
Genus theory

Let L/K be a cyclic extension of number fields of degree n. Let 〈σ〉 be the Galois group of L over K (so
σ has order n). Let PrinK denote the group of non-zero principal fractional ideals of K, let IK denote the
group of all non-zero fractional ideals of K, and let ClK := IK/ PrinK denote the class group of K (and
similarly with K replaced by L). The goal of this exercise is to consider the two short exact sequences

1 → O×
L → L× → PrinL → 1

and
1 → PrinL → IL → ClL → 1,

and to compute the first several terms in the Galois cohomology long exact sequences of these two short
exact sequences.

One basic tool will be Hilbert’s Theorem 90, which says that H1(〈σ〉, L×) = 1. Another will be the compu-
tation of h2/1(O×

L ), which was made in class.

1. Show that H1(〈σ〉, IL) is trivial.

2. By considering the cohomology long exact sequences attached to the two short exact sequences above,
obtain the following isomorphism and exact sequences:
(a) Prinσ=1

L / PrinK
∼= H1(〈σ〉,O×

L ).
(b) 1 → Prinσ=1

L / PrinK → Iσ=1
L / PrinK → Clσ=1

L → H1(〈σ〉,PrinL) → 1.

(c) 1 → H1(〈σ〉,PrinL) → H2(〈σ〉,O×
L ) → H2(〈σ〉, L×).

3. Organize the results of problem (2) into a single exact sequence

1 → H1(〈σ〉,O×
L ) → Iσ=1

L / PrinK → Clσ=1
L → H2(〈σ〉,O×

L ) → H2(〈σ〉, L×).

Using the explicit formulas for cohomology of a cyclic group, rewrite this in the form

1 → H1(〈σ〉,O×
L ) → Iσ=1

L / PrinK → Clσ=1
L → H2(〈σ〉,O×

L ) → O×
K/

(
O×

K ∩N(L×)
)
→ 1.

(Here N(L×) denotes the image in K× of the norm map N : L× → K×, so O×
K ∩N(L×) is the subgroup of

O×
K which are norms of elements of L. Note that this is in general a weaker condition than being a norm of

an element of OL; indeed an element of O×
K is a norm of an element of OL if and only if it is a norm of an

element of O×
L , and this is typically a much more restrictive condition than being a norm from L×.)

4. Let ∆ denote the discriminant of L over K. If ℘ is a prime of K, let e℘ denote the ramification degree
of ℘, and write ℘1/e℘ to denote the unique prime of L whose e℘th power is equal to ℘. (So ℘1/e℘ = ℘ unless
℘ | ∆.)

(a) Show that Iσ=1
L = IK ·

∏
℘|∆

℘
1

e℘
Z

, and hence that

Iσ=1
L /IK

∼=
∏
℘|∆

℘
1

e℘
Z/Z

.

(b) Deduce that there is a short exact sequence

1 → ClK → Iσ=1
L / PrinK →

∏
℘|∆

℘
1

e℘
Z/Z → 1.

5. From problems (3) and (4), and the formula for h2/1(O×
L ) proved in class, deduce the following formula:

|Clσ=1
L | =

|ClK |
∏

v ev

n[O×
K : O×

K ∩N(L×)]
.



Here the product is taken over all places v (including the archimedean places) and ev denotes the ramification
index of the place v (hence ev = 1 if v is not ramified, and so the product really need only be taken over the
ramified places).

Remark. The ideals in OL which are invariant under σ, but which don’t have a non-trivial ideal of OK as
a factor, are classically called ambig ideals. (This comes from the German, and is sometimes translated as
ambiguous ideals, although the translator of Hilbert claims that this translation doesn’t capture the correct
sense.) In more modern terms, these are essentially the same thing as the elements of the quotient group
Iσ=1
L /IL, and so, by problem (3) (a), are described by the ramified primes. (Problem (4) (a) is essentially a

modern formulation of Hilbert’s Theorem 93.)
The elements of Clσ=1

L are similarly called the ambig ideal classes. The formula of problem (5) is a form
of what is traditionally called the ambiguous class number formula.

Remark. The formula of problem (5) is probably the best one can do in general, because while we have a
simple formula for h2/1(O×

L ), it doesn’t seem reasonable to expect formulas for H1 and H2 individually in
general. However, in the case when K = Q and L is a quadratic extension, we can compute the individual
H1 and H2, and can correspondingly obtain more information. Thus from now we suppose that we in this
situation, i.e. that K = Q and that L is a quadratic extension.

6. If L is a quadratic extension of Q, show that Clσ=1
L is precisely the 2-torsion subgroup of ClL.

7. Suppose that L is imaginary quadratic.

(a) Show that H1(〈σ〉,O×
L ) and H2(〈σ〉,O×

L ) both have order 2.
(b) Show that H1(〈σ〉,PrinL) is trivial (or equivalently, that H2(〈σ〉,O×

L ) → H2(〈σ〉,K×) is injective, or
equivalently again, that the term [O×

K : O×
K ∩N(L×)] in the ambiguous class number formula is equal to 2).

(c) Using the ambiguous class number formula (or, better, the exact sequences that give rise to it), show
that ClL[2] has rank equal to one less than the number of primes dividing the discriminant of L, and that it
is generated by the classes of the ramified primes.

8. Suppose now that L is real quadratic, with discriminant ∆.
(a) Show (by direct computation) that H1(O×

L ) has order two or four, and that H2(O×
L ) has order one or

two, depending on whether or not the norm of a fundamental unit of L is equal to −1 or 1.
(b) Using Fermat’s result on writing an integer as a sum of integer squares, show that −1 is the norm of an
element of L (i.e. −1 ∈ N(L×)) if and only if the discriminant ∆ of L is not divisible by any prime that is
congruent to −1 mod 4.
(c) Show that if ∆ is divisible by exactly one prime (so that L = Q(

√
p) with p = 2 or p ≡ 1 mod 4), then

a fundamental unit in OL has norm −1, and ClL has odd order. (We did this in class, but remind yourself
how the argument goes.)
(d) Show that if ∆ is divisible by at least one prime congruent to −1 mod 4, then ClL[2] has rank equal to
two less than the number of primes dividing ∆, and that it is generated by the classes of the ramified primes.
In particular, if ∆ = pq for two primes p ≡ q ≡ −1 mod 4, then ClL has odd order, and hence the two
ramified primes are both principal. Illustrate this phenomenon with some examples (e.g. p = 3 and q = 7,
or p = 11 and q = 19).
(e) Show that if a fundamental unit in OL has norm −1, then ClL[2] has rank equal to one less than the
number of primes dividing the discriminant of L, and that it is generated by the classes of the ramified
primes.
(f) Show that if L is real quadratic and ∆ is not divisible by any p ≡ −1 mod 4 (so that −1 is a norm from
L×, by problem (7) (b)), but the norm of a fundamental unit is 1, then ClL[2] has rank equal to one less than
the number of primes dividing the discriminant of K, and it is not generated by the classes of the ramified
primes. (These generate a subgroup of rank one less.) Give examples showing that this case can occur.

Remark. In the case when L is real quadratic, one can obtain more uniform statements by working with the
strict class group. To this end, let (L×)+ (bad notation, I know!) denote the elements in L× that are totally
positive, i.e. are positive with respect to both embeddings of L into R. Write (O×

L )+ := O×
L ∩ (L×)+, and



let Prin+
L denote the group of fractional ideals which are principal, admitting a totally positive generator.

Define the strict class group via the short exact sequence

(1) 1 → Prin+
L → IL → Cl+L → 1.

There is also the short exact sequence

(2) 1 → (O×
L )+ → (L×)+ → Prin+

L → 1.

9. (a) Show that the embedding Prin+
L ↪→ PrinL is an isomorphism if and only if a fundamental unit of OL

has norm −1.
(b) Show that the natural surjection Cl+L → ClL is an isomorphism if and only if a fundamental unit of O+

L

has norm −1, and otherwise has a kernel of order two.

10. Show that H1(〈σ〉, (L×)+) is trivial, and that H2(〈σ〉, (O×
L )+) is trivial. Deduce from this that

H1(〈σ〉,Prin+
L) = 1. (Look at the long exact cohomology sequence attached to diagram (2).)

11. By taking Galois cohomology of the short exact sequence (1) defining Cl+L , and taking into account
problem (10), show that the rank of the elementary abelian 2-group Cl+L [2] is equal to one less than the
number of primes dividing the discriminant of L, and that it is generated by the classes of the ramified
primes.

12. Taking into account all that you have proved, show that ClL[2] and Cl+L [2] have the same rank if the
discriminant of L is not divisible by any p ≡ −1 mod 4, and that the former has rank one less than the latter
otherwise.

13. Recall that for a finite abelian group A, the two-torsion subgroup A[2] and the two-torsion quotient
A/2A are elementary abelian 2-groups of the same rank. Thus, by problem (12), the quotients ClL /2 ClL
and Cl+L /2 ClL + have the same rank if the discriminant of L is not divisible by any p ≡ −1 mod 4, and that
the former had rank one less than the latter otherwise. Furthermore, by (11), the rank of Cl+L /2 Cl+L is one
less than the number of primes dividing the discriminant of L.

14. Suppose now that L is either imaginary or real. Let F denote the maximal everywhere unramified
extension F of L which is abelian over Q. Similarly, in the case when L is real quadratic, let F+ denote
the maximal extension of L which is unramified at all finite primes and abelian over Q. Use the Kronecker–
Weber theorem to determine F and F+ and hence to compute Gal(F/L) and Gal(F+/L), and show that
these groups are isomorphic to ClL /2 ClL and Cl+L /2 Cl+L respectively.

15. Generalize the “strict” theory to an arbitrary cyclic extension L/K, and find a strict analogue of the
ambiguous class number formula.


