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1. Introduction

The goal of this paper is to extend, for any non-archimedean local field E of
residue characteristic `, the local Langlands correspondence between n-dimensional
Weil-Deligne representations of the Weil groupWE and admissible smooth represen-
tations of GLn(E) to a correspondence defined on p-adic families of representations
of the absolute Galois group GE of E (for primes p distinct from `).

Fix an algebraically closed field K containing Qp. Then on one side of the
local Langlands correspondence are the n-dimensional, Frobenius-semisimple Weil-
Deligne representations of WE ; that is, pairs (ρ,N), where ρ is an n-dimensional,
semisimple representation of WE over K, and N is a nilpotent endomorphism of
the representation space of ρ such that ρ(w)Nρ(w)−1 = q|w|N for all w ∈WE .

On the other side are the admissible smooth K-representations of GLn(E); that
is, representations π of GLn(E) such that every element of π is fixed by some
compact open subset U of GLn(E), and such that, for all such U , the space πU of
U -invariant vectors in π is finite-dimensional.

The most naive thing one could hope for would be the following: given a family
of representations of GE over a complete, Noetherian, local, p-torsion free ring A of
characteristic zero and residue characteristic p (that is, a representation ρ : GE →
GLn(A) for such an A), one could hope to find an admissible smooth A[GLn(E)]-
module π such that, for every characteristic zero prime ideal p of A, with residue
field κ(p), the representation π⊗Aκ(p) of GLn(E) corresponds, via local Langlands,
with the Frobenius-semisimple Weil-Deligne representation attached to ρ⊗A κ(p).

A moment’s consideration will show that this is far too much to hope for. In-
deed, if ρ is a direct sum of two unramified characters that specializes at a single
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characteristic zero point p0 to the trivial character plus the cyclotomic character,
then the local Langlands correspondence would tell us that π ⊗A κ(p0) would be
one-dimensional. On the other hand at general points p one would need π ⊗A κ(p)
to be infinite-dimensional.

Indeed, as this example suggests, even formulating a precise statement of a “local
Langlands correspondence in families” is nontrivial. Our approach is motivated by
global considerations, suggested by work of the first author [6].

1.1. Global motivation. In the setting of [6], the ring A is typically a p-adically
completed Hecke algebra, and ρ is the two dimensional representation of GQ over A
arising from the theory of p-adic modular forms. For a certain finite set of primes
Σ containing p, the Hecke algebra A acts on a suitable localization of p-adically
completed cohomology H1(XΣ) of the tower of modular curves of levels divisible
by primes in Σ. This cohomology is also equipped with commuting actions of GQ,
of GL2(Qp), and of GL2(Q`) for ` a prime of Σ not equal to p.

What is shown in [6] is that the space H1(XΣ) has a natural tensor factoriza-
tion, and that the tensor factor corresponding to ` interpolates the local Langlands
correspondence in a natural way. More precisely, one has a factorization:

H1(XΣ) ∼= ρ⊗ πp ⊗
⊗

`∈Σ\{p}

π`

where πp is a certain representation of GL2(Qp) attached to ρ|GQp
via considerations

arising from the p-adic local Langlands correspondence, and the representations π`
depend only on the restriction of ρ to GQ` , and interpolate the local Langlands
correspondence in a natural way. (We refer the reader to Conjecture 6.1.6 of [6] for
a precise statement; Proposition 6.2.13 of [6] establishes this conjecture under mild
hypotheses.)

The representations π` have a number of nice properties, which suggest the
“shape” that the desired “local Langlands correspondence in families” should take:

• π` is the smooth W (k)-dual of a (unique) admissible smooth A[GL2(Q`)]-
module π′`, where k is the residue field of A. (Modules with this property
are called “coadmissible” and studied in detail in Appendix C of [6].)
• π` is “A-cotorsion free” in the sense of Definition C.37 of [6].
• For a Zariski dense set of characteristic zero primes p of A, the space π`[p]

of p-torsion vectors in π` is the representation attached to ρ ⊗A κ(p) by
a “generic” version of the local Langlands correspondence due to Breuil
and Schneider. (This correspondence differs from the usual local Lang-
lands correspondence in several ways. Rather than being a bijection it is
a map from isomorphism classes of n-dimensional representations of GE
to indecomposable (but not necessarily irreducible) generic representations
of GL2(E). We refer the reader to Section 4 for the definition and basic
properties of the Breuil-Schneider correspondence.)
• The space (π`/pπ`)[m] (where m is the maximal ideal of A) has an absolutely

irreducible generic socle, and no other generic subquotients. (Here recall
that the socle of a k[GLn(E)]-module is its maximal semisimple submodule;
that is, the sum of all of its irreducible submodules. A generic representa-
tion of GLn(E) is one that whose restriction to the unipotent radical of a
Borel contains a generic character; for GL2(Q`) an irreducible admissible
representation is generic if, and only if, it is infinite dimensional.) In the
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setting above, the genericity of the socle of (π`/pπ`)[m] is a consequence of
Ihara’s lemma.

Given an arbitrary A, and an arbitrary family ρ : GE → GLn(A), it is natural in
light of the above properties to ask if one can attach an A[GLn(E)]-module π to ρ,
with properties similar to those above, and to ask if such properties characterize a
such a module uniquely. In fact, in order to avoid the complication of dealing with
the theory of coadmissible modules, we will work in a setting dual to the above
picture.

1.2. The local Langlands correspondence for GLn in p-adic families. We
are now in a position to state our main result. Before we do so, we introduce further
notation: Let K be a field of characteristic zero. Then given ρ : GE → GLn(K)
as above, we write π(ρ) for the representation attached to ρ by the generic local
Langlands correspondence of Breuil-Schneider, and we write π̃(ρ) to denote the
smooth contragredient of π(ρ).

1.2.1. Theorem. Let A be a reduced complete p-torsion free Noetherian local ring
with maximal ideal m and finite residue field k of characteristic p. If ρ : GE →
GLn(A) is continuous (when the target is given its m-adic topology), then there
exists at most one admissible smooth GLn(E)-representation V over A, up to iso-
morphism, satisfying the following conditions:

(1) V is A-torsion free.
(2) If a is a minimal prime of A, with residue field κ(a), then there is a κ(a)-

linear GLn(E)-equivariant isomorphism

π̃
(
κ(a)⊗A ρ

) ∼−→ κ(a)⊗A V.

(3) If we write V := k ⊗A V , then the GLn(E) cosocle cosoc(V ) of V is ab-
solutely irreducible and generic, while the kernel of the surjection V →
cosoc(V ) contains no generic Jordan–Hölder factors.

Furthermore, if such a V exists, then:

(4) There exists an open dense subset U of SpecA[
1

p
], such that for each prime

p in U , there is a GLn(E)-equivariant, nonzero surjection

π̃
(
κ(p)⊗A ρ

)
→ κ(p)⊗A V,

where κ(p) is the residue field of p. Moreover, there is an open dense subset
U ′ of U such that if p lies in U ′ then this surjection is an isomorphism.

The admissibility condition on V , together with properties (1) through (3) above,
are (roughly) dual to the properties satisfied by the tensor factors π`. Indeed,
we prove a “recognition theorem” (Theorem 6.2.15 below) that states that if the
smooth W (k)-dual of V satisfies the properties listed for π` above (for a given ρ),
then V is admissible and satisfies properties (1) through (3).

If a representation V satisfying the conditions of this theorem with respect to
a given Galois representation ρ : GE → GLn(A) exists, then we write V := π̃(ρ).
(Note that the theorem ensures that V is unique up to isomorphism, so that π̃(ρ)
is then uniquely determined by ρ, up to isomorphism, if it exists.) We justify this
notation by thinking of representations of GE over fields of characteristic zero as
“families over a single point”, so that the map ρ 7→ π̃(ρ), where it is defined, extends
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the dual of the Breuil-Schneider correspondence from one-point families to families
over local rings A as in the theorem.

Part (4) of the theorem describes the precise sense in which V interpolates the
local Langlands correspondences attached to the Galois representations κ(p)⊗A ρ

as p ranges over the points of SpecA[
1

p
]. Conjecturally, we can take U equal to all

of SpecA[
1

p
] in statement (4), although our results fall short of establishing this.

(We refer the reader to Theorems 6.2.5 and 6.2.6 for the precise results.) On the
other hand, we will give examples in Section 6 showing that the subset U ′ is, in

general, not equal to all of SpecA[
1

p
].

1.2.2. Remark. Our convention for the generic local Langlands correspondence is
that the GLn(K)-representation π(ρ) attached to a continuous Galois representa-
tion ρ : GE → GLn(K) should have generic socle. It is this convention that seems
to fit best with global applications of the type considered in [6] and [7], for example.
On the other hand, when working with families, it turns out to be easier to inter-
polate representations whose cosocle is generic. This is because one may work with
admissible A[GLn(E)]-modules, rather than the less-familiar coadmissible modules
of [6]. This explains the appearance of the various contragredient representations
in Theorem 1.2.1, and in our notation for the representations that it describes.

1.3. Global applications. Although we have used the results of [6] to motivate
our formulation of the local Langlands correspondence in families, in fact The-
orem 1.2.1, together with the “recognition theorem” (Theorem 6.2.15) described
above, are essential ingredients in the proofs of the main results of [6].

In the language of Theorem 1.2.1, the results of [6] state that (again, under
mild hypotheses) when A is a suitable p-adically completed Hecke algebra, and
ρ : GQ → GLn(A) is the representation arising from Eichler-Shimura theory, then
the representations π̃(ρ|GQ`

) exist for all ` not equal to p, and one has a tensor
factorization:

H1(XΣ) ∼= ρ⊗ πp ⊗
⊗

`∈Σ\{p}

π̃(ρ|GQ`
)∨.

The resulting structure theory for completed cohomology of the modular tower
has striking arithmetic applications; in particular [6] establishes many cases of
the Fontaine-Mazur conjecture as a corollary of the tensor factorization described
above (see in particular [6], corollary 1.2.2.) It thus is natural to attempt to seek a
framework in which one can describe completed cohomology of Shimura towers in
as broad a context as possible; a primary goal of this paper is to develop a language
which should apply to the factors of completed cohomology at primes ` 6= p.

It is important to note that the arguments of [6] do not require one to know,
a priori, that representations of the form π̃(ρ) exist. Instead, they rely on Theo-
rem 6.2.15 below to deduce from considerations at a dense set of points (together
with a genericity condition that, in the setting of [6], essentially reduces to Ihara’s
lemma) that a module with an action of GLn(Q`i) for each `i in a finite collection
of primes admits a tensor factorization as a product of families of the form π̃(ρ).
Whereas the proof of Theorem 1.2.1 is relatively elementary (essentially relying on
an integral version of the Bernstein-Zelevinski theory of the derivative), the proof
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of Theorem 6.2.15 requires detailed information about the behavior of the generic
local Langlands correspondence under specialization, which we develop in section 4.

1.4. Existence of the correspondence: results and conjectures. Just as in
the traditional setting, it seems to be easier to characterize the local Langlands
correspondence in families than to prove its existence. However, we make the
following conjecture.

1.4.1. Conjecture. If A is a reduced p-torsion free complete Noetherian local ring
with maximal ideal m and finite residue field k of characteristic p, and if ρ : GE →
GLn(A) is continuous, then π̃(ρ) exists.

One instance in which we can verify the conjecture is the case when A is the
ring of integers in a finite extension of Qp. (In this case, it is a consequence of
Theorem 3.3.2.) Forthcoming work of the second author [11], [10] will establish
many additional cases of this conjecture, using the second author’s theory of the
integral Bernstein center [9]. In particular the conjecture holds for n = 2 and p
odd, and also for p a banal prime; that is, a prime for which the integers 1, q, . . . , qn

are distinct modulo p, where q is the order of the residue field of E. (This means
that for any fixed n, there are only finitely many p at which the conjecture can
fail.)

1.5. A mod p local Langlands correspondence for GLn. In [20], Vigneras
defines a mod p local Langlands correspondence for GLn. However, this correspon-
dence seems ill-suited for arithmetic applications (and in particular for describing
the mod p cohomology of the modular tower.) In particular, it lacks the good
behavior of the Breuil-Schneider correspondence under specialization.

In Section 5 we define a “modified” mod p local Langlands correspondence, that
is more suited to our needs. It differs from the correspondence of Vigneras in the
following ways:

(a) The input is a Galois representation (not a Weil–Deligne representation).
(b) The output is an admissible smooth GLn(E)-representation that is possibly

reducible, but always generic.
(c) The correspondence is compatible with reduction modulo p in the direct

sense given by parts (2) and (3) of Theorem 1.5.1 below. (The Zelevinski
involution does not intervene.)

This being said, we rely on the results of [20] for the construction of our corre-
spondence. The key point, whose proof relies on [20], is that for any deformation ρ
of ρ, the representation π̃(ρ) reduces modulo m to a representation whose cosocle is
absolutely irreducible and generic, and is independent, up to isomorphism, of the
choice of ρ. (See the discussion following Corollary 5.1.2 below.)

The key properties of the correspondence of Section 5 are summarized in the
following theorem:

1.5.1. Theorem. There is a map ρ 7→ π(ρ) from the set of isomorphism classes
of continuous representations GE → GLn(k) (where k is a finite field of char-
acteristic p) to the set of isomorphism classes of finite length admissible smooth
GLn(E)-representations on k-vector spaces, uniquely determined by the following
conditions:
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(1) For any ρ, the G-socle soc
(
π(ρ)

)
of the associated GLn(E)-representation

π(ρ) is absolutely irreducible and generic, and the quotient π(ρ)/ soc
(
π(ρ)

)
contains no generic Jordan–Hölder factors.

(2) Given ρ : GE → GLn(k), together with a deformation ρ : GE → GLn(O)
of ρ, where O is a characteristic zero discrete valuation ring with uni-
formizer $ and residue field k′ containing k, there is GLn(E)-equivariant

surjection π̃(ρ)⊗k k′ → π̃(ρ)/$π̃(ρ). (Note that π̃(ρ) must exist as O is a
finite extension of Qp.)

(3) The representation π(ρ) is minimal with respect to satisfying conditions (1)
and (2), i.e. given any continuous representation ρ : GE → GLn(k) and
any representation π of GLn(E) satisfying these two conditions with respect
to ρ, there is a GLn(E)-equivariant embedding π(ρ) ↪→ π.

As with the local Langlands correspondence in families, our motivation for in-
troducing this modified mod p local Langlands correspondence is that it arises in
global contexts. Indeed, consider the limit H1(XΣ, k) of the cohomology of the
tower XΣ of modular curves, where the levels of curves in XΣ are divisible pre-
cisely by the primes in Σ. This has an action of a completed Hecke algebra A,
and if one considers the maximal ideal of A corresponding to a suitable irreducible
representation ρ : GQ → GL2(k), then one has an isomorphism:

H1(XΣ, k)[m] ∼= ρ⊗ πp ⊗
⊗

`∈Σ\{p}

π(ρ|GQ`
).

Thus the modified mod p local Langlands correspondence gives a framework in
which one may describe the mod p cohomology of towers of modular curves, and
one expects that this should apply to more general towers of Shimura varieties as
well.

The modified mod p local Langlands correspondence admits a completely con-
crete description for n = 2 and p odd; we briefly describe some cases of this in
section 5, and refer the reader to [12] for the complete picture.

1.5.2. Remark. One can consider the following stronger form of condition (2) of
Theorem 1.5.1:

(2′) Given ρ : GE → GLn(k), together with a deformation ρ : GE → GLn(A)
of ρ, where A is a reduced complete Noetherian local W (k)-algebra, flat
over W (k), with maximal ideal m and residue field k, and π̃(ρ) exists, there

is a GLn(E)-equivariant surjection π̃(ρ)→ π̃(ρ)/$π̃(ρ).

In some circumstances, we are able to verify that π(ρ) is in fact minimal with
respect to conditions (1) and (2′). (In other words, π(ρ) contains as a submodule
the dual of any module that arises by specializing a family π̃(ρ) attached to a
deformation of ρ.) This is essentially a characteristic p analog of Theorems 6.2.5
and 6.2.6. We conjecture that this stronger minimality property holds in general.

1.5.3. Remark. In general, π(ρ) is not irreducible, and if this is the case, then
it is not possible to strengthen “surjection” to “isomorphism” in the statement of
part (2) of Theorem 1.5.1.

1.6. The organization of the paper. We begin by establishing some basic facts
about admissible smooth representations of certain topological groups over a Noe-
therian local ring A; we apply this machinery in section 2.2 to the study of invariant
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lattices in representations of topological groups over the field of fractions of a com-
plete discrete valuation ring. The key result we establish is Lemma 2.2.6, which in
certain circumstances allows us to construct an invariant lattice in such a represen-
tation whose reduction has a prescribed socle.

Section 3 establishes results specific to the representation theory of GLn(E) over
certain local rings A. In 3.1 we construct a theory of Kirillov models over a large
class of base rings. Our approach essentially follows that of [1], but as we are
not working over algebraically closed fields issues of descent arise. In spite of this
one recovers almost all of the theory of the Kirillov functors developed in [1, §4].
Particularly useful for us is the notion of a “generic” irreducible representation over
an arbitrary field.

Section 3.2 introduces an essential concept for our results: that of an essen-
tially absolutely irreducible and generic representation (“essentially AIG” in short.)
These are representations whose socles are absolutely irreducible and generic, and
that satisfy a certain finiteness property. The importance of these representations
stems from the fact that the “modified Langlands correspondences” we consider
send Galois representations to essentially AIG representations. In section 3.3 we
apply the results of section 2.2 to establish some basic facts about the reduction
theory of essentially AIG representations.

In section 4 we study the behavior of the local Langlands correspondence (over
fields of characteristic zero) under specialization. As we have previously discussed,
the usual local Langlands correspondence is not suitable for our purposes, and we
instead consider a modification of this correspondence due to Breuil and Schneider.
Our first main result (Corollary 4.3.3) establishes that the admissible representa-
tions of GLn(E) produced by the Breuil-Schneider correspondence are essentially
AIG. Once we have this, we apply the reduction theory of section 3.3, together with
ideas from the Zelevinski classification, to establish Theorem 4.5.7, which relates
the behaviour of a Galois representation under specialization to a characteristic zero
residue field to the behaviour (under the same specialization) of the corresponding
admissible representation constructed by Breuil-Schneider.

Section 5 constructs a “modified local Langlands correspondence” in characteris-
tic p, by analogy with the Breuil-Schneider correspondence; in particular we define
this correspondence to be the “minimal” correspondence that satisfies a mod p
analogue of Theorem 4.5.7. We refer the reader to Theorem 5.1.5 for the precise
definition.

We finally turn to the study of the local Langlands correspondence for families of
admissible representations in section 6. Section 6.2 discusses the main results of our
theory; to avoid obscuring this discussion with technicalities we postpone the proofs
to section 6.3. Surprisingly little beyond the theory of Kirillov models is necessary to
prove the basic uniqueness result of Theorem 6.2.1. On the other hand, establishing
more precise results about the structure of the family of admissible representations
attached to a given family of Galois representations (for instance, the interpolation
theorems 6.2.5 and 6.2.6) requires the full strength of the specialization results in
section 4.
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2. Representation theory — general background

2.1. Admissible smooth representations. Let A be a Noetherian local ring
with maximal ideal m and residue field k. In this subsection we recall some basic
facts about admissible smooth representations over A.

2.1.1. Definition. An A-linear representation of a topological group H on an A-
module V is called smooth if any element of V is fixed by an open subgroup of H.

Clearly any H-invariant sub- or quotient A-module of a smooth H-representation
over A is again a smooth H-representation over A.

2.1.2. Definition. A smooth representation of a topological group H on an A-
module V is called admissible if for any open subgroup H0 ⊂ H, the A-module of
fixed points V H0 is finitely generated.

Clearly any H-invariant A-submodule of an admissible smooth H-representation
over A is again an admissible smooth H-representation over A. (For the case of
H-invariant quotients, see Lemma 2.1.6 below.)

Consider the following condition on H:

2.1.3. Condition. H contains a profinite open subgroup, admitting a countable
basis of neighbourhoods of the identity, whose pro-order is invertible in A.

Suppose that H satisfies Condition 2.1.3, and let {Hi}i≥0 denote a decreasing
sequence of open subgroups of H, each of whose pro-order is invertible in A, and
which forms a neighbourhood basis of the identity in H. If V is a smooth H-
representation over A, then for each n ≥ 1, we may define the idempotent projector
πi : V → V Hi via v 7→

∫
Hi
hvdµi, where µi denotes Haar measure on Hi, normalized

so that Hi has total measure 1. If we define Vi := kerπi
⋂
V Hi+1 , then the inclusions

Vi ⊂ V induces an isomorphism of A-modules

(2.1)
⊕
i

Vi
∼−→ V.

The formation of Vi is evidently functorial on the category of smooth representations
of H over A, and thus so is the direct sum decomposition (2.1). In fact one can say
something more precise:
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2.1.4. Lemma. Suppose that H satisfies Condition 2.1.3. If W is an H-invariant
A-submodule of the smooth H-representation A over V , then the natural maps
Wi ↪→ Vi

⋂
W and Vi/(Vi

⋂
W )→ (V/W )i are isomorphisms.

Proof. This is evident. �

2.1.5. Lemma. Suppose that H satisfies Condition 2.1.3. A smooth H-represen-
tation V over A is admissible if and only if each of the A-modules Vi is finitely
generated.

Proof. This follows from the isomorphisms
⊕

j≤i Vj
∼−→ V Hi for each i, and the

fact that the sequence {Hi} is cofinal in the collection of all of open subgroups
of H. �

2.1.6. Lemma. Suppose that H satisfies Condition 2.1.3. If V is an admissible
smooth H-representation over A, and if W is a G-invariant A-submodule of V ,
then V/W is again an admissible smooth H-representation over A.

Proof. This follows from the preceding lemma, and the fact that Vi → (V/W )i is
surjective. �

If V is an A-module equipped with an admissible smooth H-representation, then
typically V itself will not be finitely generated as an A-module. Nevertheless, the
existence of the decomposition (2.1) allows us to extend many results about finitely
generated A-modules to the situation of admissible smooth G-representations.

2.1.7. Lemma. If H satisfies Condition 2.1.3, and if V is an admissible smooth
H-representation for which V/mV = 0, then V = 0.

Proof. The decomposition (2.1) yields the isomorphism
⊕

i Vi/mVi
∼−→ V/m. Thus

V/mV = 0 implies that Vi/mVi = 0 for each value of i. Since each Vi is finitely
generated over A, this in turn implies that Vi = 0 for each i, by Nakayama’s lemma.
Thus V = 0, as claimed. �

2.1.8. Lemma. If H satisfies Condition 2.1.3, and if V is an admissible smooth
representation such that V/mV is finitely generated over k[H], then V is finitely
generated over A[H].

Proof. Let S ⊂ A be a finite subset whose image in V/mV generates this quotient
over k[H], and let W be the A[H]-submodule of V generated by S. Lemma 2.1.6 im-
plies that (V/W ) is admissible, and by construction we see that (V/W )/m(V/W ) =
0. Thus Lemma 2.1.7 shows that W = V , and so V is also finitely generated. �

It will be technically useful to consider a related notion of admissible represen-
tation.

2.1.9. Definition. If V is an A-module equipped with an A-linear representation
of H, we say that V is an admissible continuous H-representation if:

(1) V is m-adically complete and separated.
(2) The H-action on V is continuous, when V is equipped with its m-adic

topology (i.e. the action map H × V → V is jointly continuous).
(3) The induced H-representation on V/mV (which is automatically smooth,

by (1)) is admissible smooth.
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2.1.10. Lemma. Suppose that H satisfies Condition 2.1.3. If V is a continu-
ous admissible H-representation over A, then for each n > 0, the induced H-
representation on V/mnV is admissible smooth.

Proof. Condition (2) of Definition 2.1.9 implies that the H-action on V/mnV is
continuous, when the latter is equipped with its discrete topology. In other words,
V/mnV is a smooth representation of H. Since the formation of Hi-invariants is

exact, for any i ≥ 0, we find that (V/mnV )Hi/m(V/mnV )Hi
∼−→ (V/mV )Hi is

finite dimensional over A/m, by Condition (3) of Definition 2.1.9. Lemma 2.1.16
below (applied to the module (V/mnV )Hi of the Artinian local ring A/mn) then
shows that (V/mnV )Hi is finitely generated over A/mn. Consequently V/mnV is
admissible. �

2.1.11. Definition. If V is an A-module, we let V̂ denote the m-adic completion
of V .

2.1.12. Definition. If V is an A-module equipped with an H-representation, we
let Vsm denote the subset of V consisting of vectors which are smooth, i.e. which
are fixed by some open subgroup of H. One immediately verifies that Vsm is
an A-submodule of V , closed under the action of H. Thus Vsm is a smooth H-
representation.

2.1.13. Proposition. Suppose that H satisfies Condition 2.1.3, and let V be an
admissible smooth H-representation over A.

(1) V̂ is a continuous admissible H-representation over A.

(2) If A is m-adically complete, then the natural map V → V̂sm is an isomor-
phism.

Proof. The H-action on V is smooth, and thus so is the H-action on V/mnV , for
each n ≥ 0. Passing to the projective limit over n, we find that the H-action on

V̂ is m-adically continuous. Since V̂ /mV̂ = V/mV, it follows from Lemma 2.1.6

that the H-action on V̂ /mV̂ is admissible. Thus V̂ satisfies both the conditions of
Definition 2.1.9. This proves (1).

We now turn to proving (2), and so in particular, assume that A is m-adically
complete. For each i ≥ 0, we find that

V̂ Hi
∼−→ lim

←−
n

(V/mnV )Hi
∼−→ lim

←−
n

V Hi/mnV Hi
∼−→ V Hi

(the second isomorphism following from the exactness of the formation of Hi-
invariants, and the third following from the fact that V Hi is finitely generated
over A, by assumption, and hence m-adically complete, since A is m-adically com-

plete). Consequently, the map V Hi → V̂ Hi is an isomorphism for each i ≥ 0, and

thus, passing to the inductive limit over i, we find that V
∼−→ V̂sm, as claimed. �

2.1.14. Proposition. Suppose that H satisfies Condition 2.1.3 and that A is m-
adically complete, and let V be an admissible continuous H-representation over A.

(1) Vsm is an admissible smooth H-representation.

(2) The natural map V̂sm → V is an isomorphism.

Proof. Since V is m-adically complete and separated, we see that V Hi is m-adically
complete and separated for each i ≥ 0. Since the formation of Hi-invariants is exact,
we see that V Hi/mV Hi

∼−→ (V/mV )Hi , which by assumption is finite dimensional



LOCAL LANGLANDS IN FAMILIES 11

over A/m. Lemma 2.1.16 below then implies that V Hi is finitely generated over A.
Since (Vsm)Hi = V Hi by the very definition of Vsm, we see that Vsm is admissible,
proving (1).

If i ≥ 0 and n > 0, then

(Vsm)Hi/mn(Vsm)Hi = V Hi/mnV Hi
∼−→ (V/mnV )Hi ,

the equality holding (as was already noted above) by the very definition of Vsm,
and the isomorphism following from the exactness of the formation of Hi-invariants.
Passing to the inductive limit over i, and taking into account the fact that Vsm and
V/mnV are both smooth H-representations, we find that Vsm/m

nVsm
∼−→ V/mnV.

Passing to the projective limit over n, we find that V̂sm
∼−→ V, proving (2). �

2.1.15. Remark. It follows from the preceding propositions that if A is m-adically

complete, then the functors V 7→ V̂ and V 7→ Vsm are mutually quasi-inverse, and
induce an equivalence of categories between the category of admissible smooth H-
representations overA, and the category of admissible continuousH-representations
over A.

We close this subsection by recalling a version of Nakayama’s lemma in the
setting of m-adically separated modules over complete local rings.

2.1.16. Lemma. Suppose that A is m-adically complete. If M is an m-adically
separated A-module such that M/mM is finite dimensional over A/m, then M is
finitely generated over A.

Proof. Choose S = {s1, . . . , sm} ⊂M to be finite, and such that the image of S in
M/mM spans M over A/m, and let N denote the A-submodule of M generated by
S. We then have that M = N + mM, and so arguing inductively, for each v ∈ M
we may find, for each i = 1, . . . , s, a sequence of elements ai,n of A with ai,n ∈ mn

for each n, such that for each n we have

v ∈
m∑
i=1

(ai,0 + ai,1 + · · ·+ ai,n)si + mn+1M.

Writing ai = ai,0 + ai,1 + · · · (a well-defined element of A, since A is m-adically
complete by assumption), we then find (since M is m-adically separated) that v =∑s
i=1 aisi ∈ N, and thus that M = N , proving the lemma. �

2.2. Invariant lattices. Let O be a complete discrete valuation ring, with field of
fractions K and residue field K of characteristic different from `. Let $ be a choice
of uniformizer of O. If V is a K-vector space, then by a lattice in V we mean an
O-submodule V ◦ which spans V over K.

2.2.1. Definition. We say that a representation V of a group H over K is a good
integral representation if V contains a $-adically separated H-invariant lattice V ◦

with the property that V
◦

:= V ◦/$V ◦ has finite length as a K[H]-module.

We now prove some basic results pertaining to this definition.

2.2.2. Lemma. Any subrepresentation of a good integral representation V of H
over K is again a good integral representation of H.
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Proof. If V ◦ is a $-adically separated H-invariant lattice in V for which V
◦

is of
finite length over K[H], then W ◦ := V ◦ ∩W is a $-adically separated H-invariant

lattice in W , and since the natural map W
◦ → V

◦
is injective, we see that W

◦
also

has finite length over K[H]. �

2.2.3. Lemma. Let V be a good integral representation of a group H, and fix a

$-adically separated H-invariant lattice V ◦ ⊂ V such that V
◦

has finite length
over K[H]. If M is an H-invariant O-submodule of V/V ◦, then either M is of
bounded exponent as an O-module, or else M contains a non-zero H-invariant
divisible O-submodule.

Proof. If M is not of bounded exponent, then the map M [$n]→M [$m] induced
by multiplication by $n−m has non-zero image for each n ≥ m ≥ 1, and hence,
since each M [$n] has finite length, we find that lim

←−
n

M [$n] 6= 0 (the transition

maps being given by multiplication by $). If (mn)n≥0 is a non-zero element of
this projective limit, then the O-submodule of M generated by the elements mn is
evidently non-zero and divisible. Thus the maximal divisible submodule of M is
non-zero; it is also clearly H-invariant. �

2.2.4. Lemma. If H is a topological group satisfying Condition 2.1.3, and if V is
a good integral admissible smooth representation of H over K, then:

(1) Any two $-adically separated H-invariant lattices in V are commensurable.
(2) If V ◦ is a $-adically separated H-invariant lattice in V , then V ◦ is finitely

generated over O[H], the K[H]-module V
◦

:= V ◦/$V ◦ is of finite length,

and the isomorphism class of (V
◦
)ss (the semisimplification of V

◦
as a

k[H]-module) is independent of the choice of V ◦.

Proof. Since V is good integral by assumption, we may and do choose an $-adically

separated H-invariant lattice V ◦ ⊂ V such that V
◦

is of finite length. Then V
◦

is certainly finitely generated over K[H], and so Lemma 2.1.8 implies that V ◦ is
finitely generated over O[H].

Let V � be another $-adically separated H-invariant lattice in V . We will prove
that V � is commensurable with V ◦. This will prove (1). An easy (and standard)

argument then proves that V
�

is of finite length over K[H], and that (V
◦
)ss and

(V
�
)ss are isomorphic. Also Lemma 2.1.8 will imply that V � is finitely generated

over O[H]. Thus (2) will also follow.
Since V ◦ is finitely generated over O[H], we may find m ≥ 0 such that V ◦ ⊂

$−mV �. In proving the commensurability of V ◦ and V �, it is clearly no loss of
generality to replace V � by$−mV �, and so we may and do assume for the remainder
of the proof that V ◦ ⊂ V �.

Consider now the quotient V �/V ◦ ⊂ V/V ◦. If V �/V ◦ is not of bounded ex-
ponent, then Lemma 2.2.3 shows that it contains a non-zero H-invariant divisible
submodule D. The Tate module TpD := lim

←−
n

D[$n] (the transition maps being

given by multiplication by $) is then a non-zero $-adically complete and sepa-
rated O-module, equipped with an action of H, and an injection

(2.2) TpD ↪→ Tp(V/V
◦)

∼−→ V̂ ◦.

Now

TpD/$TpD
∼−→ D[$] ⊂ 1

$
V ◦/V ◦,
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and hence TpD/$TpD is an admissible smooth H-representation. Thus TpD is
an admissible continuous H-representation over O, and so by Remark 2.1.15, the
injection (2.2) is obtained from the induced embedding (TpD)sm ↪→ V ◦ by passing
to $-adic completions. In particular (TpD)sm 6= 0. Also, the image of the composite

K ⊗O (TpD)sm → V → V/V ◦

is precisely D, and so (since D ⊂ V �/V ◦), we conclude that K ⊗O (TpD)sm ⊂ V �.
But K⊗O (TpD)sm is a non-zero K-vector space, and hence is not $-adically sepa-
rated. This contradicts our assumption on V �, and hence we conclude that V �/V ◦

is indeed of bounded exponent, and thus that V ◦ and V � are commensurable, as
required. �

2.2.5. Definition. Let H be a topological group satisfying Condition 2.1.3, and
let V be a good integral admissible smooth representation of H over K. If V ◦ is

a $-adically separated H-invariant lattice in V such that V
◦

:= V ◦/$V ◦ is of

finite length as a K[H]-module (which exists, by assumption), then we write V
ss

to denote the semisimplification of V
◦

as a K[H]-module. (The preceding lemma

shows that, up to isomorphism, V
ss

is independent of the choice of V ◦.)

The following lemma will allow us to choose lattices in good integral admissible
smooth representations whose reductions modulo $ have certain specified H-socles.

2.2.6. Lemma. Let H be a topological group satisfying Condition 2.1.3, and let V
be a good integral admissible smooth representation of H over K. Let S denote
the set of isomorphism classes of Jordan–Hölder factors of V

ss
(as a K[H]-module;

the discussion of Definition 2.2.5 shows that this set is well-defined), let T be a
subset of S, and suppose that V contains no non-zero subrepresentation W (nec-
essarily also good integral, by Lemma 2.2.2 ) such that every Jordan–Hölder factor

of W
ss

belongs to T . Then there exists a $-adically separated H-invariant lattice

V � contained in V ◦ with the property that V
�

:= V �/$V � contains no subobject
isomorphic to an element of T .

Proof. Choose (as we may, by assumption) a $-adically separated H-invariant

lattice V ◦ with the property that V
◦

:= V ◦/$V ◦ is of finite length as a K[H]-
module. Let M ⊂ V/V ◦ be the maximal O[H]-submodule all of whose Jordan–
Hölder factors are isomorphic to an element of T .

If we form the projective limit lim
←−
n

M [$n] 6= 0 (the transition maps being given

by multiplication by $), then lim
←−
n

M [$n] ↪→ lim
←−
n

1

$n
V ◦/V ◦

∼−→ V̂ ◦, with saturated

and $-adically complete image. If we write W = K ⊗O (lim
←−
n

M [$n])sm, then Re-

mark 2.1.15 implies that W vanishes if and only if lim
←−
n

M [$n] does. On the other

other hand, by construction W is a subrepresentation of V with the property that
all the Jordan–Hölder factors of W

ss
belong to T , and so by assumption W must

vanish. Thus lim
←−
n

M [$n] = 0, and so Lemma 2.2.3 implies that M is of bounded

exponent, say M = M [$n].
Let V � denote the preimage of M in V . Since V ◦ ⊂ V � ⊂ $−nV ◦, we see that

V � is $-adically separated. Since V
� ∼−→ $−1V �/V � ↪→ V/M, our choice of M

ensures that V
�

contains no subobject isomorphic to an element of T . �
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3. Representation theory — the case of GLn

3.1. Kirillov models. Let k be a perfect field. Let ` be a prime distinct from the

characteristic of k, and let k̃ be a Galois extension of k containing all `-power roots
of unity.

In this section we set G = GLn(E), where E is a non-archimedean local field
of residue characteristic `. We will define a notion of Kirillov models for smooth
representations of G over a W (k)-algebra A.

We begin by recalling the basic properties of Kirillov models associated to smooth

W (k̃)[G]-modules.
In the case of smooth C[G]-modules, these results are found in [1, §4]; over more

general algebraically closed fields they can be found in [17, Ch. III.1]. The extension

of these results to coefficients in W (k̃) is more or less immediate. We summarize
the key facts:

Define subgroups Pn and Nn of GLn(E) by setting:

Pn = {
(
a b
0 1

)
| a ∈ GLn−1(E), b ∈ En−1 },

Nn = {
(

Idn−1 b
0 1

)
| b ∈ En−1 },

We consider GLn−1(E) as a subgroup of Pn in the obvious way, and identify Nn
with En−1. Note that Pn = GLn−1(E)Nn. Any character ψ : En−1 → W (k̃)×

induces a character of Nn via (
Idn−1 b

0 1

)
7→ ψ(b),

which we again denote by ψ.

We fix, for the remainder of this section, a character ψ : E → W (k̃)× whose
kernel is equal to the subgroup OE of E. We consider ψ as a character of En−1

by setting ψ(e1, . . . , en−1) = ψ(en−1), and also as a character of Nn via the iso-
morphism of En−1 with Nn. The subgroup GLn−1(E) of Pn normalizes Nn, and
therefore acts on the set of characters of Nn by conjugation. The stabilizer of ψ
under this action is the subgroup Pn−1 of GLn−1(E).

3.1.1. Definition. For a W (k̃)-algebra A, let RepA(G) denote the category of

smooth A[G]-modules. Define functors Ψ−,Ψ+,Φ−,Φ+, Φ̂+ by:

• Ψ− : RepW (k̃)(Pn) → RepW (k̃)(GLn−1(E)) is given by Ψ−(V ) = VNn , the

module of Nn-coinvariants of V .
• Ψ+ : RepW (k̃)(GLn−1(E)) → RepW (k̃)(Pn) is the functor that takes a

GLn−1-module V and extends the action of GLn−1 to Pn by letting Nn
act trivially.

• Φ− : RepW (k̃)(Pn) → RepW (k̃)(Pn−1) is given by Φ−(V ) = Vψ, where Vψ
is the largest quotient of V on which Nn acts by ψ. (As Pn−1 normalizes
ψ, Vψ is naturally a Pn−1-module.)
• Φ+ : RepW (k̃)(Pn−1)→ RepW (k̃)(Pn) is given by

Φ+(V ) = c− IndPnPn−1Nn
V ′,

where V ′ is the Pn−1Nn-module obtained from V by letting Nn act via ψ,
and c− Ind denotes smooth induction with compact support.
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• Φ̂+ : RepW (k̃)(Pn−1)→ RepW (k̃)(Pn) is given by

Φ̂+(V ) = IndPnPn−1Nn
V ′.

The natural surjections of V onto Ψ−V and of V onto Φ−V are GLn−1(E) and
Pn−1-equivariant, respectively.

3.1.2. Remark. Note that these functors differ from the ones defined in [1] in that
they are not “normalized.” More precisely, the functors defined in [1] are twists of
the above functors by the square roots of certain modulus characters. This makes
them unsuitable for most of our purposes, as the descent arguments we make at
the end of this section do not apply to the twisted functors defined in [1]. We will
thus use the “non-normalized” functors defined above throughout the bulk of the
paper.

An unfortunate exception to this is in the proof of Proposition 4.3.2. While it
would in principle be possible to give a proof of Proposition 4.3.2 using the non-
normalized functors that we use elsewhere, the normalization of [1] simplifies the
combinatorics immensely. We have thus chosen to adopt this normalization for the
purposes of that proof only.

The arguments of [1, §3.2] carry over to this setting to show:

3.1.3. Proposition. (1) The functors Ψ−,Ψ+,Φ−,Φ+, Φ̂+ are exact.
(2) Φ+ is left adjoint to Φ−, Ψ− is left adjoint to Ψ+, and Φ− is left adjoint

to Φ̂+.
(3) Ψ−Φ+ = Φ−Ψ+ = 0.

(4) The composite functors Ψ−Ψ+, Φ−Φ̂+, and Φ−Φ+ are naturally isomorphic
to identity functors.

(5) One has an exact sequence of functors:

0→ Φ+Φ− → Id→ Ψ+Ψ− → 0.

For our purposes, it will be necessary to have versions of these functors for rep-

resentations over W (k), rather than W (k̃). The key difficulty is that the character
ψ is not defined over W (k). Nonetheless, one has:

3.1.4. Proposition. The functors Ψ−,Ψ+,Φ−,Φ+, Φ̂+ descend to functors defined
on representations over W (k). That is, one has a functor:

Ψ− : RepW (k)(Pn)→ RepW (k)(GLn−1(E))

such that for any W (k)[Pn]-module V , one has

Ψ−(V ⊗W (k) W (k̃)) = Ψ−(V )⊗W (k) W (k̃),

and similarly for the remaining functors. Moreover, the statements of Proposi-
tion 3.1.3 apply to these functors.

Proof. For the functors Ψ− and Ψ+ this is clear, as the character ψ does not
intervene in their definition. We thus begin with the functor Φ−.

Note that Gal(k̃/k) acts naturally on W (k̃), and fixes W (k). Moreover, W (k̃) is

faithfully flat over W (k). For σ ∈ Gal(k̃/k), let ψσ be the character σ ◦ ψ of E×.
There exists a unique eσ ∈ O×E such that ψσ(e) = ψ(eσe). The map σ 7→ eσ is a

homomorphism from Gal(k̃/k) to O×E .
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Consider each eσ as an element of Pn−1 via the inclusions:

O×E ⊂ E
× ⊂ GLn−1(E) ⊂ Pn−1.

If we consider ψ as a character of Nn, we have ψσ(u) = ψ(eσue
−1
σ ) for all u ∈ Nn.

Now let V be a smooth Pn-representation over W (k), and let Ṽ be the represen-

tation V ⊗W (k) W (k̃). Then we have a W (k̃)-semilinear action of Gal(k̃/k) on Ṽ ,

that fixes V . By definition, Φ−Ṽ is the quotient of Ṽ by the W (k̃)[Pn−1]-submodule

generated by all vectors of the form uv − ψ(u)v, for u ∈ Nn and v ∈ Ṽ .
The Galois action on Ṽ does not descend to Φ−Ṽ , but a twist of it does. For

an element [v] ∈ Φ−Ṽ , represented by an element v of Ṽ , define σ[v] = [eσσv].

This is well-defined, since if v = uw − ψ(u)w for some w ∈ Ṽ and u ∈ Nn, we can
set w′ = eσσw, u′ = eσue

−1
σ , and then eσσv = u′w′ − ψ(u′)w′. We thus obtain a

W (k̃)-semilinear action of Gal(k̃/k) on Φ−Ṽ ; we define Φ−V to be the invariants
under this action. This is clearly functorial with the desired properties. (Note,

however, that the surjection Ṽ → Φ−Ṽ does not descend to a natural surjection of
V onto Φ−V .)

Now let V be a smooth Pn−1-representation over W (k). Then Φ+Ṽ and Φ̂+Ṽ

can both be realized as spaces of functions: f : Pn → Ṽ , such that for any h ∈ Pn−1

and any u in Nn, we have f(ghu) = ψ(u)hf(g). Define an action of Gal(k̃/k) on
the space of such functions by setting (σf)(g) = e−1

σ σf(g). This preserves the

identity f(ghu) = ψ(u)hf(g), and so defines a W (k̃)-semilinear action of Gal(k̃/k)

on Φ+Ṽ and Φ̂+Ṽ . We set Φ+V and Φ̂+V to be the invariants of this action in
Φ+Ṽ and Φ̂+Ṽ , respectively. Note that if V is a smooth Pn-representation, then

the natural maps: Φ+Φ−Ṽ → Ṽ and Ṽ → Φ̂+Φ−Ṽ are Gal(k̃/k)-equivariant, and
hence descend to V .

Using this, one easily verifies the adjointness property (2) of Proposition 3.1.3
for the functors over W (k). Properties (1), (3), (4), and (5) then follow by base

change and the fact that W (k̃) is faithfully flat over W (k). �

Note that if A is a Noetherian W (k)-algebra, and V is a smooth representation
of Pn−1 over A, then the modules Ψ−V , Φ−V obtained by treating V as a rep-
resentation of Pn−1 over W (k) and applying the appropriate functors inherit an
A-module structure. We can thus define the functors Ψ−,Ψ+,Φ−, etc. on suitable
categories of smooth representations over A. It is then clear that if B is a Noether-
ian A-algebra, one has Ψ−(V ⊗AB) = Ψ−(V )⊗AB, and similarly for the remaining
functors.

Finally, observe that the functors Ψ−,Ψ+,Φ−,Φ+, Φ̂+ commute with tensor
products; that is, if M is an A-module, then Ψ−(V ⊗A M) ∼= Ψ−(V ) ⊗A M , and
similarly for the other functors.

We now define the “derivatives” of a smooth Pn-representation V . For 0 ≤ r ≤ n,

we set V (r) = Ψ−(Φ−)r−1V ; V (r) is a representation of GLn−r(E). If A is a W (k̃)-
algebra, then one has a GLn−r(E)-equivariant surjection V → V (r) (but this is not
true if A is only a W (k)-algebra.)

Note that V (n) is simply an A-module. The adjointness properties of Proposition
3.1.3 give, for any V , maps:

V → (Φ̂+)(n−1)Ψ+(V (n)).



LOCAL LANGLANDS IN FAMILIES 17

(Φ+)n−1Ψ+(V (n))→ V.

(Note that in the setting of the second of these maps, the Ψ+ that appears, and
the Ψ− that arises in the definition of V (n), are both the identity functor, and thus
the fact that Ψ+ is usually a right adjoint to Ψ− rather than a left adjoint is not
an issue.) The image of V in (Φ̂+)(n−1)Ψ+(V (n)) is called the Kirillov model of V .

The exact sequence of Proposition 3.1.3 implies that the map

(Φ+)n−1Ψ+(V (n))→ V

is injective; we denote its image by J(V ). The space J(V ) is often referred to as
the space of Schwartz functions in V .

3.1.5. Lemma. Let V be a smooth Pn-module over A. Set Ã = A⊗W (k)W (k̃), and

let Ṽ = V ⊗W (k) W (k̃). The modules V and J(V ) each contain an A-submodule

W such that W is isomorphic to V (n), and W ⊗A Ã maps isomorphically to Ṽ (n)

under the surjection Ṽ → Ṽ (n).

Proof. It suffices to show that J(V ) contains such a submodule, as J(V ) embeds in
V . We have

J(V ) = (Φ+)n−1Ψ+V (n) = [(Φ+)n−1Ψ+W (k)]⊗W (k) V
(n).

Moreover, the map J(Ṽ )→ Ṽ (n) arises from the surjection:

(Φ+)n−1Ψ+W (k̃)→W (k̃)

by tensoring over W (k̃) with Ṽ (n). It thus suffices to construct a submodule W of

[(Φ+)n−1Ψ+W (k)] that is free of rank one over W (k) and such that W ⊗W (k)W (k̃)

maps isomorphically onto W (k̃) under the surjection

(Φ+)n−1Ψ+W (k̃)→W (k̃).

This amounts to simply choosing any element of (Φ+)(n−1)Ψ+W (k) that maps to

an element of W (k̃)\$W (k̃), where $ is the uniformizer of W (k̃). Such an element
clearly exists, as otherwise the image of the composition:

[(Φ+)n−1Ψ+W (k)]⊗W (k) W (k̃)
∼−→ (Φ+)n−1Ψ+W (k̃)→W (k̃)

would be contained in $W (k̃). �

Over a field, the top derivatives are multiplicative with respect to parabolic
induction:

3.1.6. Proposition. Let V and W be admissible k-representations of GLn(E) and
GLm(E), respectively. Let P ⊂ GLn+m(E) be the parabolic subgroup of G given by:

P = {
(
a b
0 d

)
| a ∈ GLn(E), d ∈ GLm(E) },

and consider V ⊗W as a representation of P by letting the unipotent radical of P
act trivially. Then

(Ind
GLn+m(E)
P V ⊗W )(n+m) = V (n) ⊗W (m).

Proof. This is a special case of [17, Lem. 1.10]. Note that the derivative functors
used in [17] are normalized differently than ours; this normalization does not affect
the top derivative V (n) of a representation V of GLn(E). �
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We also have:

3.1.7. Theorem. Let V be an absolutely irreducible admissible representation of
GLn(E) over a field K that is a W (k)-algebra. Then V (n) is either zero or a
one-dimensional K-vector space, and is one-dimensional if V is cuspidal.

Proof. This is [17, III.5.10], over Fp or Qp; the same argument works over an
arbitrary field containing the `-power roots of unity. The general case follows by
extending scalars. �

3.1.8. Definition. We say that an absolutely irreducible admissible representation
V of GLn(E) over a field K that is a W (k)-algebra is generic if V (n) is one-
dimensional over K.

We now turn to finiteness properties of the derivative.

3.1.9. Lemma. Let A be a Noetherian local ring, with maximal ideal m, and suppose
that M is a submodule of a direct sum of finitely generated A-modules. If M/mM
is finite dimensional, then M is finitely generated.

Proof. Our assumption on M/mM allows us to choose a finitely generated submod-
ule N of M such that N + mM = M, or equivalently such that m(M/N) = M/N .
Nakayama’s Lemma then shows that any finitely generated quotient of M/N must
vanish. Since by assumption M embeds into a direct sum of finitely generated A-
modules, we may find a finitely generated A-module X, and an A-module Y which is
a direct sum of finitely generated A-modules, and an embedding M ⊂ X

⊕
Y , such

that N ⊂ X. On the one hand M/(M
⋂
X) is a quotient of M/N , and hence has no

non-vanishing finitely generated quotients. On the other, the projection of X
⊕
Y

onto Y induces an embedding of M/(M
⋂
X) into Y . Thus M/(M

⋂
X) = 0, and

so M ⊂ X is finitely generated. �

We note for future reference the following corollary of the preceding lemma.

3.1.10. Corollary. Let A be a Noetherian local ring, and suppose that M is a
submodule of a direct sum of finitely generated A-modules. If M/mM vanishes,
then M itself vanishes.

Proof. The preceding result implies that M is finitely generated. The corollary
thus follows from Nakayama’s Lemma. �

3.1.11. Theorem. Suppose that A is a Noetherian local W (k)-algebra with maximal
ideal m. Let V be an admissible representation of GLn over A, and suppose that
(V/mV )(n) is finite dimensional over A/m. Then V (n) is a finitely generated A-
module.

Proof. As derivatives commute with tensor products, we have

V (n)/mV (n) ∼= (V/mV )(n).

On the other hand, we have already observed that J(V ) (and hence V ) contains
an A-submodule isomorphic to V (n). As V is a direct sum of finitely generated
A-modules, the result follows from Lemma 3.1.9. �

3.1.12. Remark. In the setting of Theorem 3.1.11, if V/mV has finite length, then
(V/mV )(n) is finite dimensional over A/m by Theorem 3.1.7. Thus Theorem 3.1.11
applies to all admissible representations of GLn over A such that V/mV has finite
length.
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Theorem 3.1.11 allows us to establish the following extension of Proposition 3.1.6:

3.1.13. Corollary. Let A be a reduced Noetherian local W (k)-algebra with maximal
ideal m. Let V and W be admissible smooth A-representations of GLn(E) and
GLm(E), and let P be the parabolic subgroup of GLn+m(E) defined in the statement
of Proposition 3.1.6. Then, if V (n) and W (m) are free of rank one over A, so is the
A-module:

(Ind
GLn+m(E)
P V ⊗W )(n+m).

Proof. For each minimal prime a of A, let κ(a) be its residue field. Set Va =
V ⊗A κ(a) and Wa = W ⊗A κ(a). We have isomorphisms:

(Ind
GLn+m(E)
P V ⊗W )(n+m) ⊗A κ(a)

∼−→ (Ind
GLn+m(E)
P Va ⊗Wa)(n+m),

and the latter is one-dimensional by Proposition 3.1.6. Thus in particular the

annihilator of (Ind
GLn+m(E)
P V ⊗W )(n+m) as an A-module is the zero ideal of A.

On the other hand, let V = V/mV and W = W/mW . Then we have isomor-
phisms:

(Ind
GLn+m(E)
P V ⊗W )(n+m) ⊗A A/m

∼−→ (Ind
GLn+m(E)
P V ⊗W )(n+m),

and the latter is again one-dimensional by Proposition 3.1.6. Theorem 3.1.11 shows

that (Ind
GLn+m(E)
P V ⊗W )(n+m) is furthermore finitely generated over A, and thus

it follows by Nakayama’s lemma that (Ind
GLn+m(E)
P V ⊗ W )(n+m) is a cyclic A-

module, and hence (taking into account that it is faithful, as we proved above) is
free of rank one. �

We will also need a generalization of this machinery to a product of GLn(Ei)
for various local fields Ei of residue characteristics `i, all prime to the residue
characteristic of k. Fix a finite collection of such Ei, indexed by a set S, and let
G be the product of the groups GLn(Ei) for all i. Let Pn be the product of the
subgroups Pn(Ei) of GLn(Ei).

Now if we fix for each i a character ψi : Nn(Ei) → W (k̃)×, we can define

functors Ψ−,i,Φ−,i,Ψ+,i,Φ+,i, Φ̂+,i as follows: if H is any topological group, and
V is a Pn(Ei)×H-module, then Ψ−,i(V ) is the GLn−1(Ei)×H-module defined by
applying Ψ− to V (considered as a Pn(Ei)-module,) and then taking the natural
action of H on Ψ−(V ). The other functors are defined similarly. Note that if V
is a G-module over A (or even a module over the product of the Pn(Ei),) then
Ψ−,iΨ−,jV = Ψ−,jΨ−,iV (here the equality denotes a natural isomorphism), and
the other functors have similar commutativity properties. If S′ is a subset of S,
the composition of functors Ψ−,i for all i ∈ S′ is a thus a functor that takes an
A-module V over the product of the groups Pn(Ei) to an A-module with an action
of Pn−1(Ei) for each i ∈ S′ and of Pn(Ei) for each i not in S′. This composition
is independent (up to natural isomorphism) of the order in which we compose the

functors; we denote it by Ψ−,S
′
. Similarly define Φ−,S

′
, Ψ+,S′ , etc. Finally, if

V is an A[G]-module, define V (n),S′ to be the representation Ψ−,S
′
(Φ−,S

′
)n−1V .

Note that the functors Φ−,S
′
, Ψ+,S′ , etc. satisfy analogues of properties (1)-(4) of

Proposition 3.1.3.
When it is clear from the context what S and Ei we are working with, we will

denote Φ+,S , Ψ+,S , etc. by Φ+,Ψ+, and so forth.
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Similarly, if V is an A[G]-module, we define Ji(V ) to be space of Schwartz
functions in V for the action of GLn(Ei) on V ; this has an action of Pn(Ei) and of
GLn(Ej) for j not equal to i. Note that JiJj(V ) = JjJi(V ), so that we can define,
for any S′ ⊂ S, the functor JS′ to be the composition (in any order) of the functors
Ji for i in S′. Then JS′(V ) is the smallest A-submodule of V , stable under Pn(Ei)

for i in S′ and GLn(Ei) for i not in S′, such that the map JS(V )(n),S′ → V (n),S′

is an isomorphism. By construction, the functor JS′ is left adjoint to the functor
V 7→ V (n),S′ (when the latter is considered as a functor from A[Pn]-modules to
A-modules).

Now, precisely as in the proof of Theorem 3.1.11, we have:

3.1.14. Theorem. Let V be an admissible representation of G over a Noetherian
local W (k)-algebra A, and suppose that (V/mV )(n) is finite dimensional over A/mA.
Then V (n) is a finitely generated A-module.

We also have an analogue of Theorem 3.1.7

3.1.15. Theorem. Let V be an absolutely irreducible admissible representation of
G over k. Then V (n) is either zero or a one-dimensional k-vector space.

Proof. The representation V splits as a tensor product of absolutely irreducible
representations Vi of GLi(Ei) for all i ∈ I. It follows that V (n) is the tensor product

of the V
(n)
i . Hence this result is an immediate consequence of Theorem 3.1.7. �

3.1.16. Proposition. Let V be an A[G]-module, and suppose that V (n) is free of
rank one over A. Then the map A→ EndPn(J(V )) is an isomorphism.

Proof. By the adjointness properties of the functors Ψ+ and Φ+ we have natural
isomorphisms:

EndPn(J(V ))
∼−→ HomA(V (n),Ψ−(Φ−)n−1J(V ))

∼−→ EndA(V (n)).

The result follows immediately. �

3.2. Essentially AIG representations. Let K be a field of characteristic differ-
ent from `.

3.2.1. Definition. We say that a smooth representation V of G := GLn(E) is
essentially absolutely irreducible and generic (“essentially AIG” for short) if:

(1) The G-socle soc(V ) is absolutely irreducible and generic.
(2) The quotient V/ soc(V ) contains no generic Jordan–Hölder factors; equiv-

alently,
(
V/ soc(V )

)(n)
= 0.

(3) The representation V is the sum (or equivalently, the union) of its finite
length submodules.

3.2.2. Lemma. (1) If V is an essentially AIG smooth representation of G,
and if χ : E× → k× is a continuous character, then (χ ◦ det)⊗ V is again
essentially AIG.

(2) If V is an essentially AIG smooth G-representation, and if U ⊂ V is a
non-zero smooth G-subrepresentation, then U is also essentially AIG, and
furthermore soc(U) = soc(V ).

(3) If U and V are essentially AIG admissible smooth G-representations, then
restricting to socles induces an embedding

HomG(U, V ) ↪→ HomG

(
soc(U), soc(V )

)
.
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(4) Any non-zero G-equivariant homomorphism between essentially AIG ad-
missible smooth G-representations is an embedding.

Proof. Claim (1) is clear.
If U ⊂ V is as in (2), then 0 6= soc(U) ⊂ soc(V ). Since the latter is absolutely

irreducible, we find that soc(U) = soc(V ), and so in particular soc(U) is absolutely
irreducible and generic. Furthermore, we see that U/ soc(U) ↪→ V/ soc(V ). Since
the latter representation contains no generic Jordan–Hölder factors, neither does
the former. Finally, every element of U is contained in a finite length submodule
of V ; the intersection of this with U is also finite length. Thus U is the union of its
finite length submodules, and is therefore essentially AIG, proving (2).

Now suppose that φ : U → V is a map of essentially AIG representations, as
in (3). If φ

(
soc(U)

)
= 0, then φ factors to induce a map U/ soc(U) → V. But

the source of this map has no generic Jordan–Hölder factors, while its target has
generic socle. Thus this map vanishes, and hence φ vanishes. This proves (3).

To prove (4), suppose given φ : U → V as above. If kerφ 6= 0, then it has a
non-zero socle. As soc(U) is irreducible, we conclude that soc(U) ⊂ kerφ. Part (3)
then implies that φ = 0. �

3.2.3. Lemma. If V is an essentially AIG smooth representation of G over K, and
if U is a non-zero submodule of V, then HomG(U, V ) is one-dimensional over K.
In particular, EndG(V ) = K.

Proof. Part (2) of the preceding lemma shows that U is again essentially AIG and
that soc(U) = soc(V ). Part (3) of the same lemma shows that restriction to socles
induces an embedding

HomG(U, V ) ↪→ HomG

(
soc(U), soc(V )

)
= EndG

(
soc(V )

)
= K

(where the first equality follows from the already noted equality of socles, and
the second equality following from the absolute irreducibility of soc(V )). Since
HomG(U, V ) is non-zero (as U embeds into V by assumption), it must therefore be
one-dimensional, as claimed. �

3.2.4. Lemma. If V is an essentially AIG smooth representation of G over K, then
V admits a central character.

Proof. The preceding lemma shows that AutG(V ) = K×. Since the centre Z of G
acts as automorphisms of V , the lemma follows. �

3.2.5. Lemma. Let V and W be essentially AIG smooth representations of G over
K, and let K ′ be a finite separable extension of K. For any map f : V ⊗K K ′ →
W ⊗K K ′, there exists a scalar c ∈ (K ′)× such that cf descends uniquely to a map
V →W .

Proof. We may assume K ′ is Galois over K, and that f is nonzero (and thus
injective). For σ ∈ Gal(K ′/K), define fσ by fσ(x) = σf(σ−1x). Then fσ = cσf
for a scalar cσ ∈ (k′)×. The cσ give a cocycle in H1(Gal(K ′/K), (K ′)×) and are
therefore a coboundary; that is, there exists a c ∈ (K ′)× such that cσ = c

σc for all
σ. Then cf is Galois-equivariant, and thus descends to K. �

3.2.6. Definition. If V is an essentially AIG admissible smooth G-representation,
then we say that a smooth representation W is an essentially AIG envelope of V if:

(1) W is itself essentially AIG.
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(2) There is an G-equivariant embedding V ↪→ W (which Lemma 3.2.3 shows
is then unique up to multiplication by a non-zero scalar).

(3) W is maximal with respect to properties (1) and (2), i.e. if V ↪→ Y is any
G-equivariant embedding with Y essentially AIG admissible smooth, then
there is a G-equivariant embedding Y ↪→W.

3.2.7. Proposition. If V is an essentially AIG admissible smooth G-representation,
then V admits an essentially AIG envelope, which is unique up to isomorphism.

Proof. Let V ↪→ I be an injective envelope of V in the category of smooth repre-
sentations. Let U denote the subrepresentation of I/V obtained by taking the sum
of all the non-generic subrepresentations of I/V (so U is the maximal subrepresen-
tation of I/V for which U (n) = 0), and define X to be the preimage of U in I. Let
W be the sum of all of the finite length submodules of X. By construction, the

socle of W is generic,
(
W/ soc(W )

)(n)
= 0, and W is the sum of its finite length

submodules, so W is essentially AIG.
If V ↪→ Y is an embedding as in (3), then (since I is injective) we may extend

the embedding of V into I to an embedding of Y into I. Since every Jordan–Hölder
constituent of Y/V is nongeneric, the image of Y lies in X. Moreover, Y is the sum
of its finite length submodules, so the image of Y lies in W . �

If V is an essentially AIG smooth G-representation, then we write env(V ) to
denote the essentially AIG envelope of V (which by the preceding proposition exists,
and is unique up to isomorphism).

3.2.8. Lemma. Let V be an essentially AIG admissible smooth G-representation.
If χ : E× → K× is a continuous character, then there is an isomorphism

env
(
(χ ◦ det)⊗ V

) ∼−→ (χ ◦ det)⊗ env(V );

i.e. the formation of essentially AIG envelopes is compatible with twisting.

Proof. This is immediate from Lemma 3.2.2. �

In fact, essentially AIG representations actually have finite length. This will be
proven in forthcoming work of the second author [10]. In this paper, we will content
ourselves with somewhat weaker results whose proofs are more elementary. In the
case when K is of characteristic zero, this finiteness follows from Theorem 4.3.9
below, while in the case when n = 2, it is easy to establish for arbitrary K. (See
Proposition 3.2.18 below.) In the remainder of this section, we establish a weaker
finiteness result for essentially AIG representations that will suffice for our purposes.
The key tool will be the notions of cuspidal and supercuspidal support; we recall
the definitions below.

Let {π1, . . . , πr} be a multiset of irreducible cuspidal representations of the
groups GLn1

(E), . . . ,GLnr (E), for n1, . . . , nr such that
∑
ni = n.

3.2.9. Definition. Let π be an irreducible representation of G over K. The multiset
{π1, . . . , πr} is a cuspidal support of π if there exists a parabolic subgroup P = MU
of G, with M isomorphic to the product of the GLni , such that π is isomorphic to
a quotient of the normalized parabolic induction

IndGP π1 ⊗ · · · ⊗ πr,
for some choice of ordering of π1, . . . , πr.
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It is an easy consequence of the “geometric lemma” of Bernstein-Zelevinski,
and adjointness of parabolic induction and restriction, that every irreducible π
has a cuspidal support, and this cuspidal support is uniquely determined (as a
multiset of isomorphism classes of irreducible representations.) We refer the reader
to [17], II.2.4, for the details. By contrast, the notion of supercuspidal support lies
considerably deeper:

3.2.10. Definition. Let π be an irreducible representation of G over K. The mul-
tiset {π1, . . . , πr} is a supercuspidal support of π if each πi is supercuspidal, and
there exists a parabolic subgroup P = MU of G, with M isomorphic to the prod-
uct of the GLni , such that π is isomorphic to a Jordan–Hölder constituent of the
normalized parabolic induction

IndGP π1 ⊗ · · · ⊗ πr.
In characteristic zero the notions of cuspidal and supercuspidal support coincide.

This is false, however, in characteristic p, where there are cuspidal representations
that are not supercuspidal. In this setting it is a deep result of Vigneras ([18], V.4)
that every irreducible π has a supercuspidal support that is uniquely determined
by π.

Let scs(π) (resp. cs(π)) denote the supercuspidal support (resp. cuspidal sup-
port) of π.

3.2.11. Proposition. Let P = MU be a parabolic subgroup of G, with M isomor-
phic to

∏
i GLni . Then:

(1) Let πi be an irreducible admissible representation of GLni for all i. If π is
an irreducible submodule or quotient of

IndGP π1 ⊗ · · · ⊗ πr,
then cs(π) is the multiset sum of cs(πi) for all i.

(2) Let πi be an irreducible admissible representation of GLni for all i. If π is
a Jordan–Hölder constituent of

IndGP π1 ⊗ · · · ⊗ πr,
then scs(π) is the multiset sum of scs(πi) for all i.

(3) Let π be an irreducible admissible representation of G over k, and let π′ =

π1⊗ · · · ⊗ πr be a Jordan–Hölder constituent of ResPG π. Then scs(π) is the
multiset sum of scs(πi) for all i.

Proof. Statement (1) and (2) are easy consequences of the definitions, together with
the transitivity of parabolic induction. The details of the proof of (1) can be found
in [17], II.2.20, for instance. Statement (3) follows from the “geometric lemma” of
Bernstein-Zelevinski (which holds in characteristic p as well as characteristic zero
by [17], II.2.19.) �

3.2.12. Proposition. Let {π1, . . . , πr} be a multiset of supercuspidal representations
of GLni over K. There exists, up to isomorphism, exactly one irreducible generic
representation π of G over K with supercuspidal support equal to {π1, . . . , πr}.
Proof. A representation π with supercuspidal support {π1, . . . , πr} is isomorphic to

a generic Jordan–Hölder constituent of IndGP π1 ⊗ · · · ⊗ πr. By Theorem 3.1.7 and

Proposition 3.1.6, the top derivative of (IndGP π1 ⊗ · · · ⊗ πr) is one-dimensional, so
it has exactly one generic Jordan–Hölder constituent. �
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We are now in a position to show:

3.2.13. Theorem. Let π, π′ be irreducible admissible representations of G over K,
or more generally of a Levi subgroup M of G. If Exti(π, π′) is nonzero for some i,
then π and π′ have the same supercuspidal support.

Proof. By [18, IV.6.2], the category of smooth representations of M factors as a
product of blocks; two irreducible representations of M are in the same block if,
and only if, their supercuspidal supports are inertially equivalent, that is, if and
only if they coincide up to twisting by unramified characters. We thus reduce to the
case where the supercuspidal supports of π and π′ differ by at most an unramified
twist.

First consider the case in which π and π′ are both cuspidal representations of
G. In this case, Vigneras’ classification of the supercuspidal supports of cuspidal
representations (see for instance the proof of [18], V.4) shows that π′ is an unram-
ified twist of π. In this case, there exists a maximal distinguished cuspidal type
(K,κ⊗ σ) (in the sense of [18], section IV) contained in both π and π′.

We recall some basic facts from [18] about the pair (K,κ ⊗ σ). In particular,
K is a compact open subgroup of G, with a normal pro-` subgroup K1. Moreover,
there exists a finite extension E′ of E, an embedding of GLr(OE′) into K, and an
isomorphism of K/K1 with G := GLr(OE′/$E′) such that the composition

GLr(OE′)→ K → K/K1
∼= G

is equal to the reduction map GLr(OE′) → G. Moreover, κ is a representation of
K whose restriction to K1 is irreducible, and σ is a cuspidal representation of G
viewed as a representation of K trivial on K1.

The composition

O×E′ → GLr(OE′)→ K

extends to a map (E′)× → G such that the G-intertwining of (K,κ⊗σ) is precisely
(E′)×K. It follows that there are extensions τ and τ ′ of κ⊗σ to (E′)×K such that

π = c− IndG(E′)×K τ and π′ = c− IndG(E′)×K τ
′.

The choice of extension τ defines an action of (E′)×K/K1 on HomK1
(κ|K1

, V )
for any representation V of (E′)×K; this makes the functor HomK1

(κ|K1
,−) into an

equivalence between the category of representations of (E′)×K whose restriction to
K1 is a direct sum of copies of κ and the category of representations of (E′)×K/K1.

Frobenius reciprocity and the Mackey formula yield an isomorphism of ExtiG(π, π′)
with Exti(E′)×K/K1

(τ, τ ′). Applying the equivalence of the previous paragraph, and

using the fact that τ ′ is an unramified twist of τ , we find that the latter is isomor-
phic to Exti(E′)×K/K1

(σ, σ ⊗ χ), for some unramified character χ of (E′)×K/K1.

On the other hand, we have an isomorphism of (E′)×K/K1 with ($E′)
Z ×G. It is

thus clear that Exti(E′)×K/K1
(σ, σ ⊗ χ) can only be nonzero if $E′ acts on σ and

σ ⊗ χ via the same scalar; if this happens then σ and σ ⊗ χ are isomorphic and so
τ is isomorphic to τ ′. Then π and π′ are isomorphic as claimed.

The case in which π and π′ are cuspidal representations of M now follows, as any
such representation is a tensor product of cuspidal representations of the factors
GLni of M .

We handle the remaining cases by induction on i; the case i = 0 is clear. Now
assume exactly one of π and π′ is cuspidal; without loss of generality (taking duals if
necessary) we may assume π is cuspidal. We then have a proper parabolic subgroup
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P ′ = M ′U ′ of M , and a cuspidal representation σ of M ′, such that π′ arises as a
submodule of IndMP ′ σ. We thus have an exact sequence:

0→ π′ → IndMP ′ σ → C → 0

where C is the cokernel of the inclusion of π′ in IndMP ′ σ. By Frobenius reciprocity

Extj(π, IndMP ′ σ) = Extj(ResP
′

M π, σ) for all j, and the latter vanishes because π
is cuspidal. Thus Exti(π, π′) is isomorphic to Exti−1(π,C). By the inductive
hypothesis, the latter vanishes unless π has the same supercuspidal support as
some subquotient of C; since every subquotient of C has the same supercuspidal
support as π′ the claim follows in this case.

Finally, assume that neither π nor π′ is cuspidal. We again fix a proper parabolic
subgroup P ′ = M ′U ′ of M , and a cuspidal representation σ of M ′, such that π′

arises as a submodule of IndMP ′ σ. Now the exact sequence:

0→ π′ → IndMP ′ σ → C → 0

yields an exact sequence:

Exti−1(π,C)→ Exti(π, π′)→ Exti(π, IndMP ′ σ).

By the inductive hypothesis Exti−1(π,C) is nonzero only if π has the same su-
percuspidal support as π′. On the other hand, we again have an isomorphism of

Exti(π, IndMP ′ σ) with Exti(ResP
′

M π, σ), and (as σ is cuspidal), the previous case
shows that this too vanishes unless π and π′ have the same supercuspidal sup-
port. �

3.2.14. Corollary. If V is an essentially AIG representation of G over K, then all
the Jordan–Hölder constituents of V have the same supercuspidal support.

Proof. Suppose otherwise. As V is the sum of its finite length submodules, there
is then a finite length submodule W of V that is minimal among submodules of V
that have a Jordan–Hölder constituent with supercuspidal support different from
that of soc(V ). Let W ′ be the kernel of the map W → cosoc(W ). The minimality of
W implies that cosoc(W ) is irreducible and that every Jordan–Hölder constituent
of W ′ has the same supercuspidal support as soc(V ). Thus Exti(W ′, cosoc(W ))
vanishes for all i, by the preceding theorem; in particular cosoc(W ) is a direct
summand of W . This is impossible, since Lemma 3.2.3 implies that any essentially
AIG representation is indecomposable. �

3.2.15. Corollary. Let V be an essentially AIG representation of G over K. If V
is admissible, then V has finite length.

Proof. By Corollary 3.2.14 there are only finitely many isomorphism classes of
Jordan–Hölder constituents of V , and one can bound the number of times any given
Jordan–Hölder constituent appears in terms of the dimension of the U -invariants
of V for a sufficiently small compact open subgroup U of G. �

Corollary 3.2.14 has additional finiteness implications for essentially AIG rep-
resentations. More precisely, for a smooth representation V of G, define socc(V )
inductively by setting soc1(V ) = soc(V ), and defining socc(V ) to be the preimage
of soc(V/ socc−1(V )) under the surjection

V → V/ socc−1(V ).

We then have:
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3.2.16. Theorem. Let V be an essentially AIG representation of G over K. Then
socc(V ) has finite length for all c.

Proof. By induction it suffices to show that socc(V )/ socc−1(V ) has finite length
for all c ≥ 2. The space socc(V )/ socc−1(V ) is semisimple, and every irreducible
summand of socc(V )/ socc−1(V ) is an irreducible non-generic representation of G
with the same supercuspidal support as soc(V ). There are finitely many isomor-
phism classes of such representations. It thus suffices to show, for every irreducible
non-generic representation π of G with the same supercuspidal support as soc(V ),
that Hom(π, socc(V )/ socc−1(V )) is finite dimensional. We have an exact sequence:

0→ socc−1(V )→ socc(V )→ socc(V )/ socc−1(V )→ 0.

As the socle of socc(V ) is generic, we have Hom(π, socc(V )) = 0. We thus obtain
an injection:

Hom(π, socc(V )/ socc−1(V ))→ Ext1(π, socc−1(V )).

But socc−1(V ) has finite length by the induction hypothesis, and so by [19], Corol-
lary 2.12, Ext1(π, socc−1(V )) is finite dimensional. �

3.2.17. Corollary. Let V be an essentially AIG representation of G, let c be a
positive integer, and let Vi be an arbitrary collection of submodules of V of length
less than or equal to c. Then the sum of the Vi has finite length.

Proof. Each Vi is contained in socc(V ), so their sum is as well. The result thus
follows immediately from the theorem above. �

We close this subsection with the following result treating essentially AIG rep-
resentations in the case n = 2.

3.2.18. Proposition. Any essentially AIG representation over GL2(E) is of finite
length.

Proof. Let V be an essentially AIG representation over GL2(E); we must show that
V has finite length. Clearly we may check this after making an extension of scalars,
and so without loss of generality we may and do assume that K = K.

If V/ soc(V ) is trivial then V = soc(V ) is irreducible, and we are done. Thus we
assume from now on that V/ soc(V ) is non-trivial. The quotient V/ soc(V ) contains
no generic constituent, hence its Jordan–Hölder factors are all one-dimensional, and
so each is of the form χ◦det for some character χ. Moreover, if there exist Jordan–
Hölder factors of V/ soc(V ) isomorphic to χ◦det and χ′ ◦det, then Corollary 3.2.14
implies χ◦det and χ′◦det have the same supercuspidal support. From this it is easy
to see that χ2 = (χ′)2. Replacing V by an appropriate twist, we may thus assume
that the center E× of G acts trivially on each Jordan–Hölder factor of V/ soc(V ).

Since V/ soc(V ) is the sum of its finite length subrepresentations (as V is; this
is one of the conditions of being essentially AIG), and since each of its Jordan–
Hölder factors is one-dimensional, V is a sum of finite-dimensional representations
of GL2(E). The action of GL2(E) on any finite dimensional representation factors
through det, so the action of GL2(E) on V/ soc(V ) must also factor through det. In
this way we regard V/ soc(V ) as a representation of E×. Since V admits a central
character, by Lemma 3.2.4, and since the centre acts trivially on each Jordan–Hölder
factor of V/ soc(V ), we see that the centre must act trivially on V . (This is where
we use the non-triviality of V/ soc(V ).) Thus V/ soc(V ) is in fact a representation
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of the group E×/(E×)2. Theorem 3.2.16 shows that the socle of V/ soc(V ) is finite
length, and it follows from the fact that E×/(E×)2 is finite that V/ soc(V ) itself is
of finite length, as required. �

3.3. Invariant lattices. We now prove some results about the reduction of finite
length essentially AIG representations of GLn(E). Let O be a complete discrete
valuation ring, with field of fractions K and residue field K of characteristic different
from `. Fix a uniformizer $ of O.

If V is an integral admissible smooth representation of GLn(E) of finite length,
then by the “Brauer-Nesbitt Theorem” of ([17, Ch. II.5.11]), V is a good integral
representation in the sense of Definition 2.2.1, and hence Lemma 2.2.4 shows that
if V ◦ is a GLn(E)-invariant O-lattice in V , then (V ◦/$V ◦)ss is independent of V ◦;

we denote it V
ss

.

3.3.1. Proposition. If V is an essentially AIG admissible smooth representation
of GLn(E) over K which is integral and of finite length, then V

ss
contains a unique

irreducible generic summand.

Proof. Fix an invariant O-lattice V ◦ in V . Then (V ◦)(n) is a finitely generated
O-submodule of V (n), and the latter is a one-dimensional K-vector space. Thus
(V ◦)(n) is free of rank one overO. As the derivative commutes with tensor products,

it follows that (V
ss

)(n) is a one-dimensional K-vector space; the result follows. �

3.3.2. Theorem. If V is an essentially AIG admissible smooth representation
of GLn(E) over K which is integral and of finite length, then V admits a $-
adically separated GLn(E)-invariant lattice V ◦ which is admissible as a GLn(E)-

representation, and such that V
◦

:= V ◦/$V ◦ is essentially AIG. Moreover, V ◦ is
unique up to homothety.

Proof. We apply Lemma 2.2.6 to V , taking T to consist of all the nongeneric

Jordan–Hölder factors. This yields an O-lattice V ◦, such that V
◦

contains no non-
generic subrepresentations. As V

ss
has only one irreducible generic submodule, this

submodule is the socle of V
ss

, and
(
V

ss
/ soc(V

ss
)
)(n)

= 0. If H is any open sub-

group of G, then (V ◦)H is $-adically separated, and its E-span coincides with V H ,
which is finite dimensional, since V is admissible. It follows that (V ◦)H is finitely
generated over O, and so V ◦ is an admissible smooth representation of GLn(E).

Thus V
◦

is admissible smooth, and therefore essentially AIG.
Suppose now that V � is a second lattice in V satisfying the conditions of the

corollary. Scaling it appropriately, we may assume that V � ⊂ V ◦, but that the

induced map V
� → V

◦
is non-zero. Since both source and target are essentially

AIG, this map is necessarily injective by Lemma 3.2.2, and hence (since source and
target are of the same length) an isomorphism. �

4. The local Langlands correspondence in characteristic zero

Let F be an algebraically closed field of characteristic zero. The local Langlands
correspondence for GLn(E) [8] establishes a certain bijection between the set of
isomorphism classes of irreducible admissible smooth representations of GLn(E)
on F -vector spaces, and the set of isomorphism classes of n-dimensional Frobenius
semisimple Weil–Deligne representations over F (as defined in [5, §8] or [16, §4]).
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In fact there are various choices of correspondence, depending on the desired
normalization. The so-called unitary correspondence is uniquely determined by the
requirement that the local L- and ε-factors attached to a pair of corresponding iso-
morphism classes should coincide. On the other hand, this correspondence depends
on the choice of a square root of ` in F , and (because of this) is not compatible
in general with change of coefficients (although a suitably chosen twist will be; we
refer the reader to 4.2 for details.)

However, even if we normalize the local Langlands correspondence to be com-
patible with change of coefficients, the correspondence as usually defined is not
suitable for the applications we have in mind. In particular, the usual local Lang-
lands correspondence fails to be compatible with specialization. More precisely, let
O be a complete discrete valuation ring containing Qp, with field of fractions K and
residue field K, and let ρ : GE → GLn(O) be a continuous Galois representation.
Then the local Langlands correspondence associates admissible representations π
and π to the Weil–Deligne representations induced by ρ⊗OK and ρ⊗OK, but there
need not be a close relationship between π and the reduction of π. (For example,
π could be a character even if π is infinite-dimensional.)

We therefore work with a modification of the usual local Langlands correspon-
dence, which we describe fully in 4.2. We denote this correspondence by ρ 7→ π(ρ),
where ρ is a continuous n-dimensional representation of GE over an extension K
of Qp. The correspondence ρ 7→ π(ρ) is essentially the generic local Langlands
correspondence introduced by Breuil and Schneider in [2]. Unlike more standard
formulations of local Langlands, the representation π(ρ) of GLn(E) will in gen-
eral be reducible (in fact, it will be an essentially AIG representation of GLn(E)).
The map ρ 7→ π(ρ) will not be a bijection in any meaningful sense but simply a
map from isomorphism classes of n-dimensional representations of GE over K to
indecomposable admissible representations of GLn(E) over K. The advantage of
this choice is that the map ρ 7→ π(ρ) will be compatible with change of coefficients
(in the sense that π(ρ ⊗K K ′) will be isomorphic to π(ρ) ⊗K K ′ for an extension
K ′ of K,) and also compatible with specialization (in the sense of Theorem 4.5.7
below.)

4.1. Galois representations and Weil–Deligne representations. In order to
give a precise description of the map ρ 7→ π(ρ), we first recall some basic facts about
Frobenius-semisimple Weil–Deligne representations. Recall that a Weil–Deligne
representation over a field K containing Qp is a pair (ρ′, N), where ρ′ : WE →
GLn(K) is a smooth representation of WE with coefficients in K and N is a nilpo-
tent endomorphism of Kn satisfying ρ′(w)Nρ′(w)−1 = |w|N . The representation
(ρ′, N) is called Frobenius-semisimple if ρ′ is absolutely semisimple.

We first consider absolutely irreducible representations ρ′ : WE → GLn(K).
Let IE be the inertia subgroup of E. Then ρ′(IE) is a finite group, and so all of
its irreducible representations are defined over a finite extension K0 of Qp. After
replacing K with an algebraic extension we may assume K contains a subfield
isomorphic toK0. Then the restriction of ρ′ to IE splits as a direct sum of absolutely
irreducible representations τi of IE over K0.

Let Φ be a Frobenius element of WE , and let V be an IE-stable subspace of
Kn isomorphic to τ1 ⊗K0

K as an IE-representation. Then IE acts on ΦV by the
conjugate τΦ

1 of τ1. In fact, we have:
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4.1.1. Lemma. Let r be the order of the orbit of τ1 under the action of Φ on the
set of isomorphism classes of absolutely irreducible representations of IE over K0.
Then we have a direct sum decomposition:

ρ′|IE =

r−1⊕
i=0

τΦi

1 ⊗K0 K

and the action of Φ on this decomposition permutes the summands.

Proof. As IE is normal in WE , this is a standard result in Clifford theory. �

In particular, the vector space HomK[IE ](τ1 ⊗K0
K, ρ′|IE ) is one-dimensional. If

we fix an isomorphism τ1
∼−→ τΦr

1 , then we get an endomorphism Ψ of this vector
space via:

HomK[IE ](τ1 ⊗K0
K, ρ′)

Φr→ HomK[IE ](τ
Φr

1 ⊗K0
K, ρ′)

∼−→ HomK[IE ](τ1 ⊗K0
K, ρ′).

The action of Ψ is given by a scalar λ in K×.

4.1.2. Lemma. For any λ ∈ K× there is a unique absolutely irreducible represen-
tation ρ′ over K (up to isomorphism) such that ρ′|IE contains τ1⊗K0

K and Ψ acts
on HomK[IE ](τ1 ⊗K0

K, ρ′) via λ.

Proof. If r = 1, then the restriction of ρ′ to IE is given by τ1 ⊗K0
K, and so

to determine ρ′ it suffices to give an action of Φ on the representation space of
τ1, compatible with the action of IE . This amounts to giving an isomorphism
τ1 ⊗K0

K
∼−→ (τ1 ⊗K0

K)Φ. As we have already fixed an isomorphism τ1
∼−→ τΦ

1 ,
such an isomorphism is determined by λ.

If r > 1, let E′ be the unramified extension of E of degree r. The restriction of
ρ′ to WE′ breaks up as a sum of irreducible representations ρ′0, . . . , ρ

′
r−1 such that

the restriction of ρ′i to IE is isomorphic to τΦi

1 . Thus ρ′i is determined by λ and τ1,

and ρ′ is isomorphic to IndWE

WE′
ρ′0 by Frobenius reciprocity. �

4.1.3. Lemma. Let K be a field containing Qp, and let ρ′ be an absolutely irreducible
representation of WE over K. Then there exists an unramified character χ : WE →
K
×

such that the twist ρ′ ⊗ χ is defined over Qp.

Proof. The representation τ1 is defined over a finite extension of Qp, so it suffices

to show that after a twist we can take the scalar λ to be in Qp. Twisting by an
unramified χ changes λ to χ(Φ)rλ, so this is clear. �

4.1.4. Definition. Let ρ′ be an absolutely irreducible smooth representation WE →
GLn(K), and let d be a positive integer. The special representation Spρ′,d is the
pair

Spρ′,d = (V0 ⊕ · · · ⊕ Vd−1, N),

where WE acts on Vi by | |i ρ′ and N maps Vi isomorphically onto Vi+1 for
0 ≤ i ≤ d− 2.

The representation Spρ′,d is well-defined up to isomorphism, and is an absolutely
indecomposable Weil–Deligne representation. If K is algebraically closed, then
every indecomposable Frobenius-semisimple Weil–Deligne representation has the
form Spρ′,d for a unique absolutely irreducible representation ρ′ of WE over K.
Combining this with the previous lemma, we find:
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4.1.5. Lemma. Let K be a field containing Qp, and let (ρ′, N) be an indecomposable
Frobenius-semisimple Weil–Deligne representation over K. Then there exists a

character χ : WE → K
×

such that the twist (ρ′ ⊗ χ,N) is defined over Qp.

In those situations in which we will apply the local Langlands correspondence,
we will be beginning not with Weil–Deligne representations, but with Galois rep-
resentations. Thus we recall the recipe of Deligne for associating a Weil–Deligne
representation to a continuous Galois representation, in a slightly broader context
than that in which it is usually considered.

Let A be a complete Noetherian local domain of residue characteristic p different
from `, maximal ideal m, and field of fractions K of characteristic zero. Let R be
any subring of K containing A and 1

p . (In most applications, R will equal either K,

or else a complete discrete valuation ring O containing A and contained in K.)
For any n ≥ 0, we say that a representation ρ : GE → GLn(R) is continuous

if we can find a finitely generated A-submodule M of Rn that is invariant under
ρ(GE), spans Rn over R, and such that the induced GE-action on M is m-adically
continuous. (Note that if R = K, and K is a finite extension of Qp, then this
coincides with the usual notion of continuity of a GE-representation.)

As in [16, (4.2)], we fix a non-zero homomorphism tp : IE → Qp. (When com-
paring the present discussion with that of [16], note that the roles of ` and p are
reversed.) This homomorphism is uniquely determined up to scaling by an ele-
ment of Q×p . The following result then extends a theorem of Deligne [5, §8], [16,
Thm. (4.2.1)] (which treats the case when the coefficient field is a finite extension
of Qp).

4.1.6. Proposition. A continuous representation ρ : GE → GLn(R) uniquely de-
termines the following data:

(1) a representation ρ′ : WE → GLn(R) that is continuous when the target is
equipped with its discrete topology;

(2) a nilpotent matrix N ∈ Mn(R);

subject to the following condition:

(3) ρ(Φrσ) = ρ′(Φrσ) exp(tp(σ)N) for all σ ∈ IE and r ∈ Z.

Furthermore, as a Weil–Deligne representation, the pair (ρ′, N) is independent,
up to isomorphism, of the choice of tp and Φ.

Proof. Let (ρ′1, N1) and (ρ′2, N2) be two Weil–Deligne representations satisfying the
condition of the proposition. Then there is an open subgroup of IE on which both
ρ′1 and ρ′2 are trivial; we can thus find an element σ of IE for which ρ′1(σ) and ρ′2(σ)
are the identity but tp(σ) is nonzero. Then N1 = 1

tp(σ) log ρ(σ) = N2. The identity

ρ(Φrσ) = ρ′i(Φ
rσ) exp(tp(σ)Ni)

then forces ρ′1 = ρ′2.
It thus suffices to construct a (ρ′, N) as above. Choose a finitely-generated A-

submodule M of Rn that is preserved by ρ and spans Rn over R. Then GE acts
via ρ on M/mi+1M for all i, and these A-modules are discrete with respect to the
m-adic topology. In particular for each i the subgroup Hi of IE that acts trivially
on M/miM is a compact open subgroup of IE .

The group of automorphisms ofM/mi+1M that reduce to the identity inM/miM
is an abelian p-group for all i ≥ 2. Thus the action of H2 on M factors through
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the map tp : IE → Qp. Let σ be an element of H2; the action of σ on M yields
an element of α of End(M) that is congruent to the identity modulo m2. The
power series log(α) thus converges in the m-adic topology on End(M); set N =

1
tp(σ) log(α). Then any τ ∈ H2 acts on M via exp(tp(τ)N). It follows that for all

τ ∈ GE , ρ(τ)Nρ(τ)−1 = |τ |N . In particular N must be nilpotent.
We can then set ρ′(Φrσ) = ρ(Φrσ) exp(tp(σ)N)−1 for all σ ∈ IE and r ∈ Z; this

gives a well-defined ρ′ that is trivial on the compact open subgroup H2 of WE . �

Let O be a discrete valuation ring containing A and contained in K, with residue
field K of characteristic zero and uniformizer $. We will be interested in the
reduction mod $ of both Galois representations and Weil–Deligne representations
over O. One has:

4.1.7. Lemma. Let ρ′ : WE → GLn(O) be a representation of WE over O such that
ρ′ ⊗O K is absolutely irreducible. Then ρ′ := ρ′ ⊗O K is also absolutely irreducible.

Proof. By Lemma 4.1.1, over a finite extension of K, the restriction of ρ′ to IE splits
as a direct sum of absolutely irreducible representations ρ′i of IE , each of which
factors through a finite quotient if IE and is defined over Qp. The representations
ρ′i are distinct and cyclically permuted by conjugation by Φ. As K has characteristic
zero, the ρ′i remain irreducible and distinct after “reduction mod $”.

Thus, over a finite extension of K, ρ′ splits as a direct sum of absolutely irre-
ducible representations ρ′i which are distinct and cyclically permuted under conju-
gation by Φ. It is thus clear that ρ′ is absolutely irreducible. �

It follows that if ρ′ : WE → GLn(K) is absolutely irreducible and contains an
O-lattice L, then the mod $ reduction of L is independent, up to isomorphism, of
the lattice L. We denote this reduction by ρ′.

The passage from Galois representations to Weil–Deligne representations com-
mutes with reduction modulo $:

4.1.8. Lemma. Let ρ : GE → GLn(O) be a continuous Galois representation, with
mod $ reduction ρ, and let (ρ′, N) and (ρ′, N) be the Weil–Deligne representations
attached to ρ and ρ, respectively. Then (ρ′, N) is isomorphic to (ρ′⊗OK,N⊗OK).

Proof. This follows immediately from the identities

ρ(Φrσ) = ρ′(Φrσ) exp(tp(σ)N)

ρ(Φrσ) = ρ′(Φrσ) exp(tp(σ)N)

and the fact that the latter identity characterizes (ρ′, N) up to isomorphism. �

Given a Weil–Deligne representation (ρ′, N) over K, one can associate a natural
Frobenius-semisimple representation (ρ′, N)F−ss, (the Frobenius-semisimplification
of (ρ′, N).) We recall the definition; see [5, 8.5] for details.

The matrix ρ′(Φ) factors uniquely as a product su, with s and u elements of
GLn(K) that are semisimple and unipotent, respectively, and commute with each
other. Moreover, if ρ′(Φ) lies in GLn(O), then so do s and u. The element u then
commutes with N , and one defines (ρ′)F−ss to be the representation of WF that
satisfies (ρ′)F−ss(Φrσ) = u−rρ′(Φrσ). Then (ρ′)F−ss is a semisimple representation
of WF over K, and the pair ((ρ′)F−ss, N) is a Frobenius-semisimple Weil–Deligne
representation which we write (ρ′, N)F−ss.
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It will be necessary for us to understand how Frobenius-semisimplification com-
mutes with reduction modulo $. Note that even if (ρ′, N) is a Frobenius-semisimple
Weil–Deligne representation over O, its reduction modulo $ need not be, as the
mod $ reduction of a semisimple element of GLn(O) need not be semisimple.

4.1.9. Lemma. Let (ρ′, N) be a Weil–Deligne representation over O, and let (ρ′, N)
be its reduction mod $. Then (ρ′, N)F−ss is defined over O. Moreover, the reduction
mod $ of (ρ′, N)F−ss has Frobenius-semisimplification (ρ,N)F−ss.

Proof. If ρ′(Φ) decomposes as su, with s and u as above, then s and u lie in GLn(O),
so (ρ′, N)F−ss is defined over O. Thus ρ′(Φ) = su, where s and u are the mod $
reductions of s and u.

The element s decomposes uniquely as s′u′, where s′ is semisimple and u′ is
unipotent and commutes with s′. As u commutes with s, s also decomposes as a
product of us′u−1 with uu′u−1; the uniqueness of this decomposition shows that
these two decompositions coincide. That is, u commutes with s′ and u′.

We have ρ′(Φ) = s′u′u, and the unipotent element u′u commutes with s′. Thus
the Frobenius-semisimplification of (ρ′, N) sends Φ to s′. On the other hand, the
reduction of (ρ′, N)F−ss takes Φ to s, which equals s′u′. Hence the Frobenius-
semisimplification of the reduction of (ρ′, N)F−ss takes Φ to s, and therefore coin-

cides with (ρ′, N
′
)F−ss. �

4.2. The generic local Langlands correspondence of Breuil and Schneider.
We are now in a position to describe the “generic local Langlands correspondence”
of Breuil and Schneider [2, pp. 162–164]. This is a map (ρ′, N) 7→ π(ρ′, N) from
Frobenius-semisimple Weil–Deligne representations over a finite extension K of Qp
to indecomposable admissible representations of GLn(E) over K. Fix a choice of `

1
2

in Qp (and thus a choice of square root of the character | | ◦det of GLn(E), as well

as a unitary local Langlands correspondence for representations over Qp). With
this choice, the properties of this correspondence can be summarized as follows
(c.f. [2, 4.2]):

(1) For any character χ : WF → Q×p , one has π(ρ′ ⊗ χ,N) = π(ρ′, N)⊗ χ.
(2) If K ′ is a finite extension of K, then π(ρ′ ⊗K K ′, N) = π(ρ′, N)⊗K K ′.
(3) If (ρ′, N) is a direct sum of representations of the form Spρ′i,ni over Qp,

then π(ρ′, N) is defined by the parabolic induction:

π(ρ′, N) = (| | ◦ det)−
n−1
2 Ind

GLn(E)
Q Stπ1,n1

⊗ · · · ⊗ Stπr,nr ,

where πi corresponds to ρi under the unitary local Langlands correspon-
dence, Stπi,ni is the generalized Steinberg representation (and thus cor-
responds to Spρi,ni under unitary local Langlands,) and Q is the upper
triangular parabolic subgroup of GLn(E) whose Levi subgroup is block di-

agonal with block sizes (n1 dim ρ′1, . . . , nr dim ρ′r). The symbol Ind
GLn(E)
Q

denotes normalized parabolic induction. The representations Stρi,ni are
ordered so that the condition of [14, Def. 1.2.4] holds. (As long as this
condition is satisfied, the resulting parabolic induction is independent, up
to isomorphism, of the precise choice of ordering, as well as of the choice
the square root of ` needed to define (| | ◦ det)

1
2 .)
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These properties uniquely characterize the generic local Langlands correspon-
dence. We will need a slight extension of this correspondence to the case of coeffi-
cients in an arbitrary field extension K of Qp. Let (ρ′, N) be a Frobenius-semisimple

Weil–Deligne representation over K, and suppose that it decomposes over K as a
direct sum of representations of the form Spρ′i,ni . Then by Lemma 4.1.5, there

exist characters χi : WE → K
×

such that ρ′i ⊗ χi is defined over Qp. For such
representations the unitary local Langlands correspondence is defined, and we can
take πi to be the representation over K such that πi ⊗ χi corresponds to ρ′i ⊗ χi
via the unitary local Langlands correspondence over Qp.

Stπi,ni = Stπ′i⊗χi ,ni ⊗ (χ−1
i ◦ det).

π(ρ′, N) = (| | ◦ det)−
n−1
2 Ind

GLn(E)
Q Stπ1,n1

⊗ · · · ⊗ Stπr,nr ,

where the Stπi,ni are ordered as before. A priori, this is a representation of GLn(E)

over K, but the argument of [2, Lem. 4.2] shows that π(ρ′, N) is defined over K
itself. Moreover, π(ρ′, N) is independent of the choices of χi.

As was the case over finite extension of Qp, the map (ρ′, N) 7→ π(ρ′, N) is
compatible with twists, and also with arbitrary field extensions.

We extend this definition to a map from representations of GE to admissible
representations of GLn(E) as follows:

4.2.1. Definition. Let ρ be a continuous n-dimensional representation of GE over
K, and let (ρ′, N) be the corresponding Weil–Deligne representation. We define
π(ρ) to be π((ρ′, N)F−ss).

4.3. Segments and the Zelevinski classification. Our next goal is to establish
key properties of the generic local Langlands correspondence (in particular, we will
show that π(ρ′, N) is essentially AIG).

Following [21], we define a segment to be a set of supercuspidal representations
of the form: [π, (| | ◦ det)π, . . . , (| | ◦ det)r−1π], where π is an irreducible su-
percuspidal representation of GLn(E) over K. We think of the segment ∆ given
by [π, (| | ◦det)π, . . . , (| | ◦det)r−1π] as corresponding to the generalized Stein-
berg representation Stπ,r; this gives a bijection between segments and generalized
Steinberg representations. If Stπ,r corresponds to a segment ∆, we will often write
St∆ for Stπ,r. Similarly, we will write Sp∆ for the indecomposable Weil–Deligne
representation Spρ,r, where ρ is the irreducible Weil–Deligne representation corre-
sponding to π under the unitary local Langlands correspondence.

Two segments ∆,∆′ are said to be linked if neither contains the other, and if
∆ ∪ ∆′ is a segment. The segment ∆ precedes ∆′ if ∆ and ∆′ are linked and ∆′

has the form [(| | ◦ det)π, . . . , (| | ◦ det)r−1π] for some π in ∆.

We consider the following condition on a sequence ~S of segments ∆i:

4.3.1. Condition. For all i < j, the segment ∆i does not precede the segment ∆j.

It is clear that any multiset of segments can be given an ordering that satis-
fies Condition 4.3.1. If S is a multiset of segments (henceforth referred to as a
multisegment), then we let π(S) denote the normalized parabolic induction

Ind
GLn(E)
Q St∆1

⊗ · · · ⊗ St∆n
,

where ∆1, . . . ,∆n are the segments in S, taken with multiplicities and ordered so
that Condition 4.3.1 holds, and Q is a suitable, block upper triangular parabolic
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subgroup of GLn(E). By [21, Prop. 6.4], the representation π(S) does not depend,
up to isomorphism, on the order of the collection of segments in S (as long as Con-
dition 4.3.1 holds). Note that if (ρ′, N) is an n-dimensional Frobenius-semisimple
Weil–Deligne representation that decomposes as the direct sum of Sp∆i

for ∆i ∈ S,

then π(ρ′, N) is isomorphic to (| | ◦ det)−
n−1
2 π(S). By [14, 1.2.5], π(S) admits a

unique irreducible quotient Q(S), and Q(S) is the irreducible representation corre-
sponding to (ρ′, N) under the unitary local Langlands correspondence.

4.3.2. Proposition. If S is an multisegment, then every irreducible submodule of
π(S) is generic.

Proof. We will prove a stronger statement — namely, that every irreducible Pn-
submodule of the restriction π(S)|Pn is generic. (In other words, π(S) embeds in its
Kirillov model.) Over the complex numbers this is a result of Jacquet-Shalika [13].
Their argument does not seem to adapt easily to other fields of characteristic zero.
One could reduce this proposition to their result by choosing an isomorphism of
K with C; we instead give an algebraic argument over K that is an adaptation of
the argument of [1, 4.15]. Their argument necessarily uses Ψ± and Φ± functors
that are normalized differently from ours, to avoid unpleasant combinatorial issues.
Therefore, for the purposes of this proof only we take the functors Ψ± and Φ± to
be normalized as in [1], rather than as in section 3.1.

Let S be the multisegment (∆1, . . . ,∆n), where ∆i does not precede ∆j for
any j > i. We can assume without loss of generality that the ∆i are ordered so
that if ∆i = [πi, (| | ◦ det)πi, . . . (| | ◦ det)ri−1πi], where πi is a supercuspidal
representation of GLni(E), then (| | ◦ det)riπi is not contained in any segment ∆j

with j > i; clearly for such an ordering ∆i never precedes a ∆j with j > i. We
proceed by induction on the sum of the lengths of the segments ∆i. Note that the
result is clear for a single segment, as St∆i is absolutely irreducible and generic. Let
S ′ be the multisegment (∆2, . . . ,∆n); by the induction hypothesis every irreducible
submodule of π(S ′) is generic.

Suppose we have an irreducible, non-generic submodule ω of π(S)|Pn . We have
π(S) = St∆1

× π(S ′), where “×” is the product defined in [1, 4.12]. By [1, 4.13a],
we have an exact sequence:

0→ (St∆1
)|Pr1n1

× π(S ′)→ π(S)|Pn → St∆1
× π(S ′)|Pn−r1n1

→ 0.

In particular, ω is a submodule of one of (St∆1
)|Pr1n1

×π(S ′) or St∆1
×π(S ′)|Pn−r1n1

.

Suppose first that ω is contained in (St∆1)|Pr1n1
× π(S ′). By [21, 9.6], St

(k)
∆i

is

zero if k is not divisible by ni, whereas St
(kni)
∆i

is St
∆

(k)
i

, where ∆
(k)
i is the segment

[(| | ◦ det)kπi, . . . , (| | ◦ det)r−1πi]. It follows by [1, 4.13c], that, for i < n1,

(Φ−)i((Φ−)kn1(St∆1
|Pr1n1

)× π(S ′)) = (Φ−)kn1+i(St∆1
|Pr1n1

)× π(S ′),

so that for such i, ((Φ−)kn1(St∆1
|Pr1n1

) × π(S ′))(i) = 0. For i = n1, [1, 4.13c]

shows that the representation (Φ−)(k+1)n1(St∆1
|Pr1n1

) × π(S ′) is instead a proper

submodule of (Φ−)n1((Φ−)kn1(St∆1 |Pr1n1
) × π(S ′)); the quotient of the latter by

the former is isomorphic to St
∆

(k+1)
1

× π(S ′)|Pn−r1n1
.

Since ω is contained in (St∆1)|Pr1n1
× π(S ′), we have ω(i) = 0 for i < n1. As ω

has at least one nonzero derivative it follows that (Φ−)n1−1ω is nonzero. On the
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other hand, we have (Φ−)n1−1ω ⊂ (Φ−)n1−1((St∆1)|Pr1n1
× π(S ′)); by [1, 4.13d] it

follows that (Φ−)n1ω is nonzero.
Then (Φ−)n1ω is a non-generic submodule of (Φ−)n1((St∆1)|Pr1n1

× π(S ′)), and

is therefore a non-generic submodule of either (Φ−)n1((St∆1)|Pr1n1
) × π(S ′), or

St
∆

(1)
1
× π(S ′)|Pn−r1n1

. It is easy to rule out the latter case: by the inductive

hypothesis π(S ′)|Pn−r1n1
has no non-generic submodules; by [21, 5.3] neither does

St
∆

(1)
1
× π(S ′)|Pn−r1n1

.

Thus (Φ−)n1ω is a non-generic submodule of (Φ−)n1((St∆1
)|Pr1n1

) × π(S ′). In

particular ((Φ−)n1ω)(i) = 0 for i < n1; it follows as above that (Φ−)2n1−1ω is
nonzero, and by [1, 4.13d], that (Φ−)2n1ω is nonzero. Then (Φ−)2n1ω is a nonzero
non-generic submodule of (Φ−)n1((Φ−)n1((St∆1

)|Pr1n1
) × π(S ′)), and hence (with

another use of the inductive hypothesis and [21, 5.3]), is a nonzero non-generic
submodule of (Φ−)2n1((St∆1)|Pr1n1

)× π(S ′).
Proceeding in this fashion we find that (Φ−)kn1ω is a nonzero non-generic sub-

module of (Φ−)kn1((St∆1)|Pr1n1
) × π(S ′) for all k, which is impossible since the

latter vanishes for large k.
We have thus ruled out the possibility that ω is contained in (St∆1

)|Pr1n1
×π(S ′).

The other alternative is that ω is contained in St∆1
× π(S ′)|Pn−r1n1

. Suppose this

were the case, and let k be the largest integer such that ω(k) is nonzero. Then
ω(k) is nonzero and embeds in the k-the derivative of St∆1

× π(S ′)|Pn−r1n1
, which

is St∆1
× π(S ′)(k). It follows that the supercuspidal support of ω(k) contains that

of St∆1 ; in particular it contains (| | ◦det)r−1π1. By [1, 4.7b], it follows that
(| | ◦det)rπ1 is contained in the supercuspidal support of π(S); this is impossible
by our choice of ordering on the ∆i. �

4.3.3. Corollary. If π is an admissible representation of GLn over a field K of
characteristic zero, such that π ⊗K K is isomorphic to π(S) for some S satisfy-
ing Condition 4.3.1, then π is essentially AIG. In particular, every representation
π(ρ′, N) over a field K of characteristic zero is essentially AIG.

Proof. It suffices to show that π ⊗K K is essentially AIG, as then the socle of π
must be absolutely irreducible and generic, and π must contain no other irreducible
generic subquotients. But π ⊗K K has the form π(S) for some S, so the previous
proposition shows that the socle of π(S) is a direct sum of irreducible generic
representations. It thus suffices to show that π(S)(n) is one-dimensional; this follows
from the fact that St∆i

is irreducible and generic, together with Theorem 3.1.7 and
Proposition 3.1.6. �

If S and S ′ are two multisegments, we say S ′ arises from S by an elementary
operation if S ′ is obtained from S by replacing a pair of linked segments ∆,∆′ in
S with the pair ∆ ∪ ∆′,∆ ∩ ∆′. We say that S ′ � S if S ′ can be obtained from
S by a sequence of elementary operations. This partial order contains information
about the Jordan–Hölder constituents of a given π(S). In particular, one has the
following:

4.3.4. Theorem ([15], Theorem 5.3). If S is a multisegment, then every Jordan–
Hölder constituent of π(S) is isomorphic to Q(S ′) for some S ′ � S, and each such
Q(S ′) appears with positive multiplicity in π(S).
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In fact, the relationship between π(S) and π(S ′) is considerably stronger than
the theorem above suggests. We will construct maps of π(S ′) into π(S) for all
S ′ � S, and show that any nonzero such map is an embedding, and unique up to
scaling. Before we do so, however, we need a preliminary result about the partial
order �. Let S be a multisegment, and suppose that S ′ is obtained from S by a
single elementary operation. We say this elementary operation is primitive if there
is no multisegment S ′′ with S ′ � S ′′ � S other than S ′′ = S and S ′′ = S ′.

4.3.5. Lemma. Let S be a multisegment, let ∆ and ∆′ be two linked segments in
S, such that ∆ precedes ∆′. Suppose that the elementary operation that replaces ∆
and ∆′ with ∆ ∩∆′, ∆ ∪∆′ is primitive. Then there exists an ordering on S that
satisfies Condition 4.3.1, and in which ∆′ and ∆ appear consecutively.

Proof. Choose an ordering on S that satisfies Condition 4.3.1, and that minimizes
the number of segments that appear between ∆′ and ∆. Suppose there is a segment
∆′′ between ∆ and ∆′.

By our assumption on the chosen ordering, the ordering on S obtained by moving
∆′′ after ∆ fails to satisfy Condition 4.3.1. There must thus be a segment ∆′′′ that
appears between ∆′′ and ∆ in the chosen ordering, for which ∆′′′ precedes ∆′′.
Similarly, ∆′′ must precede a segment that appears between ∆′ and ∆′′ in the
chosen ordering.

Applying these considerations repeatedly we obtain a chain:

∆′ = ∆0,∆1, . . . ,∆r = ∆

such that each ∆i precedes ∆i−1, and appears after ∆i−1 in the chosen order on
S. Moreover, since ∆ precedes ∆′, it follows that ∆ precedes ∆1. The elementary
operation on S that replaces ∆ and ∆′ with ∆ ∩∆′ and ∆ ∪∆′ then factors as:

(1) Replace ∆ and ∆1 with ∆ ∪∆1 and ∆ ∩∆1.
(2) Replace ∆′ and ∆ ∪∆1 with ∆ ∪∆1 ∪∆′ and ∆′ ∩ (∆ ∪∆1). (Note that

∆ ∪∆1 ∪∆′ is equal to ∆ ∪∆′.)
(3) Replace ∆′ ∩ (∆∪∆1) and ∆∩∆1 with [∆′ ∩ (∆∪∆1)]∪ [∆∩∆1] (which

is equal to ∆1), and [∆′ ∩ (∆∪∆1)]∩ [∆∩∆1] (which is equal to ∆∩∆′.)

In particular the elementary operation that replaces ∆ and ∆′ with ∆ ∩ ∆′ and
∆ ∪∆′ is not primitive, as required. �

4.3.6. Proposition. Suppose that S and S ′ are multisegments, and that S ′ � S.
Then HomK[GLn(E)](π(S ′), π(S)) is one-dimensional over K, and every nonzero

map π(S ′)→ π(S) is an embedding.

Proof. As π(S ′) and π(S) are essentially AIG, it suffices to show that there exists
a nonzero map π(S ′) → π(S). Moreover, we may reduce to the case where S ′
and S differ by a single, primitive, elementary operation. Let S ′ differ from S by
replacing ∆,∆′ with ∆ ∪∆′,∆ ∩∆′, where ∆′ precedes ∆. By the above lemma
we may choose an ordering on S that satisfies Condition 4.3.1 in which ∆ and ∆′

are adjacent. We obtain from this ordering on S an ordering on S ′ in which ∆∩∆′

replaces ∆ and ∆ ∪ ∆′ replaces ∆′; this ordering also satisfies Condition 4.3.1.
Let S0 be the multisegment consisting of the segments that appear in S before ∆
and ∆′ in this chosen ordering, and let S1 be the multisegment consisting of the
segments that appear in S after ∆ and ∆′.
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By [15, Prop. 4.3], we find that π(∆∪∆′,∆∩∆′) embeds in π(∆,∆′). But π(S ′)
is isomorphic to

IndGLn
P π(S0)⊗ π(∆ ∪∆′,∆ ∩∆′)⊗ π(S1),

for P a suitable block upper triangular parabolic subroup of GLn, and π(S) is
isomorphic to

IndGLn
P π(S0)⊗ π(∆,∆′)⊗ π(S1).

The embedding of π(∆ ∪∆′,∆ ∩∆′) in π(∆,∆′) thus gives rise to a nonzero map
of π(S ′) into π(S), as required. �

Moreover, the embeddings of π(S ′) into π(S) constructed above descend to fields
of definition:

4.3.7. Proposition. Let π and π′ be admissible representations over K, and suppose
there are multisegments S and S ′, with S ′ � S, such that π ⊗K K is isomorphic
to π(S) and π′ ⊗K K is isomorphic to π(S ′). Then HomK[GLn(E)](π

′, π) is one-
dimensional over K, and every nonzero map π′ → π is an embedding.

Proof. As π and π′ are essentially AIG, HomK[GLn(E)](π
′, π) is either zero or one-

dimensional over K, and every nonzero map π′ → π is an embedding. It thus
suffices to construct a nonzero map from π′ to π. Let φ : π′ ⊗K K → π ⊗K K
be an embedding. By Lemma 3.2.5, a scalar multiple of φ descends to the desired
embedding of π′ in π. �

We immediately deduce:

4.3.8. Corollary. Let ρ be a continuous n-dimensional representation of GE over K,
and let π be an admissible representation of GLn(E) over K, such that π ⊗K K is
isomorphic to π(ρ⊗K K). Then π is isomorphic to π(ρ).

The above results allow us to establish some useful facts about essentially AIG
envelopes in characteristic zero, that will be useful in the proof of Proposition 6.2.8.

4.3.9. Theorem. Let π be an irreducible generic representation of GLn(E) over an
algebraically closed field K of characteristic zero, and let π1, . . . , πr be the supercus-
pidal support of π, ordered so that Condition 4.3.1 holds (when the πi are treated
as one-element segments.) Then the parabolic induction

Ind
GLn(E)
P π1 ⊗ · · · ⊗ πr

is an essentially AIG envelope of π. (Here P = MU is a suitable block upper tri-
angular parabolic subgroup of GLn(E), with Levi subgroup M and unipotent radical
U .)

Proof. By Corollary 4.3.3, the representation

Ind
GLn(E)
P π1 ⊗ · · · ⊗ πr

is essentially AIG. Its socle is thus an irreducible generic representation with the
same supercuspidal support as π, and is therefore isomorphic to π, by Proposi-
tion 3.2.12. It thus remains to show that any essentially AIG representation W
whose socle is isomorphic to π embeds in

Ind
GLn(E)
P π1 ⊗ · · · ⊗ πr.
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Note that as any map of essentially AIG representations is injective, it suffices to
construct a map:

W → Ind
GLn(E)
P π1 ⊗ · · · ⊗ πr.

By Frobenius Reciprocity, this is equivalent to constructing a map:

ResPGLn(E)W → π1 ⊗ · · · ⊗ πr.

As every Jordan–Hölder constituent of W has supercuspidal support {π1, . . . , πr}
by Corollary 3.2.14, it follows that every Jordan–Hölder constituent of ResPGLn(E)W
is a supercuspidal representation of M , and at least one of these Jordan–Hölder
constituents is isomorphic to π1 ⊗ · · · ⊗ πr. By Theorem 3.2.13, π1 ⊗ · · · ⊗ πr only
admits nontrivial extensions (as an M -representation) with irreducible representa-

tions isomorphic to π1⊗ · · ·⊗πr. Thus ResPGLn(E)W admits a quotient isomorphic
to π1 ⊗ · · · ⊗ πr and the result follows. �

4.3.10. Corollary. Let W be an essentially AIG representation of GLn(E) over a
field K of characteristic zero. Then W has finite length.

Proof. Let W ′ be the essentially AIG envelope of soc(W ). By the preceding lemma,
W ′ ⊗K K has finite length, so W ′, and hence W , has finite length. �

It will be useful later, in the proof of Proposition 6.2.8, to have control over the
multiplicities of Jordan–Hölder constituents of essentially AIG representations. We
observe:

4.3.11. Corollary. Let W be an essentially AIG representation of GL2(E) or
GL3(E) over a field K of characteristic zero. Then no Jordan–Hölder constituent
of W appears with multiplicity greater than one.

Proof. Theorem 4.3.9 above shows that W embeds in some parabolic induction

Ind
GLn(E)
P π1 ⊗ · · · ⊗ πr

with each πi cuspidal. Zelevinski’s computations of multiplicities of the Jordan–
Hölder constituents of such inductions ([21, §11]) shows that when r ≤ 3, each
Jordan–Hölder constituent of such an induction occurs with multiplicity one. The
result follows immediately. �

4.3.12. Remark. In contrast to the preceding proposition, if n = 4, and if we
choose a Levi subgroup of the form (E×)4 of GL4(E),

Ind
GLn(E)
P | |2 ⊗ | | ⊗ | | ⊗1

has a Jordan–Hölder constituent that appears with multiplicity two.

4.4. Reduction of π(S). We now turn to integrality considerations. We continue
to suppose that O is a discrete valuation ring, with residue field K of characteristic
zero, uniformizer $, and field of fractions K. We say an admissible representation
π over K is O-integral if it contains a $-adically separated O-lattice.

4.4.1. Lemma. Let π be an absolutely irreducible supercuspidal representation of
GLn(E) over K. Then π is O-integral if and only if its central character takes
values in O×. In this case there is a $-adically separated GLn(E)-stable O-lattice
π◦ in π, unique up to homothety, such that the reduction π◦/$π◦ is absolutely
irreducible and supercuspidal.
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Proof. Clearly if π is O-integral, then its central character takes values in O×. Let
K′ be a finite Galois extension of K, such that there exists a character χ : E× → K×
whose nth power is the central character of π. If the central character of π takes
values in O×, then χ takes values in (O′)×, where O′ is the integral closure of O
in K′.

The central character of π ⊗ χ−1 ◦ det is trivial. By [17, II.4.9], π ⊗ χ−1 ◦ det
is defined over a finite extension F of Qp, contained in K′. That is, there exists an
admissible representation π0 over F such that π0⊗FK′ is isomorphic to π⊗χ−1◦det.
As O′ has residue characteristic zero, F is contained in O′. Thus π◦ := (π0⊗FO′)⊗
(χ ◦det) is a $′-adically separated O′-lattice in π⊗KK′, where $′ is a uniformizer
of O′.

The reduction modulo $′ of π◦ is (π0⊗F K ′)⊗ (χ◦det), where K ′ is the residue
field ofO′ and χ is the reduction of χ modulo $′. In particular π◦/$π◦ is absolutely
irreducible and supercuspidal (and therefore π◦ is unique up to homothety.) It
follows that π◦ is stable under the action of Gal(K′/K), and hence descends to a
GLn(E)-stable lattice in π (which must also be unique up to homothety.) �

Given an O-integral absolutely irreducible supercuspidal representation π of
GLn(E) over K, we can thus define π to be the reduction mod $ of any $-adically
separated GLn(E)-stable O-lattice in π. For a segment ∆ = [π, (| | ◦ det)π, . . . , (| |
◦det)r−1π], let ∆ be the segment [π, (| | ◦ det)π, . . . , (| | ◦ det)r−1π]. If S is a
multiset of integral segments, define S to be the multisegment consisting of the
segments ∆i for ∆i ∈ S.

4.4.2. Lemma. Let π be an O-integral, absolutely irreducible supercuspidal repre-
sentation of GLn(E) over K, and let ∆ be the segment [π, (| | ◦det)π, . . . , (| |
◦ det)r−1π]. There is a $-adically separated, GLn(E)-stable O-lattice St◦∆ in St∆,
unique up to homothety, and St◦∆/$St◦∆ is isomorphic to St∆.

Proof. This follows by precisely the same argument as in Lemma 4.4.1. �

If we want to consider the reduction mod $ of representations of the form π(S),
then the situation is more complicated, as π(S) typically contains more than one
homothety class of lattices. However, Theorem 3.3.2 allows us to single out a
preferred such homothety class.

4.4.3. Proposition. If S is a multisegment over K that are O-integral, then there
is an O-lattice π(S)◦ in π(S), unique up to homothety, such that π(S)◦/$π(S)◦ is
essentially AIG. Moreover, π(S)◦/$π(S)◦ is isomorphic to π(S).

Proof. Theorem 3.3.2 shows that π(S)◦ exists and is unique up to homothety. Let
∆1, . . . ,∆r be the segments in S, and fix for each i a $-adically separated O-lattice
Li in St∆i . Then Li/$Li is isomorphic to St∆i

. Recall that

π(S) = Ind
GLn(E)
P St∆1 ⊗ · · · ⊗ St∆r ,

and hence contains the integral induction Ind
GLn(E)
P L1 ⊗ · · · ⊗ Lr as a lattice.

The mod $ reduction of this lattice is clearly isomorphic to π(S), which is es-

sentially AIG. Thus Ind
GLn(E)
P L1 ⊗ · · · ⊗ Lr is homothetic to π(S)◦, and hence

π(S)◦/$π(S)◦ is indeed isomorphic to π(S), as claimed. �

4.4.4. Corollary. Let K′ be a finite Galois extension of K, and let O′ be the integral
closure of O in K′. Let π be an admissible representation of GLn(E) over K, and
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let S be a multisegment consisting of O′-integral segments over K′. Suppose that
π ⊗K K′ is isomorphic to π(S). Then π is O-integral, and there is a $-adically
separated O-lattice π◦ in π, unique up to homothety, such that π◦/$π◦ is essentially
AIG. Moreover, π◦/$π◦ ⊗K K ′ is isomorphic to π(S).

Proof. It suffices to show that the lattice π(S)◦ constructed in the previous propo-
sition is stable under the action of Gal(K′/K). This is clear since π(S)◦ is unique
up to homothety. �

4.5. Compatibility with specialization. We now use the results of the previous
sections to understand the relationship between π(ρ⊗O K) and π(ρ⊗O K), where
ρ : GE → GLn(O) is a continuous Galois representation. The key idea is a geometric
interpretation of the partial order � on multisegments, due to Zelevinski [22].

Let V = ⊕πVπ be a finite-dimensional vector space over a field F , “graded”
by the set of isomorphism classes of irreducible supercuspidal representations of
GLm(E) over K, for all m. We denote the automorphisms of V as a graded F -vector
space by Aut(V ), and let End+(V ) denote the space of F -linear endomorphisms of
V that take Vπ to V(| |◦ det)π for all π. Let NV be an element of End+(V ); it is a
nilpotent endomorphism of V .

We construct a bijection between the set of isomorphism classes of pairs (V,NV )
and the set of multisegments S over K, as follows: For any segment ∆ = [π, (| |
◦ det)π, . . . , (| | ◦det)r−1π], let V∆,F be the vector space defined by (V∆,F )π′ = F
if π′ is in ∆, and zero otherwise. We define an endomorphism N∆,F of V∆,F that is
an isomorphism (V∆,F )(| |◦ det)iπ → (V∆,F )(| |◦ det)i+1π for 0 ≤ i < r − 1, and zero
otherwise.

For a multisegment S, we define:

(VS,F , NS,F ) =
⊕
∆∈S

(V∆,F , N∆,F ).

It is easy to see (for instance, by the structure theory of graded F [N ]/Nr-modules)
that the association S 7→ (VS,F , NS,F ) yields a bijection between multisegments
and isomorphism classes of pairs (V,NV ).

4.5.1. Theorem ([22, §2]). Let S ′ and S be multisegments over K. Then S ′ � S if
and only if VS,F is isomorphic to VS′,F as a graded F -vector space, and NS,F is in

the closure of the orbit of NS′,F under the action of Aut(VS′,F ) on End+(VS′,F ).

As a result, if S ′ � S, then, for all i, the rank of N i
S,F is less than or equal to

that of N i
S′,F . These ranks are equal for all i if, and only if, S ′ = S.

If (ρ′, N) is a Frobenius-semisimple Weil–Deligne representation over K, and

if S is the multisegment such that π(S) = (| | ◦det)
n−1
2 π(ρ′, N), then the pair

(VS,K, NS,K) can be described easily in terms of (ρ′, N). Indeed, one has:

4.5.2. Lemma. For any supercuspidal representation π of GLm(E) over K, there
is a natural isomorphism:

(VS,K)π
∼−→ HomK[WE ](ρ, ρ

′),

where ρ is the absolutely irreducible representation of WE that corresponds to π
under the unitary local Langlands correspondence. Moreover, under these isomor-
phisms, the map

NS,K : (VS,K)π → (VS,K)(| |◦ det)π
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is identified with the map

HomK[WE ](ρ, ρ
′)→ HomK[WE ](| | ⊗ρ, ρ

′)

induced by N .

Proof. This is true by construction if (ρ′, N) is indecomposable, and extends to the
general case by taking direct sums. �

Zelevinski’s result strongly suggests a connection between the Zelevinski partial
order and reduction of Weil–Deligne representations. In order to make this con-
nection precise we need a compatibility between the reduction mod $ and local
Langlands:

4.5.3. Lemma. If ρ′ is absolutely irreducible, and π ⊗K K corresponds to ρ′ ⊗K
K under the unitary local Langlands correspondence, then π ⊗K K and ρ′ ⊗K K
correspond under the unitary local Langlands correspondence.

Proof. We first translate this into a statement in terms of the generic local Lang-
lands correspondence. From this point of view the representation π(ρ′) is isomorphic

to (| | ◦det)−
n−1
2 π, and we must show that π(ρ′) is isomorphic to (| | ◦ det)−

n−1
2 π.

There is a finite extension K′ of K, and a character χ : WE → (K′)×, such that
ρ′ ⊗ χ is defined over Qp; as ρ′ is integral χ takes values in (O′)×, where O′ is
the integral closure of O in K ′. In particular, there is a finite extension K0 of Qp,
contained in K′, and a representation ρ0 : WE → GLn(K0), such that ρ0 ⊗K0 K′ is
isomorphic to ρ′⊗χ. If we letK ′ be the residue field ofO′, and let χ be the reduction
mod $′ of the character χ, then K0 is contained in K ′ and ρ0⊗K0

K ′ is isomorphic

to ρ′ ⊗ χ. It follows that π(ρ′)⊗ χ is isomorphic to (| | ◦ det)−
n−1
2 π(ρ0)⊗ χ.

Let π0 = (| | ◦det)
n−1
2 π(ρ0). As the generic local Langlands correspondence is

compatible with twists and base change, the representation π ⊗ χ is isomorphic to

π0⊗K0K′. Thus π⊗χ is isomorphic to π0⊗K0K
′, and hence to (| | ◦det)

n−1
2 π(ρ′)⊗

χ. The result follows. �

If S is obtained from a multisegment S by reduction mod$, the pairs (VS,F , NS,F )
and (VS,F , NS,F ) are related by (VS,F )π = ⊕π′(VS,F )π′ , where the sum is over π′

with π′ = π.
Now let (ρ′, N) be a Weil–Deligne representation over O such that the restriction

of ρ′⊗OK to IE is a direct sum of absolutely irreducible representations of IE over
K, and such that ρ′ ⊗O K is a direct sum of absolutely irreducible representations
ρ′i of WE . (We can always arrange this by replacing K with a finite extension.) Let
S be the segment associated to (ρ′, N)⊗O K; we have

(VS,K)πi = HomK[WE ](ρi, ρ
′ ⊗O K),

where πi corresponds to ρi under unitary local Langlands. We also consider the
K-vector-space VS,K .

Let (ρ′, N) be the Weil–Deligne representation (ρ′, N) ⊗O K, and let S ′ be the
multisegment associated to (ρ′, N)F−ss. Our goal is to compare S ′ to S; we will do
this by comparing VS,K to VS′,K . The key difficulty is to construct an O-lattice in
VS,K, stable under NS,K, whose reduction mod $ is isomorphic to VS′,K .

By Lemma 4.1.1 there is a finite extensionK0 of Qp and representations τ1, . . . , τn
of IE over K0, each in its own orbit under conjugation by Φ, such that the restriction
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ρ′ ⊗O K is a direct sum of Φ-conjugates of the τi, each with multiplicity one. For
each i, let Li be the O-module HomO[IE ](τi ⊗K0

O, ρ′).
For each j such that the restriction of ρ′j to IE contains a copy of τi ⊗K0

K, the
restriction map

HomK[WE ](ρ
′
j , ρ
′)→ HomK[IE ](τi ⊗K0

K, ρ′)

is an injection. We thus obtain an isomorphism:

Li ⊗O K
∼−→ HomK[IE ](τi ⊗K0 K, ρ′)

∼−→
⊕
j

HomK[WE ](ρ
′
j , ρ
′),

where the latter sum is over those j such that the restriction of ρ′j to IE contains a

copy of τi ⊗K0
K. This condition is satisfied if, and only if, the restriction of ρ′j to

IE contains a copy of τi⊗K0
K. We can thus view Li as a sublattice of ⊕j(VS,K)πj ,

where the sum is over those j such that the restriction of ρ′j to IE contains a copy
of τi ⊗K0

K. For any such j, let Lπj be the intersection Li ∩ (VS,K)πj .
In fact, this gives a direct sum decomposition of Li. To see this, first observe:

4.5.4. Lemma. Let M be a free O-module of finite rank, and Ψ is an O-linear
endomorphism of M that acts semisimply on M ⊗O K. Suppose that all of the
eigenvalues of Ψ ⊗O K lie in K, and for each eigenvalue λ̃ of Ψ ⊗O K, let Mλ̃ be

the intersection of M with the λ̃-eigenspace of Ψ⊗O K. Then M decomposes as

M = ⊕λMλ,

where λ runs over the eigenvalues of Ψ : M/$M →M/$M and Mλ is the sum of

Mλ̃ for those λ̃ congruent to λ modulo $. The endomorphism Φ acts on Mλ/$Mλ

as the product of λ with a unipotent endomorphism of Mλ/$Mλ.

Proof. Let P (t) be the minimal polynomial of Ψ, and consider M as an O[t]/P (t)-
module on which t acts by Ψ. The connected components of SpecO[t]/P (t) are in
bijection with the roots λ of the mod $ reduction Ψ of Ψ; these are the eigenvalues
of Ψ. Thus, considered as a sheaf on SpecO[t]/P (t), M decomposes as a direct sum
of sheaves Mλ supported on each connected component. On each Mλ, the minimal
polynomial of Ψ is a power of t− λ, so λ−1Ψ is unipotent on Mλ. �

4.5.5. Lemma. We have a direct sum decomposition: Li = ⊕jLπj , where the sum
is over those j such that the restriction of ρ′j to IE contains a copy of τi ⊗K0 K.

Proof. Let r be the size of the orbit of τi under the conjugation action of Φ, and
fix an isomorphism τΦr

i
∼−→ τi. This isomorphism induces an endomorphism Ψ of

HomO[IE ](τi ⊗K0
O, ρ′) via

HomO[IE ](τi ⊗K0
O, ρ′) Φr→ HomO[IE ](τ

Φr

i ⊗K0
O, ρ′) ∼−→ HomO[IE ](τi ⊗K0

O, ρ′).

Let ρ′j be an absolutely irreducible summand of ρ′⊗O K whose restriction to IE
contains a copy of τi ⊗K0 K. This copy is unique, and yields a restriction map:

HomK[WE ](ρ
′
j , ρ
′ ⊗O K)→ HomK[IE ](τi, ρ

′ ⊗O K).

This restriction map is injective, and its image can be characterized in terms of Ψ.
In particular, the endomorphism:

HomK[IE ](τi⊗K0
K, ρ′j)

Φr→ HomK[IE ](τ
Φr

i ⊗K0
K, ρ′j)

∼−→→HomK[IE ](τi⊗K0
K, ρ′j).
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is an endomorphism of one-dimensional K vector spaces and is thus given by a
scalar λ̃; it follows by Lemma 4.1.2 that ρ′j is determined by λ̃ and τi, and that the
image of the map:

HomK[WE ](ρ
′
j , ρ
′ ⊗O K)→ HomK[IE ](τi, ρ

′ ⊗O K)

is the λ̃-eigenspace of Ψ.
Now let ρj be an absolutely irreducible summand of ρ′ ⊗O K whose restriction

to IE contains a copy of τi ⊗K0
K, and let πj be the corresponding admissible

representation. Then the endomorphism Ψ of HomK[IE ](τi⊗K0
K, ρi) is a scalar λ,

and, by the same reasoning as above, (VS,K)πj is the sum of the λ̃-eigenspaces of

Ψ for those λ̃ congruent to λ modulo $. Thus, by the preceding lemma, Lπj is a
direct summand of Li. �

Let L be the lattice in VS,K defined by:

L = ⊕πLπ.
Note that as NS,K preserves each Li, it also preserves L.

4.5.6. Lemma. There is a natural isomorphism L/$L
∼−→ VS′,K . Moreover, the

endomorphism NS,K of L reduces to NS′,K under this isomorphism.

Proof. Recall that S ′ is the multisegment associated to (ρ′, N)F−ss. Let ρi be
any absolutely irreducible Jordan–Hölder constituent ρi of (ρ′)ss, corresponding to
an admissible representation πi under unitary local Langlands. Then (VS′,K)πi is
equal to HomK[WE ](ρi, (ρ

′)ss). It thus suffices to construct, for each i, a natural
isomorphism of (L/$L)πi with (VS′,K)πi .

Let τ be an absolutely irreducible representation of IE over K0 such that ρi
contains τ ⊗K0 K; let r be the order of the orbit of τ under conjugation by Φ, and
fix an isomorphism of τ with τΦr . Let λ ∈ K× be the scalar giving the action of
Φr on Homk[IE ](τ ⊗K0

K, ρi|IE ) under this identification.
We also have an action of Φr on HomK[IE ](τ⊗K0

K, (ρ′)ss|IE ); this yields a linear

endomorphism Ψ
ss

of HomK[IE ](τ ⊗K0
K, (ρ′)ss|IE ). The natural map

(VS′,K)πi → HomK[IE ](τ ⊗K0
K, (ρ′)ss|IE )

identifies (VS′,K)πi with the λ-eigenspace of Ψ
ss

.

On the other hand, the previous lemma shows that Lπi is the sum of the λ̃-
eigenspaces of Ψ on HomO[IE ](τ ⊗K0 O, ρ′|IE ); it follows that Lπi/$Lπi is the
λ-generalized eigenspace of Ψ/$Ψ on HomK[IE ](τ ⊗K0

K, ρ′|IE ).

Finally, observe that Ψ
ss

is the semisimplification of Ψ/$Ψ, so that the λ-

generalized eigenspace of Ψ/$Ψ is equal to the λ-eigenspace of Ψ
ss

, and hence
to (VS′,K). One verifies easily that these identifications are all compatible with the
monodromy operators. �

By Theorem 4.5.1 it follows that for S and S ′ as in Lemma 4.5.6, we must have
S � S ′. Moreover, we have equality if, and only if, the ranks of the operators N i

S,K
and N i

S′,K agree for all i. We are thus finally in a position to prove:

4.5.7. Theorem. Let ρ : GE → GLn(O) be a continuous Galois representation, and
(ρ′, N) the Frobenius-semisimplification of the corresponding Weil–Deligne repre-
sentation. Then there is a $-adically separated O-lattice π(ρ)◦ in π(ρ⊗OK), unique



44 MATTHEW EMERTON AND DAVID HELM

up to homothety, such that π(ρ)◦/$π(ρ)◦ is essentially AIG, and an embedding

π(ρ)◦/$π(ρ)◦ → π(ρ),

where ρ = ρ⊗O K. This embedding is an isomorphism if, and only if, the K-rank

of N
i

equals the K-rank of (N ⊗O K)i for all i.

Proof. Let (ρ′, N) be the reduction mod $ of (ρ′, N). Then, by Lemmas 4.1.8
and 4.1.9, (ρ′, N)F−ss is the Frobenius-semisimplification of the Weil–Deligne rep-
resentation attached to ρ.

Over a finite extension K′ of K, we may assume that ρ′ splits as a direct sum of
absolutely irreducible representations of WE , and similarly for its restriction to IE .
The corresponding statements then hold for the semisimplification of ρ′.

Let O′ be the integral closure of O in K′, and let K ′ be its residue field. Let
S and S ′ be the segments associated to (ρ′, N)⊗O O′ and (ρ′, N)F−ss ⊗K K ′. We
have shown that S � S ′.

On the other hand, we have π(ρ ⊗O K′) is isomorphic to (| | ◦det)−
n
2 π(S); by

Corollary 4.4.4 there is, up to homothety, a unique lattice π(ρ)◦ in π(ρ⊗O K) such
that π(ρ)◦/$π(ρ)◦ is essentially AIG; moreover one has an isomorphism

[π(ρ)◦/$π(ρ)◦]⊗K K ′
∼−→ π(S).

As π(ρ ⊗K K ′) is isomorphic to (| | ◦det)−
n
2 π(S ′), and S � S ′, we have an

embedding of [π(ρ)◦/$π(ρ)◦] ⊗K K ′ in π(ρ ⊗K K ′). This embedding descends to
K by Proposition 4.3.7.

Finally, this embedding is an isomorphism if, and only if, S is equal to S ′. This
is true if, and only if, the ranks of N i

S,K and N i
S′,K agree for all i; it is easy to

see this is equivalent to requiring that the ranks of (N ⊗O K)i and N
i

agree for
all i. �

4.5.8. Remark. An alternative approach to some of the above questions is given
in [3], particularly Proposition 3.11. Chenevier constructs, for each Bernstein com-
ponent B of the category of smooth representations of GLn(E), a pseudocharacter
of WE valued in the algebra of functions on B that “is compatible with the local
Langlands correspondence”, in the sense that if one specializes this pseudochar-
acter at any irreducible representation of GLn(E) that lies in B, one obtains the
pseudocharacter of the semisimplification of the corresponding representation of
WE . From our perspective, this result allows us to deduce that the supercuspidal
support of π(ρ) is the reduction modulo $ of the supercuspidal support of π(ρ),
but it does not contain any information about the monodromy operator.

In cases where the embedding arising in the previous proposition is an isomor-
phism, we say that ρ is a minimal lift of ρ. (Such lifts are lifts of ρ in which the
ramification arising from the monodromy operator is as small as possible.) We will
need this language in a broader context than that of representations over discrete
valuation rings:

4.5.9. Definition. Let A be a reduced complete Noetherian local ring with finite
residue field k of characteristic p, that is flat over W (k), and let ρ be a continuous
representation of GE into GLn(A). Let (ρ′, N) be the associated Weil–Deligne

representation over GLn(A[
1

p
]). If p is a characteristic zero prime of A, and a is a
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prime of A whose closure contains p, we say ρa is a minimal lift of ρp if, for all i,
the rank of (N ⊗A κ(a))i is equal to the rank of (N ⊗A κ(p))i.

Note that, for any given a, the locus of p such that ρa is a minimal lift of ρp is

Zariski open in the closure of a in SpecA[
1

p
].

5. The local Langlands correspondence in characteristic p

5.1. Definition and basic properties. We now construct an analogue of the
Breuil-Schneider local Langlands correspondence for representations of GE over
finite fields of characteristic p. Such a correspondence should satisfy an analog
of Theorem 4.5.7 for representations over discrete valuation rings of characteristic
zero and residue characteristic p. Throughout this section we fix a finite field k of
characteristic p, and letO denote a complete discrete valuation ring of characteristic
zero with field of fractions K and finite residue field k′ containing k.

Our starting point is the semisimple mod p local Langlands correspondence of
Vigneras [20]. This is a map ρ 7→ πss(ρ) that associates to each n-dimensional
irreducible representation ρ : WE → GLn(Fp) an irreducible supercuspidal repre-

sentation πss(ρ) over Fp. If q denotes the order of the residue field of E, and if
k′ is a finite field of characteristic p containing a square root of q, then this cor-
respondence is defined over k′; that is, if ρ is defined over k′, then π(ρ) descends
uniquely to a representation over k′. Moreover, the correspondence is compatible
with “reduction mod p” in the following sense:

5.1.1. Theorem ([20, Thm. 1.6]). Suppose that k′ contains a square root of q. Let
(ρ,N) be an n-dimensional Frobenius-semisimple Weil–Deligne representation of
WE over O, and let π be the irreducible representation of GLn(E) over K attached
to (ρ,N) ⊗O K by the unitary local Langlands correspondence. Let ρ = ρ ⊗O Fp,
and let

ρss = ρ1 ⊕ · · · ⊕ ρr
be a decomposition of ρss into irreducible representations of WE over Fp. Then π
is O-integral, and for any GLn(E)-stable O-lattice L in π, and any Jordan–Hölder
constituent π of L⊗O Fp, one has:

scs(π) = {πss(ρ1) . . . πss(ρr)}.

5.1.2. Corollary. Suppose that k′ contains a square root of q. Let ρ : GE → GLn(k)
be a Galois representation, and let ρ : GE → GLn(O) be a lift of ρ ⊗k k′. Then
π(ρ ⊗O K) is O-integral, and for any O-lattice L in π(ρ ⊗O K), the supercuspidal
support of any Jordan–Hölder constituent π of L⊗O Fp depends only on ρ.

Proof. Let (ρ′, N) be the Frobenius-semisimple Weil–Deligne representation over
K attached to ρ. Then ρ′ is O-integral and the semisimplification of its reduction
mod p depends only on ρ. By the definition of the Breuil-Schneider local Langlands
correspondence, π(ρ ⊗O K) is (up to a twist by an integral character) a parabolic
induction of representations that correspond (via unitary local Langlands) to ir-
reducible summands of ρ′ ⊗O K. These summands are integral, so π(ρ ⊗O K) is

as well, and so is π(ρ ⊗O K). Moreover, (up to a twist by (| | ◦det)
n−1
2 ), every

Jordan–Hölder constituent of π(ρ ⊗O K) corresponds via unitary local Langlands
to a Weil–Deligne representation of the form (ρ′⊗O K, N ′) for some choice of mon-
odromy operator N ′.
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Now if L is a lattice in π(ρ ⊗O K), and π is a Jordan–Hölder constituent of
L⊗O Fp, then there exists a Jordan–Hölder constituent of π(ρ⊗O K), and a lattice
L′ in this constituent, such that π is a Jordan–Hölder constituent of the mod p
reduction of L′. The result thus follows from Theorem 5.1.1. �

Let L be a lattice in π(ρ⊗OK), where ρ : GE → GLn(O) is a lift of ρ⊗kk′ for some
ρ : GE → GLn(k). As L⊗OFp has a unique generic Jordan–Hölder constituent, and
up to isomorphism there is only one irreducible generic representation of G with
given supercuspidal support, the generic Jordan–Hölder constituent of L ⊗O Fp
likewise depends only on ρ.

We will also need to control the length of L/$L, for lattices L of the sort
appearing in the Corollary above. We first show:

5.1.3. Proposition. Let P = MU be a parabolic subgroup of GLn(E), and let
π = π1 ⊗ · · · ⊗ πr be an irreducible representation of M . There exists an integer c,

depending only on n, such that the length of Ind
GLn(E)
P π1 ⊗ · · · ⊗ πr is bounded

above by c.

Proof. This follows easily from [17], Proposition III.1.12. �

5.1.4. Proposition. Let ρ : GE → GLn(k) be a Galois representation, let ρ : GE →
GLn(O) be a lift of ρ ⊗k k′, and let L be a GLn(E)-stable lattice in π(ρ ⊗O K).
There exists an integer c, depending only on n, such that the length of L/$L is
bounded above by c.

Proof. The length of L/$L is independent of L. As π(ρ ⊗O K) is a parabolic
induction of a tensor product of integral Steinberg representations, we can write

π(ρ⊗O K) = Ind
GLn(E)
P Stπ1,n1

⊗ · · · ⊗ Stπi,ni ,

where the πi are integral cuspidal representations of GLn. For each i, Stπi,ni arises
as the normalized parabolic induction of a tensor product of the form:

(| | ◦ det)−
ni−1

2 πi ⊗ · · · ⊗ (| | ◦ det)
ni−1

2 πi.

Thus there is a parabolic induction of a tensor product of irreducible, integral,
cuspidal representations π′j (all of which are twists of the πi) that maps surjectively
onto π(ρ ⊗O K); if we choose a lattice Lj inside each of the π′j , the parabolic
induction of the tensor product of the Lj maps into a lattice L in π(ρ⊗OK). We then
have a surjection of the parabolic induction of the tensor product of Lj/$Lj onto

L/$L. As each π′j is cuspidal, so is Lj/$Lj ; as (Lj/$Lj)
(n) is one-dimensional we

must have Lj/$Lj irreducible for all j. Thus the length of L/$L is bounded above
by the maximum length of a parabolic induction of an irreducible representation of
a Levi subgroup of GLn(E), and the desired result follows by Proposition 5.1.3. �

We can now prove the main result of this subsection.

5.1.5. Theorem. There is a map ρ 7→ π(ρ) from the set of isomorphism classes
of continuous representations GE → GLn(k) to the set of isomorphism classes of
finite length admissible smooth GLn(E)-representations on k-vector spaces, uniquely
determined by the following three conditions:

(1) For any ρ, the associated GLn(E)-representation π(ρ) is essentially AIG.
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(2) If K is a finite extension of Qp, with ring of integers O, uniformizer $, and
residue field k′ containing k, ρ : GE → GLn(O) is a continuous represen-
tation lifting ρ ⊗k k′, and L is a GLn(E)-invariant O-lattice in π(ρ) such
that L/$L is essentially AIG, then there is a GLn(E)-equivariant embed-
ding L/$L ↪→ π(ρ)⊗k k′. (Note that Theorem 3.3.2 shows that such an L
always exists, and that it is unique up to homethety.)

(3) The representation π(ρ) is minimal with respect to satisfying conditions (1)
and (2), i.e. given any continuous representation ρ : GE → GLn(k), and
any representation π of GLn(E) satisfying these two conditions with respect
to ρ, there is a GLn(E)-equivariant embedding π(ρ) ↪→ π.

Furthermore:

(4) The formation of π(ρ) is compatible with extending scalars, i.e. given ρ :
GE → GLn(k), and a finite extension k′ of k, one has

π(ρ⊗k k′) ∼= π(ρ)⊗k k′.

(5) The formation of π(ρ) is compatible with twists, i.e. given ρ : GE →
GLn(k), and a continuous character χ : GE → k×, one has

π(ρ⊗ χ) = π(ρ)⊗ (χ ◦ det).

(6) EndGLn(E)(π(ρ)) = k.

(7) The representation π(ρ) has central character equal to | |
n(n−1)

2 (det ρ).
(8) Suppose (ρ⊗kk)ss is the direct sum of irreducible representations ρ1, . . . , ρr.

Then every Jordan–Hölder constituent of π(ρ) has supercuspidal support

equal to | |n−1
2 {πss(ρ1), . . . , πss(ρr)}

Proof. We first establish uniqueness: If π and π′ are two finite length admissible
smooth representations of GLn(E) that satisfy properties (1), (2), and (3) with
respect to ρ, then by property (3) we have embeddings of π in π′ and vice versa.
As both π and π′ have finite length these embeddings are isomorphisms.

We now turn to the construction of π(ρ). Let ρ : GE → GLn(O) be a lift of
ρ ⊗k k′, for some O, k′ as in property 2. (Choi ([4], Theorem 3.0.13) has shown
that the characteristic zero fiber of the universal framed deformation ring of ρ is
generically smooth of dimension n2, so such a lift always exists.) Suppose L is
an O-lattice in π(ρ) such that L/$L is essentially AIG. The socle V of L/$L is
absolutely irreducible and generic, and its supercuspidal support depends only on ρ
and not the specific lift ρ chosen. As there is a unique generic representation with
given supercuspidal support, V depends only on ρ up to isomorphism. In particular
V is defined over k, as we can take O to have residue field k.

Let env(Vk) be the essentially AIG envelope of V ⊗k k. For each lift ρ of ρ, and

each lattice L in π(ρ) such that L/$L is essentially AIG, the socle of (L/$L)⊗k k
is isomorphic to V ⊗k k. Hence (L/$L)⊗k′ k embeds uniquely (up to the action of

k
×

) in env(Vk). Let π(ρ)k be the sum, in env(Vk), of the images of (L/$L) ⊗k k
in env(Vk) as ρ ranges over all lifts of ρ.

By construction, Gal(k/k) acts on env(Vk). This action preserves π(ρ)k, as it
permutes the images of L/$L for various O and ρ. Thus π(ρ)k descends uniquely to
a submodule π(ρ) of env(V ). Clearly, π(ρ) satisfies properties (1) and (2). On the
other hand, if π is any other representation satisfying properties (1) and (2), then
the socle of π is isomorphic to V and hence env(V ) contains a unique submodule
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isomorphic to π. As π satisfies property (2), π ⊗k k contains the images of L/$L
in env(Vk) for all lifts ρ of ρ, and thus contains π(ρ)⊗k k. It follows that π contains
π(ρ), so π(ρ) satisfies property (3). Finally, π(ρ) is finite length by Proposition 5.1.4
and Corollary 3.2.17.

Now let k′ be a finite extension of k. Then π(ρ)⊗k k′ clearly satisfies properties
(1) and (2) with respect to ρ⊗k k′, and thus admits an embedding of π(ρ⊗k k′) that
is unique up to rescaling. The above construction shows that π(ρ)⊗k k and π(ρ⊗k
k′)⊗k k coincide as submodules of env(Vk), so this embedding is an isomorphism.

Similarly, if χ is a character of E× with values in k×, we can choose a lift χ of
χ to a character with values in W (k)×. Then if ρ⊗ χ is a lift of ρ⊗ (χ ◦ det) to a
representation over O, and L⊗χ is a lattice in π(ρ⊗χ) with (L⊗ (χ◦det))/$(L⊗
(χ ◦ det)) essentially AIG, then L is a lattice in π(ρ) with L/$L essentially AIG.
Thus L/$L embeds in π(ρ)⊗k k′, so (L/$L)⊗ (χ◦det) embeds in π(ρ)⊗ (χ◦det).
Thus π(ρ) ⊗ (χ ◦ det) has property (2) and hence contains π(ρ ⊗ χ). Conversely,
replacing ρ with ρ ⊗ χ, we find that π(ρ ⊗ χ) ⊗ (χ−1 ◦ det) contains π(ρ). Thus
π(ρ) and π(ρ⊗ χ) have the same length, and so π(ρ⊗ χ) and π(ρ)⊗ (χ ◦ det) are
isomorphic.

The endomorphisms of π(ρ) are all scalar because π(ρ) is essentially AIG. In
particular the center of GLn(E) acts on π(ρ) (and hence on all of its submodules)
via a character. To compute this character, let ρ be any lift of ρ, and let L be
a lattice in π(ρ) such that L/$L is essentially AIG. The center of GLn(E) acts

on π(ρ) via the character | |
n(n−1)

2 det ρ, and hence on L/$L via the character

| |
n(n−1)

2 det ρ. As L/$L embeds in π(ρ), this character is also the central character
of π(ρ).

As π(ρ) is essentially AIG, every Jordan–Hölder constituent of π(ρ) has the same
supercuspidal support. To determine this supercuspidal support, let ρ be any lift
of ρ, and let L be a lattice in π(ρ) such that L/$L is essentially AIG. The repre-

sentations | |−n−1
2 π(ρ) and ρ then correspond under unitary local Langlands, and

so, by Theorem 5.1.1, the supercuspidal support of any Jordan–Hölder constituent

of | |−n−1
2 L/$L is equal to {πss(ρ1), . . . πss(ρr)}. �

5.2. The local Langlands correspondence for GL2 in characteristic p. For
GL2(E), at least in odd characteristic, the correspondence ρ 7→ π(ρ) can be made
fairly concrete. We give a complete picture (for p odd) in [12]; the approach de-
scribed there runs into difficulties when p = 2 because the essentially AIG envelope
of a cuspidal (but not supercuspidal) representation is rather complicated in this
case. The first thing to observe is:

5.2.1. Proposition. Let ρ : GE → GL2(Fp) be a representation, and suppose that
ρss is not a twist of 1⊕ | |. Then π(ρ) is the unique representation of GL2(E)
whose supercuspidal support is given by part (8) of Theorem 5.1.5.

Proof. Part (8) of Theorem 5.1.5, together with our hypothesis on ρ implies that
the supercuspidal support of any Jordan–Hölder constituent of π(ρ) is either a
single supercuspidal representation of GL2(E), or a pair of characters of GL1(E)
that do not differ by a factor of | |. In either case, there is, up to isomorphism, a
unique irreducible representation π of GL2 that has that particular supercuspidal
support; in particular π is generic. Thus every Jordan–Hölder constituent of env(π)
is isomorphic to π; as π is generic and env(π) is essentially AIG there is only one
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such Jordan–Hölder constituent. In particular π = env(π). and so As π(ρ) is
contained in env(π), we must have π(ρ) = π. �

When ρss is a twist of 1⊕ | |, the situation is more complicated, as π(ρ) will
typically not be irreducible. As the correspondence ρ 7→ π(ρ) is compatible with
twists, it suffices to describe π(ρ) when ρss = 1⊕ | |. In this case π(ρ) has

supercuspidal support {1, | |}. The details of this will be carried out in [12]; here
we content ourselves with summarizing the results.

First, assume that the order q of the residue field of E is not congruent to ±1
modulo p. (This is the so-called banal situation.) Here there are two irreducible

representations of G with supercuspidal support {1, | |}: the character | |◦det and

the twisted Steinberg representation St ⊗ (| | ◦ det). The latter representation is

generic, and its envelope is the unique nonsplit extension of | |◦det by St⊗(| |◦det).
On the Galois side there is, up to isomorphism, a unique nonsplit ρ whose

semisimplification is 1⊕ | |. Then π(ρ) is equal to St ⊗ (| | ◦ det) if ρ is non-

split, and to the unique nonsplit extension of | | ◦ det by St ⊗ (| | ◦ det) if ρ is
split.

Next, assume that p is odd and q is congruent to −1 modulo p. In this case
there are three irreducible representations of G with supercuspidal support {1, | |}:
the trivial character, the character | | ◦ det, and a cuspidal generic representation
that Vigneras denotes by π(1) (see [17, II.2.5] for a discussion of this). Up to
isomorphism, there is a unique nonsplit extension of the trivial character by π(1)

and similarly a unique nonsplit extension of | |◦det by π(1). The envelope env(π(1))

is the unique extension of 1⊕(| |◦det) by π(1) that contains both of these nonsplit
extensions as submodules.

In this case π(ρ) = env(π(1)) if ρ is split. If ρ is not split, it is either an extension

of | | by 1 or an extension of 1 by | |. In the first case, π(ρ) is the nonsplit extension

of (| | ◦det) by π(1); in the second case π(ρ) is the nonsplit extension of the trivial
character by π(1).

Finally, assume that p is odd and q is congruent to 1 modulo p. In this case | |
is the trivial character. The only irreducible representations of G with supercusp-
idal support {1, 1} in this case are the Steinberg representation St and the trivial
representation. Moreover, Ext1(1,St) is two-dimensional, and naturally isomorphic
to H1(GE , 1). The envelope env(St) is isomorphic to the universal extension of 1
by St, and thus has length three.

In this case π(ρ) is equal to env(St) if ρ is split. On the other hand, the nonsplit
ρ with trivial semisimplification are in bijection with the one-dimensional subspaces
of H1(GE , 1), and hence in natural bijection with the one-dimensional subspaces
of Ext1(1,St). These in turn correspond to the nonsplit extensions of 1 by St. For
any nonsplit ρ, π(ρ) is the corresponding extension of 1 by St.

6. The local Langlands correspondence in families

6.1. The set-up. Throughout this section we will be considering representations
over rings A satisfying the following condition:

6.1.1. Condition. A is a complete reduced Noetherian local ring, with finite residue
field k of characteristic p, which is flat over the ring of Witt vectors W (k).
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We will typically write m for the maximal ideal of A. Note that the condition
of being flat over W (k) is equivalent to A being p-torsion free, or again (since A
is reduced), to each minimal prime of A being of residue characteristic 0. We will
write κ(p) to denote the residue field of a prime ideal p of A; thus κ(p) is the fraction

field of the complete local domain A/p. We write K(A) :=
∏

a minimal

κ(a) (where,

as indicated, the product is taken over the finitely many minimal primes of A) for
the total quotient ring of A. Since A is reduced, the natural map A→ K(A) is an
embedding.

6.2. Statement of the correspondence and related results. Now let E be a
number field. Let v be a non-archimedean place of E, and let ρ : GEv → GLn(A) be
a continuous representation (when the target is equipped with its m-adic topology).
For each prime ideal p of A, let ρp : GEv → GLn

(
κ(p)

)
denote the representation

obtained from ρ by extending scalars from A to κ(p). In the particular case of the
maximal ideal, we also write ρ := ρm. If p is a prime of A with residue characteristic
zero, we write π̃(ρp) for the smooth κ(p)-dual of the representation π(ρp) defined
in Definition 4.2.1.

In the situations that we will consider below, we will have a finite S of non-
archimedean places of E, all prime to p, and for each v ∈ S we will have a continuous
representation ρv : GEv → GLn(A).

We are now ready to describe the local Langlands correspondence for local Galois
representations over A.

6.2.1. Theorem. Let S denote a finite set of non-archimedean places of E, none
of which lie over p, and suppose for each v ∈ S that we are given a representation
ρv : GEv → GLn(A). If we write G :=

∏
v∈S GLn(Ev), then there is (up to isomor-

phism) at most one admissible smooth representation V of G over A satisfying the
following conditions:

(1) V is A-torsion free (i.e. all associated primes of V are minimal primes
of A, or equivalently, the natural map V → K(A)⊗A V is an embedding).

(2) For each minimal prime a of A, there is a G-equivariant isomorphism⊗
v∈S

π̃(ρv,a)
∼−→ κ(a)⊗A V.

(3) The G-cosocle cosoc(V/mV ) of V/mV is absolutely irreducible and generic,
while the kernel of the natural surjection V/mV → cosoc(V/mV ) contains
no generic subrepresentations. (In other words, the smooth dual of V/mV
is essentially AIG.)

Any such V satisfies the following additional conditions:

(4) V is cyclic as an A[G]-module.

(5) EndA[G](V ) = A.

We postpone the proof of the theorem to the following subsection.

6.2.2. Definition. If in the context of the preceding theorem an A[G]-module V
satisfying conditions (1), (2), and (3) exists, then we write π̃({ρv}v∈S) := V . (This
is justified by the uniqueness statement of the theorem.) If S consists of a single
place v then we write π̃(ρv) rather than π̃({ρv}v∈S).
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6.2.3. Remark. We don’t consider here the problem of proving in general that
a representation V satisfying conditions (1), (2) and (3) of Theorem 6.2.1 exists,
although we conjecture that it does. (This is Conjecture 1.4.1 of the introduction.)
When n = 2 and p is odd, or when p is a banal prime, this conjecture is a result of
the second author [11], [10].

In the global applications considered in the work of the first author [6, 7], and
in subsequent applications, the problem that we will confront will rather be that of
having a smooth G-representation at hand (for a certain ring A), which we wish to
show satisfies the conditions to be π̃({ρv}v∈S) for an appropriate ρ. Thus one of our
goals in the following subsection is to establish a workable criterion for recognizing
π̃({ρv}v∈S) (namely Theorem 6.2.15 below).

The following result shows that the existence of π̃({ρv}v∈S) is equivalent to
the existence of the collection of representations π̃(ρv), and explains the relation
between them. We postpone its proof to the following subsection.

6.2.4. Proposition. In the context of Theorem 6.2.1, the A[G]-module π̃({ρv}v∈S)
exists if and only if each of the individual A[GLn(Ev)]-modules π̃(ρv) exist. Fur-
thermore, π̃({ρv}v∈S) is isomorphic to the maximal torsion free quotient of the
tensor product (taken over A)

⊗
v∈S π̃(ρv).

The following two theorems, whose proofs we again postpone, describe the sense
in which the representation π̃({ρv}) interpolates the Breuil-Schneider modified local

Langlands correspondence over SpecA[
1

p
].

6.2.5. Theorem. Let p be a prime of A[
1

p
], and suppose that p lies on exactly one

irreducible component of SpecA[
1

p
]. Then, assuming that π̃({ρv}v∈S) exists, there

is a a κ(p)-linear G-equivariant surjection⊗
v∈S

π̃(ρv,p)→ κ(p)⊗A π̃({ρv}v∈S).

Moreover, if there exists a minimal prime a of A such that ρa is a minimal lift
of ρp, then this surjection is an isomorphism.

It seems likely that the above result holds even when p is contained in multiple

irreducible components of SpecA[
1

p
]. Nonetheless we are at present only able to

prove a somewhat weaker statement:

6.2.6. Theorem. Assume that π̃({ρv}v∈S) exists, let p be a prime of SpecA[
1

p
], let

a1, . . . , ar be the minimal primes of A contained in p, for each i = 1, . . . , r let Vi be
the maximal A-torsion free quotient of π̃({ρv}v∈S)⊗A A/ai, and denote by W the
image of the diagonal map

κ(p)⊗A π̃({ρv}v∈S)→
∏
i

κ(p)⊗A/ai Vi.

Then there is a a κ(p)-linear G-equivariant surjection⊗
v∈S

π̃(ρv,p)→W.
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Moreover, if there exists a minimal prime a of A such that ρa is a minimal lift
of ρp, then this surjection is an isomorphism.

6.2.7. Conjecture. Under the hypotheses of Theorem 6.2.6, the map

κ(p)⊗A π̃({ρv}v∈S)→W

is an isomorphism. In particular the conclusion of Theorem 6.2.5 holds for all p.

Although this conjecture seems difficult to establish in general, we have the
following result for small n, which we prove in the next section.

6.2.8. Proposition. Conjecture 6.2.7 holds when n = 2 or n = 3.

In a similar vein, we conjecture:

6.2.9. Conjecture. Assuming that π̃({ρv}v∈S) exists, there is a G-equivariant k-
linear surjection: ⊗

v∈S
π̃(ρ)→ k ⊗A π̃({ρv}v∈S).

One can also describe the behavior of π̃({ρv}v∈S) under base change. Suppose
that B is another ring satisfying Condition 6.1.1, and that f : A → B is a local
homomorphism. If we are given a Galois representation ρv : GEv → GLn(A) where
v does not lie over p, then we may then apply the preceding considerations to
the Galois representations B ⊗A ρv. The following proposition relates π̃(ρv) and
π̃(B ⊗A ρv). (We again postpone the proof to the following subsection.)

6.2.10. Proposition. Suppose that for every minimal prime of SpecB, its image p
in SpecA is contained in a minimal prime a of A such that ρv,a is a minimal lift of
ρv,p. (For example, suppose that each component of SpecB dominates a component
of SpecA.) Then if π̃({ρv}v∈S) exists, so does π̃({B ⊗A ρv}v∈S), and there is a
natural surjection: B ⊗A π̃({ρv}v∈S)→ π̃({B ⊗A ρv}v∈S).

We now give some examples illustrating Definition 6.2.2.

6.2.11. Example. Suppose that A = O is the ring of integers in a finite extension
K of Qp. If ρ : GEv → GLn(O) is continuous (for some place v of E that does not
lie over p), write ρK := K⊗O ρ. Then π̃(ρ) exists, and is the smooth contragredient
to the lattice π(ρK)◦ of Theorem 3.3.2.

6.2.12. Remark. Suppose given A as in Theorem 6.2.1, and a continuous repre-

sentation ρ : GQ` → GL2(A) for some ` 6= p. Consider a point p ∈ SpecA[
1

p
]. If

ρp is not of the form χ⊕ | | χ for some character χ of GQ` , then for any minimal
prime a of A, containing p, ρa is necessarily a minimal lift of ρp, and so (assuming
that V := π̃(ρ) exists), the surjection of Theorem 6.2.5 is an isomorphism; that is,
Vp is isomorphic to π̃(ρp). On the other hand if ρp does have the form χ⊕ | | χ,
then there exist non-minimal lifts of ρp, and so Vp need not a priori be isomorphic
to π̃(ρp). We now give an example showing that it can indeed happen that Vp is
not isomorphic to π̃(ρp).

6.2.13. Example. Suppose that ` and p are distinct, and that ` 6≡ 1 mod p. If
A is as in Theorem 6.2.1, then Ext1

Zp[GQ` ]
(| |, 1) is free of rank 1 over A. Let c

denote a generator of this Ext1-module, and for any a ∈ A, let ρa : GQ` → GL2(A)
be the rank two representation underlying a · c. One checks that if a is a regular



LOCAL LANGLANDS IN FAMILIES 53

element, then V := π̃(ρa) exists, and in fact is isomorphic to StA (the Steinberg
representation of GL2(Q`) with coefficients in A); in particular, it is independent

of the regular element a. Note that if a ∈ p ∈ SpecA[
1

p
] (i.e. the regular function

associated to a vanishes at p), then ρa,p := κ(p)⊗ ρa is split and hence unramified,
and thus π̃(ρa,p) is a non-split extension of Steinberg by trivial. In particular, at
such a point p, Vp fails to be isomorphic to π̃(ρa,p).

6.2.14. Example. Suppose that ` and p are distinct, p is odd, and ` 6≡ ±1 mod p.
Let A be the ring W (k)[[a, b]]/ab. Fix a Frobenius element Fr of GQ` and a generator
σ of the p-power inertia in GQ` . Let ρ be the representation of GQ` such that ρ is
trivial on the prime-to-p inertia in GQ` , and such that:

ρ(Fr) =

(
q(1 + a) 0

0 1

)
ρ(σ) =

(
1 b
0 1

)
.

It is not hard to show in this situation that V := π̃(ρ) exists. On the other hand,
V is principal series at the minimal prime ideal 〈b〉 of A, and Steinberg along the
minimal prime ideal 〈a〉 of A. In particular the Iwahori invariants of V have different
ranks along these two branches, showing that V cannot be free as an A-module.

We conclude with a “recognition theorem” that is useful for verifying that a
given A[G]-module is isomorphic to π̃({ρv}v∈S). As with the other results of this
section, we defer its proof to the next subsection.

6.2.15. Theorem. Let V be an admissible smooth A[G]-module, such that the
smooth dual of V/mV is essentially AIG, and suppose that there exists a Zariski

dense subset Σ of SpecA[
1

p
] such that:

(1) For all v ∈ S, and all p in Σ, there exists a minimal prime a of A such that
ρv,a is a minimal lift of ρv,p.

(2) For each point p of Σ there exists an isomorphism:

κ(p)⊗A V
∼−→
⊗
v∈S

π̃(ρv,p).

(3) The diagonal map:

V →
∏
p∈Σ

⊗
v∈S

π̃(ρv,p).

is an injection.

Then V satisfies conditions (1), (2), and (3) of Theorem 6.2.1; that is, π̃({ρv}v∈S)
exists and is isomorphic to V .

6.3. The proofs of Theorem 6.2.1 and some related results. We develop a
series of deductions involving the various conditions of Theorem 6.2.1. These will
be used not only to prove Theorem 6.2.1, and the other outstanding results from
the preceding subsection, but also to provide a criterion for verifying the conditions
of Theorem 6.2.1, which will be useful in applications.

If A is a local ring with residue field K, and V is a representation of F over A,
we let V denote the representation V ⊗A K.
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6.3.1. Lemma. Let A be a Noetherian W (k)-algebra that is a local ring with residue

field K. If V is an admissible smooth representation of G over A, then V
(n)

is 1-
dimensional over K if and only if V (n) is a cyclic A-module.

Proof. Theorem 3.1.14 shows that if V
(n)

is one-dimensional then V (n) is a finitely
generated A-module, and so the lemma follows from Nakayama’s lemma together

with the isomorphism V (n) ⊗A K
∼−→ V

(n)
. �

6.3.2. Lemma. Let A be a Noetherian W (k)-algebra that is a local ring with residue
field K in which all `i are invertible. If V is an admissible smooth representation
of G over A, then the following are equivalent:

(1) For any non-zero quotient K[G]-module W of V , one has W
(n) 6= 0.

(2) For any non-zero quotient A[G]-module W of V , one has W (n) 6= 0.
(3) J(V ) generates V over K[G].
(4) J(V ) generates V over A[G].

Proof. It is clear that (2) implies (1), as any quotient of V is also a quotient of V .
Suppose that (1) holds and that W is a quotient of V with W (n) = 0. Then

W
(n)

= 0, and so (1) implies that W = 0. Then W = 0 by Nakayama’s Lemma, so
(1) implies (2).

If W is a quotient of V , then we have that W
(n)

is a quotient of V
(n)

since the
derivative functor is exact. If we let U denote the K[G]-submodule of V generated

by J(V ), we see that W
(n)

vanishes if and only if W is a quotient of V /U . Thus (1)
and (3) are equivalent.

Clearly (4) implies (3), since J(V ) is the image of J(V ) in V . Conversely, suppose
J(V ) generates V over K[G]. Since J(V ) maps surjectively onto J(V ), Lemma 2.1.7
implies that J(V ) generates V over A[G]. �

6.3.3. Lemma. Let A be a local ring satisfying Condition 6.1.1. If V is an admis-

sible smooth representation of G over A, and if V
(n)
a is nonzero for each minimal

prime a of A, then if V (n) is a cyclic A-module, it is in fact free of rank 1 over A.

Proof. Since (V (n))a = (Va)(n), we have that (V (n))a is nonzero for all a. Our
hypotheses on A imply that A injects into the product of the fields Aa; it follows
that the annihilator of V (n) in A is the zero ideal. The lemma follows. �

6.3.4. Proposition. Let A be a local ring satisfying Condition 6.1.1, let V be an
admissible smooth representation of G over A, and suppose that (Va)(n) is nonzero

for each minimal prime a of A, that V
(n)

is one-dimensional, and that for any

non-zero quotient k[G]-module W of V , one has W
(n) 6= 0. Then:

(1) V (n) is free of rank 1 over A.
(2) J(V ) generates V over A[G].
(3) EndA[G](V ) = A.

Proof. The first claim follows immediately from Lemmas 6.3.1 and 6.3.3. The
second is a consequence of Lemma 6.3.2.

By Proposition 3.1.16, the natural map A→ EndA[Pn](J(V )) is an isomorphism.
This latter map factors as the composition

A→ EndA[G](V )→ EndA[Pn](J(V )),



LOCAL LANGLANDS IN FAMILIES 55

and restriction of endomorphisms from V to J(V ) is injective because J(V ) gener-
ates V . Thus EndA[G](V ) = A. �

The following result gives some equivalent formulations of the hypotheses on V
appearing in the preceding proposition.

6.3.5. Lemma. Let K be a field in which all `i are invertible. If V is an admissible
smooth representation of G over K, then the following are equivalent:

(1) V
(n)

is one-dimensional, and for any non-zero quotient K[G]-module W

of V , one has W
(n) 6= 0 (and hence V

(n)
is isomorphic to W

(n)
, so that

W
(n)

is again one-dimensional).

(2) V
(n)

is one-dimensional, and J(V ) generates V over K[G].
(3) V is of finite length (and hence has a cosocle), cosoc(V ) is absolutely irre-

ducible, and V
(n)

is isomorphic to
(
cosoc(V )

)(n)
, with both being non-zero.

(4) The smooth K-dual V
∨

of V is essentially AIG.

Proof. The equivalence of conditions (1) and (2) follows from Lemma 6.3.2 (applied
with A = K and V = V ).

If condition (2) holds, then V is finitely generated over K[G], and hence of finite
length, by [17], II.5.10. Write cosoc(V ) =

⊕
jW j , where each W j is irreducible.

Condition (1) (which also holds, since it is equivalent to condition (2), as we have

already observed) shows that W
(n)

j is one-dimensional for each j. Since the com-
position:

V
(n) →

(
cosoc(V )

)(n) ∼−→
⊕
j

W
(n)

j

is surjective (the derivative functor is exact), we see that in fact there is only one
summand, and hence that cosoc(V ) is irreducible. Proposition 6.3.4 (applied with
A = K and V = W ) then implies that EndG

(
cosoc(V )

)
) = K, and hence that

cosoc(V ) is in fact absolutely irreducible. Thus (2) implies (3).

If condition (3) holds, then by assumption
(
cosoc(V )

)(n)
is nonzero. It is there-

fore one-dimensional by Theorem 3.1.15. Thus V
(n)

is one-dimensional, giving the
first half of condition (1). The second half of condition (1) follows from the fact

that cosoc(V ) is irreducible, and satisfies
(
cosoc(V )

)(n) 6= 0. Thus (3) implies (1).

Now consider the smooth dual V
∨

. If V is finite length, the socle of V
∨

is the

smooth dual of the cosocle of V . In particular soc(V
∨

) is absolutely irreducible

and generic if and only if cosoc(V ) is. Moreover, the map
(
soc(V

∨
)
)(n) → (V

∨
)(n)

is dual to the map V
(n) →

(
cosoc(V )

)(n)
so that one is an isomorphism if and only

if the other is. Thus (3) is equivalent to (4). �

6.3.6. Lemma. If A is a reduced Noetherian W (k)-algebra, and if V is an admissible
A[G]-module, then the following are equivalent:

(1) V is A-torsion free, i.e. every associated prime of V is a minimal prime
of A.

(2) The natural map V → V ⊗AK(A) is an injection, where K(A) is the product
over minimal primes a of A of the fields Aa.
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(3) The natural map

V →
∏
a

(V/aV )tf

is injective, where a runs over the minimal primes of A and (V/aV )tf is
the maximal A/a-torsion free quotient of V/aV .

If these equivalent conditions hold, then for any Zariski dense set of primes Σ of
SpecA, the map

V →
∏
p∈Σ

V ⊗A κ(p)

is injective.

Proof. If one replaces V with a finitely generated A-module M in conditions (1), (2)
and (3), then the equivalence of these conditions is standard commutative algebra.
On the other hand, if U is a sufficiently small compact open subgroup of G, then
V U is a direct summand of V that is finitely generated as an A-module, and V is
the union of the V U .

On the other hand, it is easy to see that each of conditions (1), (2) and (3)
holds for V if, and only if, it holds with V U in place of V for each sufficiently small
compact open subgroup U of V . As (1), (2) and (3) are equivalent condtions on
each such V U , they are equivalent conditions on V .

Now let Σ be a Zariski dense set of primes of A, suppose that the equivalent
conditions (1), (2), and (3) hold, and suppose that x is an element of V that maps
to zero in V ⊗A κ(p) for all p ∈ Σ. Choose a compact open subgroup U of G fixing
x; then V U is finitely generated over A, and x maps to zero in V U ⊗A κ(p) for
all p in Σ. It follows that the support of x (considered as an element of V U ) is
a closed subset of SpecA contained in the complement of Σ. In particular that
the annihilator of x is not contained in any minimal prime of A, contradicting
condition (1). �

6.3.7. Lemma. Let A be a reduced Noetherian W (k)-algebra, and let V1 and V2 be
two admissible smooth A[G]-modules such that:

(1) For each i, V
(n)
i is free of rank one over A.

(2) For each i, Vi is generated by J(Vi) as an A[G]-module.
(3) There exists a Zariski dense set Σ of primes of A such that for all p ∈ Σ,

(V1)p is isomorphic to (V2)p, as Ap[G]-modules.
(4) The natural map:

Vi →
∏
p∈Σ

Vi ⊗A κ(p)

is injective for each i. (This is automatic if Vi is A-torsion free.)

Then there is an A-linear G-equivariant isomorphism V1
∼−→ V2.

Proof. Let K′ be the product over p ∈ Σ of the residue fields κ(p). Condition (3)
gives us an isomorphism∏

p

V1 ⊗A κ(p)
∼−→
∏
p

V2 ⊗A κ(p).

There are natural injections:

Vi ⊗A K′ →
∏
p

Vi ⊗A κ(p)
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for each i; these are not in general isomorphisms. However, for sufficiently small
compact open subgroups U of G, V Ui is a direct summand of Vi that is finitely
generated as an A-module. For each such U , the induced map:

V Ui ⊗A K′ →
(∏

p

Vi ⊗A κ(p)
)U

is an isomorphism. Passing to the limit on both sides, we obtain an isomorphism of
Vi⊗AK′ with the space of smooth elements of

∏
p Vi⊗Aκ(p). Thus the isomorphism:∏

p

V1 ⊗A κ(p)
∼−→
∏
p

V2 ⊗A κ(p)

induces an isomorphism of V1 ⊗A K′ with V2 ⊗A K′.
Moreover, by Condition (4), Vi embeds in Vi ⊗A K′ for each i. We may thus

regard V1 and V2 as submodules of V1 ⊗A K′.
By (1), (V1⊗AK′)(n) is free of rank one over K′, and V

(n)
i is a free A-submodule

of (V1 ⊗A K′)(n) for each i. There thus exists an element c of (K′)× such that

cV
(n)
2 and V

(n)
1 coincide as submodules of (V1⊗AK′)(n). It follows that cJ(V2) and

J(V1) coincide as submodules of J(V1 ⊗A K′). Since V1 and V2 are generated by
J(V1) and J(V2) over A[G], we must have V1 = cV2; in particular V1 and V2 are
isomorphic. �

We can now prove the uniqueness claim of Theorem 6.2.1.

6.3.8. Proposition. Let A be a local ring satisfying Condition 6.1.1, and let V1 and
V2 be two admissible smooth A[G]-modules. Suppose that:

(1) The Vi are A-torsion free.

(2) For each minimal prime a of A, (Vi)
(n)
a is nonzero.

(3) For each i, V i satisfies the equivalent conditions of Lemma 6.3.5.
(4) For each minimal prime a of A, there is a G-equivariant isomorphism

(V1)a
∼−→ (V2)a.

Then there is an A-linear G-equivariant isomorphism V1
∼= V2 (which, by part (3) of

Proposition 6.3.4, is uniquely determined up to multiplication by an element of A×).

Proof. By part (1) of Proposition 6.3.4, we have that V
(n)
i is free of rank 1 over

A for each i. As the minimal primes of A are dense in SpecA, it thus follows by
Lemma 6.3.7 that V1 is isomorphic over A[G] to V2. �

The purpose of our next collection of results, which are rather technical, is to
allow us to make a tensor factorization in the context of Theorem 6.2.1, and hence
work with one Ev at a time.

6.3.9. Proposition. Let K be a field in which all `i are invertible. If V is an
admissible smooth representation of G over K satisfying the equivalent conditions of
Lemma 6.3.5, there exist admissible smooth representations V v of Gv (v ∈ S), each
individually satisfying the equivalent conditions of Lemma 6.3.5 (with G replaced by
Gv), together with a G-equivariant surjection

⊗
v V v → V .

Proof. We proceed by induction on the cardinality s of S. In the case when s = 1
there is nothing to prove, and so we assume that s > 1, and write S = v1, . . . , vs,
G′ = Gv2×· · ·×Gvs , so that G = Gv1×G′. Since cosoc(V ) is absolutely irreducible,
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there is an isomorphism cosoc(V )
∼−→ πv1 ⊗ π′, where πv1 (resp. π′) is a generic

absolutely irreducible representation of Gv1 (resp. G′).
Since V is of finite length, we may and do choose a quotient W of V which is

maximal with respect to the following property: there is a surjective map

φ : V v1 ⊗ V
′ →W,

where V v1 and V
′

each satisfy the equivalent conditions of Lemma 6.3.5 (with
respect to Gv1 and G′ respectively). Since cosoc(V ) satisfies these conditions, we

see that W 6= 0. Thus cosoc(V ) is a quotient of W , and hence V
(n)

is isomorphic

to W
(n)

, as both are one-dimensional.
Let U be the kernel of the quotient map V →W , and suppose that U is non-zero.

Extending scalars if necessary, we then may find a non-zero absolutely irreducible

quotient θv1⊗θ
′
of U , where θv1 (resp. θ

′
) is an absolutely irreducible representation

of Gv1 (resp. G′). If we let T denote the kernel of the quotient map U → θv1 ⊗ θ
′
,

and if we write X := V /T , then there is a short exact sequence

(6.1) 0→ θv1 ⊗ θ
′ → X →W → 0,

which we may pullback via φ to obtain a short exact sequence

(6.2) 0→ θv1 ⊗ θ
′ → Y → V v1 ⊗ V

′ → 0.

Applying the n-th derivative functor to (6.1), (and recalling that the surjections

V
(n) → X

(n) →W
(n)

are in fact isomorphisms,) we obtain an isomorphism:

θ
(n)

v1 ⊗K (θ
′
)(n) ∼−→ (θv1 ⊗K θ

′
)(n) = 0.

Hence either θ
(n)

v1 = 0 or (θ
′
)(n) = 0. Also, we conclude that θv1 ⊗ θ cannot be a

quotient of V , and hence cannot be a quotient of X. Thus (6.1) is non-split, and
hence (6.2) is also non-split (since φ is surjective).

The non-split short exact sequence (6.2) corresponds to a non-trivial element of

Ext1
G(V v1 ⊗ V

′
, θv1 ⊗ θ

′
), which by the Künneth formula admits the description

Ext1
G(V v1 ⊗ V

′
, θv1 ⊗ θ

′
)

∼−→ HomGv1
(V v1 , θv1)⊗ Ext1

G′(V
′
, θ
′
)⊕ Ext1

Gv1
(V v1 , θv1)⊗HomG′(V

′
, θ
′
).

Now by assumption, the nth derivative (as a GLn(Ev1)-module) of any non-zero
quotient of V v1 is a non-zero space, while the nth derivative (as a G′-module)

of any non-zero quotient of V
′

is a non-zero space. Thus if (θv1)(n) = 0, then
HomG1

(V v1 , θv1) = 0, and thus Y corresponds to a non-trivial element of the tensor

product Ext1
G1

(V v1 , θv1) ⊗ HomG′(V
′
, θ
′
). Concretely, this means we may form a

non-trivial extension E1 of V v1 by θv1 , and find a non-zero map ψ : V
′ → θ

′
(which

is then surjective, since θ
′

is irreducible), so that Y is obtained as the pushforward

of E1 ⊗ V
′

via the map

id⊗ ψ : θv1 ⊗ V
′ → θv1 ⊗ θ

′
.

Thus Y , and hence X, is a quotient of E1 ⊗ V
′
, contradicting the maximality of

W . If instead we had (θ
′
)(n) = 0, then we would similarly conclude that X may
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be written as a quotient of V 1 ⊗E2, for some non-trivial extension E2 of V
′

by θ
′
,

again contradicting the maximality of W .
From these contradictions we conclude that in fact U = 0, and thus that V = W .

Thus we may write V as a quotient of V v1 ⊗ V
′

as above. Applying the inductive

hypothesis to V
′
, the proposition follows. �

6.3.10. Corollary. If V is an admissible smooth representation of G over a lo-
cal ring A satisfying Condition 6.1.1, such that V := V/mV satisfies the equiv-
alent conditions of Lemma 6.3.5, and if S′ ⊂ S is any subset, then the GS′-
representation V (n),S\S′/mV (n),S\S′ satisfies the conditions of Lemma 6.3.5 (with
respect to A[GS′ ]).

Proof. Choose a surjection
⊗

v∈S V v → V satisfying the conditions of the preceding

proposition. Since V
(n)

v is one-dimensional for each v (and so in particular for each

v ∈ S \ S′), applying the exact functor V 7→ V
(n),S\S′

yields a surjection⊗
v∈S′

V v
∼−→
(⊗
v∈S

V v
)(n),S\S′ → V

(n),S\S′ ∼−→ V (n),S\S′/mV (n),S\S′ .

The lemma follows. �

We now return to the setting of the previous subsection. That is, for each v is S
we are given a representation ρv : GEv → GLn(A). The above results allow us to
establish Theorem 6.2.1 and Proposition 6.2.4 more or less immediately.

Proof of Theorem 6.2.1. Suppose we have V1, V2 satisfying conditions (1), (2),
and (3) of Theorem 6.2.1. Then for all minimal primes a of A, we have a κ(a)-

linear G-equivariant isomorphism (V1)a
∼−→ (V2)a. Thus V1 and V2 satisfy all of

the hypotheses of Proposition 6.3.8, and are therefore isomorphic. Moreover, V
(n)
1

is cyclic as an A-module by Lemma 6.3.1. Let x be any element of V1 whose

image in V
(n)
1 generates V

(n)
1 as an A-module, and let W be the A[G]-submodule

of V1 generated by x. Then the image of W (n) in V
(n)
1 contains the image of x,

and hence is all of V
(n)
1 . It follows that J(W ) is equal to all of J(V1), and hence,

by Proposition 6.3.4, part (2), we must have W = V1. Thus V1 is cyclic as an
A[G]-module. Finally, EndA[G](V1) is isomorphic to A by Proposition 6.3.4, part
(3). �

Proof of Proposition 6.2.4. Suppose that for each v, we have a representation π̃(ρv)
satisfying conditions (1), (2), and (3) of Theorem 6.2.1 for ρv. Then it is clear that
the maximal A-torsion free part of the tensor product over all v of π̃(ρv) satisfies
the conditions of Theorem 6.2.1 for the collection {ρv}.

Conversely, suppose we have a representation π̃({ρv}v∈S) satisfying the hypothe-
ses of Theorem 6.2.1 for the collection {ρv}. Then for any minimal prime a of A,
we have an isomorphism:

π̃({ρv}v∈S)⊗A κ(a)
∼−→
⊗
v∈S

π̃(ρv,a).

Fixing a place v, and taking derivatives at all v′ 6= v, we obtain an isomorphism:

(π̃({ρv}v∈S))
(n),S\{v}
a

∼−→ π̃(ρv,a).



60 MATTHEW EMERTON AND DAVID HELM

Moreover (π̃({ρv}v∈S))(n),S\{v} is A-torsion free, and (by Corollary 6.3.10) satisfies
condition (3) of Theorem 6.2.1. Thus π̃({ρv}v∈S)(n),S\{v} is isomorphic to π̃(ρv)
(so in particular the latter exists). �

We now turn to Theorems 6.2.5 and 6.2.6. Once we have established these,
Proposition 6.2.10 will be an easy consequence. We first need the following lemma:

6.3.11. Lemma. Let A be a normal Qp-algebra that is an integral domain with
field of fractions K, and let (ρ′, N) be a Frobenius-semisimple Weil–Deligne repre-
sentation over A that splits (over K) as a direct sum of absolutely indecomposable
Weil–Deligne representations Spρi,ni . There exist characters χi : WE → A× such
that ρi ⊗K χi is defined over a finite extension K0 of Qp contained in A.

Proof. By Lemma 4.1.5 we know that such characters χi exist with values in K×;
it suffices to show that they take values in A×. Let O be the localization of A at a
height one prime. Then ρ′⊗AK is O-integral, so each ρi is O-integral as well. Thus
det ρi is a character with values in O×. Since this is true for all O, det ρi takes
values in A×. Moreover, (det ρi) ⊗K χi takes values in K×0 , and K0 is contained
in A, so some power of χi takes values in A×. But then χi must take values in A×

as well since A is normal. �

6.3.12. Lemma. Let A be a local ring satisfying Condition 6.1.1, let {ρv} be a
collection of representations GEv → GLn(A), and suppose that π̃({ρv}v∈S) exists.
Then, for each minimal prime a of A, the representation π̃({ρv⊗AA/a}v∈S) exists,
and is isomorphic to the maximal A/a-torsion free part of π̃({ρv}v∈S)⊗A A/a.

Proof. It is straightforward to see that π̃({ρv}v∈S)⊗A A/a satisfies conditions (2)
and (3) of Theorem 6.2.1, so its maximal A/a-torsion free quotient does as well.
This quotient also satisfies condition (1) of Theorem 6.2.1 by construction. �

Proof of Theorem 6.2.5. By Proposition 6.2.4, it suffices to consider the case when S
has only one element v. By Lemma 6.3.12 we may assume A is a domain with field
of fractions K. Fix an algebraic extension K′ of K such that K′ contains a square
root of `, where ` is the residue characteristic of v, and such that the Frobenius-
semisimple Weil–Deligne representation associated to ρv ⊗A K′ splits as a direct
sum of absolutely indecomposable Weil–Deligne representations Spρi,Ni over K′.
Let K0 be the maximal subfield of K′ that is algebraic over Qp.

Let A′ be the integral closure of Ap in K′, and let p′ be a prime ideal of A′ over p.
Then, by Lemma 6.3.11, there exist characters χi, with values in (A′p′)

×, such that

for each i, ρi ⊗ χ−1
i is defined over K0.

Let πi be the admissible representation of GLn(Ev) over K0 that corresponds
to ρi ⊗ χi under the unitary local Langlands correspondence. Then for each i,
(Stπi,Ni ⊗K0 K′)⊗ (χi ◦ det) corresponds to Spρi,Ni under unitary local Langlands.
Without loss of generality, we assume that the representations πi are ordered so
that for all i < j, (Stπi,Ni ⊗K0

κ(p′))⊗χi does not precede (Stπj ,Nj ⊗K0
κ(p′))⊗χj .

(It is then also true that (Stπi,Ni⊗K0
K′)⊗χi does not precede (Stπj ,Nj⊗K0

K′)⊗χj .)
Let M be the smooth A′p′ -linear dual of the module:

(| | ◦ det)−
n−1
2 Ind

GLn(Ev)
Q

⊗
i

[
(Stπi,Ni ⊗K0

A′p′)⊗ χi
]
,
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where Q is a suitable block upper triangular parabolic subgroup of GLn(Ev). Then,
by construction, M ⊗A′

p′
K′ is isomorphic to π̃(ρ⊗A K′). Moreover, because of our

assumptions on the ordering of the πi, the smooth κ(p′)-dual of M/p′M is essen-
tially AIG by Corollary 4.3.3, and hence J(M) generates M as an A′p′ [G]-module.

Moreover M (n) is free of rank one over A′p′ by Corollary 3.1.13. Finally, M is A′p′ -

torsion free by construction (in fact, M is free over A′p′ .) Thus by Lemma 6.3.7, M

is isomorphic to π̃(ρv)⊗A A′p′ .
The injection of Theorem 4.5.7 yields a surjection:

π̃(ρv ⊗A κ(p′))→M ⊗A′
p′
κ(p′)

that is an isomorphism if, and only if, ρv⊗AK is a minimal lift of ρv⊗Aκ(p). Taking
smooth duals and applying Lemma 3.2.5, we see that this surjection descends to
the desired surjection

π̃(ρv,p))→ π̃(ρv)⊗A κ(p).

�

Proof of Theorem 6.2.6. As above, it suffices by Proposition 6.2.4 to consider the
case when S has only one element v. By Lemma 6.3.12, for each minimal prime a
of A containing p we have a surjection:

π̃(ρv)⊗A κ(p)→ π̃(ρv ⊗A A/a)⊗A κ(p).

Then W is the image of π̃(ρv)⊗A κ(p) in the product∏
a

π̃(ρv ⊗A A/a)⊗A κ(p).

By Theorem 6.2.5 we also have surjections:

fa : π̃(ρv,p)→ π̃(ρv ⊗A A/a)⊗A κ(p)

for all minimal primes a of A contained in p. This gives a diagonal map:

π̃(ρv,p)→
∏
a

π̃(ρv ⊗A A/a)⊗A κ(p).

Let W ′ be the image of this map. It suffices to show that W ′ is isomorphic to W .
The spaces W (n) and (W ′)(n) are one-dimensional κ(p)-subspaces of∏

a

[
π̃(ρv ⊗A A/a)⊗A κ(p)

](n)

that project isomorphically onto each factor. There thus exists for each a a scalar
ca in κ(p)× such that c(W ′)(n) coincides with W (n) as subspaces of∏

a

[
π̃(ρv ⊗A A/a)⊗A κ(p

](n)
,

where c is the automorphism of this product given by multiplication by ca on the
factor corresponding to a.

As the K-duals of W ⊗κ(p) K and W ′ ⊗κ(p) K are essentially AIG, this implies
that W and cW ′ coincide, and thus W and W ′ are isomorphic. �

Proof of Proposition 6.2.8. As usual, we invoke Proposition 6.2.4 to reduce to the
case where S has a single element v. As in the proof of Theorem 6.2.6, let W be
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the image of κ(p)⊗A π̃(ρv) under the diagonal map

κ(p)⊗A π̃(ρv)→
∏
i

κ(p)⊗A/ai Vi,

where a1, . . . , ai are the minimal primes of A contained in p and, for each i, Vi is
the maximal A-torsion free quotient of π̃(ρv)⊗A A/ai.

As π̃(ρv) embeds in the product of the Vi, every Jordan–Hölder constituent
of κ(p) ⊗A π̃(ρv) is isomorphic to a Jordan–Hölder constituent of κ(p) ⊗A/ai Vi
for some i, and hence to a Jordan–Hölder constituent of W . In particular, every
Jordan–Hölder constituent of the kernel of the map

κ(p)⊗A π̃(ρv)→W

is a Jordan–Hölder constituent of κ(p) ⊗A π̃(ρv) that appears with multiplicity at
least two. Since the smooth dual of κ(p)⊗Aπ̃(ρv) is essentially AIG, Corollary 4.3.11
above shows that no such Jordan–Hölder constituent can exist when n = 2 or 3. �

Proof of Proposition 6.2.10. By Proposition 6.2.4 we may assume S consists of
a single element. For any minimal prime b of B, we have by Theorem 6.2.6 a
surjection:

π̃(ρv)⊗A κ(f−1(b))→ π̃(ρv,f−1(b))

and hence (after a base change) a surjection:

π̃(ρv)⊗A κ(b)→ π̃(ρv ⊗A κ(b)).

Let V be the image of the composed map:

π̃(ρv)⊗A B →
∏
b

π̃(ρv)⊗A κ(b)→
∏
b

π̃(ρv ⊗A κ(b)).

One easily verifies that V satisfies conditions (1), (2) and (3) of Theorem 6.2.1 for
the representation ρv ⊗A B over B. �

We now turn to the proof of Theorem 6.2.15. This will require several preliminary
lemmas.

6.3.13. Lemma. Suppose that Theorem 6.2.15 holds when S has only one element.
Then Theorem 6.2.15 holds for an arbitrary finite set S.

Proof. Suppose we have established Theorem 6.2.15 in the case in which S has only
one element. We can then establish the general case as follows: suppose V satisfies
the conditions of Theorem 6.2.15 for the collection {ρv}. If we fix a place v ∈ S,
then V (n),S\{v} satisfies the conditions of Theorem 6.2.15 for the representation
ρv. Thus V (n),S\{v} is isomorphic to π̃(ρv). It follows by Proposition 6.2.4 that
π̃({ρv}v∈S) exists and is isomorphic to the maximal torsion-free quotient of the
tensor product of the representations V (n),S\{v}.

For any prime p of A lying over a prime of Σ, we have an isomorphism:

V ⊗A κ(p)
∼−→
⊗
v∈S

V (n),S\{v} ⊗A κ(p).

It thus follows by Lemma 6.3.7 that V and π̃({ρv}v∈S) are isomorphic, as required.
�

6.3.14. Proposition. Let A be a local ring satisfying Condition 6.1.1, let ρv be an n-
dimensional representation of GEv over A, and let V be an admissible A[G]-module
such that:
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(1) V is torsion free over A.
(2) The smooth dual of V/mV is essentially AIG.

(3) There exists a Zariski dense set of primes Σ in SpecA[
1

p
] such that for each

prime p ∈ Σ, V ⊗A κ(p) is isomorphic to π̃(ρv,p),

Then V satisfies conditions (1), (2), and (3) of Theorem 6.2.1 with respect to ρv;
that is, π̃(ρv) exists and is isomorphic to V .

Proof. Note that conditions (1) and (3) of Theorem 6.2.1 are immediate from the
hypotheses. It thus suffices to construct, for each minimal prime a of A, an isomor-
phism Va

∼−→ π̃(ρv,a).
Fix a minimal prime a of A. The map V → (V/aV )tf becomes an isomorphism

after localizing at any prime p of A that contains a but no other minimal prime of
A. Thus, replacing V with (V/aV )tf , A with A/a, and Σ with the set of p in Σ
that contain a but no other minimal prime of A, we reduce to the case where A is
a domain with field of fractions K.

Let K′ be an algebraic extension of K such that K′ contains a square root of `,
where ` is the residue characteristic of v, and such that the Frobenius-semisimple
Weil–Deligne representation associated to ρv ⊗A K′ splits as a direct sum of abso-
lutely indecomposable Weil–Deligne representations Spρi,Ni over K′. Let K0 be the
maximal subfield of K′ that is algebraic over Qp.

Let A′ be the integral closure of A[
1

p
] in K′. By Lemma 6.3.11, there exist

characters χi, with values in (A′)×, such that for each i, ρi⊗χi is defined over K0.
Let πi be the admissible representation of GLn(Ev) over K0 that corresponds

to ρi ⊗ χi under the unitary local Langlands correspondence. Then for each i,
(Stπi,Ni ⊗K0

K′)⊗ (χi ◦ det) corresponds to Spρi,Ni under unitary local Langlands.
Without loss of generality, we assume that the representations πi are ordered so
that for all i < j, (Stπi,Ni ⊗K0

K′)⊗ (χi ◦ det) does not precede (Stπj ,Nj ⊗K0
K′)⊗

(χj ◦ det). Then, for all p in an open dense subset U1 of SpecA′, and all i < j,
(Stπi,Ni ⊗K0 κ(p))⊗ (χi ◦ det) does not precede (Stπj ,Nj ⊗K0 κ(p))⊗ (χj ◦ det).

Let M be the smooth A′-linear dual of the module:

(| | ◦ det)−
n−1
2 Ind

GLn(Ev)
Q

⊗
i

[
(Stπi,ni ⊗K0

A′)⊗ χi
]
,

where Q is a suitable block upper triangular parabolic subgroup of GLn(Ev). Let
U2 be the open dense subset of SpecA′ consisting of those p′ such that ρv ⊗A K′ is
a minimal lift of ρv ⊗A κ(p′). Then for all p′ ∈ U2, M ⊗A′ κ(p′) is isomorphic to
π̃(ρv ⊗A κ(p′)).

Now let M ′ be the A′[G]-submodule of M generated by J(M). Then (M ′)(n)

is isomorphic to M (n), and the latter is locally free of rank one over A′ by Corol-
lary 3.1.13. The module M ′ is A′-torsion free, as it is contained in the free A′-
module M . Moreover, for all p′ ∈ U1 ∩ U2, we have isomorphisms:

M ′ ⊗A′ κ(p′)
∼−→M ⊗A′ κ(p′)

∼−→ π̃(ρv ⊗A κ(p′)).

Set

M ′′ = M ′ ⊗A′
(
(M ′)(n)

)−1
.

Then (M ′′)(n) is free of rank one over A′.
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Let Σ′ be the set of primes of A′ lying over primes in Σ. Then Σ′ ∩ U1 ∩ U2 is
dense in SpecA′, and we have isomorphisms: V ⊗A κ(p′)

∼−→ M ′′ ⊗A′ κ(p′) for all
p′ ∈ Σ′ ∩U1 ∩U2. It follows by Lemma 6.3.7 that V ⊗AA′ is isomorphic to M ′′. In
particular V ⊗A K′ is isomorphic to π̃(ρv ⊗A K′), and hence V ⊗A K is isomorphic
to π̃(ρv ⊗A K), as required. �

Proof of Theorem 6.2.15. By Lemma 6.3.13 it suffices to consider the case where
S has a single element. Let V tf be the maximal A-torsion free quotient of V , and
let V tor be the kernel of the map V → V tf . Then V tor/mV tor embeds in V/mV ,
and the latter has finite length by Lemma 6.3.5. It follows that V tor/mV tor is
finitely generated as an A[G]-module, and (since V is m-adically separated), thus
V tor is finitely generated as well. In particular its support is a closed subset Z of
SpecA. Let U be the complement of Z in SpecA. Then for all p in Σ∩U , we have
isomorphisms:

π̃(ρv,p)
∼−→ V ⊗A κ(p)

∼−→ V tf ⊗A κ(p).

It follows by Proposition 6.3.14 that V tf satisfies conditions (1), (2), and (3) of
Theorem 6.2.1; in particular π̃(ρv) exists and is isomorphic to V tf . Thus, by The-
orem 6.2.5, V tf ⊗A κ(p) is isomorphic to π̃(ρv ⊗A κ(p)) for all p for which there
exists a minimal prime a of A such that ρv,a is a minimal lift of ρv,p. In particular
this holds for all p in Σ. Thus we have an isomorphism:

V ⊗A κ(p)
∼−→ V tf ⊗A κ(p)

for all p ∈ Σ; by Lemma 6.3.7 it follows that V is isomorphic to V tf , and hence
that V satisfies conditions (1), (2), and (3) of Theorem 6.2.1. �
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