(f) = 1 and µan(f) = 0.

Since L(f, 1)/Ωf is an 11-adic unit, by an Euler system argument of Kolyvagin,
the classical 11-adic Selmer group Selp(X0(11)/Q) of the elliptic curve X0(11) van-
ishes. It thus follows from a refined control theorem of Greenberg ([13, Proposition
3.7]) that Selp(X0(11)/Q∞) vanishes as well. The latter group agrees with the
Bloch–Kato Selmer group of f ; as f has a trivial zero, it follows that the Green-
berg Selmer group Selp(Q∞, Af ) is simply Qp/Zp with trivial Galois action. (This
example is worked out in detail in [11, Example 3].) Thus Lalg

p (f, T ) is a unit mul-
tiple of T , so that λalg(f) = 1 and µalg(f) = 0. In particular, this verifies the main
conjecture for X0(11) at p = 11.

Corollary 5.1.4 now shows that the main conjecture holds at p = 11 for each
form fk with k ≥ 2, and Theorem 5.1.3 shows that

λan(fk) = λalg(fk) = 1 for k ≥ 2.

Note that the p-adic L-function corresponding to X0(11) is the only p-adic L-
function in the Hida family with a trivial zero. Nonetheless, the existence of this
trivial zero forces every p-adic L-function in the family to have at least one zero.

For k ≡ 2 (mod 10), the unique zero of Lan
p (fk) can be explained by the func-

tional equation of the p-adic L-function. Namely, the sign of this functional equa-
tion is −1 for such k and thus Lan

p (fk) vanishes at the character that sends x to
x

k−2
2 . Using this observation, we can determine the two-variable p-adic L-function

attached to ρ̄f (which we denote by L(ρ̄f )). By Theorem 3.7.7, we have that
λ(L(ρ̄f )) = 1 and hence, under the identification of (3.9),

L(ρ̄f ) = (T − a0) · u(T )

with a0 ∈ T and u(T ) ∈ T[[T ]] a unit. Since L(ρ̄f ) specializes at weight k to Lp(fk)
(Proposition 3.4.3), we know that a0 specializes at weight k to the unique zero of
Lp(fk). In particular, for k ≡ 2 (mod 10), we have that a0 specializes to γ

k−2
2 .

Thus, a0 = γ−1〈γ〉
1
2
p since this element has the correct specialization for infinitely

many k.
So far we have only applied our results to minimal lifts of ρ̄f ; however, Corol-

lary 5.1.4 applies to every modular form lifting this representation. For instance,
we can use Proposition 5.2.1 to explicitly find primes ` to add to the level that will
produce modular forms that have higher λ-invariants and for which we still know
the main conjecture.

The first prime that satisfies condition (3) (and thus (1) and (2)) of Proposition
5.2.1 is ` = 1321. If we set Σ = {1321}, then TΣ will have four distinct branches
T(a1), . . . ,T(a4) with λ(a1) = λ(a2) = 2 and λ(a3) = λ(a4) = 3. (Here and in
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what follows, we do not distinguish between the analytic and algebraic λ-invariants
in cases where the main conjecture is known to be true.) Note that 1321 is inert in
the cyclotomic Z11-extension of Q and so there is a unique prime v of Q∞ sitting
over 1321.

The prime `′ = 2113 is also inert in Q∞/Q and satisfies condition (3) of Proposi-
tion 5.2.1. If Σ′ = {1321, 2113}, we may apply Proposition 5.2.1 to each of the five
branches we have exhibited in TΣ to see that TΣ′ possesses at least 20 additional
branches with λ-invariants ranging between 3 and 5.

Example 5.3.2. We conclude by considering an example of Greenberg and Vatsal
in [15]. Consider the elliptic curves

E1 : y2 = x3 + x− 10 E2 : y2 = x3 − 584x+ 5444,

of conductors 52 and 364 respectively, which are ordinary and congruent mod 5.
One computes that λan(E1) = µan(E1) = 0 so that Kato’s divisibility (Theo-
rem 5.1.2) yields the main conjecture for E1 at p = 5. The main conjecture for E2

at p = 5 follows and in this case we have λ(E2) = 5. (This example is discussed in
detail in [15, pp. 22, 44].)

We now examine this congruence from the point of view of Hida theory. Let
fi denote the newform of weight 2 associated to Ei. One checks that f1 is not
congruent modulo 5 to any other modular forms of weight two and level dividing
22 ·5 ·132 (using [32], for example). It follows that we have TΣ

∼= Λ for Σ = {2, 13}.
For consistency of notation, let us denote the unique irreducible component of
this space as T(a1). Moreover, since µ(f1) = λ(f1) = 0, the two-variable p-adic
L-function attached to TΣ is a unit and λ(a1) = 0.

The prime ` = 7 satisfies condition (1) of Proposition 5.2.1 (with i = 0). Thus,
if Σ′ = {2, 7, 13}, then TΣ′ contains an irreducible component T(a2) not contained
in TΣ. Moreover, since f2 is the unique normalized newform of weight 2 congruent
modulo 5 to f1 with level dividing 22 ·5 ·72 ·132, it follows that TΣ′ has rank 2 over
Λ. Hence, T(a2) is the only branch of TΣ′ not coming from TΣ. By Theorems 3.7.7
and 4.3.4, we have that λ(a2) = 5. Since f2 sits on the branch T(a2), it follows
that λ(f2) = 5.

We close with some questions. Proposition 5.2.2 establishes that the branches
T(a1) and T(a2) must cross at some (non-classical) height one prime, but does not
exclude the possibility that they cross at the prime (p). Do they in fact cross at a
prime of residue characteristic zero and if so could one compute p-adic approxima-
tions of this prime? How many such crossing points do these two branches share?
It appears at present that little is known about the shape of these Hida families
when multiple branches appear (even in any particular case).
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