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ABSTRACT. This paper studies the derived de Rham cohomology of Fp and p-adic algebras, and is inspired by Beilinson’s
work [Bei11b]. We construct a natural isomorphism between derived de Rham cohomology and crystalline cohomology for
lci maps of such algebras generalising work of Illusie, as well logarithmic variants. These comparisons give derived de Rham
descriptions of the usual period rings and related maps in p-adic Hodge theory. Placing these ideas in the skeleton of [Bei11b]
leads to a new proof of Fontaine’s crystalline conjecture Ccrys and Fontaine-Jannsen’s semistable conjecture Cst.

1. INTRODUCTION

This paper grew from an attempt at generalising Beilinson’s proof [Bei11b] of Fontaine’s CdR conjecture in p-adic
Hodge theory to the more refined crystalline and semistable settings. We briefly recall the surrounding picture in §1.1,
and then discuss how this fits into the present paper in §1.2. An actual description of the contents is available in §1.4.

1.1. Background. Let X be a smooth projective variety over a characteristic 0 field K. There are two Weil cohomol-
ogy theories naturally associated to X: the de Rham cohomologys H∗dR(X), which is a K-vector space equipped with
the Hodge filtration, and the p-adic étale cohomology H∗ét(X) := H∗ét(XK ,Zp), which is a Zp-module that comes
equipped with an action of Gal(K/K), for a fixed prime p. These theories are often closely related:

If K = C, then the classical Hodge comparison theorem asserts that H∗(X(C),C) ' H∗dR(X); composing with
Artin’s comparison isomorphism H∗B(X(C),C) ' H∗ét(X) ⊗Zp C (for some embedding Zp ↪→ C) then yields an
isomorphism between de Rham and étale cohomologies. The key to Hodge’s theorem is the following observation: the
spaceX(C) admits sufficiently many small opens U ⊂ X(C) whose de Rham cohomology is trivial. This observation
gives a map from H∗dR(X) to the constant sheaf C on X(C), and thus a map of (derived) global sections

Compcl : H∗dR(X)→ H∗(X(C),C) ' H∗ét(X)⊗Zp C.

Having defined the map, it is relatively easy to show that Compcl is an isomorphism: one can either check this locally
on X (as is typically done), or simply argue that a map of Weil cohomology theories with good functorial properties
(such as preservation of Chern classes of vector bundles) is automatically an isomorphism. If X is defined over R,
then the map Compcl preserves the Galois actions on both sides.

Now assume that K a p-adic local field. The analogue of the preceding complex analytic story is Fontaine’s de
Rham comparison conjecture CdR. Specifically, Fontaine constructed a filtered Gal(K/K)-equivariant K-algebra
BdR that is complete for the filtration, and conjectured the existence of a functorial isomorphism

CompdR
ét : H∗dR(X)⊗K BdR ' H∗ét(X)⊗Zp BdR,

compatible with the tensor product filtrations and Galois actions1. This conjecture has been proven by various authors
(see §1.3 below); we briefly discuss the recent proof [Bei11b] as it is closest to this paper. Beilinson observed that the
complex analytic proof sketched above also works in the p-adic context provided one measures “small opens” with
respect to the h-topology. More precisely, he showed that de Rham cohomology modulo pn sheafifies to a constant
sheaf on the h-topology of a p-adic scheme; one then constructs CompdR

ét and shows that it is an isomorphism, just
as for Compcl above. The two main ingredients of his proof are: de Jong’s alterations theorems for constructing the
desired “small opens” (via the p-divisility results of [Bhac]), and the Hodge-completed version of Illusie’s derived de
Rham cohomology theory for working with de Rham cohomology of certain non-smooth maps that enter the proof.

The Fontaine-Jannsen semistable conjecture Cst is a refinement of the CdR conjecture takes into account the geom-
etry of X and the arithmetic of K better. Let K and X be as above, let K0 denote the maximal unramified subfield of

1For this reason, BdR is often called the field of p-adic periods.
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K, and assume that X admits a semistable model over OK , the ring of integers of K. Then Kato’s theory of log crys-
talline cohomology endows H∗dR(X) with a K0-structure H∗dR(X)0, a monodromy operator, and a Frobenius action.
The semistable conjecture predicts a comparison isomorphism

Compst
ét : H∗dR(X)0 ⊗K0

Bst ' H∗ét(X)⊗Zp Bst,

preserving all natural structures; here Bst is a filtered Gal(K/K)-equivariant K0-subalgebra of BdR that has a Frobe-
nius action and a monodromy operator2. This conjecture is a p-adic analog of Steenbrink’s work [Ste76] on limiting
mixed Hodge structures. It is also stronger than the CdR conjecture: (a) the left hand side of Compst

ét (with its nat-
ural structures) recovers the Gal(K/K)-module H∗ét(X)[1/p], while the same is not true for the left hand side of
CompdR

ét , and (b) one can deduce CdR from Cst using de Jong’s theorem [dJ96]. Roughly speaking, the difference
between CdR and Cst is one of completions: the ring Bst is not complete for the Hodge filtration, so it detects more
than its completed counterpart. One major goal of this paper is give a simple conceptual proof of the Cst conjecture.

1.2. Results. Our proof of Cst follows the skeleton of [Bei11b] sketched above, except that we must prove non-
completed analogs of all results in derived de Rham cohomology whose completed version was used in [Bei11b]. In
fact, this latter task takes up the bulk (see §3 and §7) of the paper: until now (to the best of our knowledge), there
were essentially no known techniques for working with the non-completed derived de Rham cohomology, e.g., one
did not know a spectral sequence with computable E1 terms that converged to derived de Rham cohomology. A new
observation in this paper is that Cartier theory works extremely well in the derived world in complete generality:

Theorem (see Proposition 3.5). Let f : X → S be a morphism of Fp-schemes, and let dRX/S denote Illusie’s derived
de Rham complex. Then there exists a natural increasing bounded below separated exhaustive filtration Filconj

• , called
the conjugate filtration, of dRX/S that is functorial in f , and has graded pieces computed by

Cartieri : grconj
i (dRX/S) ' ∧iLX(1)/S [−i].

In particular, for any morphism f as above, there is a conjugate spectral sequence that converges to derived de
Rham cohomology of f , and has E1 terms computing cohomology of the wedge powers of the cotangent complex.
Using this theorem, we prove several new results on derived de Rham cohomology for p-adic schemes. For example,
we show the following non-completed version of a comparison isomorphism of Illusie:

Theorem (see Theorem 3.27). Let f : X → S be an lci morphism of flat Z/pn-schemes. Then there is a natural
isomorphism

Rf∗dRX/S ' Rf∗OX/S,crys.

Here the right hand side is the pushforward of the structure sheaf from the relative crystalline site (X/S)crys down
to S. A satisfying consequence is that divided powers, instead of being introduced by fiat as in the crystalline story,
appear very naturally in derived de Rham theory. We use this result in §9 to give derived de Rham descriptions of
various period rings (with their finer structure) that occur in p-adic Hodge theory. For example, when working over
Zp, Fontaine’s ring Acrys is realised as the p-adic completion of the derived de Rham cohomology of Zp → OCp (see
Proposition 9.8), and Fontaine’s map β : Zp(1) → Acrys is recovered as a Chern class map (see Construction 9.13);
the corresponding completed picture describes BdR as in [Bei11b, §1.5]. With this theory in place, in §10, we show:

Theorem (see Theorem 10.18). The Ccrys and Cst conjectures are true.

As mentioned above, this result is not new, but the method of proof is. The hard part (as always) is to construct the
comparison map Compst

ét. We do so by simply repeating Beilinson’s construction of CompdR
ét using non-completed

derived de Rham cohomology instead of its completed cousin; this is a viable approach thanks to the results on derived
de Rham cohomology mentioned above. A slight difference from [Bei11b] is that we must use the conjugate spectral
sequence, instead of the Hodge spectral sequence, to access p-divisibility results from [Bhac]. Once the map Compst

ét

is constructed, showing isomorphy is a relatively formal argument in chasing Chern classes.
A technical detail elided above is that the p-adic applications (as well as the method of proof) necessitate a theory

of derived de Rham cohomology in the logarithmic context. Rudiments of this can be found in [Ols05], but, again, no
non-completed results were known. Hence, in §6 and §7, we set up elements of “derived logarithmic geometry” using
simplicial commutative rings and monoids (we stick to the language of model categories instead of∞-categories for

2If X extends to a proper smooth OK -scheme, then the monodromy operator on H∗
dR(X)0 is trivial, and one expects the comparison isomor-

phism to be defined over a smaller Galois and Frobenius equivariant filtered subalgebra Bcrys ⊂ Bst; this is the crystalline conjecture Ccrys.
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simplicity of exposition). In particular, Gabber’s logarithmic cotangent complex from [Ols05, §8] appears naturally
in this theory (see Remark 6.6), and one has logarithmic versions of the results mentioned above, e.g., a conjugate
spectral sequence for computing log derived de Rham cohomology is constructed in Proposition 7.4, and a comparison
isomorphism with log crystalline cohomology in the lci case (almost) is shown in Theorem 7.22.

The last topic treated in this paper is a comparison result between de Rham and étale cohomology that can be
proven over global fields by our method. Specifically, using derived de Rham formalism, we construct a global period
ring AddR that is a filtered Ẑ-algebra equipped with a Gal(Q/Q)-action, and show the following analog of Cst:

Theorem (see Theorem 11.10). Let X be a semistable variety over Q. Then log de Rham cohomology of a semistable
model for X is isomorphic to the Ẑ-étale cohomology of XQ once both sides are base changed to a localisation of
AddR (while preserving all natural structures on either side).

One can prove similar results over other number fields. To the best of our knowledge, the other known proofs of
p-adic comparison theorems do not readily adapt to a global setting. However, it is quite conceivable that the global
theorem can deduced from the p-adic ones by an induction procedure; we did not investigate this question further.

1.3. A brief history of the comparison theorems. The comparison conjectures of Fontaine and Fontaine-Jannsen are
a series of increasingly stronger statements comparing the p-adic étale cohomology of varieties over p-adic local fields
with their de Rham cohomology (see [Fon82, Fon83, Ill90, Ill94]). These conjectures were made almost three decades
ago, and have proven to be extremely influential in modern arithmetic geometry. All these conjectures have been
proven now: by Faltings [Fal88, Fal89, Fal02] using almost ring theory, by Niziol [Niz98, Niz08] via higher algebraic
K-theory, and by Tsuji [Tsu99] (building on work on Bloch-Kato [BK86], Fontaine-Messing [FM87], Hyodo-Kato
[HK94], and Kato [Kat94]) using the syntomic topology. More recently, Scholze has reproven these conjectures (and
more) using his language of perfectoid spaces, which can be viewed as a conceptualsation of Faltings’ work. However,
these proofs are technically challenging (for example, Gabber and Ramero’s presentation of the almost purity theorem
in [Fal02] takes two books [GR03, GR]), and it was hoped that a simpler conceptual proof could be found. Such a
proof was arguably found by Beilinson in [Bei11b] for the de Rham comparison conjecture CdR; the present paper
extends these ideas to prove the crystalline conjecture Ccrys and the semistable conjecture Cst. While this paper was
being prepared, Beilinson has also independently found an extension [Bei11a] of [Bei11b] to prove Ccrys and Cst; his
new proof bypasses derived de Rham cohomology in favor of the more classical log crystalline cohomology of Kato
[Kat89, §5-§6]. However, both the present paper and [Bei11a] share an essential idea: using the conjugate filtration to
prove a Poincare lemma for non-completed cohomology (compare the proof of Theorem 10.14 with [Bei11a, §2.2]).

1.4. Outline. Notation and homological conventions (especially surrounding filtration convergence issues) are dis-
cussed in §1.5. In §2, we review the definition of derived de Rham cohomology from [Ill72, §VIII.2], and make general
observations; the important points are the conjugate filtration and the transitivity properties. Specialising modulo pn

in §3, we construct a map from derived de Rham cohomology to crystalline cohomology in general, and show that it
is an isomorphism in the case of an lci morphism (see Theorem 3.27). The main tool here is a derived Cartier theory
(Proposition 3.5), together with some explicit simplicial resolutions borrowed from [Iye07].

Next, logarithmic analogues of the preceding results are recorded in §6 and §7 based on Gabber’s approach to the
logarithmic cotangent complex from [Ols05, §8]; see Theorem 7.22 for the best logarithmic comparison result we
show. Along the way, rudiments of “derived logarithmic geometry” (with simplicial commutative monoids and rings)
are set up in §4 and parts of §6 as indicated in §1.23. The p-adic limits of all these results are catalogued in §8.

Moving from algebraic geometry towards arithmetic, we specialise the preceding results to give derived de Rham
descriptions of the p-adic period rings in §9 (as indicated in §1.2). In fact, the picture extends almost completely
to any integral perfectoid algebra in the sense of Scholze [Sch11], as is briefly discussed in Remark 9.9. Using
these descriptions, we prove the Fontaine-Jannsen Cst-conjecture in §10 as discussed in §1.2. The key result here is
crystalline p-adic Poincare lemma (Theorem 10.14). We also briefly discuss relations with other proofs of the p-adic
comparison theorems in Remark 10.16.

Finally, the promised comparison result over global fields is proven in §11.

3We have tried to avoid using higher categorical language in the non-logarithmic story. However, model categories (or, better,∞-categories)
seem necessary to cleanly present the logarithmic story, at least if one wishes to not get constantly bogged down in arguments that require showing
that certain constructions are independent of choices of projective resolutions (= cofibrant replacements).
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1.5. Notation and conventions. For a ringA, the ringA[x]〈x〉 (or sometimes simplyA〈x〉) is the free pd-polynomial
ring in one variable x overA; in general, we use 〈〉 to denote divided power adjunctions. Any tensor product appearing
is always derived unless otherwise specified. For a Zp-algebra A, we let Â := limnA/p

n be the p-adic completion
of A unless explicitly specified otherwise. For a complex K of Zp-modules, we define the derived p-adic completion
as K̂ := R limnK ⊗Z Z/pn (except in §11); if K has Zp-flat terms, then K̂ is computed as the termwise p-adic
completion of K. Note that the notation is inconsistent in the case that K = A is Zp-algebra that is not Zp-flat, in
which case we will always mean the derived completion. We also set Tp(K) := RHomZ(Qp/Zp,K); there is a
natural equivalence Tp(K) ' K̂[−1]. All exterior powers that occur are derived as in [Qui70, §7].

We often employ topological terminology when talking about complexes. A complex K over an abelian category
A is called connective if π−i(K) = Hi(K) = 0 for i > 0; it is called coconnective if the preceding vanishing holds
for i < 0 instead. We say that K is eventually connective if some shift of K is connective, and similarly for eventually
coconnective; these notions correspond to right-boundedness and left-boundedness in the derived category. A complex
K is said to be n-connected if πi(K) = 0 for i ≤ n. All these notions are compatible with the usual topological ones
under the Dold-Kan correspondence, which will be used without further comment.

The symbol ∆ denotes the category of simplices. For a category C, we let sC denote the category Fun(∆opp,C) of
simplicial objects in C; dually, we use cC to denote the category Fun(∆,C) of cosimplicial objects. For an object X
in a category C, we let C/X (resp. CX/) denote the category of objects of C lying over (resp. lying under) X , and for a
map X → Y , we write CX//Y for CX/ ×C C/Y .

If P• ∈ scA is a simplicial cosimplicial object in an abelian category A, then we let |P•| ∈ Ch•(A) denote
the cochain complex obtained by totalising the associated double complex (via direct sums); this is a homotopy-
colimit over ∆opp when P• is viewed as defining an object of sCh•(A) via the Dold-Kan correspondence. The
canonical filtration on each cosimplicial object Pn fits together to define an increasing bounded below separated
exhaustive filtration on |P•| that we call the conjugate filtration Filconj

• (|P•|). The associated graded piece grconj
k (|P•|)

may be identified as the object in Ch•(A) defined by πk(P•)[−k]. Dually, if Q• ∈ csA denotes a cosimplicial
simplicial object in an abelian category A, then we let Tot(Q•) ∈ Ch•(A) be the chain complex obtained by taking
a homotopy-limit over ∆ of Q•, viewed as an object of cCh•(A); the canonical filtration on each simplicial object
Qn fits together to define a descreasing bounded above separated complete filtration on Tot(Q•) that we also call the
conjugate filtration Fil•conj(Tot(Q•)). The associated graded piece grkconj(Tot(Q•)) may be identified as the object in
Ch•(A) defined by πk(Q•)[k].

The following facts will be used freely. If A• → B• is a weak equivalence of simplicial rings, and M• is a
simplicial A•-module with Mn flat over An for each n, then the adjunction map M• →M•⊗A• B• is an equivalence
of simplicial abelian groups; see [Ill71, §I.3.3.2 and Corollary I.3.3.4.6]. A map M → N of (possibly unbounded)
complexes of Z/pn-modules is a quasi-isomorphism if and only if M ⊗Z/pn Z/p→ N ⊗Z/pn Z/p is so; we refer to
this phenomenon as “devissage.”

Let Set, Ab, Mon, and Alg be the categories of sets, abelian groups, commutative monoids, and commutative rings
respectively. There are some obvious pairs of adjunctions between these categories, and we employ the following
notation to refer to these: FreeSet

Ab : Set → Ab denotes the free abelian group functor with right adjoint ForgetAb
Set,

while FreesSet
sAb : sSet→ sAb denotes the induced functor on simplicial objects, etc. A simplicial object in a concrete

category (like Set, Ab, Mon, Alg, etc) is called discrete if the underlying simplicial set is so.

1.6. Acknowledgements. The author warmly thanks Sasha Beilinson for enlightening conversations and communi-
cations. The overwhelming intellectual debt this paper owes to [Bei11b] is evident. Moreover, the idea that p-adically
completed derived de Rham cohomology (but without Hodge completion) could lead to a crystalline analogue of
[Bei11b] was expressed as a “hope” by Beilinson, and was the starting point of the author’s investigations. Special
thanks are due to Johan de Jong for numerous useful conversations, especially about homological algebra, and con-
sistent encouragement. The author is also grateful to Jacob Lurie for conversations that clarified many homotopical
aspects of this work, and to Martin Olsson for answering questions about [Ols05].

2. THE DERIVED DE RHAM COMPLEX

Illusie’s derived de Rham complex [Ill72, §VIII.2] is a replacement for the usual de Rham complex that works
better for singular morphisms; the idea, roughly, is to replace the cotangent sheaf with the cotangent complex in the
definition of the usual de Rham complex. In this section, we remind the reader of the definition, and some basic
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properties; these depend on a good understanding of projective resolutions of simplicial commutative rings, and a
robust formal framework for these is provided by the model structure on sAlg in §4.1.

Definition 2.1. Let A → B be a ring map, and let LB/A denote the cotangent complex. Then the derived de Rham
complex of B over A is defined to be |Ω•P•(B/A)/A| where P•(B/A)→ B is the canonical free resolution of B as an
A-algebra, where Ω•C/A denotes the usual de Rham complex of an A-algebra C. More generally, the same definition
applies when A→ B is a map of simplicial commutative rings in a topos.

Elaborating on Definition 2.1, observe that Ω•P•(B/A)/A naturally has the structure of a simplicial cochain complex.
The associated total complex |Ω•P•(B/A)/A| is constructed using direct sums along antidiagonals, and may be viewed
as a homotopy-colimit over ∆opp of the functor A-cochcain complex valued functor n 7→ Ω•Pn(B/A)/A; we typically
picture it as a second quadrant bicomplex. This description makes it clear that dRB/A comes equipped with an E∞-
algebra structure, and a decreasing separated exhaustive multiplicative Hodge filtration Fil•H . One can show that
dRB/A can be defined using any free resolution P• → B, and thus the functor of dR−/A commutes with filtered
colimits; see also [Ill72, §VIII.2.1.1]. In fact, the functor dR−/A commutes with arbitrary colimits in a suitable sense,
but we do not discuss that here (see Proposition 2.6 though).

Remark 2.2 (Lurie). Fix a ring A, and let sAlgA/ be the ∞-category of simplicial A-algebras. There is a natural
subcategory AlgFree

A/ ⊂ sAlgA/ spanned by free simplicially constant A-algebras. In fact, AlgFree
A/ generates sAlgA/

under homotopy-colimits. The functor B 7→ dRB/A on sAlgA/ is the left Kan extension of F 7→ Ω•F/A on AlgFree
A/ .

An important structure present on dRB/A is the conjugate filtration:

Proposition 2.3. Let A→ B be a ring map (or a map of simplicial commutative rings). Then there exists a functorial
increasing bounded below separated exhaustive filtration Filconj

• on dRB/A. This filtration can be defined using the
conjugate filtration on the bicomplex Ω•P•/A for any free A-algebra resolution P• → A, and is independent of the
choice of P•. In particular, there is a convergent spectral sequence, called the conjugate spectral sequence, of the form

Ep,q1 : Hp+q(grconj
p (dRB/A))⇒ Hp+q(dRB/A)

that is functorial in A→ B (here we follow the homological convention that dr is a map Ep,qr → Ep−r,q+r−1
r ).

Proof. The filtration in question is simply the conjugate filtration on the homotopy-colimit of a simplicial cosimplicial
abelian A-module, as explained in §1.5; we briefly reproduce the relevant arguments for the readers convenience. Let
P• → B as an A-algebra. Then each Ω•Pn/A comes equipped with the canonical filtration by cohomology sheaves.
This leads to an increasing bounded below (at 0) separated exhaustive filtration of the bicomplex Ω•P•/A (filter each
column by its canonical filtration). The associated graded pieces of this filtration are naturally simplicial A-cochain
complexes, with the i-th one given by simplicial A-cochain complex defined by n 7→ Hi(Ω•Pn/A)[−i]. The conjugate

filtration Filconj
• on dRB/A is simply the corresponding filtration on the associated single complex |Ω•P•/A|. If F• is a

different free resolution of B as an A-algebra, then F• is homotopy equivalent to P•. In particular, the simplicial A-
cochain complexes n 7→ Hi(Ω•Pn/A) and n 7→ Hi(Ω•Fn/A) are homotopy equivalent, which ensures that the resulting
two filtrations on the associated single complex |Ω•P•/A| ' dRB/A ' |Ω•F•/A| coincide. Finally, the claim about
the spectral sequence is a general fact about increasing bounded below separated exhaustive filtrations on cochain
complexes; see [Lur11, Proposition 1.2.2.14] for more on this spectral sequence. �

A corollary of Proposition 2.3 if that if f : B → C is a map of A-algebras that induces an equivalence grconj
i (f)

for all i, then it also induces an equivalence on dRB/A → dRC/A, i.e., the passage from dRB/A to ⊕pgrconj
p (dRB/A)

is conservative. A consequence is that the conjugate filtration is degenerate in characteristic 0:

Corollary 2.4. Let A→ B be a map of Q-algebras. Then A ' dRB/A.

Proof. Let A → P• → B be a free resolution of B relative to A. Then Ω•Pn/A ' A[0] as polynomial algebras in

characteristic 0 have no de Rham cohomology. It follows that grconj
i (dRB/A) = 0 for i > 0, and grconj

0 (dRB/A) = A.
The convergence of the conjugate spectral sequence then does the rest. �

Remark 2.5. Corollary 2.4 renders derived de Rham theory (as defined here) useless in characteristic 0. A satisfactory
workaround is to define dRB/A as the Hodge-completed version of the complex defined above; roughly speaking,
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this amounts to using the product the totalisation instead of the direct sum totalisation when defining the derived de
Rham complex. A practical consequence is that the Hodge-to-de-Rham spectral sequence is forced to converge; this
immediately makes the resulting theory meaningful as it specialises to classical de Rham cohomology for smooth
morphisms. This is also the solution adopted in [Bei11b], but is insufficient for the p-adic applications of §10..

We will see later that the conjugate filtration is quite non-trivial away from characteristic 0, and, in fact, forms the
basis of most of our computations. We end this section by discussing the behaviour under tensor products.

Proposition 2.6. Let A→ B and A→ C be ring maps. Then we have the Kunneth formula

dRB⊗AC/A ' dRB/A ⊗A dRC/A

and a base change formula.
dRB/A ⊗A C ' dRB⊗AC/C ,

where all tensor products are derived.

Proof. Both claims are clear when the algebras involved are polynomial A-algebras. The general case follows from
this by passage to free resolutions. �

3. DERIVED DE RHAM COHOMOLOGY MODULO pn

In this section, we investigate the behaviour of derived de Rham cohomology for maps of Z/pn-algebras. By
an elementary devissage, almost all problems considered immediately reduce to the case of Fp-algebras. In this
positive characteristic situation, our main observation is that a suitably derived analogue of usual Cartier theory gives
a complete description of derived de Rham cohomology, and can be effectively used to reduce questions about derived
de Rham theory to questions about the cotangent complex.

Notation 3.1 (Frobenius twists). Let f : A → B be a map of Fp-algebras. Let FrobA : A → A be the Frobenius
morphism on A, and define B(1) := B⊗A,FrobA = B⊗AFrob∗A = Frob∗AB to be the Frobenius twist of A, viewed
as a simplicial commutative ring; explicitly, if P• → B denotes a free resolution of B over A, then P• ⊗A Frob∗A
computes B(1). If TorAi (Frob∗A,B) = 0 for i > 0, then B(1) coincides with the usual (underived) Frobenius twist,
which will be the primary case of interest to us. The following diagram and maps will be used implicity when talking
about these twists:

B

B(1)

Frobf

aa

B

FrobB

ll

FrobAoo

A

f

TT

f(1)

OO

A
FrobAoo

f

OO

The main reason to introduce (derived) Frobenius twists (for us) is that dRB/A is naturally a complex of B(1)-
modules; this can be seen directly in the case of polynomial algebras, and thus follows in general.

3.1. Review of classical Cartier theory. We briefly review the classical Cartier isomorphism in the context of free
algebras; see [DI87, Theorem 1.2] for more.

Theorem 3.2 (Classical Cartier isomorphism). Let A → F be a free algebra with A an Fp-algebra. Then there is a
canonical isomorphism of F (1)-modules

C−1 : ∧kLF (1)/A ' Hk(Ω•F/A)

which extends to a graded F (1)-algebra isomorphism

C−1 : ⊕k≥0 ∧k LF (1)/A[−k]→ ⊕k≥0H
k(Ω•F/A)[−k].

Proof. To define C−1, we may reduce to the case A = Fp via base change. Once over Fp, we can pick a deformation
F̃ of the free algebra F to W2 together with a compatible lift F̃rob : F̃ → F̃ of Frobenius. We then define

C−1 =
F̃rob

∗

p
6



in degree 1, and extend it by taking exterior products; this makes sense because F̃rob
∗

: Ω1
F̃ /W2

→ Ω1
F̃ /W2

is
divisible by p (as it is zero modulo p). One can then check using local co-ordinates that this recipe leads to the desired
description of Hp(dRF/A). �

Remark 3.3. Continuing the notation of (the proof of) Theorem 3.2, we note that one can do slightly better than
stated: taking tensor products shows that F̃ ∗ : Ωi

F̃ /W2
→ Ωi

F̃ /W2
is divisible by pi, and hence 0 for i ≥ 2. It follows

that the definition for C−1 given above leads to an equivalence of complexes

⊕k≥0 ∧k LF (1)/A[−k]
'→ Ω•F/A,

i.e., that the de Rham complex Ω•F/A is formal. This decomposition depends on the choices of F̃ and F̃rob, but the
resulting map on cohomology is independent of these choices.

Remark 3.4. Theorem 3.2 is also true when the free algebra F is replaced by any smooth A-algebra B. A direct
way to see this is to observe that both sides of the isomorphism C−1 occurring in Theorem 3.2 localise for the étale
topology on F (1); since smooth morphisms A → B are obtained from polynomial algebras by étale localisation, the
claim follows Zariski locally on Spec(B), and hence globally by patching. The underlying principle here of localising
the de Rham cohomology on the Frobenius twist will play a prominent role in this paper (in the derived context).

3.2. Derived Cartier theory. We begin by computing the graded pieces of the conjugate filtration in characteristic p.

Proposition 3.5 (Derived Cartier isomorphism). Let A → B be a map of Fp-algebras. Then the conjugate filtration
Filconj
• on dRB/A is B(1)-linear, and has graded pieces computed by

Cartieri : grconj
i (dRB/A) ' ∧iLB(1)/A[−i].

In particular, the conjugate spectral sequence takes the form

Ep,q1 : H2p+q(∧pLB(1)/A)⇒ Hp+q(dRB/A).

Proof. Let P• → B be the canonical free resolution of B over A by free A-algebras. The associated graded pieces
grconj
i (dRB/A) are given by totalisations of the simplicial A-cochain complexes determined by n 7→ Hi(Ω•Pn/A)[−i].

By the Cartier isomorphism for free algebras, one has Hi(Ω•Pn/A)[−i] ' Ωi
P

(1)
n /A

, and hence

grconj
i (dRB/A) ' ∧iLB(1)/A[−i].

The rest follows formally. �

Before discuss applications, we make a definition.

Definition 3.6. A map A → B of Fp-algebras is called relatively perfect if B(1) → B is an equivalence; the same
definition applies to simplicial commutative Fp-algebras as well. A map A→ B of Z/pn-algebras is called relatively
perfect modulo p if A⊗Z/pn Fp → B ⊗Z/pn Fp is relatively perfect.

Example 3.7. Any étale map is relatively perfect, and any map between perfect Fp-algebras is relatively perfect.

The connection between the preceding definition and de Rham theory is:

Corollary 3.8. Let A → B be a map of Z/pn-algebras that is relatively perfect modulo p. Then LB/A ' 0, and
dRB/A ' B.

Proof. By devissage, we may immediately reduce to the case that A is an Fp-algebra, and A → B is relatively
perfect. We first show that LB/A ' 0. Indeed, for any A-algebra B, the A-algebra map B(1) → B induces the 0
map LB(1)/A → LB/A (resolve B by free A-algebras, and use that Frobenius on the terms of the free resolution lifts
Frobenius on B). Thus, if B(1) → B is an isomorphism, then LB/A and LB(1)/A must both be 0. The conjugate
filtration on dRB/A is therefore trivial in degree > 0, so one obtains dRB/A ' B(1) ' B, where the second equality
follows from the relative perfectness. �

Question 3.9. What is an example of an Fp-algebra map A→ B with LB/A ' 0 but B(1) → B not an isomorphism?
For A = Fp itself, we are asking for Fp-algebras B with LB/Fp = 0 that are not perfect; note that such algebras have
to be discrete. It is conceivable that such examples do not exist, but we do not have a proof (except when A → B is
finitely presented). This question also arose in Scholze’s work [Sch11] on perfectoid spaces.
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We use the derived Cartier isomorphism to show that derived de Rham cohomology coincides with classical de
Rham cohomology for smooth maps:

Corollary 3.10. Let A→ B be a map of Z/pn-algebras, and let P• → B be a resolution of B by smooth A-algebras
(not necessarily free). Then there is a natural equivalence

dRB/A ' |Ω•P•/A|.

In particular, if A→ B is a smooth map of Z/pn-algebras, then dRB/A ' Ω•B/A.

Proof. To see this, let Q• → B be a resolution of B by free A-algebras. By the cofibrancy of Q•, we can pick a map
Q• → P• lying over B (and hence an equivalence). This defines a map dRB/A → |Ω•P•/A|. To check that this map is
an equivalence, we may reduce to the case that A and B are both Fp-algebras by devissage and and base change. In
this case, the claim follows from the convergence of the conjugate spectral sequence and the fact that LB(1)/A can be

computed using Q(1)
• or P (1)

• (see [Ill71, Proposition III.3.1.2]). �

Question 3.11. Observe that the proof above also shows that when A → B is smooth map of Fp-algebras, then the
conjugate filtration on dRB/A coincides with the canonical filtration. Does the same hold modulo pn?

Remark 3.12. Note that Corollary 3.10 is completely false in characteristic 0. As explained earlier, we have dRB/A '
A[0] whenever Q ⊂ A. On the other hand, if A → B is smooth, then B itself provides a smooth resolution of B in
the category of A-algebras, and the resulting de Rham cohomology groups are the usual de Rham cohomology groups
of A→ B which need not be concentrated in degree 0. For example, the map Q→ Q[x, x−1] has a one-dimensional
(usual) de Rham cohomology group of degree 1 (with generator dxx ), but not derived de Rham cohomology.

Using the conjugate filtration, we can prove a connectivity estimate for derived de Rham cohomology:

Corollary 3.13. LetA→ B be a map of Z/pn-algebras such that Ω1
B/A is generated by r elements for some r ∈ Z≥0.

Then dRB/A is (−r − 1)-connected.

Proof. To see this, first note that by devissage, we may reduce to the case that both A and B are Fp-algebras. In this
case, via the conjugate spectral sequence, it suffices to check that ∧nLB(1)/A is (n− r− 1)-connected for each n. By
base change from B, note that a choice of generators of Ω1

B/A defines a triangle of B(1)-modules

F → LB(1)/A → Q

with F a free module of rank r, and Q a connected B(1)-module. The claim now follows by filtering wedge powers
of LB(1)/A using the preceding triangle, and noting that ∧aF = 0 for a > r, while ∧bQ is (b− 1)-connected. �

Next, we show that derived de Rham cohomology localises for the étale topology; note that there is no analogous
description for usual de Rham cohomology in characteristic 0.

Corollary 3.14. Let A → B → C maps of Fp-algebras, and assume that B → C is étale (or simply that B → C is
flat with LC/B = 0). Then

dRB/A ⊗B(1) C(1) ' dRC/A and Hi(dRB/A)⊗B(1) C(1) ' Hi(dRC/A),

where all Frobenius twists are computed relative to A.

Proof. The first statement implies the second by taking cohomology and using: dRB/A is a complex of B(1)-modules
while B(1) → C(1) is flat since it is a base change of B → C along B → B(1). For the first, note that there is indeed
a natural map dRB/A ⊗B(1) C(1) → dRC/A. The claim now follows by computing both sides using the conjugate
spectral sequence and noting that ∧qLB(1)/A ⊗B(1) C(1) ' ∧qLC(1)/A since LC(1)/B(1) = Frob∗ALC/B = 0. �

Next, we relate the first differential of the conjugate spectral sequence (or, rather, the first extension determined by
the conjugate filtration) to a liftability obstruction. Let f : A → B be a map of Fp-algebras. Then one has an exact
triangle

grconj
q−1(dRB/A)→ Filconj

q (dRB/A)/Filconj
q−2(dRB/A)→ grconj

q (dRB/A)

By Proposition 3.5, we have grconj
q (dRB/A) ' ∧qLB(1)/A[−q]. The above triangle thus determines a map

obq : ∧qLB(1)/A → ∧q−1LB(1)/A[2]

We can relate ob1 to a geometric invariant of B as follows:
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Proposition 3.15. In the preceding setup, assume that a lift Ã of A to Z/p2 has been specified. Then the map ob1

coincides with the obstruction to lifting B(1) to Ã when viewed as a point of Map(LB(1)/A, B
(1)[2]).

Sketch of proof. We first construct ob1 explicitly. Fix a free resolution P• → B, and let τ≤1Ω•Pn/A denote the two-
term cochain complex Pn → Z1(Ω1

Pn/A
); the association n 7→ τ≤1Ω•Pn/A defines a simplicial cochain complex

totalising to Filconj
1 dRB/A. Identifying the cohomology of Ω•Pn/A via the Cartier isomorphism then gives a exact

triangle of simplicial cochain complexes

P
(1)
• → τ≤1Ω•P•/A → L

P
(1)
• /A

[−1].

Taking a homotopy-colimit and identifying the terms then gives an exact triangle of B(1)-modules

B(1) → K → LB(1)/A[−1].

The boundary map LB(1)/A[−1]→ B(1)[1] for this triangle realises ob1. To see the connection with liftability, observe

that the boundary map L
P

(1)
n /A

[−1]→ P
(1)
n [1] defines a point of Map(L

P
(1)
n /A

, P
(1)
n [2]) that is canonically identified

with the point defining the obstruction to lifting P (1)
n to Ã, i.e., with the map

L
P

(1)
n /A

[−1]
an→ LA/Zp ⊗A P

(1)
n

bn→ P (1)
n [1]

where an is the Kodaira-Spencer map for A → P
(1)
n and bn is the derivation classifying the square-zero extension

Ã → A pulled back to P (1)
n ; see [DI87, Theorem 3.5]. Taking homotopy-colimits then shows that the point ob1 ∈

Map(LB(1)/A, B
(1)[2]) constructed above also coincides with the map

LB(1)/A[−1]
a→ LA/Zp ⊗A B

(1) b→ B(1)[1],

where a = |a•| is the Kodaira-Spencer map for A→ B(1), while b = |b•| is the derivation classifying the square-zero
extension Ã→ A pulled back to B(1); the claim follows. �

Remark 3.16. As mentioned in [Ill], there is a mistake in [Ill72, §VIII.2.1.4] where it is asserted that for any algebra
map A → B, there is a natural isomorphism ⊕p ∧p LB(1)/A[−p] ' dRB/A rather than simply an isomorphism of
the graded pieces; we thank Beilinson for pointing out [Ill] to us. Based on Proposition 3.15, a non-liftable (to W2)
singularity gives an explicit counterexample to the direct sum decomposition. A particularly simple example, due to
Berthelot and Ogus, is A = Fp and B = Fp[x1, . . . , x6](xpi , x1x2 + x3x4 + x5x6).

The classical Cartier isomorphism has an important extension [Ill96, Remark 5.5.1]: the description of the coho-
mology of the de Rham complex of a smooth morphism in terms of differentials on the Frobenius twists lifts to a
description of the entire de Rham complex in the presence of Z/p2-lift of everything in sight, including Frobenius.
We show next that a similar picture is valid in the derived context:

Proposition 3.17 (Liftable Cartier isomorphism). Let Ã → B̃ be a map of flat Z/p2-algebras such that there exist
compatible endomorphisms F̃A and F̃B lifting the Frobenius endomorphisms of A = Ã⊗Z/p2 Fp and B = B̃ ⊗Z/p2

Fp. Then there exists an equivalence of algebras

Cartier−1 : ⊕k≥0 ∧k LB(1)/A[−k] ' dRB/A

splitting the conjugate filtration from Proposition 3.5.

Proof. Our proof uses the model structure on simplicial commutative rings due to Quillen [Qui67]. The liftability
assumption on Frobenius shows that if P̃• → B̃ denotes a free Ã-algebra resolution of B̃, then there exists a map
h̃ : P̃• → P̃• which is compatible with F̃A and F̃B up to homotopy, and has a modulo p reduction that is homotopic

to the Frobenius endomorphism of P• := P̃• ⊗Z/p2 Z/p. Now set P̃•
(1)

:= P̃• ⊗Ã,F̃A Ã, and let g̃ : P̃•
(1)
→ P̃•

denote the induced Ã-algebra map. Observe that P̃•
(1)

is cofibrant as an Ã-algebra (as it is the base change of the
cofibrant Ã-algebra P̃• along some map Ã→ Ã), and the reduction modulo p map P̃• → P• is a fibration (since it is
so as a map of simplicial abelian groups). Using general model categorical principles (more precisely, the “covering
homotopy theorem,” see [Qui67, Chapter 1, page 1.7, Corollary]), we may replace g̃ with a homotopic Ã-algebra map
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to ensure that the modulo p reduction of g̃ is equal to the relative Frobenius map P (1)
• → P•. With this choice, the

induced map
Ω1(g̃∗) : Ω1

P̃•
(1)
/Ã
→ Ω1

P̃•/Ã

reduces to the 0 map modulo p. Taking wedge powers and using Lemma 3.18, all the induced maps

Ωk(g̃∗) : Ωk
P̃•

(1)
/Ã
→ Ωk

P̃•/Ã

are 0 for k > 1. In particular, there exist well-defined maps

1

p
· Ωk(g̃∗) : Ωk

P
(1)
• /A

→ ΩkP•/A,

all 0 for k > 1, with the property that the square

Ω1

P
(1)
• /A

1
p ·Ω

1(g̃∗)
//

d

��

Ω1
P•/A

d

��
Ω2

P
(1)
• /A

1
p ·Ω

2(g̃∗)
// Ω2
P•/A

commutes. Since the bottom map is 0, there is a well-defined map of double complexes

Ω1

P
(1)
• /A

[−1]→ Ω•P•/A

which totalises to give a map
LB(1)/A[−1]→ dRB/A.

The Cartier isomorphism in the smooth case shows that the preceding morphism splits the conjugate filtration in degree
1. We leave it to the reader to check that taking wedge powers and using the algebra structure on dRB/A now defines
the desired isomorphism

Cartier−1 : ⊕k≥0 ∧k LB(1)/A[−k]→ dRB/A.

�

The following lemma used in the proof of Proposition 3.17.

Lemma 3.18. Let R be a flat Z/p2-algebra. Let f : K1 → K2 be a map of simplicial R-modules. Assume that
f ⊗R Fp is 0 as a map of complexes. If K2 has projective terms, then ∧kf = 0 for k > 1.

Sketch of proof. The assumption that f is 0 modulo p implies that f factors as a map

K1 → p ·K2
i
↪→ K2.

Moreover, since K2 is projective, the derived exterior powers of f are computed in the naive sense, without any
cofibrant replacement of the source. Thus, ∧k(f) factors through ∧k(i). However, it is clear ∧k(i) = 0 for k > 1, and
so the claim follows. �

Remark 3.19. The proof of Proposition 3.17 made use of certain choices, but the end result is independent of these
choices. If we have a different free resolution P̃•

′
→ B̃ and a different lift g̃′ of Frobenius on P̃•

′
compatible with

the chosen lift on B, then one can still run the same argument to get a decomposition of dRB/A. The resulting
map ∧kLB(1)/A[−k] → dRB/A is homotopic to the one constructed in the proof above, since the lifts g̃ and g̃′

are homotopic as maps of Ã-algebras, i.e., we may choose an Ã-algebra equivalence P̃• → P̃•
′

lying over B̃ that
commutes with g̃ and g̃′, up to specified homotopy.

Remark 3.20. Some homological analysis appearing in the proof of Proposition 3.17 becomes simpler if we specify
lifts to Zp instead of merely giving ourselves one over the truncation Z/p2. Indeed, once Zp-lifts have been specified,
the resulting map on forms (the analogue of the map labelled Ω1(g̃∗) above) is divisible by p as a map, and hence the
maps Ωk(g̃∗) will be divisible by pk as maps for all k, without modifying the original choice of g̃ as we did at the start
of the proof.
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Using Proposition 3.17, we can give an explicit example of a morphism of Fp-algebras whose derived de Rham
cohomology is not left-bounded. In particular, this shows that derived de Rham cohomology cannot arise as the
cohomology of a sheaf of rings on a topos. In future work [Bhaa], we will construct a derived crystalline site which
will be a simplicially ringed∞-topos functorially attached to a morphism f : X → S of schemes, and show that the
cohomology of the structure sheaf on this topos is canonically isomorphic to derived de Rham cohomology.

Example 3.21 (Non-coconnectivity of derived de Rham cohomology). Let A be a Fp-algebra with the following
two properties: (a) the cotangent complex LA/Fp is unbounded on the left (i.e., the singularity Spec(A) is not lci),
(b) the algebra A admits a lift to Z/p2 along with a lift of the Frobenius map. For example, we can take A =
Fp[x, y]/(x2, xy, y2) with the obvious lift (same equations), and obvious Frobenius lift (raise to the p-th power on the
variables). Then the derived Cartier isomorphism shows that

dRA/Fp ' ⊕i≥0 ∧i LA/Fp [−i].

In particular, the complex dRA/Fp is unbounded on the left.

Next, we discuss the transitivity properties for derived de Rham cohomology. Our treatment here is unsatisfactory
as we do not develop the language of coefficients in this paper.

Proposition 3.22. Let A → B → C be a composite of maps of Fp-algebras. Then dRC/A admits an increasing
bounded below separated exhaustive filtration with graded pieces of the form

dRB/A ⊗Frob∗AB
Frob∗A

(
∧n LC/B [−n]

)
,

where the second factor on the right hand side is the base change of ∧nLC/B [−n], viewed as an B-module, along the
map FrobA : B → Frob∗AB.

Proof. Let P• → B be a polynomial A-algebra resolution of B, and let Q• → P• be a termwise-polynomial P•-
algebra resolution of C. Then dRC/A ' |Ω•Q•/A|. For each k ∈ ∆opp, transitivity for de Rham cohomology (along
smooth morphisms, see [Kat70, §3]) endows each complex Ω•Qk/R with an increasing bounded below separated ex-
haustive filtration Fil• given by the (usual) de Rham complexes Ω•Pk/A(τ≤nΩ•Qk/Pk), where τ≤nΩ•Qk/Pk) is the canon-
ical trunction in degrees≤ n of Ω•Qk/Pk equipped with the Gauss-Manin connection for the compositeA→ Pk → Qk.
The graded pieces of this filtration are then computed to be the (usual) de Rham complexes Ω•Pk/A(Hn(Ω•Qk/Pk)[−n]).
By the classical Cartier isomorphism, the group Hn(Ω•Qk/Pk) is computed as Frob∗PkΩnQk/Pk , and the Gauss-Manin
connection coincides with the induced Frobenius descent connection; see also [Kat70, Theorem 5.10]. Lemma 3.24
below then gives an identification

Ω•Pk/A(Hn(Ω•Qk/Pk)[−n]) ' Ω•Pk/A ⊗Frob∗APk

(
Frob∗AΩnQk/Pk [−n]) ' Ω•Pk/A ⊗Frob∗APk

Frob∗A
(
∧n LQk/Pk [−n]

)
.

The desired claim now follows by taking a homotopy-colimit over k ∈ ∆opp. �

Remark 3.23. Let A
f→ B

g→ C be two composable maps of Z/pn-algebras. Proposition 3.22 is a shadow of an
isomorphism dRf (dRg) ' dRg◦f ; we do not develop the language here to make sense of the left hand side, but simply
point out that in the case that f and g are both smooth, this is the transitivity isomorphism for crystalline cohomology
using Berthelot’s comparison theorem between de Rham and crystalline cohomology (and Corollary 3.10). A similarly
satisfactory explanation in general will be given in [Bhaa].

The following general fact about Frobenius descent connections was used in Proposition 3.22.

Lemma 3.24. Let f : A → B be a map of Fp-algebras that exhibits B as a polynomial A-algebra. Let M be a
B(1)-module. Then the de Rham cohomology of the Frobenius descent connection on Frob∗fM takes the shape:

Ω•B/A(Frob∗fM) ' Ω•B/A ⊗B(1) M.

Proof. This lemma is essentially tautological as the connection on Frob∗fM is defined to be the first differential in the
complex appearing on the right above. �
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3.3. Connection with crystalline cohomology. Classical crystalline cohomology is very closely related to de Rham
cohomology modulo pn: the two theories coincide for smooth morphisms. We will show that there exists an equally
tight connection classical crystalline cohomology and derived de Rham cohomology: the two theories coincide for lci
morphisms. In future work [Bhaa], we enhance this result by constructing derived crystalline cohomology that always
coincides with derived de Rham cohomology, and also with the classical crystalline cohomology for lci maps.

We start off by constructing a natural transformation from derived de Rham cohomology to crystalline cohomology.
For simplicity of notation, we restrict ourselves to the affine case.

Proposition 3.25. Let f : A → B be a map of Z/pn-algebras. Then there is a natural map of Hodge-filtered
E∞-algebras

CompB/A : dRB/A → RΓ((B/A)crys,Ocrys)

that is functorial in A→ B, and agrees with the one coming from [Ber74, Theorem IV.2.3.2] when A→ B is smooth
(via Corollary 3.10).

We remind the reader that the right hand side is the crystalline cohomology of Spec(B)→ Spec(A), and is defined
using nilpotent thickenings ofB relative toA (as Z/pn-algebras) equipped with a pd-structure on the ideal of definition
compatible with the pd-structure on (p); see [Ber74, Chapter IV].

Proof. Let P• → B be a free simplicial resolution of B over A. For each k ≥ 0, the map Pk → B is a surjective map
from a free A-algebra onto B; let Ik ⊂ Pk be the kernel of this map. Since we are working over Z/pn, it follows from
Berthelot’s theorem (see [Ber74, Theorem V.2.3.2]) that we have a filtered quasi-isomorphism

Ω•Pk(B/A)/A ⊗Pk DPk(Ik)
'→ RΓ((B/A)crys,Ocrys)

whereDPk(Ik) denotes the pd-envelope of the ideal Ik compatible with the standard divided powers on p. As k varies,
we obtain a map of simplicial cochain complexes

Comp•B/A : Ω•P•/A → Ω•P•/A ⊗P• DP•(I•) (1)

By Berthelot’s theorem, the right hand simplicial object is quasi-isomorphic to the constant simplicial cochain complex
on the crystalline cohomology of B relative to A. More precisely, the natural map

Ω•P0/A
⊗P0 DP0(I0)→ |Ω•P•/A ⊗P• DP•(ker(P• → B))|

is an equivalence with both sides computing the crystalline cohomology of A→ B. The map Comp•B/A then defines
a map

CompB/A : dRB/A → RΓ((B/A)crys,Ocrys)

in the derived category. This morphism respects the Hodge filtration Fil•H as the map (1) does so. It is clear from the
construction and the proof of Corollary 3.10 that this map agrees with the classical one when A→ B is smooth. �

Remark 3.26 (Lurie). Remark 2.2 can be used to give an alternate construction of the map CompB/A. For F ∈
AlgFree

A/ , Berthelot’s theorem [Ber74, Theorem V.2.3.2] gives a natural map Ω•F/A → RΓcrys((F/A)crys,Ocrys). If
one defines the crystalline cohomology ofB ∈ sAlgA/ as that of π0(B), then general properties of left Kan extensions
give a map dRB/A → RΓcrys((B/A)crys,Ocrys) for any B ∈ sAlgA/.

The goal of this section is to prove the following theorem:

Theorem 3.27. Let f : R → B be a map of flat Z/pn-algebras for some n > 0. Assume that f is lci. Then the map
CompB/R from Proposition 3.25 is an isomorphism.

Remark 3.28. We suspect Theorem 3.27 is true without the flatness condition on R (or, equivalently, on B since f
has finite Tor-dimension). However, we do not pursue this question here.

Our strategy for proving Theorem 3.27 is to first deal with the special case that B = R/(f) for some regular
element f ∈ R, and then build the general case from this one using products, Berthelot’s comparison theorem, and
Corollary 3.10. The following special case therefore forms the heart of the proof:

Lemma 3.29. Let A→ B be the map Fp[x]
x7→0→ Fp. Then CompB/A from Proposition 3.25 is an isomorphism.
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The idea of the proof of Lemma 3.29 is very simple. The liftable Cartier isomorphism from Proposition 3.17 lets
one explicitly compute dRB/A, while the crystalline cohomology can be explicitly computed by Berthelot’s theorem
[Ber74, Theorem IV.2.3.2]; both sides turn out to be isomorphic to Fp〈x〉, the free pd-algebra in one variable over Fp.
Checking that CompB/A is an isomorphism takes a little tracing through definitions, leading to the long proof below.

Proof. We fix the Z/p2-lift Ã := Z/p2[x]→ Z/p2 =: B̃ ofA→ B together with the lifts of Frobenius determined by
the identity on B̃ and x 7→ xp on Ã. Using the liftable Cartier isomorphism, the preceding choice gives a presentation

dRB/A ' ⊕i≥0 ∧i LB(1)/A[−i]

as algebras. Let I = (x) ⊂ A denote the ideal defining A → B. One easily computes that B(1) ' Fp[x]/(xp) as an
A-algebra, and hence

a : LB(1)/A ' Ip/I2p[1] ' B(1) · y[1]

is free of rank 1 on a generator y in degree 1 that we choose to correspond to xp ∈ Ip/I2p under the isomorphism a.
Computing derived exterior powers then gives a presentation

dRB/A ' ⊕i≥0Fp[x]/(xp) · γi(y) (2)

as an algebra. On the other hand, since the crystalline cohomology of A→ B is given by Fp〈x〉 (by [Ber74, Theorem
V.2.3.2], for example), we have a presentation

RΓ((B/A)crys,Ocrys) ' Fp〈x〉 ' ⊕i≥0Fp[x]/(xp) · γip(x) (3)

as algebras. We will show that the map CompB/A respects the direct sum decompositions appearing in formulas (2)
and (3), and induces an isomorphism on each summand; the idea is to first understand the image of y, and then its
divided powers.

Claim 3.30. The map CompB/A sends y to −γp(x) ∈ Fp〈x〉.

Proof. First, we make the derived Cartier isomorphism explicit by choosing particularly nice free resolutions and
Frobenius lifts as follows. Let P̃• → Z/p2 be the bar resolution of Z/p2 as a Z/p2[x]-algebra as described in, say,
[Iye07, Construction 4.13]. The first few (augmented) terms look like(

. . . // //// Z/p2[x, t] //// Z/p2[x]
)
' // Z/p2

where the two Z/p2[x]-algebra maps from Z/p2[x, t] → Z/p2[x] are given by t 7→ x and t 7→ 0 respectively. This
resolution has the property that the terms P̃n are polynomial algebras Z/p2[x][Xn] over a set Xn with n elements,
and the simplicial Z/p2[x]-algebra map Z/p2[x][Xn] → Z/p2[x][Xm] lying over a map [m] → [n] ∈ Map(∆) is
induced by a map of setsXn → Xm∪{x, 0}. In particular, the map F̃robn : Z/p2[x][Xn]→ Z/p2[x][Xn] defined by
F̃robn(x) = xp and F̃robn(xi) = xpi for each xi ∈ Xn defines an endomorphism F̃rob : P̃• → P̃• of P̃• which visibly
lifts Frobenius modulo p, and also lies over the chosen Frobenius endomorphism of Z/p2[x]. Set P• = P̃• ⊗Z/p2 Fp.
We will use the free resolution P• → Fp together with the lift P̃• and the Frobenius endomorphism described above
in order to understand the derived Cartier isomorphism and its composition with CompB/A.

The element dt ∈ Ω1
Fp[x,t]/Fp[x] realises a generator of H−1(LFp/Fp[x]) when we use Ω1

P•/Fp[x] to calculate
LFp/Fp[x]. The Frobenius pullback of this class then determines a generator of H−1(L(Fp[x]/(xp))/Fp[x]) which coin-
cides with y; this can be easily checked. Chasing through the definition of the Cartier isomorphism, we find that the
image of y in dRB/A is given by tp−1dt ∈ Ω1

Fp[x,t]/Fp[x] when the latter group is viewed as a subgroup of the group
of 0-cocyles in dRB/A = |Ω•P•/A|. On the other hand, after adjoining divided powers of t and x (i.e., moving to the
crystalline side following the comparison recipe from §3.25), the element tp−1dt ∈ Ω1

Fp[x,t]/Fp[x] ⊗Fp[x,t] Fp〈x, t〉
may be written as

tp−1dt = dv

(
(p− 1)!γp(t)

)
= (p− 1)! · dv(γp(t)) = dv(γp(t)),

where dv : Fp〈x, t〉 → Ω1
Fp[x,t]/Fp[x] ⊗Fp[x,t] Fp〈x, t〉 is the vertical differential in the first column of

|Ω•P•/Fp[x] ⊗P• Dker(P•→Fp)(P•)|,
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the bicomplex computing the crystalline cohomology of Fp[x] → Fp via the resolution P•. Since the sum of the
vertical and horizontal differentials is 0 in cohomology, it follows that the image of tp−1dt in crystalline cohomology
coincides with the element

−dH(γp(t)) ∈ Fp〈x〉.
The horizontal differential dH : Fp〈x, t〉 → Fp〈x〉 is the difference of the Fp[x]-algebra maps obtained by sending t
to x and 0 respectively, and so we have −dH(γp(t)) = −γp(x), as claimed. �

By Claim 3.30, the map CompB/A induces an isomorphism of the first two summands appearing in formulas (2)
and (3). The rest follows by simply observing that

γk(−γp(x)) =
(−1)k · xkp

k! · (p!)k
= γkp(x) · u,

where u is a unit in Fp; the point is that nk := (kp)!
k!pk

is an integer, and nk and nk+1 differ multiplicatively by a unit
modulo p. Thus, CompB/A induces isomorphisms on all the summands, as desired. �

Remark 3.31. A theorem of Illusie [Ill72, Corollary VIII.2.2.8] shows that Hodge-completed derived de Rham co-
homology always agrees with Hodge-completed crystalline cohomology. Lemma 3.29 can therefore be regarded as
decompleted version of this theorem. The difference between the Hodge-completed and the non-completed theories
is, however, rather large: the latter is degenerate in characteristic 0 by Corollary 2.4, while the former is not.

Question 3.32. In the presentation (3), the Hodge filtration Fil•H coincides with divided-power filtration on the right,
while in the presentation (2), the conjugate filtration is realised by setting Filconj

n to be the first n pieces of the direct
sum decomposition on the right. Thus, we have Filconj

i ∩ FilipH ' grconj
i ' ⊕ip+p−1

j=ip grjH . What can be said about the
relative positions of the Hodge and conjugate filtrations in general?

Remark 3.33. A slightly less computational proof of the main result of §3.29 can be given as follows; it comes at
the expense of more careful bookkeeping of homotopies, an issue we largely eschew below. Illusie’s theorem for the
Hodge-completed comparison isomorphism [Ill72, Corollary VIII.2.2.8] gives a canonical isomorphism

dRFp/Fp[x]/FilkH ' Fp〈x〉/FilkH

for all k. In particular, there is a canonical equivalence of exact triangles

FilkH/Filk+2j
H (dRFp/Fp[x]) //

'
��

FilkH/Filk+j
H (dRFp/Fp[x])

δdR
k,j //

'
��

Filk+j
H /Filk+2j

H (dRFp/Fp[x])[1]

'
��

FilkH/Filk+2j
H (Fp〈x〉) // FilkH/Filk+j

H (Fp〈x〉)
δcrys
k,j // Filk+j

H /Filk+2j
H (Fp〈x〉)[1],

for all values of k and j. Now we claim:

Claim 3.34. The map δcrys
jp,p is naturally equivalent to 0, for all values j as a map of complexes of Fp[x]-modules.

Proof. Identifying terms explicitly, the claim amounts to showing that the short exact sequence

1 // 〈γ(j+1)p(x)〉/〈γ(j+2)p(x)〉 //

'
��

〈γjp(x)〉/〈γ(j+2)p(x)〉 //

'
��

〈γjp(x)〉/〈γ(j+1)p(x)〉 //

'
��

1

1 // Fp[x]/(xp) · γj+1(p) // Filjp(Fp〈x〉)/Fil(j+2)p(Fp〈x〉) // Fp[x]/(xp) · γjp(x) // 1

is split in the category of Fp[x]-modules. This follows from fact that γjp(x) ∈ Filjp(Fp〈x〉)/Fil(j+2)p(Fp〈x〉) is
killed by xp (since xp · γjp(x) = (j + 1) · p · γ(j+1)p(x) = 0), and hence defines a splitting of the surjection above in
the category of Fp[x]-modules. �

We remark that there is some ambiguity in the choice of splittings used above, but this will cancel itself out at the
end. We will use this information as follows. First, we partially totalise the (say canonical) bicomplex computing
dRFp/Fp[x], i.e., we totalise rows 0 through p − 1, rows p through 2p − 1, etc.; the result is still a bicomplex whose
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associated single complex computes dRFp/Fp[x]. Moreover, the rows are of a very specific form: the j-th row is
naturally quasi-isomorphic to

Kj := FiljpH (dRFp/Fp[x])/Fil
(j+1)p
H (dRFp/Fp[x])[j],

(and hence a perfect complex of Fp[x]-modules), and the differential

Kj → Kj+1

is identified with δdR
jp,p, which is itself isomorphic to δcrys

jp,p, and hence equivalent to 0 in a manner prescribed as above.
We leave it to the reader to check that any such bicomplex is canonically split, i.e., we have a canonical equivalence

⊕jKj [−j] ' |K•|.

Putting it all together, we obtain an equivalence

dRFp/Fp[x] ' ⊕j∈Z≥0
FiljpH /Fil

(j+1)p
H (dRFp/Fp[x]) ' ⊕j∈Z≥0

FiljpH /Fil
(j+1)p
H (RΓcrys((Fp/Fp[x]),Ocrys)) ' Fp〈x〉,

where the first map is non-canonical and constructed using the above splittings, the second map comes from Illusie’s
theorem, and the last map comes from explicit construction; the choices that go into constructing the last map are
exactly the ones that go into making the first map as well.

Next, we show that pd-envelopes behave well under taking suitable tensor products; this is useful in passing from
the situation handled in Lemma 3.29 to complete intersections of higher codimension.

Lemma 3.35. Let A → B = A/I be a quotient map of Fp-algebras. Assume that I is generated by a regular
sequence f1, . . . , fr of length r. Then one has

DA(I) ' A〈x1, . . . , xr〉/(x1 − f1, . . . , xr − fr) ' ⊗iA〈x〉/(x− fi) ' ⊗iDA(fi)

where all tensor products are derived.

Proof. The elements fi define the Koszul presentation

∧2F → F → I → 0

where F = ⊕ri=1A · xi is a free module of rank r, the map F → I is given by xi 7→ fi, and the map ∧2F → F is the
usual Koszul differential determined by xi ∧ xj 7→ fjxi − fixj . Exactness properties of Γn (see [BO78, Corollary
(A.5)]) give a presentation

⊕ni=1(ΓiA(∧2F )⊗A Γn−iA (F ))→ ΓnA(F )→ ΓnA(I)→ 0.

This leads to an algebra presentation

Γ∗A(I) ' Γ∗A(F )/(〈fjxi − fixj〉i,j).

The pd-envelope DA(I) is then obtained by the formula

DA(I) = Γ∗A(I)/(x1 − f1, . . . , xr − fr) ' Γ∗A(F )/(〈fjxi − fixj〉i,j , x1 − f1, . . . , xr − fr).

To simplify this, we observe that for each pair i, j and each positive integer n, we have

γn(fjxi − fixj) ∈ (xi − fi, xj − fj) ⊂ (x1 − f1, . . . , xr − fr)

in the algebra Γ∗A(F ). Indeed, this follows by expanding the left hand side modulo the ideal (xi − fi, xj − fj), and
using the equality γn(xi) ·xnj = γn(xixj) = xni · γn(xj). Thus, we can simplify the preceding presentation of DA(I)
to write

DA(I) = Γ∗A(F )/(x1 − f1, . . . , xr − fr) ' A〈x1, . . . , xr〉/(x1 − f1, . . . , xr − fr).
Using the regularity of each fi, the same reasoning also shows that

DA(fi) ' A〈xi〉/(xi − fi).

It remains to check that

⊗ri=1A〈xi〉/(xi − fi) ' A〈x1, . . . , xr〉/(x1 − f1, . . . , xr − fr).
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The natural map from the left hand side to the right hand side naturally realises the latter as π0 of the former. Hence,
it suffices to check that the left hand side is discrete. The regularity of fi implies the regularity of xi − fi ∈ A〈xi〉.
Hence, we have a chain of isomorphisms (with derived tensor products)

A〈xi〉/(xi − fi) = A⊗Fp[t]

(
Fp[t]〈xi〉

xi−t→ Fp[t]〈xi〉
)

via t 7→ fi

= A⊗Fp[t] Fp〈t〉

= A⊗Fp[t]

(
⊕j∈Z≥0

Fp[t]/(t
p) · γjp(t)

)
= ⊕j∈Z≥0

A/(fi)
p · γjp(fi),

where the last equality uses the regularity of fpi ∈ A. In particular, each ring A〈xi〉/(xi − fi) is a free module over
A/(fpi ). The desired discreteness now follows by commuting the tensor product with direct sums, and using that
fp1 , . . . , f

p
r is a regular sequence since f1, . . . , fr is so. �

We need some some base change properties of crystalline cohomology. First, we deal with pd-envelopes.

Lemma 3.36. Let A → B = A/I be a quotient map of flat Z/pn-algebras. Assume that I is generated by a
regular sequence. Then the pd-envelope DA(I) (compatible with divided powers on p) is Z/pn-flat, and its formation
commutes with reduction modulo p, i.e., DA(I)⊗Z/pn Fp ' DA/p(I + (p)/(p)).

Proof. Let I = (f1, . . . , fr) be generated by the displayed regular sequence. The proof of Lemma 3.35 shows that

DA(I) ' A〈x1, . . . , xr〉/(x1 − f1, . . . , xr − fr).

Thus, to show flatness over Z/pn, we may reduce to the case r = 1, i.e., I = (f) for some regular element f . We need

to check that A〈x〉/(x−f) is Z/pn-flat. The regularity of f and the Z/pn-flatness of A imply that
(
A〈x〉 x−f→ A〈x〉

)
is a Z/pn-flat resolution ofDA(I). Since any Z/pn-module with a finite flat resolution is flat,DA(I) is also Z/pn-flat.
For base change, it now suffices to show that if f ∈ A is regular, then so is its image in A/p, i.e., the sequence

0→ A/p
f→ A/p→ (A/f)/p→ 0

is exact. Since A is Z/pn-flat, the regularity of f shows that A/f has finite flat dimension over Z/pn, and hence is
flat as above. The desired exactness then follows from the vanishing of Tor

Z/pn

1 (A/f,Fp). �

Next, we show that the formation of crystalline cohomology often commutes with reduction modulo p.

Lemma 3.37. Let A → B be an lci map of flat Z/pn-algebras. Then the formation of RΓ((B/A)crys,O) commutes
with −⊗Z/pn Fp.

Proof. Choose a factorisation A → F → B with A → F a polynomial algebra, and F → B an lci quotient by
a regular sequence; the reduction modulo p of this factorisation defines a similar presentation of B/p by free A/p-
algebras. Then by Berthelot’s theorem [Ber74, Theorem IV.2.3.2], RΓ((B/A)crys,O) is computed by the de Rham
complex Ω•F/A ⊗A DA(I), and similarly modulo p. By Lemma 3.36 and the freeness over A of each ΩiF/A, the
formation of this complex commutes with reduction modulo p, so the claim follows. �

The preceding few lemmas and Lemma 3.29 combine to show more instances of Theorem 3.27.

Corollary 3.38. Let A→ B = A/I be a quotient map of flat Z/pn-algebras. Assume that I is generated by a regular
sequence. Then the map CompB/A from Proposition 3.25 is an isomorphism.

Proof. We want to show that dRB/A → RΓ((B/A)crys,O) is an isomorphism. Since the formation of both sides
commutes with derived base change (by Proposition 2.6 and Lemma 3.36), we may reduce (by devissage) to the case
that A and B are Fp-algebras, and I = (f1, . . . , fr) is generated by a regular sequence. The target is computed as
DA(I) by Berthelot’s theorem [Ber74, Theorem IV.2.3.2]. Proposition 2.6 and Lemma 3.35 then immediately reduce
us to the case r = 1, i.e. I = (f) for some regular element f ∈ A. In this case, the target is DA(f) ' A〈x〉/(x− f).
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To compute the source, observe that we have a commutative square

Fp[t]
t 7→f //

t 7→0

��

A

��
Fp // A/f.

This square can be checked to be a (derived) pushout using the resolution of Fp given by multiplication by t on Fp[t].
By base change in derived de Rham cohomology and Lemma 3.29, we obtain

dRB/A ' Fp〈t〉 ⊗Fp[t] A '
(
Fp[t]〈x〉

x−t→ Fp[t]〈x〉
)
⊗Fp[t] A '

(
A〈x〉 x−f→ A〈x〉

)
' A〈x〉/(x− f) ' DA(f),

as desired; here the second-to-last isomorphism comes from the regularity of x − f ∈ A〈x〉 which, in turn, comes
from the regularity of f ∈ A. �

The next lemma proves a Tor-independence result for lci quotients, and is here for psychological comfort.

Lemma 3.39. Let A → B = A/I be a quotient map of Fp-algebras. Assume that I is generated by a regular
sequence. Then B(1) is discrete, i.e., Frob∗A and B are Tor-independent over A.

Proof. The assumption implies that B ' ⊗iA/(fi); here the tensor product is derived and relative to A, and I =
(f1, . . . , fr) with the fi’s spanning a regular sequence. The desired Tor-independence follows from the following
sequence of canonical isomorphisms:

Frob∗A⊗A B =
(
Frob∗A⊗A A/(f1)

)
⊗Frob∗A · · · ⊗Frob∗A

(
Frob∗A⊗A A/(fr)

)
= Frob∗(A/f

p
1 )⊗Frob∗A · · · ⊗Frob∗A Frob∗(A/f

p
r )

= Frob∗
(
(A/(fp1 )⊗A · · · ⊗A A/(fpr )

)
= Frob∗

(
A/(fp1 , . . . , f

p
r )
)
.

Here all tensor products are derived, and the last equality uses the regularity of the sequence (fp1 , . . . , f
p
r ). �

Next, we discuss the conjugate filtration on pd-envelopes of ideals generated by regular sequences; this is pure
algebra, but will correspond to the conjugate filtration on derived de Rham cohomology once Theorem 3.27 is shown.

Lemma 3.40. Let A → B = A/I be a quotient map of Fp-algebras. Assume that I is generated by a regular
sequence. Then DA(I) admits a natural increasing bounded below (at 0) separated exhaustive filtration Filconj

• by
B(1)-submodules, with graded pieces given by

grconj
i (DA(I)) ' ΓiB(1)(π0(I [p] ⊗A B(1))) ' Frob∗A

(
ΓiB(I/I2)

)
,

where I [p] = (fp1 , . . . , f
p
r ) denotes the Frobenius-twisted ideal.

Note that the natural map A → DA(I) sends I [p] to 0 as fp = p · γp(f) = 0 for any f ∈ I , so DA(I) may be
viewed as a B(1)-algebra. By Lemma 3.39, the algebra B(1) is also discrete, and the B(1)-module π0(I [p]⊗AB(1)) is
a locally free module of rank r, where r is the length of a regular sequence generating I . Moreover, this B(1)-module
can be identified with the pushout of I/I2 along FrobA : B → B(1), which explains the last equality above.

Proof. The filtration can be defined by setting Filconj
n (DA(I)) to be the B(1)-submodule of DA(I) generated by

γkp(f) for f ∈ I and k ≤ n. To compute this filtration, observe that if I = (f) with f ∈ A regular, then, as in the
proof of Lemma 3.35, one has

DA(I) ' ⊕i∈Z≥0
A/(fp) · γip(x).

Under this isomorphism, one has Filconj
n (DA(I)) ' ⊕ni=0A/(f

p) · γnp(f), i.e., the conjugate filtration coincides with
the evident filtration by the number of factors on the direct sum decomposition above. The claim about associated
graded pieces is clear in this case well. The general case follows from this special case and Lemma 3.35. �
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Remark 3.41. If A → B = A/I is a quotient by an ideal I generated by a regular sequence, then one has LB/A '
I/I2[1], and LB(1)/A ' π0(I [p] ⊗A B(1))[1] by Lemma 3.39. Thus, the graded pieces of the conjugate filtration
appearing in Lemma 3.40 may be rewritten as

grconj
i (DA(I)) ' ΓiB(1)(π0(I [p] ⊗A B(1))) ' ∧iLB(1)/A[−i],

which brings it much closer to the derived de Rham theory by Proposition 3.5. In [Bhaa], we will define a notion of a
“derived pd-envelope” LDA(I) of an arbitrary ideal I ⊂ A in such a way that the analogue of the previous statement
is true without the assumption that I is generated by a regular sequence.

The conjugate filtration introduced in Lemma 3.40 respects the Gauss-Manin connection if the base comes equipped
with derivations. The following lemma identifies the induced connection on the graded pieces.

Lemma 3.42. Let A → B = A/I be a quotient map of Fp-algebras. Assume that I is generated by a regular
sequene. Let R → A be another map of Fp-algebras. Then the conjugate filtration Filconj

• from Lemma 3.40 on
DA(I) is compatible with the natural R-linear connection DA(I) → DA(I) ⊗A Ω1

A/R. The induced connection on
grconj
n (DA(I)) ' Frob∗AΓnB(I/I2) coincides with the Frobenius descent connection.

Proof. The first claim follows directly from the description of the conjugate filtration given in the proof of Lemma
3.40. For the second part, we first explain what the Frobenius descent connection is. The natural Frobenii on A and R
define a diagram of simplicial commutative rings

R
f //

FrobR

��

A
g //

FrobR

��

B

FrobR

��
R

a //

f

""

Frob∗RA
b //

Frobf

��

Frob∗RB

c

��
A

d //

g

%%

Frob∗AB

Frobg

��
B.

All squares here are cartesian. Now the free Frob∗AB-module grconj
n (DA(I)) is identified with ∧nLd[−n] by Remark

3.41. In particular, as an A-module, this module is the pullback along Frobf of the Frob∗RA-module ∧nLb[−n],
viewed as an Frob∗RA-module via restriction of scalars along b. For any Frob∗RA-module M , the pullback Frob∗fM
acquires a connection relative toR, which is called the Frobenius descent connection. We leave it to the reader to check
that this Frobenius descent connection coincides with the standard one on (conjugate graded pieces of) DA(I). �

The de Rham cohomology of a module equipped with a connection coming from Frobenius descent takes a par-
ticularly nice form, and this leads to a tractable description of the de Rham complex associated to the Gauss-Manin
connection acting on the conjugate filtration.

Lemma 3.43. Let R, A and B be as in Lemma 3.42. If the map R→ A exhibits A as a free R-algebra, then one has
an identification of de Rham complexes

dRA/R(grconj
n (DA(I))) ' dRA/R ⊗Frob∗RA

Frob∗R
(
ΓnB(I/I2)

)
,

where the second factor on the right hand side is the base change of ΓnB(I/I2), viewed as an A-module, along the
map FrobR : A→ Frob∗RA.

Proof. This lemma follows from Lemma 3.42 and Lemma 3.24. �

We now have enough tools to finish proving Theorem 3.27.

Proof of Theorem 3.27. Let R → A → B be a composite map of flat Z/pn-algebras, with R → A a free R-algebra,
and A → B = A/I a quotient map with I ⊂ A an ideal generated by a regular sequence. We want to show that
CompB/R : dRB/R → RΓ((B/R)crys,O) is an isomorphism. Since the formation of either side commutes with base
change (by Proposition 2.6 and Lemma 3.37), we may reduce (by devissage) to the case n = 1, i.e., we may assume
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that all algebras in sight are Fp-algebras. By Proposition 3.22, dRB/R admits an increasing bounded below separated
exhaustive filtration with graded pieces:

Ω•A/R(grconj
n (dRB/A)) ' dRA/R ⊗Frob∗RA

Frob∗R
(
∧n LB/A[−n]

)
. (4)

Transitivity for crystalline cohomology together with Lemma 3.43 show that RΓ((B/R)crys,O) admits an increasing
bounded below separated exhaustive filtration with terms given by

Ω•A/R(grconj
n (DA(I))) ' dRA/R ⊗Frob∗RA

Frob∗R
(
ΓnB(I/I2)

)
' dRA/R ⊗Frob∗RA

Frob∗R
(
∧n LB/A[−n]

)
, (5)

where the last equality uses Remark 3.41. We leave it to the reader to check that CompB/A respects both these
filtrations, and induces the identity isomorphism between (4) and (5). �

Remark 3.44. The identification of crystalline and derived de Rham cohomology provided in Theorem 3.27 answers
[Ill72, Question VIII.2.2.8.2] in the case of Z/pn-algebras. The case of characteristic 0 has a negative answer by §2.4,
and hence this seems like the best possible answer.

A consequence of Theorem 3.27 and the Frobenius action on crystalline cohomology is the Frobenius action on
dRA/(Z/pn) for flat lci Z/pn-algebras A. In fact, this is a completely general phenomenon:

Proposition 3.45. Let A be a Z/pn-algebra. Then dRA/(Z/pn) has a canonical Frobenius action commuting with the
Frobenius on RΓ((B/A)crys,Ocrys) under CompB/A.

Proof. Let P• → A be a free (Z/pn)-algebra resolution of A. Then Ω•Pm/(Z/pn) has a natural Frobenius action
coming from the isomorphism of Ω•Pm/(Z/pn) with the crystalline cohomology of Z/pm → Pm/p (compatible with
divided powers on p). Since the Frobenius action on crystalline cohomology is functorial, Frobenius also acts on the
bicomplex Ω•P•/(Z/pn), and hence on dRA/(Z/pn). The compatibility with CompB/A is clear from construction. �

Remark 3.46. It seems possible to use Mazur’s theorem (or, rather, Ogus’s generalization of it) to explicitly charac-
terise the “image” of the Frobenius map defined above: it is the homotopy colimit over m ∈ ∆opp of the complexes
LηΩ•Pm/(Z/pn), where Lη denotes the cogauge used in Ogus’s theorem. However, this does not seem very useful as
derived de Rham cohomology tends to be unbounded outside the smooth case.

4. SOME SIMPLICIAL ALGEBRA

The purpose of this section is to record some basic notions in simplicial algebra. In §4.1, we review the usual
model structures on simplicial sets, abelian groups, and commutative rings that are used in practice to defined derived
functors. In §4.2, we extend these ideas to simplicial commutative monoids. This material will be used in §5 to set up
some basic formalism for derived logarithmic geometry.

4.1. Review of some standard model structures. We simply collect (with references) some of Quillen’s results from
[Qui67]. All model structures we consider are closed, so we will not use this adjective. We refer the reader to the end
of §1.5 for our conventions concerning simplicial sets, simplicial rings, etc.

Simplicial sets and abelian groups. The category sSet is always equipped with the model structure where weak
equivalences are the usual ones (defined by passage to geometric realisations), and fibrations are Kan fibrations.
Similarly, we equip sAb with the model structure where weak equivalences (resp. fibrations) are the maps which
induce weak equivalences (resp. fibrations) of underlying simplicial sets. In particular, ForgetsAb

sSet is a right Quillen
functor with left adjoint given by FreesSet

sAb . A good reference for these model structures is [Qui67]. We follow here
the convention that (| − |,Sing(−)) denotes the usual adjunction between sSet and topological spaces.

Simplicial commutative rings. The category Alg has finite limits, all filtered colimits, and enough projectives (given
by retracts of free algebras FreeSet

Alg(X) ' Z[X], since effective epimorphisms are just surjective maps). Hence, by
Quillen’s theorem [Qui67, Chapter 2, §4, Theorem 4], we can equip the category sAlg with a model structure where
fibrations (resp. weak equivalences) are those maps A• → B• such that for every projective P ∈ Alg, the induced
map HomAlg(P,A•) → HomAlg(P,B•) is a fibration (resp. weak equivalence). Note that a projective P is a retract
of a free algebra FreeSet

Alg(X) for some set X , and that for a set X , we have

HomAlg(FreeSet
Alg(X), A) ' HomSet(X,A) ' AX .
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Thus, a fibration (resp. weak equivalence) A• → B• in sAlg is precisely a map such that for any set X , the map
AX• → BX• of simplicial sets is a fibration (resp. weak equivalence). In particular, FreesSet

sAlg is a left Quillen functor
with right adjoint ForgetsAlg

sSet , and similarly for the pair (FreesAb
sAlg,ForgetsAlg

sSet ). In fact, we have:

Proposition 4.1. A map A• → B• in sAlg is a fibration (resp. weak equivalence) if and only if it is so as a map of
simplicial sets.

Proof. For fibrations, this follows because an arbitrary product of fibrations (in any model category) is always a
fibration. For weak equivalences, note that the simplicial set underlying any object of sAlg is automatically Kan
fibrant as it is a simplicial abelian group (see [Qui67, Chapter 2, §3, Corollary to Proposition 1, page 3.8]), and hence
fibrant-cofibrant since all simplicial sets are cofibrant (see [Qui67, Chapter 2, §3, page 3.15, Proposition 2]). Thus, a
map A• → B• in sAlg that induces a weak equivalence on underlying simplicial sets actually induces a homotopy
equivalence on underlying simplicial sets. The claim now follows from the fact that homotopy equivalences are closed
under arbitrary products, and the fact that ForgetAlg

Set commutes with products. �

4.2. Model structures on simplicial commutative monoids. Quillen’s theorem used in §4.1 also leads to a model
structure on sMon, and we summarise the result as:

Proposition 4.2. The category sMon admits a model structure with a map f : M• → N• being a (trivial) fibration if
and only if it is so as a map in sSet.

Proof. The category Mon has finite limits, all filtered colimits, and enough projectives (given by retracts of free
monoids FreeSet

Mon(X) ' N(X) := ⊕x∈XN · x, since effective epimorphisms are just surjective maps). By Quillen’s
theorem [Qui67, Chapter 2, §4, Theorem 4], there is a model structure on sMon with a map f : M• → N• being a
(trivial) fibration if and only if the associated map Hom(N(X),M•)→ Hom(N(X), N•) of simplicial sets is a trivial
fibration for any set X (as any projective is a retract of one of the form N(X)). By adjunction, this last map may be
identified with the map (M•)

X → (N•)
X . Hence, it suffices to show that a map M• → N• in sSet is a (trivial)

fibration if and only if (M•)
X → (N•)

X is so for any set X . This follows from axiom SM7 of [Qui67, Chapter 2, §2,
Definition 2] (applied with A = ∅) and [Qui67, Chapter 2, §3, Theorem 3]. �

There is a forgetful functor ForgetAb
Mon : Ab→ Mon which is a right adjoint with left adjoint given byM →Mgrp,

the group completion functor, denoted (−)grp in the sequel. These functors interact well with the model structures:

Proposition 4.3 (Olsson). The adjoint pair ((−)grp,ForgetsAb
sMon) is a Quillen adjunction. Moreover, if P• → M is

an equivalence in sMon with M with discrete, then P grp
• →Mgrp is also an equivalence.

Proof. The first part is clear as (trivial) fibrations in sMon and sAb are defined by passing to underlying simplicial
sets; the second part is [Ols05, Theorem A.5]. �

Regarding a commutative ring as a commutative monoid under multiplication defines a forgetful functor ForgetAlg
Mon :

Alg→ Mon with left adjoint FreeMon
Alg , and similar simplicial functors. As in the case of abelian groups, one has:

Proposition 4.4. The adjoint pair (FreesMon
sAlg ,ForgetsAlg

sMon) is a Quillen adjunction. Moreover, FreesMon
sAlg preserves all

weak equivalences.

Proof. The first part is clear as (trivial) fibrations in both sMon and sAlg are defined by passing to sSet. For the
second part, note that if M• ∈ sMon, then

ForgetsAlg
sAb ◦ FreesMon

sAlg (M•) ' FreesSet
sAb ◦ ForgetsMon

sSet (M•) ' ZM•,

i.e., the abelian group underlying the free algebra on a monoid M is the same as the free abelian group on the set
underlying M . Now if f : M• → N• is a weak equivalence in sMon, then the map f is also a weak equivalence
when regarded as a map of simplicial sets. Ken Brown’s lemma (which ensures that a left Quillen functor preserves
all weak equivalences between cofibrant objects) and the cofibrancy of all simplicial sets then show that the induced
map FreesSet

sAb (f) = Zf : ZM• → ZN• is a weak equivalence of simplicial abelian groups (and hence underlying
simplicial sets). The claim now follows from the description of weak equivalences in sAlg. �

The next few lemmas prove easy properties about simplicial commutative monoids. First, we relate a simplicial
monoid to its singular complex.
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Lemma 4.5. For any object M• ∈ sMon, the singular complex Sing(|M•|) acquires the structure of a simplicial
commutative monoid. The natural map M• → Sing(|M•|) is a weak equivalence of simplicial commutative monoids.

Proof. The geometric realisation functor | − | commutes with finite products of simplicial sets, so the multiplication
map M• × M• → M• defines the structure of commutative monoid on |M•|. The singular complex functor, by
virtue of being a right adjoint, also commutes with finite products, so Sing(|M•|) becomes a simplicial commutative
monoid. It is clear that the map M• → Sing(|M•|) is a map of simplicial commutative monoids. Moreover, the map
|M•| → |Sing(|M•|)| is a weak equivalence (which is true for any simplicial set), so the last claim follows. �

Next, we relate a simplicial monoid to its set of connected components.

Lemma 4.6. Let M• ∈ sMon. Then π0(M•) (computed on the underlying simplicial set) has the natural structure
of a commutative monoid. The map M• → π0(M•) is the universal map from M• to a simplically constant object of
sMon. Moreover, M• is discrete if and only if M• → π0(M•) is a weak equivalence.

Proof. The multiplication map M• × M• → M• defines the multiplication on π0(M•) as π0(−) commutes with
products of simplicial sets. The universal property comes directly from that of π0 of any simplicial set. The last claim
is true for any simplicial set. �

Recall that an object in sMon or sAlg is called discrete if the underlying simplicial set has a discrete geometric
realization. We show next that FreesMon

sAlg preserves and reflects discreteness:

Proposition 4.7. An object M• ∈ sMon is discrete if and only if FreesMon
sAlg (M•) is discrete.

Proof. The forward direction follows from Proposition 4.4 applied to the map M• → π0(M•) using Lemma 4.6.
For the converse, note that |M•| is a topological space with an abelian fundamental group (since M• is commu-
tative monoid, the space |M•| is a commutative H-space) for any base point, and that the singular chain complex
ZSing(|M•|) of |M•| is equivalent to the ZM• ' ForgetsAlg

sAb ◦FreesMon
sAlg (M•) by Lemma 4.5. If the latter is discrete,

then each connected component of |M•| has no homology. Since the fundamental group is abelian, each component
is therefore contractible (by Hurewicz). The claim now follows. �

In preparation for discussing flat morphisms of log schemes, we make the following definition:

Definition 4.8. A map h : M → N of monoids is flat if for all mapsM →M ′, the natural mapM ′thMN →M ′tMN
is an equivalence or, equivalently, if M ′thM N is discrete. Here M ′thM N is the homotopy-pushout of M → N along
M →M ′, defined by taking a cofibrant replacement for M →M ′ and applying the naive pushout.

The definition given above is a general definition in model category, and specialises to the case of flatness in the
case of sAlg, which explains the nomenclature. Our main observation is:

Proposition 4.9. A map h : M → N in Mon is flat if FreeMon
Alg (M)→ FreeMon

Alg (N) is flat in Alg.

Proof. By Proposition 4.4, the left derived functor LFreesMon
sAlg coincides (up to equivalence) with the naive functor

FreesMon
sAlg . Hence, since the former preserves homotopy-colimits, we can write

FreesMon
sAlg (N thM M ′) ' FreeMon

Alg (N)⊗LFreeMon
Alg (M) FreeMon

Alg (M ′).

By assumption, the right hand side is discrete, and hence so is the left hand side. Proposition 4.7 then shows that
N thM M ′ is discrete, as desired. �

Example 4.10. An integral homomorphism of integral monoids is flat by [Kat89, Proposition 4.1], and can therefore
be used to compute homotopy pushouts; see Lemma 11.8 for an application.

5. THE CATEGORY LogAlgpre OF PRELOG RINGS AND ITS MODEL STRUCTURE

Our goal in this section is to define the basic object of logarithmic algebraic geometry: a prelog ring. We define this
next, and introduce a model structure on simplicial prelog rings immediately after; this model structure will replace
the usual model structure on sAlg in logarithmic version of the cotangent complex and the derived de Rham complex.
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Definition 5.1. Let LogAlgpre be the category of maps α : M → A with M a monoid, A an algebra, and α a monoid
homomorphism where A is regarded as a monoid via multiplication; objects of this category are often called prelog
rings. For an object P ∈ LogAlgpre, we often write PAlg and PMon for the rings and monoids appearing in P . Given
a ring A, we often use A to denote the prelog ring α : 0→ A.

Remark 5.2. As the notation suggests, a prelog ring is a weaker version of the notion of a log ring. More precisely, a
prelog ring α : M → A is called a log ring if α−1(A∗)→ A∗ is an isomorphism, at least after sheafification for some
topology (typically étale) on Spec(A). It turns out that it is much easier to develop the basic theory of the cotangent
complex (see [Ols05, §8]) with prelog rings, so we focus on these, and only discuss genuine log rings occasionally.

The association P 7→ (PMon, PAlg) defines forgetful functors

ForgetLogAlgpre

Set×Set : LogAlgpre → Set× Set and ForgetLogAlgpre

Mon×Alg : LogAlgpre → Mon×Alg.

Both functors ForgetLogAlgpre

Set×Set and ForgetLogAlgpre

Mon×Alg admit left adjoints defined by

FreeSet×Set
LogAlgpre(X,Y ) := (N(X) → FreeSet

Alg(X t Y ) ' FreeMon
Alg (N(X))⊗Z FreeSet

Alg(Y ))

and
FreeMon×Alg

LogAlgpre(N,B) := (N → FreeMon
Alg (N)⊗Z B).

Here N(X) denotes the free monoid on a set X , i.e., a direct sum of copies of N indexed by X . Using these functors,
one can construct a model structure on sLogAlgpre:

Proposition 5.3. The category sLogAlgpre admits a simplicial model structure with (trivial) fibrations being those
maps P → Q which induce a (trivial) fibration after application of ForgetsLogAlgpre

sSet×sSet . Under this model structure, both
ForgetsLogAlgpre

sSet×sSet and ForgetsLogAlgpre

sMon×sAlg are right Quillen functors with left adjoints FreesSet×sSet
LogAlgpre and FreesMon×sAlg

sLogAlgpre

respectively.

Proof. The category LogAlgpre has all small limits and colimits; the formation of limits commutes with both for-
getful functors mentioned above, while the formation of colimits commutes with ForgetLogAlgpre

Mon×Alg . Since effective
epimorphisms in LogAlgpre are exactly the maps which induce surjections on underlying sets, one can check (using
adjunction) that the objects FreeSet×Set

LogAlgpre(X,Y ) are projective, and that

FreeSet×Set
LogAlgpre(1, 1) ' FreeSet×Set

LogAlgpre((1, ∅) t (∅, 1)) ' FreeSet×Set
LogAlgpre(1, ∅) t FreeSet×Set

LogAlgpre(∅, 1)

generates the category LogAlgpre, i.e., every object admits an effective epimorphism from a coproduct of copies of
FreeSet×Set

LogAlgpre(1, 1). Quillen’s theorem [Qui67, Chapter 2, §4, Theorem 4] then shows that sLogAlgpre has a simplicial

model structure with (trivial) fibrations being defined by applying ForgetsLogAlgpre

sSet×sSet ; note that P• → Q• is a (trivial)
fibration if and only if P•,Alg → Q•,Alg and P•,Mon → Q•,Mon are (trivial) fibrations in sAlg and sMon respectively,
so we have checked all claims. �

Remark 5.4. The cofibrations in sLogAlgpre can be described explicitly as follows (see [Qui67, Chapter 2, §4, page
4.11, Remark 4]): a free cofibration is a map (M → A)→ P• with each Pn ' FreeSet×Set

LogAlgpre
(M→A)/

(X,Y ) for suitable

sets X and Y with the additional property that all degeneracies are induced from Set× Set, and a general cofibration
is a retract of a free one.

Proposition 5.3 implies that the formation of homotopy-limits commutes with the right derived functors of the
forgetful functor ForgetsLogAlgpre

sMon×sAlg; it turns out that the same is true for homotopy-colimits:

Proposition 5.5. The functor ForgetsLogAlgpre

sMon×sAlg is a left Quillen functor.

Proof. We first observe that ForgetLogAlgpre

Mon×Alg is a left adjoint functor with right adjoint NilMon×Alg
LogAlgpre given by (N,B) 7→

(N ×B → B). The resulting simplicial functor NilsMon×sAlg
sLogAlgpre preserves (trivial) fibrations since (trivial) fibrations are

defined in sMon and sAlg by passing to sSet, and similarly for sLogAlgpre. Hence, NilsMon×sAlg
sLogAlgpre is a right Quillen

functor with left Quillen adjoint given by ForgetsLogAlgpre

sMon×sAlg. �

Next, we define the prelog avatar of the canonical free resolution:
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Definition 5.6. For a map (M → A) → (N → B) in LogAlgpre, and let P(M→A)(N → B) be the simplicial

object in sLogAlgpre
(M→A)/ built using the adjunction (FreeSet×Set

LogAlgpre
(M→A)/

,Forget
LogAlgpre

(M→A)/

Set×Set ) applied to the object

(N → B); the counit defines an augmentation P(M→A)(N → B) → (N → B), and we call this the canonical free
resolution of the (M → A)-algebra (N → B). In general, any trivial fibration P• → (N → B) with P• cofibrant in
sLogAlgpre

(M→A)/ will be called a projective resolution of (N → B) as an (M → A)-algebra; the same conventions
apply for a morphism in an arbitrary model category.

One can check that the canonical free resolution is indeed a projective resolution, and any two projective resolutions
are homotopy equivalent (see [Qui67, Chapter 1, §1, Lemma 7]). Moreover, there is a tight connection between
projective resolutions of prelog rings and those of the underlying monoids and algebras:

Proposition 5.7. Given a map (M → A) → (N → B) in LogAlgpre together with a projective resolution P• →
(N → B), the maps P•,Mon → N and P•,Alg → B are projective resolutions in sMon and sAlg respectively.

Proof. This follows from the fact that ForgetsLogAlgpre

sMon×sAlg preserves trivial fibrations (since it is a right Quillen functor
by Proposition 5.3) and cofibrantions (since it is a left Quillen functor by Proposition 5.5). �

6. LOGARITHMIC DERIVED DE RHAM COHOMOLOGY

Our goal in this section is to use the formalism of §5 to define the logarithmic version of Illusie’s derived de Rham
cohomology. First, we recall the key non-derived players:

Definition 6.1. Let f : (M → A) → (N → B) be a map in LogAlgpre. The B-module of logarithmic Kahler
differentials is defined as

Ω1
f := Ω1

(N→B)/(M→A) :=
(

Ω1
B/A ⊕

(
cok(M → N)grp ⊗Z B

))
/
(

(dβ(n), 0)− (0, n⊗ β(n))
)

where β : N → B is the structure map; see [Kat89, §1.7]. The monoid map d log : N → Ω1
f is defined by

n 7→ d log(n) := (0, n⊗ 1). The derivation B → Ω1
B/A defines by composition an A-linear derivation B → Ω1

f , and
we use Ω•f to denote the corresponding complex, called the logarithmic de Rham complex.

Note that Ω•f comes equipped with a multiplication, and a descending Hodge filtration. Essentially by construction,
there is a natural multiplicative filtered map Ω•B/A → Ω•f . Moreover, an easy computation shows that d log(n) is
closed, and hence d log lifts to a map N → Ω•f [1], also denoted d log.

Example 6.2. Let (M → A)→ T (X,Y ) := FreeSet×Set
LogAlgpre

(M→A)/

(X,Y ) be a free (M → A)-algebra. Then we have

Ω1
T (X,Y )/(M→A) ' FreeSet

AlgA/
(X t Y )⊗Z (⊕x∈XZd log(x)⊕y∈Y Zdy)

where d log(x) and dy are formal symbols; see also [Ols05, §8.4].

The logarithmic cotangent complex is defined by mimicking the construction of the usual cotangent complex using
the canonical free resolutions in LogAlgpre instead of Alg. More precisely,

Definition 6.3 (Gabber). Let f : (M → A) → (N → B) be a map of prelog rings, and let P• → (N → B) be
the canonical free resolution of f in sLogAlgpre. For each n ∈ ∆, the prelog (M → A)-algebra Pn has a module
Ω1
Pn/(M→A) of Kahler differentials as defined in §6.1, and as n varies, these fit together to define a simplicial P•,Alg-

module Ω1
P•/(M→A). The log cotangent complex of f is defined to be the corresponding B-module, i.e., we have

Lf := Ω1
P•/(M→A) ⊗P•,Alg

B.

The maps d log : Pn,Mon → Ω1
Pn/(M→A) for each Pn fit together to give a map d log : P•,Mon → Lf , and hence a

map d log : N ' |P•,Mon| → Lf in the homotopy category of sMon.

Definition 6.3 generalises in the obvious manner to all maps in sLogAlgpre, and the complex Lf can be calculated
using any projective resolution as these are all homotopy equivalent.
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Remark 6.4. Gabber’s cotangent complex complex Lf from Definition 6.3 is denoted LGf in [Ols05, §8]. The same
paper [Ols05] also introduces a different version of the cotangent complex for a morphism of fine log schemes using
Olsson’s stack-theoretic reformulation of the logarithmic theory [Ols03]. The resulting two complexes agree for
integral morphisms ([Ols05, Corollary 8.29]) and always in small cohomological degrees ([Ols05, Theorem 8.27]);
a key difference is that Gabber’s complex is not necessarily discrete for log smooth maps, while Olsson’s is. We
will consistently use Gabber’s complex for two reasons: (a) Gabber’s theory has better functoriality properties (like
the transitivity triangle [Ols05, Theorem 8.14]), (b) Gabber’s theory applies to arbitrary morphisms, while Olsson’s
theory imposes strong finiteness conditions that will be unavailable to us.

We have the following compatibility between LfAlg
and Lf .

Proposition 6.5. Let f : (M → A)→ (N → B) be a map of prelog rings. There is a natural map LfAlg
→ Lf that

is an isomorphism when M = N .

Proof. Let P• → (N → B) be a projective (M → A)-algebra resolution. The functor ForgetsLogAlgpre

sMon×sAlg preserves
projective resolutions by Proposition 5.5, so the natural map from usual Kahler differentials to the logarithmic version
defines the desired map LfAlg

→ Lf . When M = N , a projective A-algebra resolution Q• → B defines a projective
(M → A)-algebra resolution (M → Q•) → (M → B) by Remark 5.4. One then checks directly that Ω1

Q•/A
'

Ω1
(M→Q•)/(M→A), proving the second claim (or one may use [Ols05, Lemma 8.17]). �

The usual cotangent complex can be characterised by its functor of points: for a map f : A → B of commutative
rings, Hom(Lf ,M) classifiesA-linear derivationsB →M for any complexM ofB-modules. The next remark gives
a similar description in the logarithmic context, and was discovered in conversation with Lurie.

Remark 6.6 (Lurie). Fix a map f : (M → A)→ (N → B) in sLogAlgpre. Then the construction of Lf given above
can be characterised by an intrinsic description of its functor of points, analogous to the picture for the usual cotangent
complex, as follows. For any simplicial B-module P , there is a natural equivalence

MapsMod(B)(Lf , P ) ' Sect(M→A)(N ⊕ P → B ⊕ P,N → B) =: Der(M→A)((N → B), P ). (6)

Let us explain briefly what this means. The term on the left is the space of maps Lf → P in the simplicial
model category sMod(B) given the usual (projective) model structure; the resulting space is homotopy equivalent
to τ≤0RHomB(Lf , P ). The middle term is the space of sections of the projection map

(N ⊕ P → B ⊕ P )→ (N → B)

in the simplicial model category sLogAlgpre
(M→A)/. Here B ⊕ P is the trivial square-zero extension of B by P ,

N ⊕ P is the trivial square-zero extension of N by P in Mon with the binary operation given by (n1, p1) · (n2, p2) =
(n1n2, p1 + p2), and the structure morphism N ⊕ P → B ⊕ P is defined by

(n, p) 7→ (α(n), 0) · (1, p) = (α(n), α(n) · p)
where α : N → B is the structure map. A section of the projection map is explicitly computed by first replacing
(N → B) by a cofibrant (M → A)-algebra, and then producing a section over the pullback; the B-module structure
on Sect(M→A)(N ⊕ P → B ⊕ P,N → P ) is induced by that of P . The universal (M → A)-linear section of
(N⊕Lf → B⊕Lf )→ (N → B) inducing equivalence (6) is determined by the standard derivation d : B → Lf and
the map d log : N → Lf ; both these maps implicitly use a cofibrant replacement. When M = N , the equivalence (6)
recovers the fact (see [Ill71, Proposition II.1.2.6.7]) that the cotangent complex of a ring map classifies derivations in
the derived category. Another illustrative case is when P is discrete. Here we find that the space MapsMod(B)(Lf , P )

is also discrete, and π0(MapsMod(B)(Lf , P )) can be described as the set of pairs (λ, d) where λ : N → P is a monoid
map that kills the image of M → N , and d : B → P is an A-linear derivation such that α(n) · λ(n) = d(α(n)). Note
that λ factors through N → N/M → π0((N/M)grp ⊗Z B) since P is an abelian group, admits a B-action, and is
discrete. Hence, this description identifies π0(Lf ) with the sheaf Ω1

f from [Kat89, §1.7] or Definition 6.3.

Remark 6.7. Let f : (M → A) → (N → B) be a map in LogAlgpre. A natural question is to ask for a conceptual
description of the cokernel Q of LfAlg

→ Lf . Using Remark 6.6, one can interpret MapsMod(B)(Q, P ) as the space

of (monoid) maps λ : N → P together with nullhomotopies of the induced maps M → P and N ∆→ N × N α,λ→
B × P act→ P . We do not know if there is a better description.
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Definition 6.8. Let f : (M → A) → (N → B) be a map in LogAlgpre, and let P• → (N → B) be the canonical
free resolution of (N → B) as an (M → A)-algebra. The logarithmic derived de Rham cohomology of f , denoted
either dRf or dR(N→B)/(M→A), is the total complex associated to bicomplex Ω•P•/(M→A). The maps Pn,Mon →
Ω•Pn/(M→A)[1] fit together to define a map d log : N ' |P•,Mon| → dRf [1] in the homotopy category of sMon.

Elaborating on Definition 6.8, the complex dRf is naturally the simple complex associated to a simplicial A-
cochain complex n 7→ Ω•Pn/(M→A) for n ∈ ∆opp. This definition makes it clear that dRf is naturally an E∞-A-
algebra equipped with a decreasing and separated Hodge filtration Fil•H . Moreover, it can be computed using any
projective resolution as in the non-logarithmic case. There are also comparison maps Ω•Pn,Alg/A

→ Ω•Pn/(M→A) for
each n ∈ ∆opp which fit together to define a natural map dRfAlg

→ dRf . Finally, we have a conjugate filtration:

Proposition 6.9. Let f : (M → A) → (N → B) be a map of prelog rings (or a map in sLogAlgpre). Then there
exists a functorial increasing bounded below separated exhaustive filtration Filconj

• on dRf . This filtration can be
defined using the conjugate filtration on the bicomplex Ω•P•/(M→A) for any projective (M → A)-algebra resolution
P• → (N → B), and is independent of the choice of P•. In particular, there is a convergent spectral sequence, called
the conjugate spectral sequence, of the form

Ep,q1 : Hp+q(grconj
p (dRf ))⇒ Hp+q(dRf )

that is functorial in f (here we follow the homological convention that dr is a map Ep,qr → Ep−r,q+r−1
r ).

Proof. This is proven like Proposition 2.3. �

Remark 6.10. Let LogAlgpre,Free
(M→A)/ be the full subcategory of LogAlgpre

(M→A)/ spanned by free prelog algebras, i.e.,

prelog algebras of the form FreeSet×Set
LogAlgpre

(M→A)/

(X,Y ). Then LogAlgpre,Free generates sLogAlgpre under homotopy-

colimits (as an∞-category). Moreover, the functor (N → B) 7→ dR(N→B)/(M→A) on sLogAlgpre
(M→A)/ is the left

Kan extension of the functor (N → B) 7→ Ω•(N→B)/(M→A) on LogAlgpre,Free
(M→A)/.

The first basic result about logarithmic derived de Rham cohomology is that it agrees with the non-logarithmic
analogue for strict maps:

Proposition 6.11. Let f : (M → A)→ (N → B) be a map of prelog rings. Then the natural map dRfAlg
→ dRf is

an isomorphism when M = N .

Proof. One can use the proof of Proposition 6.5. �

Next, we show some formal properties for tensor product behaviour:

Proposition 6.12. Let fi : (M → A) → (Ni → Bi) for i = 1, 2 be two (M → A)-algebras, and let f : (M →
A) → (N → B) ' (N1 → B1) th(M→A) (N1 → B2) be their homotopy cofibre product. Then the natural map
defines an equivalence

dRf1
⊗LA dRf2

' dRf .

If we use g1 : (N2 → B2)→ (N → B) to denote induced map, then the natural map defines an equivalence

dRf1 ⊗LA B2 ' dRg1 .

Proof. Using the fact that a cofibre product of cofibrant replacements of each fi defines a cofibrant replacement for f ,
we reduce to the case that each fi is free. In this case, both claims follow from computing differential forms. �

In Corollary 2.4, we saw that derived de Rham cohomology is degenerate in characteristic 0. The logarithmic
theory is only slightly less degenerate: it sees the monoid, but misses the algebras completely.

Proposition 6.13. Let f : (M → A)→ (N → B) be a map in LogAlgpre
Q/. Then

grconj
i (dRf ) ' ∧i(Cone(Mgrp → Ngrp)⊗Z A)[−i],

where all operations (taking exterior powers, tensor products, and group completion) are understood to be derived.

We remark that the derived group completion agrees with the naive group completion by Proposition 4.3.
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Proof. Let f : (M → A)→ T (X,Y ) be a free map as in Example 6.2. Then one can show that

⊕iHi(Ω•f )[−i] ' ∧iH1(Ω•f ) ' ⊕i ∧i (Z(X) ⊗Z A)[−i] ' ∧i((T (X,Y )Mon/M)grp ⊗Z A)[−i],

where the generators in H1(dRf ) ' Z(X) correspond to d log(x) ∈ Ω1
f for x ∈ X . This computation can be carried

out by reduction to the case that X t Y is finite by passage to filtered colimits, then by reduction to A = Q and then
A = C by base change, and then by using the logarithmic Poincare lemma to reduce to the computation of the Betti
cohomology of a torus with character lattice Z(X) (up to some An factors); we leave the details to the reader. Now in
general, for any map f : (M → A)→ (N → B), let (M → A)

a→ P•
b→ (N → B) be a projective resolution. Then

using the preceding calculation, we find that

grconj
i (dRf ) ' | ∧i (P grp

•,Mon/M
grp ⊗Z A)|[−i].

By Proposition 4.3, the map P grp
•,Mon → Ngrp is an equivalence. Moreover, since (−)grp is a left Quillen functor,

Mgrp → P grp
•,Mon/M

grp is a projective resolution of Ngrp in sAbMgrp/; the claim now follows. �

Let us give an example of Proposition 6.13.

Example 6.14. Let f : (Nk → Q[Nk]) → (1 → Q) be the map on prelog rings associated to the monoid map
Nk → 1; geometrically, this is the inclusion of (1, 1, . . . , 1) in Ak

Q with the log structure defined by the co-ordinate
hyperplanes. Let A = Q[Nk] = Γ(Ak

Q,O). Then Proposition 6.13 shows that

grconj
i (dRf ) ' ∧iA(Ak[1])[−i] ' ΓiA(Ak) ' Symi

A(Ak).

In particular, dRf is an ordinary commutative ring with an increasing separated bounded below exhaustive filtration
whose associated graded coincides with the associated graded of Sym∗A(Ak) for the degree filtration; I do not know
whether dRf itself can be identified with Sym∗A(Ak).

We end this section with an example showing that log derived de Rham cohomology may change under passage to
the associated log structure in characteristic 0; this pathology will not occur in characteristic p, as we will see later.

Example 6.15 (Non-invariance of derived log de Rham cohomology under passing to log structure). Consider the
map f : (0→ Q)→ (0→ Q[x, x−1]) of prelog Q-algebras. Let fa : (Q∗ → Q)→ (Q∗ × xZ → Q[x, x−1]) be the
associated map of log structures. Then there is a natural map

dRf → dRfa .

We will show this map is not an isomorphism. To see this, note that dRf is strict, and hence dRf ' Q as explained in
Proposition 6.11. On the other hand, calculating dRfa using the conjugate filtration gives

grconj
0 (dRfa) ' Q and grconj

1 (dRfa) ' cok(Q∗ → Q∗ × xZ)⊗Z Q[−1] ' Q[−1],

while the higher ones vanish. The map dRf → dRfa maps the left hand side isomorphically onto grconj
0 (dRfa), and

completely misses grconj
1 (dRfa), showing that dRf → dRfa is not an isomorphism.

7. LOGARITHMIC DERIVED DE RHAM COHOMOLOGY MODULO pn

This section is the logarithmic analog of §3, and depends on the theory developed in §4, §5, and §6. More precisely,
we will show in §7.1 that derived Cartier theory works equally well in the logarithmic context; this leads in §7.2 to a
strong connection between log derived de Rham cohomology and log crystalline cohomology. As a corollary, some of
the characteristic 0 pathologies of log derived de Rham cohomology (such as Example 6.15) disappear in modulo pn.

7.1. Cartier theory. The key player in (logarithmic) Cartier theory is the Frobenius twist:

Notation 7.1 (Frobenius twists). Let (M → A) ∈ LogAlgpre
Fp/

. Then we define the Frobenius map Frob(M→A) :

(M → A) → (M → A) as the map which is multiplication by p on M , and the usual Frobenius on A. If f : (M →
A) → (N → B) is a map in LogAlgpre

Fp/
, then the Frobenius twist (N → B)(1) is defined as the homotopy pushout

of f along Frob(M→A) : (M → A) → (M → A). There are natural maps f (1) : (M → A) → (N → B)(1) and
Frobf : (N → B)(1) → (N → B) defined as in Notation 3.1.

The interaction between Frobenius twists on prelog rings and those on the underlying rings is quite strong:
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Lemma 7.2. Let f : (M → A) → (N → B) be a map in LogAlgpre
Fp/

. Then there are base change identifications

Lf ⊗B B(1) ' Lf(1) and Frob∗AdRf ' dRf(1) . Moreover, f (1)
Alg is homotopic to (fAlg)(1). If FrobA : A → A and

M
p→ M are flat, then the homotopy pushout f (1) is equivalent to the ordinary pushout. If M = N , then f (1) is

equivalent to the non-logarithmic pushout (equipped with the log structure defined by M ), and similarly for Frobf .

Proof. Let P• → (N → B) be a projective resoltuon of (N → B) as an (M → A)-algebra. Then Lf ' Ω1
P•/(M→A)

and dRf ' Ω•P•/(M→A), while Lf(1) ' Ω1

P
(1)
• /(M→A)

and dRf(1) ' Ω•
P

(1)
• /(M→A)

, so the first claim follows from

the base change properties for Ω1. Next, note that by Propositions 5.3 and 5.5, the functor ForgetsLogAlgpre

sMon×sAlg is both a
left and right Quillen functor. Hence, P•,Alg → B is a projective resolution of B as an A-algebra, and similarly for
P

(1)
•,Alg → B(1), which immediately implies the second claim. For the third claim, it suffices to check that the base

change (N → B)(1) is discrete after applying ForgetsLogAlgpre

sMon×sAlg, which follows from the assumptions on M and A

because ForgetsLogAlgpre

sMon×sAlg is left and right Quillen. The last claim can be shown as in Proposition 6.5. �

Next, in preparation for the derived version, we first recall the logarithmic Cartier isomorphism (in the free case).

Theorem 7.3 (Classical logarithmic Cartier isomorphism). Fix setsX and Y , and let T (X,Y ) = FreeSet×Set
LogAlgpre

(M→A)/

(X,Y ) =

(M ⊕N(X) → A[X t Y ]) be a free (M → A)-algebra. Then there is a natural equivalence of graded algebras

C−1 : ⊕i≥0Ωif(1) [−i] ' ⊕i≥0H
i(Ω•f )[−i].

Proof. The map f : (M → A) → T (X,Y ) is a log smooth map of Cartier type, so this follows directly from Kato’s
logarithmic Cartier isomorphism [Kat89, Theorem 4.12 (1)]. We briefly sketch the argument. The T (X,Y )

(1)
Alg-linear

map C−1 : Ω1
T (X,Y )(1)/(M→A)

→ H1(Ω•f ) is characterised by the following condition: for x ∈ X , we have

C−1(Frob∗(M→A)d log(x)) = d log(x)

while for y ∈ Y , we have
C−1(Frob∗(M→A)dy) = yp−1dy.

Here Frob(M→A) is viewed as defining (via base change) the map T (X,Y )→ T (X,Y )(1). In particular, the logarith-
mic Cartier isomorphism is compatible with the usual one. To construct C−1, set S(X,Y ) := FreeSet×Set

LogAlgpre

Z/p2/

(X,Y ),

the corresponding free object over Z/p2. Then f is obtained via base change from the map g : (0 → Z/p2) →
S(X,Y ), and so it suffices to construct the Cartier isomorphism for the reduction modulo p of g. Now we note that g
comes equipped with a lift of Frobenius (given by ·p on S(X,Y )Mon, and sending variables in X and Y to their p-th
powers in S(X,Y )Alg). The rest follows as in Theorem 3.2. �

As in the non-logarithmic case, one immediate deduces the derived version:

Proposition 7.4 (Derived logarithmic Cartier theory). Let f : (M → A) → (N → B) be a map of prelog Fp-
algebras. Then the conjugate filtration on dRf is B(1)-linear, and has graded pieces computed by

Cartieri : grconj
i (dRf ) ' ∧iLf(1) [−i].

In particular, the conjugate spectral sequence takes the form

Ep,q1 : H2p+q(∧pLf(1)) ' H2p+q(Frob∗A ∧p Lf )→ Hp+q(dRf ).

Proof. This is proven like Proposition 3.5 using Theorem 7.3 instead of Theorem 3.2. �

We now discuss applications. First, we show that pathologies discussed in Example 6.15 cannot occur modulo p:

Corollary 7.5. Let f : (M → A) → (N → B) be a map in LogAlgpre
Fp/

. Assume that both M and N are integral.
Let fa : (Ma → A)→ (Na → B) be the induced map of log structures. Then the natural map

dRf → dRfa

is an equivalence.
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Proof. By [Ogu06, Proposition 1.2.2], the category of integral monoids is closed under pushouts provided one the
involved terms is a group. In particular, the log structure associated to a prelog ring with an integral monoid is also
integral. By comparing conjugate filtrations, we reduce to the analogous claim for the log cotangent complex which
follows from [Ols05, Theorem 8.16]. �

Next, we prove an analogue of Corollary 3.10.

Corollary 7.6. Let f : (M → A)→ (N → B) be a map in LogAlgpre
Fp/

. Assume that f is log smooth and of Cartier
type. Then the natural map dRf → Ω•f is an equivalence.

The log smoothness of f implies that both M and N admit finitely generated charts, while the Cartier type as-
sumption means that M → N is an integral map of integral monoids (so M → N is flat by Example 4.10), and that
Frobf,Mon is an exact morphism of monoids.

Proof. By [Kat89, Corollary 4.5], the map A → B is flat. Since M → N is flat as well, the homotopy pushout
f (1) coincides with the usual one. Now by [Ols05, Corollary 8.29], the cotangent complex Lf coincides with the one
coming from Olsson’s theory, and hence Lf is discrete with π0(Lf ) projective and naturally isomorphic to Kato’s Ω1

f .
Twisting by Frobenius, we find that the same holds for Lf(1) , and hence ∧pLf(1) ' Ωp

f(1) . The claim now follows by
comparing the conjugate filtrations on either side of the map dRf → Ω•f using [Kat89, Theorem 4.12 (1)] (and the
fact that (X ′′,M ′′) = (X ′,M ′) in the notation of loc. cit. since f is of Cartier type). �

We can also prove a connectivity estimate:

Corollary 7.7. Let f : (M → A) → (N → B) be a map in sLogAlgpre
Z/pn/ for some n ≥ 1. Assume that Ω1

f is
generated by r elements for some r ∈ Z≥0. Then dRf is (−r − 1)-connected.

Proof. This is proven exactly like Corollary 3.13. �

Next, we address transitivity in log derived de Rham theory.

Proposition 7.8. Let (M → A)
f→ (N → B)

g→ (P → C) be a composite of maps of prelog Fp-algebras. Then
dRg◦f admits an increasing bounded below separated exhaustive filtration with graded pieces of the form

dRf ⊗Frob∗AB
Frob∗A

(
∧n Lg[−n]

)
,

where the second factor on the right hand side is the base change of ∧nLg[−n], viewed as an B-module, along the
map FrobA : B → Frob∗AB.

Proof. This is proven like Proposition 3.22 using Proposition 7.4 instead of Proposition 3.5. �

To move further, we need a definition:

Definition 7.9. A map f in LogAlgpre
Fp/

is called relatively perfect if Frobf is an isomorphism. A map f in LogAlgpre
Z/pn/

is called relatively perfect modulo p if f ⊗Z Fp is relatively perfect.

Example 7.10. Let f : (M → A) → (N → B) be a map of prelog Fp-algebras. Assume that M and N are
uniquely p-divisible, and that A and B are perfect. Then f is relatively perfect. Indeed, the Frobenius Frob(M→A) is
an isomorphism by the assumptions on M and A, so the derived pushout f (1) coincides with the underived one, and
Frobf is natually identified with Frob(N→B); the latter is an isomorphism by the assumptions N and B.

The basic result concerning relatively perfect maps is an analogue of Corollary 3.8.

Corollary 7.11. Let : (M → A) → (N → B) be a relatively perfect map in LogAlgpre
Fp/

. Then Lf ' 0, and
dRf ' B.

Proof. This is proven like Corollary 3.8. �

In Question 3.9, we asked if the vanishing of the relative cotangent complex characterises relatively perfect maps
of simplicial commutative rings. In the present logarithmic context, this question has a negative answer:
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Example 7.12 (A non-relatively perfect map f with Lf = 0). Let k be a field of characteristic p, and consider
f : Y := (N2 → k[x, y]) → X := (Na → k[x, y, xy−1, yx−1]) where the first prelog ring is the usual one, and the
second one is the log structure defined by the submonoid of Z2 generated by N2 and±(1,−1) mapping to the algebra
in the obvious way; this map is the first map in the exactification of (N2 → k[N2]) → (N → k[N]) defined by the
sum map N2 → N, and therefore is log étale in the sense of Kato. Since Y is free over k, we see thatLY/k ' Ω1

Y/k is a
free k[x, y]-module of rank 2 with generators d log(x) and d log(y). Using [Ols05, Lemma 8.23], one can compute that
LX/k is also free of rank 2 on generators d log(x) and d(xy−1) = (xy−1)

(
d log(x) + d log(y)

)
. Since xy−1 ∈ XAlg

is a unit, one easily sees that LX/k ⊗XAlg
YAlg → LY/k is an isomorphism. The transitivity triangle [Ols05, Theorem

8.14] then shows that Lf ' 0. However, the map Frobf is not an isomorphism since Frobf,Alg is not so: the map
Frobf,Alg is

X
(1)
Alg := k[x

1
p , y

1
p , xy−1, yx−1]→ [x

1
p , y

1
p , (xy−1)

1
p , (yx−1)

1
p ] = XAlg

as k[x
1
p , y

1
p ]-algbera map, i.e., it is a non-trivial normalisation map. Thus, f is a log étale map of prelog rings with a

vanishing cotangent complex that is not relatively perfect.

Next, we present some computations that will be useful in p-adic applications. First, we compute the log derived
de Rham cohomology of the monoid algebra of a uniquely p-divisible monoid:

Corollary 7.13. The map f : (0→ Z)→ (Q≥0 → Z[Q≥0]) is relatively perfect modulo p and

dRf ⊗Z Z/pn ' Z/pn[Q≥0].

Proof. The first claim implies the second by devissage and Corollary 7.11, and can be proven using Example 7.10. �

Remark 7.14. Corollary 7.13 is completely false in characteristic 0: dRf ⊗Z Q is not even discrete. In fact, using
Proposition 6.13, one can show that dRf ⊗Z Q ' dR(N→Q[N])/(0→Q) ' Q⊕Q[−1], with the non-trivial generator
in degree 1 corresponding to d log(“1”) , where “1” ∈ Q≥0 is the evident element.

Next, we study the effect of “adding” a uniquely p-divisible monoid to a prelog ring:

Corollary 7.15. The map f : (0→ Z[Q≥0])→ (Q≥0 → Z[Q≥0]) is relatively perfect modulo p, and

dRf ⊗Z Z/pn ' Z/pn[Q≥0].

Proof. The first claim implies the second by devissage and Corollary 7.11, and can proven using Example 7.10. �

Remark 7.16. Corollary 7.13 and 7.15 admit several generalisations. For example, the monoid Q≥0 may be replaced
by any uniquely p-divisible monoid, and the algebras Z and Z[Q≥0] can be replaced by any algebras that are perfect
modulo p; we leave such matters to the reader.

We end this section by recording the presence of the Gauss-Manin connection on log derived de Rham cohomology.

Proposition 7.17. Let (M → A)
f→ (N → B)

g→ (P → C) be a composite of maps of Z/pn-algebras. Assume that
f is a free map. Then the B-module dRg admits a flat connection relative to f that is functorial in g.

Proof. Let Q• → (P → C) be a free resolution of g. Then Ω•Qn/(N→B) is naturally a complex of B-modules
that admits a flat connection relative to f ; a direct way to see this is to use the isomorphism of Ω•Qn/(N→B) with
RΓcrys(Qn/(N → B),Ocrys) that is functorial in Qn by [Kat89, Theorem 6.4]. Taking a homotopy colimit over
n ∈ ∆opp then proves the desired statement. �

7.2. Comparison with log crystalline cohomology. Our goal in this section is to prove a reasonably general com-
parison result between log derived de Rham cohomology and log crystalline cohomology in the sense of Kato [Kat89,
§5 - 6]; since the proof follows the same steps as that of Theorem 3.27, we only sketch steps. First, we construct the
comparison map in complete generality:

Proposition 7.18. Let f be a map in LogAlgpre
Z/pn/ for some n ≥ 1. Then there is a natural map of Hodge-filtered

E∞-algebras
Compf : dRf → RΓ(fcrys,Ocrys).
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Proof. Let f : (M → A) → (N → B) be the map under consideration, and let P•
b•→ (N → B) be a projective

resolution in sLogAlgpre
(M→A)/. For each n, the composition (M → A)

an→ Pn
bn→ (N → B) is a free map an followed

by a map bn that is an effective epimorphism, i.e., both bn,Alg and bn,Mon are surjective. Let Pn → D(bn) → (N →
B) be the logarithmic pd-envelope of bn in the sense of [Kat89, Definition 5.4]; this is computed by first exactifying
bn in the sense of [Kat89, Proposition 4.10 (1)], and then taking the pd-envelope of the resulting strict map. Since the
formation of logarithmic pd-envelopes is functorial, we obtain a natural map of bicomplexes

Ω•P•/(M→A) → Ω•P•/(M→A) ⊗P•,Alg
D(b•)Alg (7)

Kato’s theorem [Kat89, Theorem 6.4] shows that

RΓ(fcrys,Ocrys) ' Ω•an ⊗Pn,Alg
D(bn)Alg

for each n, and so the right hand side of the map (7) is quasi-isomorphic to the constant simplicial object on RΓ(fcrys,Ocrys).
More precisely, the natural map

Ω•a0
⊗P0,Alg

D(b0)Alg → |Ω•P•/(M→A) ⊗P•,Alg
D(b•)Alg|

is an equivalence with both sides computing logarithmic crystalline cohomology. Totalising the map (7) then yields
the desired map

dRf := |Ω•P•/(M→A)| → |Ω
•
P•/(M→A) ⊗P•,Alg

D(b•)Alg| ' RΓ(fcrys,Ocrys).

�

Remark 7.19. Using Remark 6.10, one can give a direct construction of the map Compf as in Remark 3.26.

Next, we single out the class of maps we will prove the comparison theorem for:

Definition 7.20. A map f : (M → A) → (N → B) of prelog (0 → Z/pn)-algebras is called a G-lci map if both A
and B are Z/pn-flat, and f can be factored as (M → A)

a→ (P → F )
b→ (N → B) with a an inductive limit of maps

which are log smooth and of Cartier type modulo p, and b a strict effective epimorphism.

Example 7.21. Let W be the ring of Witt vectors of a perfect field k of characteristic p, and let OK be the ring of
integers in a finite extension of Frac(W ), and let OK be an absolute integral closure of OK . The primary examples of
G-lci maps we will be interested in are the modulo pn reductions of: the map (0 → W ) → (OK − {0} → OK), the
map (0→ W )→ (OK − {0} → OK), and the map (OK − {0} → OK)→ (N → B) obtained from an affine patch
of a semistable OK-variety.

Our main theorem here is:

Theorem 7.22. Let f : (M → A) → (N → B) be a G-lci map in LogAlgpre
Z/pn/ for some n ≥ 1. Then the map

Compf from Proposition 7.18 is an isomorphism.

Sketch of proof. Let (M → A)
a→ (P → F )

b→ (N → B) be a factorisation with a a log smooth map that is of
Cartier type modulo p (or an inductive limit of such maps), and b a strict effective epimorphism. Then by Corollary
7.6 and devissage, the map Compa is an isomorphism. The map Compb is an isomorphism by Theorem 3.27 (or
simply Corollary 3.38). These two cases can be put together as in the proof of Theorem 3.27 using Corollary 7.8; we
leave the details to the reader. �

We give an example showing that the Cartier type assumption in Theorem 7.22 cannot be dropped.

Example 7.23. Let k be a field of characteristic p, and let f : Y := (N2 → k[x, y])→ X := (Na → k[x, y, xy−1, yx−1])

be the map considered in Example 7.12. Since Lf ' 0, the complex dRf is given by the ring X(1)
Alg using the conju-

gate filtration. The crystalline cohomology RΓ(fcrys,O), on the other hand, is given by the ring XAlg thanks to Kato’s
theorem [Kat89, Theorem 6.4] as f is log étale. Since the map X(1)

Alg → XAlg is not an isomorphism, we see that log
derived de Rham and log crystalline cohomologies do not necessarily agree. Note that the map f in this example is
not an integral map, and hence not of Cartier type.

We end this section by showing that the Frobenius action on log crystalline cohomology always lifts to one log
derived de Rham cohomology.
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Proposition 7.24. Let f : (0 → Z/pn) → (M → A) be a map in LogAlgpre. Then dRf has a natural Frobenius
action compatible with Compf .

Proof. This is proven just like Proposition 3.45. �

8. THE DERIVED DE RHAM COMPLEX FOR p-ADIC ALGEBRAS

In this section, we record p-adic limits of the results from §3 and §7. The basic object of interest is completed
derived de Rham cohomoogy:

Definition 8.1. Let f : A → B be a map in sAlgZp/ (or in sLogAlgpre
Zp/

). Then the p-adically completed derived

de Rham cohomology of f is defined as d̂Rf := R limn

(
dRf ⊗Zp Z/pn

)
, where the limit is derived. We let

d log : BMon → d̂Rf [1] denote the p-adic limit of the maps

d log : BMon → dRf ⊗Zp Z/p
n[1] ' dRf⊗ZpZ/p

n [1]

from Definition 6.8.

We recall our standing convention that K̂ always denotes the (derived) p-adic completion of a complexK of abelian
groups. A useful observation in working with these completions is:

Lemma 8.2. Let K be a complex of abelian groups. Then K̂ ' ̂̂K, and K ⊗Z Z/pn ' K̂ ⊗Z Z/pn for all n.

Proof. It clearly suffices to show the second claim. By devissage, we may assume n = 1. Since Fp is represented by
a perfect complex of Zp-modules, the functor −⊗Zp Fp commutes with arbitrary limits, so K̂ ⊗Zp Fp ' ̂K ⊗Zp Fp.
Hence, it suffices to show that L̂ ' L for a complex L of Fp-vector spaces. Using the compatible sequence of

resolutions
(
Zp

pn→ Zp

)
' Z/pn, one easily computes that L ⊗Zp Z/pn ' L ⊕ L[1], with the transition maps

given by the identity on the first summand, and 0 on the second summand. We leave it to the reader to check that the
(derived) projective limit of this sequence of complexes is indeed L. �

Next, we record some basic formal properties of p-adic derived de Rham cohomology.

Lemma 8.3. Let A→ B, A→ C, and B → D be maps in sAlgZp/. Then we have:

(1) The natural map d̂RB/A →
̂̂

dRB/A is an isomorphism.

(2) The natural maps induce isomorphisms: d̂RB/A ' d̂RB̂/Â ' d̂RB̂/A.

(3) There is a Kunneth formula: ̂dRB⊗AC/A ' d̂RB/A⊗̂Ad̂RC/A.

(4) There is a base change formula: d̂RB/A⊗̂AC ' ̂dRB⊗AC/C .

(5) If A→ B is relatively perfect modulo p, then d̂RD/A ' d̂RD/B .

All the assertions in Lemma 8.3 are easily deduced from the corresponding modulo pn statement; the details are
left to the reader. We also remark that each statement in Lemma 8.3 admits a logarithmic analogue as well. The main
p-adic theorem we want is the comparison between derived de Rham theory and crystalline cohomology:

Theorem 8.4. Let f : (M → A) → (N → B) be a map of prelog Zp-algebras. Assume that A and B are Zp-flat,
and that f is G-lci modulo p. Then there is a natural isomorphism

d̂Rf ' R lim
n

RΓcrys(f ⊗Zp Z/p
n,Ocrys).

This isomorphism is compatible with the maps d log : N → d̂Rf [1] and d log : N → RΓcrys(f ⊗Zp Z/p
n,Ocrys)[1].

One of the advantages of derived de Rham theory over crystalline cohomology is that it automatically applies to
derived rings. In practice, this extra flexibility allows one to compute derived de Rham cohomology of some maps of
ordinary Zp-algebras without too many flatness constraints:

Proposition 8.5. Let A be a Zp-flat algebra, and let B = A/(f1, . . . , fr) with (fi) a regular sequence. Then

d̂RB/A ' ⊗̂i
(
Â〈x〉 x−fi→ Â〈x〉

)
.
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We do not assume that the sequence f1, . . . , fr is regular modulo p, so that fi = p for some i is permissible.

Proof. We can write B as the derived tensor product ⊗iA/(fi). Each map A → A/(fi) can be obtained via derived
base change from the map Zp[x]

x 7→0→ Zp along x 7→ fi. By Theorem 8.4, we know that

̂dRZp/Zp[x] ' Ẑp〈x〉.

The map Zp[x]→ A defined by x 7→ fi admits a flat resolution
(
A[x]

x−fi→ A[x]
)

in the category of Zp[x]-modules,
where A[x] is viewed as a Zp[x]-module via x 7→ x. Base change and Kunneth then show that

d̂RB/A ' ⊗̂i ̂dR(A/(fi))/A ' ⊗̂i
(
Â〈x〉 x−fi→ Â〈x〉

)
,

as desired. �

As a corollary, we can relate the Zp-derived de Rham cohomology of an Fp-algebra to geometric invariants:

Corollary 8.6. Let A0 be an Fp-algebra. If A is a p-adically complete Zp-flat algebra A lifting A0, then

̂dRA0/Zp ' ̂dRA/Zp ⊕ T,

where T is the completion of a complex of torsion abelian groups. If A0 is perfect, then ̂dRA0/Zp 'W (A)⊕T where
W (A) is the ring of Witt vectors of A, and T is as before.

Proof. The second assertion follows from the first as W (A0) is Zp-flat algebra lifting lifting A0 when A0 is perfect
(and using the ̂dRW (A0)/Zp 'W (A0) as Zp →W (A0) is relatively perfect modulo p). To see the first assertion, note
that the formula A0 = A⊗Zp Fp (coupled with Kunneth) immediately show that

̂dRA0/Zp ' ̂dRA/Zp⊗̂Zp
̂dRFp/Zp ,

so it suffices to show the assertion for A0 = Fp. Since p ∈ Zp is a regular element, Proposition 8.5 shows that

̂dRFp/Zp '
(
Ẑp〈x〉

x−p→ Ẑp〈x〉
)
.

To compute the above complex, first observe that the decompleted object can be written as(
Zp〈x〉

x−p→ Zp〈x〉
)
' Zp ⊕

(
⊕j∈Z>0

Zp/j
)

where the summand Zp/j on the right is defined by the image of γj(x− p). Completing then gives

̂dRFp/Zp ' Zp ⊕
(
⊕̂j∈Z>0

Zp/j
)
,

as desired. �

Remark 8.7. The completed direct sum appearing at the end of the proof of Corollary 8.6 need not be torsion; for
example, the element of the direct product that is pn−1 in the Zp/p

n summand for all n (and 0 in the other slots) is
naturally a non-torsion element in the completed direct sum. Nevertheless, Corollary 8.6 does show that when A0 is
perfect, the ring W (A0) may be obtained as the largest separated torsion-free quotient of ̂dRA0/Zp .

Remark 8.8. The idea of using the Frobenius action on the cotangent complex of an Fp-algebra to produce liftings
to characteristic 0 is not new. It occurs in [dJ95, §1.2] and, more recently, in Scholze’s work [Sch11]. The resulting
interpretation of W (A0) as a formal deformation of A0 is quite useful in practice. For example, for A0 perfect, the
Teichmuller lift [·] : A0 → W (A0) arises by repeatedly applying the following simple observation to N = A0 and
M the multiplicative monoid underlying an infinitesimal thickening of A0: if V is an abelian pn-torsion group, N is
a uniquely p-divisible commutative monoid, and π : M → N is a surjection of commutative monoids with kernel V ,
then there is a unique section of π (as the multiplication by pn map on M factors through π).
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9. PERIOD RINGS VIA DERIVED DE RHAM COHOMOLOGY

In this section, we give derived de Rham interpretations for various period rings (with their finer structure) that
occur in the p-adic comparison theorems. We begin with notation that will be used through the rest of this paper.

Notation 9.1. Let k be a perfect field of characteristic p with ring of Witt vectors W . Let K0 = Frac(W ), and fix
a finite extension K/K0 of degree e with ring of integers OK , and a uniformiser π with minimal (Eisenstein) monic
polynomial E(x) ∈W [x]. We fix an algebraic closure K of K, which gives us access to the absolute integral closure

OK of OK , its p-adic completion ÔK , and the Galois group GK . For an Fp-algebra R, let Rperf and Rperf to denote
the lim and colim perfections of R, respectively. We follow the convention that (R,M) refers to a prelog ring where
R is a ring, α : M → R is a prelog structure; when M = N (resp. Q≥0) with α(1) = f (resp. with α(1) = f for an
element f with specified rational powers), then we also write (R, f) (resp. (R, fQ≥0)). For an OK-algebra A, we let
(A, can) denote the log ring defined by the open subset Spec(A[1/p]) ⊂ Spec(A) (unless otherwise specified).

We start by recalling a construction of Fontaine that lies at the heart of the theory of period rings.

Construction 9.2. We define Ainf = W ((OK/p)
perf). Given a sequence {rn ∈ OK} of p-power compatible roots

(i.e., rpn = rn−1), we use [r] ∈ Ainf to denote the Teichmuller lift of the evident element r = limn rn of (OK/p)
perf .

By functoriality, there is a GK-action on Ainf .

Construction 9.2 interacts extremely well with de Rham theory; the highlights of this interaction are:

Proposition 9.3 (Fontaine). With notation as above, one has:
(1) The ring (OK/p)

perf is a perfect rank 1 complete valuation ring.
(2) The cotangent complex ̂LAinf/W vanishes.

(3) There exists a unique GK-equivariant ring homomorphism θ : Ainf = W ((OK/p)
perf)→ ÔK that modulo p

reduces to the defining map (OK/p)
perf → OK/p ' ÔK/p. This map θ is surjective and satisfies θ([r]) = r0

for any p-power compatible sequence {rn ∈ ÔK}.
(4) The kernel ker(θ) is principal and generated by a regular element. If a compatible sequence {π

1
pn ∈ OK} of

p-power roots of π has been chosen, then E([π]) is a generator for ker(θ).

(5) For any n > 0 and any f ∈ Ainf , there exist fi, g ∈ Ainf such that f =
(∑n−1

i=0 f
pn−i

i · pi
)

+ png.

(6) The transitivity triangle for W → Ainf → ÔK induces an isomorphism ker(θ)/ker(θ)2 ' L̂
ÔK/W

[−1]. The

reduction modulo pn of this isomorphism is the map cn : ker(θ)/(ker(θ), pn) → Ω1

ÔK/W
[pn] defined by:

given f ∈ ker(θ)/(ker(θ), pn) represented by f ∈ ker(θ), write f =
(∑n−1

i=0 f
pn−i

i · pi
)

+ png for some

fi, g ∈ Ainf , and set cn(f) = “ 1
pn · d(θ(f))” :=

(∑n−1
i=0

(
θ(fi)

pn−i−1
)
d(θ(fi))

)
+ d(θ(g)) ∈ Ω1

ÔK/W
.

Proof. These results are well-known, but we sketch the arguments to show that they are easy to prove.
(1) The perfectness is clear. An elementary argument [Fon94, §1.2.2] shows that there is a multiplicative bijection

of sets (OK/p)
perf ' limx 7→xp ÔK defined by the obvious map from the right to the left. This allows one

to define a rank 1 semi-valuation on (OK/p)
perf via the valuation on the first component of the inverse limit

on the right. One checks directly that this semi-valuation has no kernel, so it defines a rank 1 valuation; the
completeness is automatic as the displayed inverse limit has continuous transition maps and complete terms.

(2) This follows from the vanishing of ̂LAinf/W ⊗W W/p ' L(OK/p)perf/(W/p) which follows from perfectness.

(3) This follows directly from the cotangent complex vanishing. Indeed, as the rings W , Ainf , and ÔK are
all p-adically complete, the surjective map Ainf/p → OK/p admits a unique lift to a surjective map θn :

Ainf/p
n → OK/p

n by the vanishing of L(Ainf/pn)/(W/pn), so θ = limn θn does the job.
(4) The source and target of θ areW -flat, so to show that ker(θ) is principal and generated by a regular element, it

suffices to show the same modulo p. However, this is immediate sinceAinf/p is a perfect rank 1 valuation ring.
To show the assertion about generators, pick a compatible sequence {p

1
pn ∈ OK} of p-power roots of p. Then

E([π]) = [π]e = u · [p] mod p, where u ∈ Ainf/p is a unit. Using the description Ainf/p ' limx 7→xp ÔK ,
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it suffices to show that the preimage of 0 under the multiplicative map
(

limx 7→xp ÔK
)
→ OK/p defined by

(rn) 7→ r0 mod p comprises multiples of (p
1
pn ) ∈ limx 7→xp ÔK , but this is immediate.

(5) This is true for any Zp-flat algebra A with A/p perfect, and can be proven by successive modification. More
directly, any element f ∈ Ainf can be written as f =

∑∞
i=0[fi] · pi for some Teichmuller lifts [fi] ∈ Ainf ; the

claim now follows by regrouping as each fi ∈ Ainf/p admits unique pn-th roots for any n.

(6) The claim about the transitivity triangle is clear because ̂LAinf/W ' 0, θ : Ainf → ÔK is an lci quotient, and
L̂
ÔK/W

' L̂OK/W
' Tp(Ω1

OK/W
)[1] is concentrated in homological degree 1 (see Proposition 9.12 below).

For the second part, note that pn · cn(f) = d(θ(f)) = d(0) = 0, so cn(f) ∈ Ω1

ÔK/W
[pn]. One can check

directly that p · cn+1(f) = cn(f), so we obtain an element of Tp(Ω1

ÔK/W
). We leave the rest to the reader.

�

Remark 9.4. In the notation of Proposition 9.3, it is also true that (OK/p)
perf has an algebraically closed fraction

field; we do not prove that here as we do not need it.

Remark 9.5. Let A be an integral perfectoid ÔK-algebra in the sense of Scholze [Sch11], i.e., A is a p-adically

complete flat ÔK-algebra such that Frob : A/(p
1
p ) → A/p is an isomorphism. Most of Proposition 9.3 generalises

effortlessly when we replace ÔK with A. In fact, the map ÔK → A is relatively perfect modulo p by definition, so the

results for ÔK imply those forA by deformation theory. In particular, there exists a unique (p-adic formal) deformation

Ainf(A) of A along Ainf → ÔK ; moreover, Ainf(A) is perfect modulo p (as it is relatively perfect over Ainf ; in fact,
one has Ainf(A) = W ((A/p)perf)), and the structure map θA : Ainf(A)→ A has kernel ker(θA) = ker(θ

ÔK
).

Next, we discuss the period ring Acrys; we give a derived de Rham definition.

Definition 9.6. The ring Acrys of crystalline periods is defined as ̂dROK/W
.

Remark 9.7. The ring Acrys comes equipped with a Hodge filtration and a Frobenius action (by Proposition 3.45).

We show next that the preceding definition of Acrys coincides with the classical one:

Proposition 9.8. The ringAcrys can be identified with the p-adic completion of the pd-envelopeDAinf
(ker(θ)). Under

this isomorphism, the Hodge filtration on Acrys corresponds to the filtration by divided-powers of ker(θ).

Proof. By Lemma 8.3, we haveAcrys ' ̂dR
ÔK/W

. Now the mapW → ÔK factors as a compositeW a→ Ainf
b→ ÔK .

The map a is relatively perfect modulo p since W/p and Ainf/p are perfect. The map b is a quotient by the regular
element by Proposition 9.3. Hence, by Lemma 8.3 (5) and Theorem 8.4 (or simply Corollary 3.38), we have

̂dROK/W
' ̂dR

ÔK/W
' ̂dR

ÔK/Ainf

' DAinf
(ker(θ)).

The assertion about the Hodge filtration is immedate. �

Remark 9.9. Continuing Remark 9.5, Proposition 9.8 generalises directly to the case where ÔK is replaced by

any integral perfectoid ÔK-algebra A, i.e., Acrys(A) := ̂dRA/Zp can be identified with the p-adic completion of
DAinf (A)(ker(θA)). This observation can be used to define a comparison map (see §10) using [Sch11].

The ring Acrys is also natural from the point of view of log derived de Rham cohomology. In fact, addition of the
(uniquely divisible) canonical log structure to OK does nothing at all to de Rham cohomology:

Proposition 9.10. Let (OK , can) denote the ring OK endowed with the log structure OK−{0} → OK . Then we have

LOK/W
' L(OK ,can)/W and Acrys ' ̂dR(OK ,can)/W .

Proof. Using the natural map, devissage, and the conjugate filtration modulo p, it suffices to prove assertion about
cotangent complexes. Also, we may pass to p-adic completions using Lemma 8.3. We fix once and for all a collection
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{π ab ∈ OK} of power-compatible positive rational powers of π; this choice allows us to define compatible powers
[π]

a
b ∈ Ainf for any a

b ∈ Q≥0. This choice gives a commutative diagram

W
a // Ainf

b //

c=θ

��

(Ainf , [π]Q≥0)

d
��

ÔK
e // (ÔK , can)

,

with the square on the right being a pushout, up to passage from prelog structures to log structures; here (ÔK , can)

denotes the prelog ring OK − {0} → ÔK . Since the map a is relatively perfect modulo p, it suffices show that
L̂c → L̂d◦b is an equivalence. By the Kunneth formula for the square, it suffices to show that L̂b ' 0. This follows
from Corollary 7.15 by base change along the flat map Z[Q≥0]→ Ainf defined by t

a
b → [π]

a
b , where t = “1” ∈ Q≥0

is the co-ordinate on Z[Q≥0]. �

Remark 9.11. The proof of Proposition 9.10 “cheated” by using that OK − {0}
val→ Q≥0 admits a section (given by

the choice {π ab } of roots of π). A better proof can be given using Lemma 11.7.

Next, we want to study some finer structures on the period ring Acrys. For this, we briefly recall the structure of the
cotangent complex of W → OK , discovered by Fontaine; our exposition follows that of Beilinson [Bei11b, §1.3].

Proposition 9.12 (Fontaine [Fon82, Theorem 1 (ii)]). The map W → OK has a discrete cotangent complex, i.e.,
LOK/W

' Ω1
OK/W

. Moreover, the map µp∞ → LOK/W
defined by ζ 7→ d log ζ induces an exact sequence

1→
(
a/OK)(1)→

(
K/OK

)
(1) ' µp∞ ⊗Zp OK

d log→ Ω1
OK/W

→ 1, (8)

where a ⊂ OK is the fractional ideal comprising all elements of valuation ≥ − 1
p−1 (so a = OK · p−

1
p−1 ⊂ K).

All tensor products appearing below take place over Zp unless otherwise specified. The following fact will be used
implicitly: if L/K is a finite extension, then LOL/W ' Ω1

OL/OK
is a cyclic torsion OK-module.

Proof. The transitivity triangle shows that for any extension K0 → L → K, the map Ω1
OL/W

⊗OL OK → Ω1
OK/W

is injective, and the filtered colimit over these maps as L varies spans the target. Since LOL/W ' Ω1
OL/W

, it follows
that the same is true in the limit, proving the first assertion. For the second claim, one first observes that ker(d log) ⊂
OK ⊗µp ⊂ OK ⊗µp∞ as the set of all OK-submodules of OK ⊗µp∞ is totally ordered under inclusion (and because
d log(OK ⊗ µp) 6= 0). This gives a commutative diagram

W [µp]⊗ µp
a //

can

��

Ω1
W [µp]/W

can

��
OK ⊗ µp

b // OK ⊗W [µp] Ω1
W [µp]/W

c

��
OK ⊗ µp

d log // Ω1
OK/W

,

where the first square is a flat base change along W [µp] → OK . Since c is injective, it follows that ker(d log) =

ker(b) = ker(a)⊗W [µp] OK . If ζ ∈ µp denotes a fixed primitive p-th root of 1, then ker(a) = Ann(d log(ζ))⊗ µp ⊂
W [µp] ⊗ µp. Now it is well-known that that Ann(d log(ζ)) has valuation 1 − 1

p−1 (by computing the derivative of
1 + X + · · · + Xp−1 evaluated at ζ, for example), and this implies the claim about ker(d log). For surjectivity of
d log, it suffices to show that for any finite extension L/K0, one has Ω1

OL/W
⊂ OK · d log(µpn) ⊂ Ω1

OK/W
for some

large n. If pd kills Ω1
OL/W

, then Ω1
OL/W

⊂ Ω1
OL[µpn ]/W

generates a submodule killed by pd, for any n. The set of all

submodules of Ω1
OL[µpn ]/W

is totally ordered under inclusion, and it is clear that OL[µpn ] · d log(µpn) ⊂ Ω1
OL[µpn ]/W
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is a submodule not killed by pd, for n sufficiently large: we simply need L[µpn ] to have a different (relative to K0)
with valuation > d. It follows that Ω1

OL/W
⊂ OL[µpn ] · d log(µpn) ⊂ Ω1

OL[µpn ]/W
as desired. �

Our next goal is to use derived de Rham formalism to construct a GK-equivariant map Zp(1) → Acrys, and show
that this coincides with a map defined by Fontaine. We first construct the map:

Construction 9.13. The d log maps in logarithmic derived de Rham cohomology define maps

d log : µp∞ ⊂ OK
∗ → dR(OK ,can)/W [1],

where (OK , can) denotes the prelog ring from Proposition 9.10. Taking p-adic completions gives a map

d̂ log : Zp(1)[1]→ ̂dR(OK ,can)/W [1] ' Acrys[1].

Applying π1, we obtain
β := π1(d̂ log) : Zp(1)→ Acrys.

This map is GK-equivariant, and has image contained in Fil1H(Acrys).

The map β defined in Construction 9.13 coincides with maps defined by Fontaine:

Proposition 9.14. Let (εn) ∈ Zp(1) denote a typical element.

(1) The element [ε]− 1 ∈ Acrys lies in Fil1H(Acrys) = ker(θ), hence log([ε]) ∈ Acrys makes sense.
(2) The image of [ε]− 1 in gr1

H(Acrys) ' L̂OK/W
[−1] has positive valuation.

(3) The map β : Zp(1)→ Acrys coincides with Fontaine’s map (εn) 7→ log([ε]).

Proof sketch. We follow the notation of the proof of Proposition 9.3.

(1) This is clear because θ([r]) = r0 for any p-power compatible system of elements rn ∈ ÔK .
(2) We may assume that ε1 is a primitive p-th root of 1, so (εn) ∈ Zp(1) is a generator. It suffices to check that

[ε] − 1 does not generate the kernel of Ainf/p → OK/p, i.e., that [ε]−1
[p] ∈ Ainf/p has positive valuation.

Twisting by Frobenius, it suffices to show that valp(ε1−1) > valp(p
1
p ), but this is clear: valp(ε1−1) = 1

p−1 ,

and valp(p
1
p ) = 1

p .
(3) Let β′ : Zp(1) → Acrys denote the map (εn) 7→ log([ε]), which makes sense by (1). It is clear that this map

is GK-equivariant, and has image contained in Fil1H(Acrys). To show β = β′, assume first that the induced
maps

gr1
H(β), gr1

H(β′) : Zp(1)→ gr1
H(Acrys) ' L̂OK/W

[−1]

are equal, where the last isomorphism comes from Proposition 9.8. Then β−β′ defines aGK-equivariant map
Zp(1) → Fil2H(Acrys), but the only such map is 0 (by mapping to BdR and using Tate’s theorem), showing
β = β′. It remains to show that gr1

H(β) = gr1
H(β′). For this, note that applying the p-adic completion functor

to the exact sequence (8) from Proposition 9.12 gives an exact sequence

1→ ÔK(1)
a→ L̂OK/W

[−1]→ Q→ 1

where the cokernel Q is a cyclic ÔK-module killed (exactly) by p
1
p−1 . By Construction 9.13, it is immediate

that the map gr1
H(β) is given by the composite

Zp(1)
can→ ÔK(1)

a→ L̂OK/W
[−1].

The map gr1
H(β′) is

Zp(1)
(εn)7→[ε]−1→ ker(θ)/ker(θ)2 ' L̂OK/W

[−1].

Showing gr1
H(β) = gr1

H(β′), after unwinding definitions, amounts to showing that the elements [ε] − 1 ∈
ker(θ)/ker(θ)2 and limn d log(εn) ∈ L̂OK/W

[−1] agree under the isomorphism ker(θ)/ker(θ)2 ' L̂OK/W
[−1].

This can be checked using the formula for this isomorphism in Proposition 9.3, but we do not carry out this
verification here.

�
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Next, we discuss some extensions. Fontaine defined a certain natural non-zero element of H1(GK , Acrys); we
construct it as logarithmic Chern class:

Construction 9.15. Fix a uniformiser π ∈ OK . Then the d log maps in logarithmic derived de Rham cohomology
define additive maps

stMon
π : πN ⊂ OK − {0}

d log→ dR(OK ,can)/W [1].

Applying the p-adic completion functor, using Proposition 9.10, and passing to group completions on the source
defines an additive map

stπ : Z ' (πN)grp → Acrys[1],

i.e., aGK-equivariant extension of Z byAcrys, depending on the choice of π. We let cl(stπ) ∈ H1(GK , Acrys) denote
the class of the corresponding extension.

To interpret the class cl(stπ) geometrically, we need an auxilliary ring ROK , the so-called Faltings’-Breuil ring.

Lemma 9.16. Let π ∈ OK be a fixed uniformiser with minimal (Eisenstein) polynomial E(x) ∈ W [x]. Let
(W [x], x)→ (OK , can) denote the unique W -linear map of prelog rings defined by x 7→ π. Then

̂dR(OK ,can)/(W [x],x) ' ̂W [x]〈E(x)〉 =: ROK .

The Hodge filtration on the left coincides with the pd-filtration on the right.

Proof. The map (W [x], x) → (OK , can) is strict, up to passage to associated log structure, and has kernel generated
by a single regular element E(x). Hence, the claim follows immediately from Theorem 8.4. �

The promised geometric interpretation of stπ is:

Proposition 9.17. Let notation be as in Lemma 9.16. Then

(1) The class cl(stπ) is the obstruction to factoring the natural map ̂dR(OK ,can)/W → ̂dR(OK ,can)/W ' Acrys in

a GK-equivariant manner through the projection ̂dR(OK ,can)/W → ̂dR(OK ,can)/(W [x],x) ' ROK .
(2) This obstruction vanishes after adjoining p-power roots of π, i.e., if K∞ = ∪nK(π

1
pn ) for a chosen compat-

ible sequence of p-power roots of π, then cl(stπ) maps to 0 under H1(GK , Acrys) → H1(GK∞ , Acrys). In
particular, there is a canonical GK∞ -equivariant map ROK → Acrys.

Proof. We freely use the identification between derived de Rham and crystalline cohomology (Theorem 8.4) to com-
pute derived de Rham in terms of explicit de Rham complexes.

(1) The factorisation W → (W [x], x)→ (OK , can) lets us compute ̂dR(OK ,can)/W as the complex

ROK ⊗W [x]

(
W [x]

d→W [x] · dx
x

)
'
(
ROK

d→ ROK ·
dx

x

)
.

The map Z ' (πN)grp → (OK − {0})grp d log→ ̂dR(OK ,can)/W [1] can then be identified as the map Z →
̂dR(OK ,can)/W [1] determined by dx

x in the complex above. On the other hand, composing this map with
̂dR(OK ,can)/W → ̂dR(OK ,can)/W ' Acrys defines stπ . The claim follows by chasing triangles.

(2) A choice of a compatible sequence of p-power roots of π determines a GK∞ -equivariant map

c : Z[1/p] '
(
πN[ 1

p ]
)grp

⊂ (OK − {0})grp d log→ dR(OK ,can)/W [1].

Restricting to Z · 1 ⊂ Z[1/p] followed by p-adic completion on the target recovers the map stπ . However,
p-adically completing Z[1/p] produces 0, so the p-adic completion of c is GK∞ -equivariantly nullhomotopic.
It follows that the same is true for stπ , proving the claim.

�

Remark 9.18. The proof of the second part of Proposition 9.17 gives an explicit identification of the class cl(stπ)

as follows. Fix a compatible sequence κ = {π
1
pn ∈ OK} of p-power roots of π. Then this choice κ determines a

nullhomotopy Hκ of the map stπ : Z → Acrys[1] by the recipe of the proof. This nullhomotopy is GK∞ -equivariant,
and its failure to be GK-equivariant is tautologically codified by the map GK → Acrys determined by

σ 7→ Hσ(κ) −Hκ.
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Unravelling definitions, this is simply the map

σ 7→ log(
σ([π])

[π]
),

which is the usual formula for Fontaine’s extension. In particular, Proposition 9.14 shows that cl(stπ) actually comes
from the Kummer torsor κ ∈ H1(GK ,Zp(1)) (determined by κ) by pushforward along β : Zp(1)→ Acrys.

Next, we discuss Kato’s semistable ring Âst, and its connection with the class cl(stπ). We give a direct definition
first; a derived de Rham interpretation is given in the proof of Proposition 9.21.

Definition 9.19. Fix a uniformiser π ∈ OK , and a sequence {π
1
pn ∈ OK} of p-power roots of π. The ring Âst is

defined as ̂Acrys〈X〉, the free p-adically complete pd-polynomial ring in one variable X . This ring is endowed with a
GK-action extending the one on Acrys given by

σ(X + 1) =
[π]

σ([π])
· (X + 1).

We equip Âst with the minimal pd-multiplicative Hodge filtration extending the one on Acrys and satisfying X ∈
Fil1H(Âst). We define φ : Âst → Âst to be the unique extension of φ on Acrys which satisfies φ(X + 1) = (X + 1)p.
Finally, we define a continuous Acrys-linear pd-derivation N : Âst → Âst via N(1 +X) = 1 +X .

Remark 9.20. The construction of Âst given in Definition 9.19 relied not just on π ∈ OK , but also on a choice a
compatible sequence of p-power roots of π. However, one can show that the resulting ring (with its extra structure) is
independent of this last choice, up to a transitive system of isomorphisms; see [BM02, §5]. In fact, Kato disocvered
Âst as the log crystalline cohomology of a certain map which depends only on π; see Remark 9.22.

Proposition 9.21. The class cl(stπ) maps to 0 under Acrys → Âst.

Proof. One may prove this assertion directly using Remark 9.18. However, we give a “pure thought” argument: the
ring Âst will be realised as the derived de Rham cohomology of a map, and a commutative diagram will force cl(stπ)

to vanish when pushed to Âst. For convenience, we fix a compatible system of all rational powers of π. Let

C := (Ainf [y, y
−1], [π]Q≥0 · yZ)

be the displayed prelog ring (defined using the choice of rational powers of π), with a GK-action defined by

σ(y) =
[π]

σ([π])
· y,

extending the usual action on Ainf . The map y 7→ 1, coupled with the usual map Ainf → ÔK , defines a map

C → (ÔK , can)

which is essentially strict, i.e., the associated map on log rings is strict, and has kernel (E([π]), (y − 1)), which is a
regular sequence. We define

Âst

′
:= ̂dR

(ÔK ,can)/C
.

The composite W → C → (ÔK , can) gives Âst

′
the structure of an Acrys-algebra. Moreover, one computes that

Âst

′
= ̂Ainf [y, y−1]〈E([π]), y − 1〉 = ̂Acrys[y, y−1]〈y − 1〉 ' ̂Acrys〈y − 1〉.

Hence, the association X 7→ y− 1 identifies Âst with Âst

′
in a GK-equivariant manner, and we use this isomorphism

without comment for the rest of the proof. The map x 7→ [π] · y defines a GK-equivariant diagram of rings

W // (W [x], x)

��

x 7→[π]·y // C

y 7→1

��

(OK , can) // (ÔK , can).
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Passing to de Rham cohomology gives us a GK-equivariant commutative diagram

dR(OK ,can)/W
//

��

dR
(ÔK ,can)/W

��
dR(OK ,can)/(W [x],x)

// dR
(ÔK ,can)/C

.

Taking p-adic completions then gives a GK-equivariant commutative diagram

̂dR(OK ,can)/W
//

��

Acrys

��
ROK

// Âst.

In other words, the natural map ̂dR(OK ,can)/W → Acrys → Âst factors GK-equivariantly through the projection
̂dR(OK ,can)/W → ROK . The vanishing claim now follows from Proposition 9.17. �

Remark 9.22. Let (W [x], x)
a→ C

b→ (ÔK , can) be the factorisation appearing in the proof of Proposition 9.21. One
can check that this factorisation is an exactification of the composite. In particular, the log crystalline cohomology
of b ◦ a and that of b coincide, and they both recover the ring Âst; this is Kato’s conceptual definition of Âst. The
argument above shows that d̂Rb ' Âst, which gives a derived de Rham definition for Âst. However, unlike in the
crystalline theory, since the map a is log étale but not of Cartier type modulo p, the map d̂Rb◦a → d̂Rb fails to be
an isomorphism (for roughly the same reason as Example 7.23). This explains why we cannot define Âst as d̂Rb◦a, a
much easier ring to contemplate than d̂Rb. Note, however, that the proof given above also applies to show that cl(stπ)

trivialises under Acrys → d̂Rb◦a. This leads to a comparison theorem over the ring d̂Rb◦a, which is smaller than Âst.

Remark 9.23. We continue the notation of Remark 9.22. The map d̂Rb◦a → Âst is simply the map ̂Compb◦a
from Proposition 7.18. In particular, the (W [x], x)-algebras d̂Rb◦a and Âst come equipped with the Gauss-Manin
connection (the former by Proposition 7.17, and the latter by Kato’s theorem) relative to W , and the map ̂Compb◦a is
equivariant for the connection. In fact, the Gauss-Manin connection on Âst can be identified with the derivation N
introduced in Definition 9.19: the isomorphism ̂L(W [x],x)/W ' L̂C/W sends d log(x) to d log([π]y) = d log([π]) +
d log(y) = d log(y) (since d log([π]) is infinitely p-divisible and hence 0 p-adically).

10. THE SEMISTABLE COMPARISON THEOREM

Our goal now is to use the theory developed earlier in the paper to prove the Fontaine-Jannsen Cst conjecture
following the outline of [Bei11b]. Inspired by the complex analytic case, we construct in §10.1 a topology on p-adic
schemes for which derived de Rham cohomology sheafifies to 0 p-adically; this can be viewed as a p-adic Poincare
lemma, and is the key conceptual theorem. The comparison map is constructed in §10.2 using the Poincare lemma.

10.1. The site of semistable pairs and the Poincare lemma. We preserve the notation from §9, and introduce the
geometric categories of interest.

Notation 10.1. Let VarK and VarK be the category of varieties over the corresponding fields. These categories are
viewed as sites via the h-topology, the coarsest topology finer than the Zariski and proper topologies; see [Bei11b, §2].

Next, we define the category Pss
K of semistable pairs. Roughly speaking, an object of this site is a variety U ∈ VarK

together with a normal crossings compactification U relative to OK ; the compactification U will help relate the de
Rham cohomology of U to mixed characteristic phenomena.

Definition 10.2. The site Pss
K of semistable pairs over K is defined as follows: the objects are pairs (U,U) with U a

reduced and separated K-scheme, U a proper flat reduced OK-scheme compactifying U such that
• The scheme U is regular.
• The complement U − U has normal crossings.
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• If U is irreducible, then the special fibre of U → Spec(O(U)) is reduced; note that O(U) is a dvr that is finite
over OK by irreducibility of U . In general, the preceding condition is required on each connected component.

The morphisms are defined in the evident way.

The pair (Spec(K),Spec(OK)) is the final object of Pss
K . Moreover, each pair (U,U) ∈ Pss

K gives rise to a log
scheme (U, can) where can : OU ∩ O∗U → OU denotes the log structure coming from the open susbet U ⊂ U .
Forgetting U defines a faithful functor Pss

K → VarK , and the h-topology on Pss
K is defined to be the pullback of the

h-topology from VarK under this functor. The fundamental observation [Bei11b, §2.5] is that de Jong’s semistable
reduction theorem lets us view Pss

K as a particularly convenient basis for VarK :

Theorem 10.3 (de Jong). The functor Pss
K → VarK is continuous and induces an equivalence of associated topoi.

From now on, we will freely identify h-sheaves on Pss
K with h-sheaves on VarK . In particular, to specify an h-sheaf

on VarK , it will suffice to give an h-sheaf on Pss
K .

Remark 10.4. In the definition of semistable pairs (U,U), it is crucial that the ring of functions on U is allowed to be
a finite extension of OK : one can not produce semistable alterations without allowing for extension of scalars.

Our ultimate goal is to relate de Rham cohomology to étale cohomology. The following result ensures that the
h-topology on Pss

K is good enough to compute étale cohomology:

Corollary 10.5 (Deligne). Let A be a constant torsion sheaf on VarK with value A, and let (U,U) ∈ Pss
K . Then we

have a canonical equivalence

RΓPss
K

((U,U), A) ' RΓ(Uét, A).

Proof. This follows from Theorem 10.3 and Deligne’s theorem [SGA72, Proposition 4.3.2, Expose V bis] that étale
cohomology with constant torsion coefficients can be computed in the h-topology. �

For applications, it is convenient to work with a version of Pss
K where the objects are defined over a fixed base.

Remark 10.4 tells us that we cannot fix the base to be a finite extension of OK if we hope to have a tight connection
with geometry over K; instead, we work over the union of all such extensions:

Definition 10.6. The site Pss
K

of geometric semistable pairs has as objects pairs (V, V ) where V is a K-variety,
V is a proper flat reduced OK-scheme compactifying V such that there exists an isomorphism of pairs (V, V ) '
(U,U)⊗O(U) OK along some point O(U)→ OK for some pair (U,U) ∈ Pss

K ; the morphisms are evident.

Pairs (V, V ) ∈ Pss
K

always have V normal (even lci) and V regular. The logarithmic and topological remarks
concerning Pss

K also apply to Pss
K

. In particular, (Spec(K),Spec(OK)) is the final object of this category. There is
also a base change functor φ−1 : Pss

K → Pss
K

defined by

(U,U) 7→ (U,U)⊗OK OK := (U ⊗K K, (U ⊗OK OK)norm)

where the normalisation is computed using the open (regular) subscheme U ⊗K K.

Remark 10.7. The forgetful functor Pss
K
→ VarK lets us define an h-topology on Pss

K
. The analogues of Theorem

10.3 and Corollary 10.5 obtained by replacing Pss
K (resp. VarK) with Pss

K
(resp. VarK) are also true, and proven in

exactly the same way. In fact, there is a pro-étale morphism φ : Shv(Pss
K

) → Shv(Pss
K) of topoi with φ−1 being the

pullback functor introduced above.

Remark 10.8. For any pair (V, V ) ∈ Pss
K

, the normality of V and the density of V ⊂ V implies that π0(V ) = π0(V ).
This would be false if one works with the category of all pairs (U,U) comprising a K-variety U and a proper flat OK-
scheme U compactifying U ; this also explains why the cohomology of constant torsion sheaves on Pss

K
is computed

using the projection Pss
K
→ VarK (as is desirable) rather than the projection Pss

K
→ SchOK

.

Our main theorem is a Poincare lemma relating two natural sheaves on VarK : one computes étale cohomology,
while the other is closely related to de Rham cohomology. These sheaves are:
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Construction 10.9. There are two presheaves accrys and acrys on Pss
K defined by

accrys(U,U) = dR(O(U),can)/W

and
acrys(U,U) = RΓ(U, dR(U,can)/W ).

The object on the right in the preceding formula is the hypercohomology in the Zariski topology of U of displayed
complex. Both these presheaves are presheaves of cochain complexes with an algebra structure, and we view them
as living in an appropriate (symmetric monoidal) stable ∞-category of presheaves. Let Accrys and Acrys denote the
h-sheafifications of accrys and acrys respectively. Pullback of forms induces natural maps accrys → acrys and Accrys →
Acrys. We denote the corresponding objects of Pss

K
by the same notation.

The cohomology of the sheaf Accrys is essentially étale cohomology:

Proposition 10.10. Fix an object (U,U) ∈ Pss
K

. Then one has:

RΓPss
K

((U,U),Accrys ⊗Z Z/pn) ' RΓ(Uét,Z/p
n)⊗Z/pn Acrys/p

n.

Proof. Note first that Accrys is a constant sheaf on Pss
K

since O(U) ' OK
#π0(U)

for any (U,U) ∈ Pss
K

. Moreover,
Proposition 9.8 shows that

Accrys(∗)⊗Z Z/pn ' dR(OK ,can)/W ⊗Z Z/pn =: Acrys/p
n.

The claim now follows from Corollary 10.5 (and Remark 10.7). �

The Poincare lemma asserts that Accrys and Acrys are p-adically isomorphic. To prove this, we first prove a theorem
showing that the difference is p-adically small, at least h-locally; this is the key geometric ingredient in this paper.

Theorem 10.11. For any pair (U,U) ∈ Pss
K

, there exists an h-cover π : (V, V )→ (U,U) such that
(1) The induced map

τ≥1RΓ(U,OU )→ τ≥1RΓ(V ,OU )

is divisible by p as a map in the derived category.
(2) For i > 0, the induced map

RΓ(U,Ωi
(U,can)/(OK ,can)

)→ RΓ(V ,Ωi
(V ,can)/(OK ,can)

)

is divisible by p as a map in the derived category.

Proof. The first claim is in my thesis, while the second claim follows from Lemma 10.13. More precisely, both
references ensure the relevant p-divisibility at the level of cohomology groups. To pass to p-divisibility at the level of
complexes, one simply iterates the relevant construction (dim(U) + 1)-times. �

Remark 10.12. We do not know if the conclusion of Theorem 10.11 holds if we replace the base OK with a higher-
dimensional ring; this seems to be an obstacle in extending the present approach to the comparison theorems to the
relative setting. The geometric question amounts to: given an affine scheme Spec(A) and a proper map f : X →
Spec(A), can one find proper covers π : Y → X such that the induced map τ≥1RΓ(X,OX) → τ≥1RΓ(Y,OY ) is
divisible by p? We believe we can prove such divisibility for τ≥2 or for dim(A) ≤ 2, but not generally.

The following lemma was used in the proof of Theorem 10.11.

Lemma 10.13. Let (X,X) ∈ Pss
K

. Then there exist (Y, Y ) ∈ Pss
K

and an h-cover π : (Y, Y ) → (X,X) such
that π∗Ω1

(X,can)/(OK ,can)
→ Ω1

(Y ,can)/(OK ,can)
is divisible by p as a map. In particular, Ω1

(X,can)/(OK ,can)
→

Rπ∗Ω
1
(Y ,can)/(OK ,can)

is divisible by p as a map.

Proof. It suffices to construct a proper surjective map π : Y → X of schemes such that the desired p-divisibility
holds (for the pullback log structure on Y ): given such a map, we can dominate it by an alteration to obtain an
object of Pss

K
of the desired form. To construct such proper covers Y → X , it suffices to work locally on X .

Indeed, assume that there exists a Zariski cover {Ui ⊂ X} and proper surjective maps πi : Vi → Ui such that
π∗Ω1

(Ui,can)/(OK ,can)
→ Ω1

(Vi,can)/(OK ,can)
is divisible by p; here all log structures are defined by pullback from
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the given log structure on X . Then, by Nagata, we can find a single proper surjective π : Y → X which fac-
tors through πi over Ui. Moreover, by de Jong, we may ensure that (Y , can) defines a semistable pair, where can
denotes the log structure defined by π−1(X). In particular, Ω1

(Y ,can)/(OK ,can)
is Zp-flat. Now the pullback map

π∗Ω1
(X,can)/(OK ,can)

→ Ω1
(Y ,can)/(OK ,can)

is divisible by p over each Ui, and hence globally divisible by p by flat-

ness. Hence, we have now reduced to solving the local problem. So we pick an affine open cover {Ui ⊂ X} such
that each Ui is étale over Spec(OK [t1, . . . , td]/(

∏r
i=1 ti − π)) where π ∈ OK , and the log structure is defined by

t1, . . . , tk for r ≤ k ≤ d. In this case, extracting p-th roots of each ti can be seen to solve the problem. �

We now prove the promised Poincare lemma relating Accrys and Acrys.

Theorem 10.14. The map Accrys ⊗Z Z/pn → Acrys ⊗Z Z/pn is an equivalence of sheaves on Pss
K

for all n.

Proof. By devissage, it suffices to show the case n = 1. Thus, we must show that accrys ⊗ Z/p → acrys ⊗ Z/p is an
isomorphism after h-sheafification. Given a pair (U,U) ∈ Pss

K
with U connected, we have

(accrys ⊗ Z/p)(U,U) = dR(OK/p,can)/k

and

(acrys ⊗ Z/p)(U,U) = RΓ(U,dR(U/p,can)/k).

By Proposition 3.22, in the stable∞-category of presheaves of cochain complexes on Pss
K

, the presheaf acrys ⊗ Z/p
admits an increasing bounded below separated exhaustive filtration with graded pieces Gi (starting at i = 0) given by

Gi(U,U) ' dR(OK/p,can)/k ⊗Frob∗kOK/p
Frob∗k

(
RΓ(U,Ωi

(U/p,can)/(OK/p,can)
)[−i]

)
Moreover, it is easily checked that the map accrys ⊗ Z/p → acrys ⊗ Z/p factors through the structure map G0 →
acrys ⊗ Z/p. As sheafification commutes with colimits, it suffices to show the following:

(1) The h-sheafification of the map accrys ⊗ Z/p→ G0 is an equivalence.
(2) The h-sheafification of Gi is 0 for i > 0.

Both claims follow the p-divisibility results of Theorem 10.11 and base change. �

Remark 10.15. The proof of Theorem 10.14 shows that one does not really need to work relative to the base W : one
can define analogs of Accrys and Acrys by replacing W with any prelog ring mapping to (OK , can) without affecting
the conclusion of the theorem. In particular, using x 7→ π, if one defines presheaves acst and ast via

acst(U,U) = dR(O(U),can)/(W [x],x) and ast(U,U) = RΓ(U,dR(U,can)/(W [x],x)),

then the associated h-sheaves Acst and Ast will be isomorphic modulo pn via the natural map Acst → Ast.

Remark 10.16. An essential feature of most known approaches to the p-adic comparison theorems is the construction
of certain well-chosen towers of covers of mixed characteristic schemes, together with a good understanding of of co-
homology (either étale, or de Rham) as one moves in these towers. In Faltings’ method of almost étale extensions, the
key technical result is the almost purity theorem (see [Fal02, page 182, Theorem]) which controls flatness properties
of the normalisation of a mixed characteristic ring R in a tower of finite étale covers of R[1/p]; in the end, this lets
one compute étale cohomology of R[1/p] in terms of mixed characteristic data (see [Fal02, page 242, Theorem]). In
contrast, in the approach of [Bei11b] as well as this paper, one constructs towers of h-covers of mixed characteristic
schemes that make de Rham cohomology classes highly p-divisible (see the proof of Theorem 10.14); that such cov-
ers suffice for applications is entirely due to Corollary 10.5. The fineness of the h-topology over the étale topology
lets one construct the required covers rather easily, while completely eschewing delicate algebraic considerations en-
countered, for example, in [Fal02, page 196]; this is the main reason for the relative simplicity of the present proof.
An intermediate between the two methods just described is Scholze’s approach (unpublished): he works étale locally
on the underlying rigid analytic space, which, roughly speaking, amounts to working with h-covers of the mixed
characteristic scheme that are étale over the generic fibre (by Raynaud’s theory [Ray74]).
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10.2. The semistable comparison map. Using the results of §10.1, we will construct the promised comparison map,
and show it is an isomorphism. For technical reasons pertaining to monodromy, we introduce some notation first:

Notation 10.17. We continue using Notation 9.1. In particular, we fix once and for all a uniformiser π ∈ OK
and, unless otherwise specified, the ring OK (and hence all OK-schemes) are viewed as W [x]-algebras via x 7→ π.
The Faltings-Breuil ring ROK is defined as ̂dR(OK ,can)/(W [x],x) or, equivalently, as the p-adic completion of the
pd-envelope of W [x]→ OK (by Lemma 9.16).

We now come to the main theorem:

Theorem 10.18. Let (X,X) ∈ Pss
K be a semistable pair with X = X[1/p] and O(X) = OK . Then there is an

Âst-linear comparison map

Compst
ét : ̂RΓcrys((X, can)/(W [x], x),Ocrys)⊗ROK

Âst → RΓ(XK,ét,Zp)⊗Zp Âst

that preserves filtrations, GK-actions, Frobenius actions, Chern classes of vector bundles, and monodromy operators.
Moreover, Compst

ét admits an inverse up to βd, where β ∈ Acrys is Fontaine’s element from Proposition 9.14, and
d = dim(X). In particular, Fontaine’s Cst-conjecture is true.

Here the left hand side is defined via

̂RΓcrys((X, can)/(W [x], x),Ocrys) := R lim
n

RΓcrys((X, can)/(W [x], x)⊗ Z/pn,Ocrys).

This is a module over ROK , and agrees with the crystalline cohomology groups H∗(X/RV ) of [Fal02]. The groups
in [Fal99, §2] are slightly different because the ring RV there is complete for the Hodge filtration. Informally, we

may think of ̂RΓcrys((X, can)/(W [x], x),Ocrys) as the de Rham cohomology over (ROK , x) of a deformation of
(X, can) across (ROK , x) → (OK , can); as such deformations might not exist globally on X , one has to proceed
using cohomological descent. In the sequel, we will often write Comp instead of Compst

ét when the meaning is clear.

Remark 10.19. The Chern classes mentioned in Theorem 10.18 live in crystalline (and étale) cohomology. In the
spirit of the present paper, a more natural operation would be to define Chern classes in derived de Rham cohomology
that lift crystalline Chern classes via the comparison maps of propositions 3.25 and 7.18. A natural solution to this last
problem is to develop a theory of derived de Rham cohomology for algebraic stacks over some base S, and construct
universal Chern classes in RΓ(B(GLn),dRB(GLn)/S). This can indeed be done over S = Spec(Z/pn), and will
be discussed in [Bhab]. We simply remark here that our definition proceeds by cohomological descent instead of
imitating Illusie’s definition of derived de Rham cohomology; the latter is problematic to implement for Artin stacks
as it is not clear how to define wedge powers of a complex that is supported in both positive and negative degrees.

Construction of the map. We first explain the idea informally. The sheafification adjunction gves a natural map
acrys((X,X)/W ) → Acrys((X,X) ⊗W OK). Up to completion, the right hand side is the p-adic étale cohomol-
ogy of XK , by the p-adic Poincare lemma. The left hand side is closely related to the left hand side of the desired map
Compst

ét: the latter is the de Rham cohomology of (X, can) relative to (W [x], x), while the former is the de Rham
cohomology of (X, can) over W (up to completions). Hence, adjunction almost gives a map of the desired form. To
move from de Rham cohomology relative to W to that relative to (W [x], x), we extend scalars to Âst.

Now for the details. First consider the map

Compn : acrys(X,X)⊗Z Z/pn → acrys((X,X)⊗OK OK)⊗Z Z/pn → RΓPss
K

((X,X)⊗ OK ,Acrys ⊗Z Z/pn).

The left hand side is computed as

acrys(X,X)⊗Z Z/pn = RΓ(X, dR(X,can)/W ⊗W W/pn) = RΓ((X, can)/W ⊗W W/pn,Ocrys).

while the right hand side is computed by the Poincare lemma to be

RΓPss
K

((X,X)⊗OK ,Acrys⊗ZZ/p
n) ' RΓPss

K
((X,X)⊗OK ,Accrys⊗ZZ/p

n) ' RΓ(XK,ét,Z/p
n)⊗Z/pn Âcrys/p

n.

Taking p-adic limits then shows that R limn Compn gives a map

̂RΓcrys((X, can)/W,Ocrys)→ RΓ(XK,ét,Zp)⊗Zp Acrys.
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This map is linear over the algebra map

̂acrys((OK , can)/W )→ ̂acrys((OK , can)/W ) ' Acrys.

Hence, linearisation gives an Acrys-linear map

̂RΓcrys((X, can)/W,Ocrys)⊗ ̂acrys((OK ,can)/W )
Acrys → RΓ(XK,ét,Zp)⊗Zp Acrys. (9)

We base change this along Acrys → Âst to get a map

̂RΓcrys((X, can)/W,Ocrys)⊗ ̂acrys((OK ,can)/W )
Âst → RΓ(XK,ét,Zp)⊗Zp Âst.

Proposition 9.21 shows that the map ̂a((OK , can)/W ) → Âst factors GK-equivariantly through the natural map
̂a((OK , can)/W )→ ROK . Hence, one can rewrite the preceding map as(

̂RΓcrys((X, can)/W,Ocrys)⊗ ̂acrys((OK ,can)/W )
ROK

)
⊗ROK

Âst → RΓ(XK,ét,Zp)⊗Zp Âst.

The parenthesized term on the left can be identified with ̂RΓcrys((X, can)/(W [x], x),Ocrys): comparison with the

crystalline theory identifies ̂RΓcrys((X, can)/W,Ocrys) with the complex(
̂RΓcrys((X, can)/(W [x], x),Ocrys)

d→ ̂RΓcrys((X, can)/(W [x], x),Ocrys) ·
dx

x

)
,

where the differential is defined using the Gauss-Manin connection, while the complex ̂a((OK , can)/W ) is identified
with the complex

ROK ⊗W [x]

(
W [x]

d→W [x] · dx
x

)
'
(
ROK

d→ ROK ·
dx

x

)
.

Thus we obtain the promised map

Compst
ét : ̂RΓcrys((X, can)/(W [x], x),Ocrys)⊗ROK

Âst → RΓ(XK,ét,Zp)⊗Zp Âst

�

Remark 10.20. It is clear from the construction that the only reason to base change up to Âst from Acrys is to ensure
that the map ̂a((OK , can)/W ) → Âst factors GK-equivariantly through the natural map ̂a((OK , can)/W ) → ROK .
If we are prepared to work only GK∞ -invariantly (with notation as in Proposition 9.17), then this base change is
unnecessary by the same proposition, i.e., the map (9) above can be identified with a GK∞ -invariant comparison map

̂RΓcrys((X, can)/(W [x], x),Ocrys)⊗ROK
Acrys → RΓ(XK,ét,Zp)⊗Zp Acrys.

This is the form of the comparison map in [Fal02].

Remark 10.21. Let X be a smooth K-variety, and fix a hypercovering (Y•, Y•) in Pss
K

resolving XK , i.e., (Y•, Y•) ∈
Pss
K

is a simplicial object equipped with an equivalence |Y•| ' XK . Applying Theorem 10.14 and following the
arguments above gives a map acrys((Y•, Y•)/W )[1/p] → RΓ(XK,ét,Zp)⊗ Acrys[1/p]. It is tempting to identify the
left hand side with RΓdR(X/K) ⊗K K as de Rham cohomology satisfies h-descent in characteristic 0; this would
give a de Rham comparison isomorphism overAcrys[1/p]. However, this reasoning is flawed: acrys((Y•, Y•)/W )[1/p]
computes derived de Rham cohomology in characteristic 0, so it is quite degenerate (see Corollary 2.4). To recover the
de Rham comparison theorem CdR, one must work with the Hodge-completed picture so as to make the characteristic
0 theory non-degenerate. When implemented, this strategy leads to the proof in [Bei11b].

Deducing consequences from [Bei11b]. Construction shows that the comparison map defined above is compatible
with the one defined in [Bei11b]: the map defined in loc. cit. uses the same site Pss

K
, and is defined using the Hodge-

completed versions of the sheaves used above. This means that we can deduce consequences for the map defined
above from those proven in [Bei11b], provided we work in suitable torsion free contexts. In particular, if (Gm,Gm)
denotes the usual semistable compactification of Gm relative to OK and t is the co-ordinate on Gm, then the map

Âst·
dt

t
:= ̂H1

crys((Gm,Gm)/(W [x], x),Ocrys)⊗ROK
Âst → H1

ét(Gm⊗K,Zp)⊗Âst ' H1
ét(Gm⊗K,Zp(1))⊗Âst(−1)
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sends the generator dtt to the element κ⊗ β; here

κ ∈ H1
ét(Gm ⊗K,Zp(1))

denotes the generator of that group determined by the compatible system of the Kummer torsors (i.e., the pn-power
map on Gm), and

β ∈ Acrys(−1) ⊂ Âst(−1) ' Hom(Zp(1), Âst)

is Fontaine’s map (ε) 7→ log([ε]). Given this compatibility, one formally deduces many more. For example, since the
comparison map commutes with Mayer-Vietoris sequences, we deduce that the following diagram commutes:

Âst{−1}
β //

ccrys
1 (O(1))

��

Âst(−1)

cét
1 (O(1))

��
̂H2(P1

OK
/(W [x], x),Ocrys)⊗ROK

Âst
Comp // H2(P1

K,ét
,Zp)⊗Zp Âst.

Here Âst{−1} denotes the ring Âst with the filtration shifted by 1, and the fact used above is that dtt and κ correspond
to the Chern classes of O(1) in the de Rham and the étale theories under the Mayer-Vietoris identification of H1(Gm)
with H2(P1). Compatibility with cup-products combined with compatibility with restriction along a hyperplane
Pn−1 ⊂ Pn leads to similar diagrams as above for H∗(Pn). In particular, the comparison map commutes with Chern
classes of ample line bundles, up to the appropriate power of β, i.e., for a semistable pair (X,X) ∈ Pss

K and an ample
line bundle L ∈ Pic(X), we have a commutative diagram for all d

Âst{−d}
βd //

(ccrys
1 (O(1)))d

��

Âst(−d)

(cét
1 (O(1)))d

��
̂H2d((X, can)/(W [x], x),Ocrys)⊗ROK

Âst
Comp // H2d(XK,ét,Zp)⊗Zp Âst.

Since any line bundle can be written as a difference of ample line bundles on a projective scheme, we deduce the same
for arbitrary line bundles. Passing to the flag variety then proves the same statement for arbitrary vector bundles. �

Gysin compatibility. Fix proper smooth geometrically connected K-schemes X and Y . Assume that there exist
semistable pairs (X,X) and (Y, Y ) in Pss

K extending X and Y , and a morphism i : (Y, Y ) → (X,X) of pairs
such that Y → X is a closed immersion of codimension c that is transverse to all the strata, i.e., étale locally on X ,
we have an isomorphism (X,Y ) ' X∗ × (Ac, {0}) for some semistable scheme X∗ (see [Fal02, Theorem 2, page
252]). Then Poincare dulaity (see [Fal02, page 248]) gives an adjoint pushforward map

icrys
∗ : ̂RΓcrys((Y , can)/(W [x], x),Ocrys){−c}[−2c]→ ̂RΓ((X, can)/(W [x], x),Ocrys).

Similarly, by [Del77, Theorem XVII.3.2.5], we also have a pushforward

iét
∗ : RΓ(YK,ét,Zp)(−c)[−2c]→ RΓ(XK,ét,Zp)

that is Poincare dual to the pullback. We claim that these commute with Comp up to βc. This is proven via a
deformation to the normal cone argument which reduces considerations to the case whereX = P(N∨⊕OY ) for some
vector bundle N∨ on Y with i being the 0 section of N∨. Instead of repeating the argument here, we simply refer to
[Ols09, Proposition 14.7]; the setup there assumes that X and Y are smooth, but this is not necessary for the proof as
long as i is transverse as above (use [Fal02, bottom of page 249] to commute icrys

∗ with transverse pullbacks). �

Verification of Chern class behaviour. For the reader’s convenience, we recall the Chern class compatibility of Compst
ét;

this discussion is simply a version of [Bei11b, §3.6] in the present context. Note that all objects involved — Gm, Gm,
dt
t , κ, and the comparison map — are defined overW . Since the comparison maps are compatible with change of base

field, we can assume that OK = W . We will show the desired compatibility modulo pn for all n.
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Fix an integer n ≥ 0, and let fn : (Tn, Tn)→ (Gm,Gm) be the semistable compactification of the pn-power map
on Gm obtained by taking (Tn, Tn) = (Gm,Gm), with the map being the pn-th power map on Gm. The map fn is
µpn -equivariant for the standard µpn -action on the source, and so we have a pullback map

f∗n : acrys(Gm,Gm)/pn →
(
acrys((Tn, Tn)⊗W OK)/pn

)hµpn
'
(
acrys(Tn, Tn)/pn ⊗W/pn Acrys/p

n
)hµpn

.

Here the right hand side is the homotopy-fixed points of the µpn(OK)-action on the displayed complex, and can be
computed via group cohomology. We will identify the image of dtt under f∗n. We need some notation first. Let tn be
the co-ordinate on Tn satisfying t = tp

n

n . The formula ζ 7→ dζ
ζ will be viewed as defining a map

c : µpn(OK)→ Acrys/p
n

obtained from the first Chern class map c1 : µp∞ → Acrys[1] of Construction 9.13 by the formula c = π1(ĉ1)/pn.
This is simply the reduction of Fontaine’s map β modulo pn by Proposition 9.14.

Claim 10.22. The image of
dt

t
∈ π−1(acrys(Gm,Gm)/pn)

under π−1(f∗n) coincides with the class defined by the 1-cocycle in group cohomology of µpn(OK) (computed using
the standard complex) determined by the map µpn(OK)

c→ Acrys/p
n → acrys(Tn, Tn)/pn ⊗W/pn Acrys/p

n.

Proof sketch. The element dtt maps to

0 = pn · dtn
tn

=
d(tp

n

n )

tp
n

n

∈ π−1(alog((Tn, Tn)⊗W OK)/pn),

so π−1(f∗n)(dtt ) is the obstruction to dtn
tn

being µpn -invariant, but this obstruction is tautologically the map

ζ 7→ d(ζtn)

ζtn
− dtn

tn
=
dζ

ζ

�

Now consider the diagram

K1 := acrys(Gm,Gm)/pn //
(
acrys((Tn, Tn)⊗W OK)/pn

)hµpn

��(
Accrys((Tn, Tn)⊗W OK)/pn

)hµpn
'
c //

(
Acrys((Tn, Tn)⊗W OK)/pn

)hµpn
=: K2

K3 :=
(

RΓét(Tn ⊗K,Z/pn(1))⊗Z/pn Acrys/p
n(−1)

)hµpn
'b

OO

RΓét(Gm ⊗W K,Z/pn(1))⊗Z/pn Acrys/p
n(−1) =: K4.

'
a
oo

Here all maps are the natural ones, the map a is an isomorphism by étale descent, b is an isomorphism by the compu-
tation of the cohomology of constant sheaves in the h-topology, and c is an isomorphism by the Poincare lemma.

The earlier computation shows that the dt
t ∈ π−1(K1) maps to the class in π−1(K2) determined by the cocycle

ζ 7→ 1⊗ dζ
ζ . On the other hand, since the torsor Tn → Gm is precisely the torsor determined by κmodulo pn, the class

κ⊗ β ∈ π−1(K4) maps under a to the cocycle determined by id⊗ β in π−1(K3) (computed by group cohomology).
One then chases definitions to show that the image of id⊗β under c◦b in π−1(K2) coincides with the earlier map. �
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Proof of Theorem 10.18. We have already constructed the map Comp and shown that it respects pullbacks, cup prod-
ucts, Chern classes of vector bundles and Gysin maps. As the map Accrys/p

n → Acrys/p
n occurring in Theorem 10.14

respects Frobenius actions (with actions defined using Theorem 3.45), so does Comp.
For monodromy compatibility, consider the map

Comp′ : ̂RΓ((X, can)/(W [x], x),Ocrys)→ RΓét(XK,ét,Zp)⊗Zp Âst

whose Âst-linearisation yields Comp. As explained in Remark 9.22, we can identify

Âst ' ̂RΓcrys(f,Ocrys)

where f : (W [x]x) → (OK , can) is the map defined by f(x) = π. Thus, the (W [x], x)-modules occurring on both
sides of Comp′ acquire a connection relative to W by the Gauss-Manin connection on crystalline cohomology. We
will prove the desired monodromy compatibility of Comp by showing that Comp′ is equivariant for this connection.
Replacing Theorem 10.14 with the modified version from Remark 10.15 in the construction of Comp leads to a map

Comp′′ : ̂RΓ((X, can)/(W [x], x),Ocrys)→ RΓét(XK,ét,Zp)⊗Zp d̂Rf

where f : (W [x], x) → (OK , can) is the map defined by x 7→ π. The map Comp′ is obtained from Comp′′ by
composition with Compf : d̂Rf → ̂RΓcrys(f,Ocrys) from Remark 9.22. Since Compf is equivariant for the natural
connection (by Remark 9.23), it suffices to show that Comp′′ is equivariant for the connection. This follows from the
connection-equivariance of the map acst → ast from Remark 10.15, which is obvious. Hence, Comp′ (and thus Comp)
are equivariant for the Gauss-Manin connection, as desired.

To see that Comp admits an inverse up to βd, note that both the source and target of Comp satisfy Poincare duality
(by [Fal02, page 248]). A formal argument (using the regularisation of the diagonal defined in [Fal02, pp 238-239],
and the Gysin and Chern class compatibility of Comp) then implies that Comp admits an inverse up to βd. �

11. A GLOBAL COMPARISON RESULT

The goal of this section is to adapt the arguments of §10 to prove a comparison result between the de Rham and
étale cohomologies of varieties over global fields. We fix some notation first, and introduce the operation that will
play the role of p-adic completion over global fields.

Notation 11.1. We fix an algebraic closure Q of Q, and let Z denote the ring of integers. For any complex K of
abelian groups, we use K̂ to denote the adelic completion of K, i.e.,

K̂ := R lim
n

(K ⊗Z Z/n).

This diverges from the p-adic completion convention elsewhere in this paper. For a Z-algebra R, unless otherwise
specified, we use (R, can) to denote the prelog ring defined by the ind-open subset Spec(R⊗Q)→ Spec(R), i.e., by
the monoid of all functions that admit an inverse up to division by integers; similarly for schemes.

We begin by recording a few properties of the adelic completion operation on complexes.

Lemma 11.2. Let K be a complex of abelian groups. Then

(1) The natural map K̂ → ̂̂
K is an equivalence.

(2) The natural map K̂ →
∏
p R limk(K ⊗Z Z/pk) is an equivalence, where the product is over all primes.

(3) K̂ ' 0 if and only if K ⊗Z Z/p ' 0 for all prime numbers p.
(4) If K ⊗Z Z/p is discrete for all primes p, then K̂ is discrete.

Proof. We sketch ideas.
(1) This follows from the proof of Lemma 8.2.
(2) This follows from the Chinese remainder theorem.
(3) The forward direction follows from (1). Conversely, if K ⊗Z Z/p ' 0, then K ⊗Z Z/pk ' 0 for all integers

k by devissage, so the claim follows from (2).
(4) The complex K⊗ZZ/pk has a finite filtration with graded pieces given by K⊗ZZ/p. Long exact sequences

then show that K ⊗Z Z/pk is discrete for all k, and that the projective system k 7→ π0(K ⊗Z Z/pk) has
surjective transition maps. The vanishing of lim1 for such systems then shows the claim.
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Next, we introduce the global period ring.

Definition 11.3. The global period ring AddR is defined as

AddR = d̂RZ/Z.

This E∞-ring comes equipped with a Gal(Q/Q)-action by functoriality, and a Hodge filtration Fil∗.

The preceding definition is inspired by Definition 9.6 and Proposition 9.8. However, it is not clear that AddR is an
ordinary ring. This fact is recorded below, along with other useful facts about the de Rham theory of Z→ Z.

Proposition 11.4. The following statements are true.
(1) The map Z→ Z is an inductive limit of generically étale lci maps.
(2) The cotangent complex LZ/Z is discrete, and π0(LZ/Z) is torsion and divisible as an abelian group.
(3) For each prime p, LZ/Z ⊗Z Z/p is concentrated in homological degree 1. Moreover, π1(LZ/Z ⊗Z Z/p) is a

flat Z/p-module.

(4) The completion L̂Z/Z is a Ẑ-module concentrated in homological degree 1.
(5) The natural map Z→ (Z, can) induces isomorphisms

L̂Z/Z ' ̂L(Z,can)/Z

(6) The complexes AddR and ̂dR(Z,can)/Z are ordinary (discrete) Ẑ-flat algebras, and the natural map induces
an isomorphism between them.

(7) The map d log : µ∞ → dRZ/Z[1] induces a Galois equivariant map βglob : Ẑ(1) → AddR after adelically
completing and passing to π1(−). The image of this map lies inside Fil1(AddR).

(8) Let v denote a place of Z lying above a prime p, and let Zp denote the absolute integral closure of Zp defined
by v-adic completion of Z. Then the following diagram commutes:

Ẑ(1)
βglob //

pr

��

AddR

��
Zp(1)

β // Acrys.

Here the right vertical map is induced by v, and β is from Construction 9.13.

Proof. We summarise ideas.
(1) The lci property for an essentially finitely presented map of local rings can be checked after completion, and

it is well-known that finite extensions of p-adic integer rings are lci (see [Ser79, Proposition 1.6.18]).
(2) Discreteness and torsion of LZ/Z follow from (1). The divisibility is obvious: for any integer n, every element

of Z is an n-th power.
(3) This first part formally from (2). Next, LZ/Z has flat dimension 1 by (1) and Lemma 11.6 (6) (applied to the

poset I of finite subextensions Fi of Q with F (i) = OFi and Ki = LOFi/Z
). Hence, LZ/Z ⊗Z Z/p has flat

dimension 1 as a Z/p-module, so the claim follows from π0(LZ/Z ⊗Z Z/p) ' 0, which comes from (2).
(4) This follows from (3) and Lemma 11.2 (4).
(5) Consider the composite map h : (0 → Z)

g→ (Z
∗ → Z)

f→ (Z − {0} → Z) of prelog rings. For any prime
number p, the map f ⊗Z Z/p satisfies the conditions of Lemma 11.7, so we conclude that Lf ⊗Z Z/p ' 0,
and hence L̂f ' 0 by Lemma 11.2 (3). One also has Lg ' 0 by [Ols05, Theorem 8.16]. The transitivity
triangle for h finishes the proof.

(6) The conjugate filtration from Proposition 7.4 and (3) show that AddR⊗ZZ/p is discrete for all primes p; here
we use the Z/p-flatness of π1(LZ/Z ⊗Z Z/p) to compute the derived exterior powers. The same reasoning

applies to show the discreteness of ̂dR(Z,can)/Z by (5). The map dRZ/Z ⊗Z Z/p → dR(Z,can)/Z ⊗Z Z/p

is an equivalence by (5) and the conjugate filtration, so we get an equivalence in the limit by Lemma 11.2
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(3). To show flatness, we observe that B = AddR ⊗Z Z/pn is a discrete Z/pn-algebra with the property that
B ⊗Z/pn Fp is discrete; by an elementary Tor argument, B is Z/pn-flat, and hence AddR is Ẑ-flat.

(7) Clear.
(8) There is clearly such a commutative diagram if we replace the Zp(1) in the bottom left of the square with

Ẑ(1); the rest follows by observing Acrys is a Zp-algebra, so any map Ẑ(1) → Acrys factors through the
projection Ẑ(1)→ Zp(1).

�

Remark 11.5. Proposition 11.4, Lemma 11.2 (2), and Proposition 3.45 show that

AddR '
∏
p

R lim
n

(
dR(Z/pn)/(Z/pn)

)
has a Λ-ring structure, i.e., there is a commuting family ψp : AddR → AddR of endomorphisms indexed by the prime
numbers p such that ψp lifts Frobenius modulo p; note that − ⊗Z Z/p commutes with arbitrary limits (and hence
products) of complexes as Z/p is Z-perfect. We do not know if this AddR can be described using Witt vectors.

The following lemmas were used Proposition 11.4. First, we control flat dimensions in a tower of rings and modules.

Lemma 11.6. Let F : I → Alg be a diagram of rings indexed by a small filtered category I , and set R = colimI F .
Let C denote the category of F -modules, i.e., the category of F (i)-modules Mi together with F (i)-linear maps Mi →
Mj for each map i→ j in I . Then

(1) The category C is an abelian ⊗-category with the tensor product defined “pointwise.”
(2) There is a functor Forget : ModR → C given by sending M ∈ ModR to the constant diagram i 7→M .
(3) The functor Forget has a left adjoint colim : C→ ModR given by colim(Mi) := colimiMi. Here the colimit

is computed in Ab (or equivalently Set as I is filtered).
(4) The functor colim commutes with tensor products.
(5) The functor colim preserves flatness, i.e., if Mi is F (i)-flat, then colim(Mi) is R-flat.
(6) If {Ki} is a bounded above complex over C with eachKi having flat dimension≤ k as an F (i)-complex, then

colimiKi has flat dimension ≤ k as an R-module.

We remind the reader that a complex K over a ring A has flat dimension ≤ k if for any (ordinary) A-module M ,
the derived tensor product K ⊗L

AM has amplitude in [−k, 0]; in particular, K itself has amplitude in [−k, 0].

Proof. We use {Mi} to denote a typical object of C, dropping the transition maps from the notation (and similarly for
objects in Fun(I,D) for any category D). For two objects {Mi} and {Ni} of C, we have:

HomC({Mi}, {Ni}) = lim
i

HomF (i)(Mi, Ni).

This description will be used implicitly in the proofs below.

(1) All properties and constructions are checked and made “pointwise.”
(2) Clear.
(3) Observe that Forget can be factored as ModR

a→ Fun(I,ModR)
b→ C where a sends M ∈ ModR to the

constant functor based at M , and b sends an I-indexed diagram {Mi} of R-modules to the object {Mi} of C,
i.e., view each Mi as an F (i)-module via restriction of scalars along F (i)→ R. Taking colimits defines a left
adjoint to a, while sending {Mi} to {Mi ⊗F (i) R} defines a left adjoint to b. Thus, Forget has a left adjoint
given by {Mi} 7→ colimi(Mi ⊗F (i) R). It now suffices to check that the natural map

c : colim
i

Mi → colim
i

(Mi ⊗F (i) R)

is an isomorphism, where the first colimit is computed in Ab. A left-inverse is defined by the following ob-
servation: colimiMi is an R-module (as R = colimi F (i)), so the natural F (j)-linear map Mj → colimiMi

defines an R-linear map Mj ⊗F (j) R → colimiMi functorial in j ∈ I . Conversely, since I is filtered, one
has: for any k ∈ I , the image of an element of Mk ⊗F (k) R in colimi(Mi ⊗F (i) R) lies in the image of some
Mj → colimi(Mi⊗F (i)R). This shows that c is surjective, and hence bijective as it already has a left-inverse.
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(4) The description of colim given in (3) shows that colimiMi ' colimi(Mi ⊗F (i) R). Thus, it suffices to show
that if {Ai}, {Bj} ∈ ModIR, then the natural map

c : colim
i

(Ai ⊗R Bi)→ colim
(i,j)

(Ai ⊗R Bj)

is an isomorphism. By replacing I with a cofinal subcategory, we may assume I is a filtered poset. Then
∆ : I → I × I is cofinal, so the claim follows.

(5) The description of colim given in (3) shows that colimiMi ' colimi(Mi ⊗F (i) R). Now if each Mi is
F (i)-flat, then Mi ⊗F (i) R is R-flat for each i. The claim follows as filtered colimits of flat modules are flat.

(6) Since each Ki has amplituide in [−k, 0], we may replace Ki by τ≤0Ki to assume that each Ki is an F (i)-
complex bounded above at 0. By replacing each term ofKi by the canonical free resolution and then totalising,
we may assume that each Ki is a complex of free F (i)-modules bounded above at 0. Next, since each Ki has
flat dimension ≤ k, the natural map Ki → τ≥−kKi is a quasi-iosmorphism, and τ≥−k is an F (i)-complex
with flat terms. By replacing Ki with τ≥−kKi, we may then assume that each Ki is represented by a length
k complex of flat F (i)-modules (but not necessarily free). The desired claim now follows from (5).

�

Next, we need two results in the style of [Ols05, §8] and Corollary 7.15.

Lemma 11.7. LetA ⊂M be an inclusion of integral monoids. AssumeA is an abelian group, andM/A is a uniquely
p-divisible monoid. If f : M → R is a prelog ring with R an Fp-algebra, then

L(M→R)/(A→R) ' 0.

Proof. By [Ols05, Lemma 8.23] and base change, we reduce to the universal case R = Fp[M ]. Now [Ols05, Lemma
8.18 (ii)] and the assumption on M/A show that that L(M→Fp[M ])/(A→Fp[A]) = 0. By the transitivity triangle, it
suffices to show that L(A→Fp[M ])/(A→Fp[A]) = 0. By [Ols05, Lemma 8.17], it suffices to show that LFp[M ]/Fp[A] = 0,
which follows from Lemma 11.8 and the proof of Corollary 3.8. �

Lemma 11.8. LetA ⊂M be an inclusion of integral monoids. AssumeA is an abelian group, andM/A is a uniquely
p-divisible monoid. Then Fp[A]→ Fp[M ] is relatively perfect.

Proof. Since the left derived functor of FreesMon
sAlgFp/

preserves homotopy colimits, it suffices to show that

A //

p

��

M

p

��
A // M

is a homotopy-pushout square of monoids. By [Kat89, Proposition 4.1 (iii), (iv), (v)], the map Fp[A]→ Fp[M ] is flat,
so A → M is a flat map of monoids by Example 4.10. Hence, it suffices to show that the above square is a pushout
square in the ordinary category of monoids. The ordinary pushout is, by definition,

Q = M ⊕A A = M ⊕A/ ∼
where ∼ identifies (m, a) with (m + b, a − pb) for any b ∈ A (we abuse notation by identifying elements of A with
their image in M ); this is an equivalence relation because A is a group. The commutative square above gives a map
ψ : Q→ M defined by ψ(m, a) = pm+ a; we will check that ψ is an isomorphism. For injectivity, if ψ(m, a) = 0,
then pm + a = 0. By the unique p-divisibility of M/A, we get m = −b for some b ∈ A ⊂ M . Hence, we have
a− pb = 0, so (m, a) ∼ (m+ b, a− pb) = (0, 0). The surjectivity is immediate from the p-divisibility of M/A. �

Remark 11.9. We do not know if Lemma 11.8 if true without the assumption that A is a group. If such an implication
was true, then Lemma 11.7 would also be true under the same assumption.

We can now formulate the promised global comparison result. For simplicity of notation, we stick to the case of
varieties over Q, and we only sketch ideas of the proof; this treatment will improve in a future version of this preprint.

Theorem 11.10. Let (X,X) be a pair comprising a smooth projective Q-scheme X of dimension d, and a semistable
proper Z-scheme X compactifying X . Then there is a comparison map

Compst
ét,glob : RΓ(X, dR(X,can)/Z)⊗Z AddR → RΓ(XQ,ét, Ẑ)⊗Ẑ AddR.
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This map is Gal(Q/Q)-linear and filtered; it preserves Chern classes of bundles and admits an inverse up to βdglob.

Proof sketch. For a number field K, one defines a category Pss
K of semistable pairs as the category of pairs (U,U)

where U is a reduced separated K-scheme of finite type, U is a proper flat OK-scheme compactifying U with U
regular, such that: for every (maximal) prime v of O(U) lying above p ∈ Z, the base change of (U,U) along O(U)→
O(U)v defines an element of Pss

O(U)v[1/p]
(defined as in §10.2). One then defines the category Pss

Q
of semistable pairs

over Q as pairs obtained by base change from some Pss
K , just as in §10.2. For a pair (U,U) ∈ Pss

Q
, the log scheme

(U, can) denotes U given the log structure defined by the ind-open subscheme U ⊂ U .
There are two natural presheaves accrys and acrys on Pss

Q
defined as in §10.9 by replacing the base W with Z. If

one denotes the associated h-sheafifications by Accrys and Acrys, then Accrys ⊗Z Z/n is the constant sheaf with value
AddR ⊗Z Z/n. Moreover, one has the following analogue of Theorem 10.14

Claim 11.11. The map Accrys ⊗Z Z/n→ Acrys ⊗Z Z/n is an isomorphism for all n.

Claim 11.11 is proven exactly as Theorem 10.14; the point is that the results of [Bhac] as well as de Jong’s
semistable reduction theorem are available in the global setting too. All ingredients are now in place, and one can
define Compst

ét,glob by simply imitating the construction of Compst
ét. �

Remark 11.12. The left hand side of Theorem 11.10 may be rewritten as

RΓ(X, dR(X,can)/Z)⊗Z AddR =
(

RΓ(X, dR(X,can)/Z)⊗Z Ẑ
)
⊗Ẑ AddR

= ̂RΓ(X, dR(X,can)/Z)⊗Ẑ AddR

=
(∏

p

R lim
n

RΓ(X, dR(X,can)/Z ⊗Z Z/pn)
)
⊗Ẑ AddR.

Using Remark 11.5 and Proposition 7.24, there is a tensor product Λ-ring structure on this complex, and one checks
that the map Compst

ét,glob respects this structure provided the Λ-ring structure on the right hand side is inherited from

the one on AddR. The map Compst
glob,ét is also a map of ̂dR(Z,can)/Z-modules, which can be viewed as the global

analogue the monodromy compatibility of Theorem 10.18.
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collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat.

[Ste76] Joseph Steenbrink. Limits of Hodge structures. Invent. Math., 31(3):229–257, 1975/76.
[Tsu99] Takeshi Tsuji. p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case. Invent. Math., 137(2):233–411,

1999.

52


