Algebra 1: Fourth homework — due Monday, October 24

Do the following exercises from Fulton and Harris:

Also do the following exercises:

- **1.** Recall that for $n \ge 1$, and any field k, we let $\mathbf{P}^{n-1}(k)$ denote the set of lines in k^n .
- (a) Show that the natural action of $GL_n(k)$ on k^n induces a transitive action of $GL_n(k)$ on $\mathbf{P}^{n-1}(k)$, and compute the stabilizer of the line $k \times 0 \times \cdots \times 0$ under this action.
- (b) Taking k to be a finite field \mathbf{F}_q , use the result of part (a) to inductively compute the order of $\mathrm{GL}_n(\mathbf{F}_q)$.
- **2.** (This question gives the details of one of the discussions in Monday's class.) Let E/F be a finite Galois extension of fields, with Galois group G. Regard $E \otimes_F E$ as an E-algebra via the map $E \to E \otimes_F E$ given by $e \mapsto e \otimes 1$, and for each $g \in G$, define a homomorphism of E-algebras $\phi_g : E \otimes_F E \to E$ via $\phi_g : e_1 \otimes e_2 \to e_1 g(e_2)$.

Verify that each ϕ_g is a well-defined homomorphism of E-algebras, and that the product of the ϕ_g (as g ranges over all elements of G) induces an isomorphism of E-algebras

$$E \otimes_F E \cong \prod_{g \in G} E.$$

3. Describe all the conjugacy classes in (a) $GL_2(\mathbf{R})$; (b) $GL_2(\mathbf{Q})$.