
SOLVABLE FUSION CATEGORIES AND A CATEGORICAL
BURNSIDE’S THEOREM

PAVEL ETINGOF

The goal of this talk is to explain the classical representation-theoretic proof
of Burnside’s theorem in finite group theory, stating that a finite group of order
paqb (where p, q are primes) is solvable, and then define the notion of a solvable
fusion category and explain how to generalize Burnside’s theorem to the categorical
setting. This generalization is joint work with D. Nikshych and V. Ostrik, and is
given in the paper math/0809.3031.

I am very grateful to V. Drinfeld for useful suggestions on how to improve the
presentation.

1. The Burnside theorem

1.1. The statement of Burnside’s theorem.

Theorem 1.1 (Burnside). Any group G of order paqb, where p and q are primes
and a, b ∈ Z+ , is solvable.

The first proof of this classical theorem was based on representation theory, and
is reproduced below. Nowadays there is also a purely group-theoretical proof, but
it is more complicated.

1.2. Auxiliary results. In this subsection we prove two auxiliary theorems that
are used in the proof of Burnside’s theorem, but are interesting in their own right.

Theorem 1.2. Let V be an irreducible complex representation of a finite group
G and let C be a conjugacy class of G with gcd(|C|,dim(V )) = 1. Then for any
g ∈ C, either χV (g) = 0 or g acts as a scalar on V .

Proof.

Lemma 1.3. If ε1, ε2 . . . εn ∈ C are roots of unity such that
1
n

(ε1 + ε2 + . . . + εn)
is an algebraic integer, then either ε1 = . . . = εn or ε1 + . . . + εn = 0.

Proof. Let a = 1
n (ε1 + . . . + εn). If not all εi are equal, then |a| < 1. Moreover,

|σ(a)| < 1 for any σ ∈ Gal(Q/Q). But the product of the numbers σ(a) is an
integer, so it equals to zero. �

Lemma 1.4. Let V be an irreducible complex representation of a finite group G

and let C be a conjugacy class of G. Then for g ∈ C, the number |C|χV (g)
dim V is an

algebraic integer.
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Proof. Let P =
∑

h∈C h. Then P is a central element of Z[G], so it acts on V by
some scalar λ, which is an algebraic integer, since the center of Z[G] is integral over
Z. On the other hand, taking the trace of P in V , we get |C|χV (g) = λ dim V ,
g ∈ C, so λ = |C|χV (g)

dim V . �

Now we are ready to prove Theorem 1.2. Let dim V = n. Let ε1, ε2, . . . εn be
the eigenvalues of ρV (g). They are roots of unity, so χV (g) is an algebraic integer.
Also, by Lemma 1.4, 1

n |C|χV (g) is an algebraic integer. Since gcd(n, |C|) = 1, this
implies that

χV (g)
n

=
1
n

(ε1 + . . . + εn).

is an algebraic integer. Thus, by Lemma 1.3, we get that either ε1 = . . . = εn or
ε1 + . . . + εn = χV (g) = 0. In the first case, since ρV (g) is diagonalizable, it must
be scalar. In the second case, χV (g) = 0. The theorem is proved. �

Theorem 1.5. Let G be a finite group, and let C be a conjugacy class in G of order
pk where p is prime and k > 0. Then G has a proper nontrivial normal subgroup.

Proof. Choose an element g ∈ C. Since g 6= e, by orthogonality of columns of the
character table,

(1)
∑

V ∈IrrG

dim V χV (g) = 0.

We can divide IrrG into three parts:

(1) the trivial representation,
(2) S, the set of irreducible representations whose dimension is divisible by p,

and
(3) T , the set of non-trivial irreducible representations whose dimension is not

divisible by p.

Lemma 1.6. There exists V ∈ T such that χV (g) 6= 0.

Proof. If V ∈ S, the number 1
p dim(V )χV (g) is an algebraic integer, so

a =
∑
V ∈S

1
p

dim(V )χV (g)

is an algebraic integer.
Now, by (1), we have

0 = χC(g) +
∑
V ∈S

dim V χV (g) +
∑
V ∈T

dim V χV (g) = 1 + pa +
∑
V ∈T

dim V χV (g).

This means that the last summand is nonzero. �

Now pick V ∈ T such that χV (g) 6= 0; it exists by Lemma 1.6. Theorem 1.2
implies that g (and hence any element of C) acts by a scalar in V . Now let H be
the subgroup of G generated by elements ab−1, a, b ∈ C. It is normal and acts
trivially in V , so H 6= G, as V is nontrivial. Also H 6= 1, since |C| > 1. �
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1.3. Proof of Burnside’s theorem. Assume Burnside’s theorem is false. Then
there exists a nonabelian simple group G of order paqb. Then by Theorem 1.5, this
group cannot have a conjugacy class of order pk or qk, k ≥ 1. So the order of any
conjugacy class in G is either 1 or is divisible by pq. Adding the orders of conjugacy
classes and equating the sum to paqb, we see that there has to be more than one
conjugacy class consisting just of one element. So G has a nontrivial center, which
gives a contradiction.

2. Solvable fusion categories

2.1. Integral and weakly integral categories. Recall that a fusion category
(over C) is a semisimple rigid monoidal category with finitely many simple objects
Xi and EndXi = C. A fusion category C is called integral if the Frobenius-Perron
dimension of every (simple) object is an integer. This is equivalent to C being the
category of representations of a finite dimensional semisimple quasi-Hopf algebra.
C is said to be weakly integral, if its Frobenius-Perron dimension is an integer. It
is known ([ENO]) that in such a category, the Frobenius-Perron dimension of any
simple object is the square root of an integer.

There exist weakly integral categories which are not integral. An example is
the Ising category, which has two invertible objects 1+ and 1− and another simple
object X such that X ⊗ X = 1+ ⊕ 1−. The Frobenius-Perron dimension of this
category is 4, while the Frobenius-Perron dimension of X is

√
2. However, any

weakly integral category of odd dimension is integral.
It is known that any weakly integral fusion category automatically has a canon-

ical spherical structure with respect to which categorical dimensions coincide with
the Frobenius-Perron dimensions [ENO, Propositions 8.23, 8.24].

In this talk, we will deal only with weakly integral categories. Thus, we will
always use the canonical spherical structure, and use the word ”dimension” for
both the categorical and the Frobenius-Perron dimension.

2.2. Graded categories and extensions. ([ENO, GNk])
Let C be a fusion category and let G be a finite group. We say that C is graded

by G if C =
⊕

g∈G Cg, and for any g, h ∈ G, one has ⊗ : Cg × Ch → Cgh. The
fusion category Ce corresponding to the neutral element e ∈ G is called the trivial
component of the G-graded category C. If Cg 6= 0 for all g ∈ G, one says that C is
a G-extension of Ce. It it easy to show that in this case dim(C) = |G| · dim(Ce)

The simplest example of a graded category is a pointed category, i.e. a category
where all simple objects are invertible, or, equivalently, a category of the form
VecG,ω of vector spaces graded by a finite group G with associativity defined by a
cohomology class ω ∈ H3(G, C∗). Another example is Rep(G), which is graded by
the character group Z∨

G of the center ZG of G.

2.3. Equivariantization. Let C be a category with an action of a group G. In
this case one can define the category CG of G-equivariant objects in C. Objects of
this category are objects X of C equipped with an isomorphism ug : g(X) → X for
all g ∈ G, such that

ugh ◦ γg,h = ug ◦ g(uh),

where γg,h : g(h(X)) → gh(X) is the natural isomorphism associated to the action.
This category is called the G-equivariantization of C.
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It is easy to show that if C is a fusion category, then so is CG, and dim(CG) =
|G|dim(C). For example, VecG = Rep(G) (for the trivial action of G on Vec). A
more interesting example is the following. Let K be a normal subgroup of G. Then
we have a natural action of G/K on Rep(K), and Rep(K)G/K = Rep(G).

2.4. Definition and properties of solvable fusion categories.

Definition 2.1. A fusion category C is solvable if it can be included in a sequence
of fusion categories Vec = C0, C1, ..., Cn = C such that for each i ∈ [1, n], Ci is a
Gi-extension of Ci−1 or a Gi-equivariantization of Ci−1 for some group Gi of prime
order.

In particular, it is easy to show that the category Rep(G) of representations of
a finite group G is solvable if and only if G is a solvable group, and the same holds
for the category VecG,ω, which motivates the definition.

Proposition 2.2. Any solvable fusion category C 6= V ec contains a nontrivial
invertible object.

Proof. The proof is by induction in the dimension of C. The base of induction is
clear, and only the induction step needs to be justified. If C is an extension of a
smaller solvable category D, then either D 6= Vec and the statement follows from
the induction assumption, or D = Vec and C is pointed, so the statement is obvious.
On the other hand, if C is a Z/p-equivariantization of a smaller solvable category
D, then Rep(Z/p) sits inside C, so we are done. �

Remark 2.3. If a fusion category C is “well understood”, then its extensions and
equivariantizations by groups G of prime order can be classified in fairly explicit
terms. This means that solvable fusion categories can in principle by described in
terms of group theory.

2.5. The main theorem.

Theorem 2.4. (The categorical Burnside theorem) Any fusion category of Frobenius-
Perron dimension paqb, where p, q are primes and a, b are nonnegative integers, is
solvable.

Corollary 2.5. Any fusion category of Frobenius-Perron dimension paqb, where
p, q are primes and a, b are nonnegative integers contains a nontrivial invertible
object. In particular, every semisimple quasi-Hopf algebra of dimension paqb has a
nontrivial 1-dimensional representation.

3. Proof of the categorical Burnside theorem

In this section we will explain the proof of the categorical Burnside theorem. For
brevity, we will assume that p and q are odd; in the even case, the proof is slightly
longer, but ideologically the same.

The proof is based on the theory of modular tensor categories, so before starting
the proof, we have to review relevant parts of this theory.

3.1. Müger centralizer and Müger center. Let C be a braided fusion category,
and D ⊂ C a full subcategory. The Müger centralizer D′ of D in C is the category
of all objects Y ∈ C such that for any X ∈ D the squared braiding on X ⊗ Y is the
identity. The Müger center of C is the Müger centralizer C′ of the entire category
C.
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3.2. Ribbon categories and the s-matrix. A fusion category C is said to be
ribbon if it is equipped with a braiding and a spherical structure1. An important
invariant of such a category is its s-matrix, which is a matrix of complex numbers
whose rows and columns are labeled by simple objects of C. By definition, the
entry sXY of this matrix corresponding to simple objects X and Y is the quantum
trace of the squared braiding βY XβXY on X ⊗ Y . Note that sXY = sY X and
s1Y = sY 1 = dim Y .

3.3. Modular categories.

Theorem 3.1. ([M4]) The following two conditions on a ribbon category C are
equivalent:

(i) The Müger center of C is trivial (i.e., equivalent to the category of vector
spaces);

(ii) The s-matrix of C is nondegenerate.

Definition 3.2. A ribbon category C is said to be modular if any of the two
conditions of Theorem 3.1 is satisfied2.

Thus, a ribbon category is modular if it is ”as far as possible” from being sym-
metric.

3.4. The Drinfeld center. An important example of a modular category is the
Drinfeld center Z(C) of a spherical fusion category C. By definition, the center
of a fusion category C is the category of pairs (X, φ), where X ∈ C and φ is an
isomorphism of the functor of right multiplication by X with the functor of left
multiplication by X, satisfying a natural hexagon axiom. It is easy to see that this
is naturally a braided category.

Theorem 3.3. ([BK],[ENO]) The category Z(C) is semisimple, i.e. it is a fusion
category. One has dim Z(C) = (dim C)2. In addition, if C is spherical, then Z(C)
is canonically a modular category.

As an example consider the case when C = VecG. the category of sheaves on
G, i.e. vector spaces graded by G, with the usual associativity isomorphism. In
this case, it is easy to show that Z(C) is the category of (VecG)G of G-equivariant
sheaves on G acting on itself by conjugation (which is natural to expect by analogy
with the center of Z[G]). Indeed, an object of Z(C) is a G-graded space V = ⊕g∈GVg

together with an isomorphism φ : h ⊗ V → V ⊗ h, h ∈ G satisfying the hexagon
relation, which is the same as a system of isomorphisms uh : Vhgh−1 → Vg satisfying
the axiom of an equivariant sheaf.

Thus, irreducible objects of Z(C) correspond to pairs (C, V ), where C is a con-
jugacy class in G and V an irreducible representation of the centralizer Zg of an
element g of C: namely, XC,V is the equivariant sheaf supported on C, whose fiber
at g is V as a representation of Zg.

1The motivation for this terminology is the fact that a ribbon category gives rise to invariants
of ribbon tangles, constructed by Reshetikhin and Turaev.

2This terminology comes from the fact that the Grothendieck ring of a modular category is a
representation of the modular group SL2(Z).
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We may think about equivariant sheaves as representations of the semidirect
product C[G] n Fun(G, C), called the quantum double of G. In terms of this pre-
sentation, the braiding is given by the formula

β(v ⊗ w) =
∑
h∈G

δhw ⊗ hv.

Example 3.4. If C is a conjugacy class in G and V an irreducible representation
of G then it is easy to compute using the above formula for the braiding (and
the fact that the quantum trace in this case coincides with the usual trace) that
s(C,1),(1,V ) = |C|χV (g), g ∈ C. Thus, we see that the s-matrix of Z(RepG) is
essentially an extension of the character table of G.

Remark 3.5. It is not hard to show that the Drinfeld center of the category RepG
is the same as that of VecG.

3.5. The Verlinde formula. One of the main results on modular categories is the
Verlinde formula, relating the fusion coefficients Nk

ij of a modular category C with
its s-matrix:

Proposition 3.6. One has ∑
k

Nk
ijskr =

sirsjr

s0r
,

where 0 is the label for the unit object.

(As the s-matrix is nondegenerate, this formula shows that the fusion coefficients
Nk

ij can be expressed via the s-matrix).

Proof. The formula follows easily from the hexagon relation for the braiding. �

Corollary 3.7. The eigenvalues of the matrix Ni with entries Nk
ij are sir/s0r, so

sir/s0r is an algebraic integer.

Note that in Example 3.4 this yields that χV (g) is an algebraic integer, and also
that |C|χV (g)/ dim V is an algebraic integer (Lemma 1.4).

Corollary 3.8. For every r 6= 0, ∑
k

dkskr = 0,

where dk = s0k are the dimensions of the simple objects.

Proof. We have
∑

j djN
k
ij = didk, so multiplying the Verlinde formula (Proposition

3.6) by dj and summing over j, we get

di

∑
k

dkskr = (sir/s0r)
∑

j

djsjr,

and the result follows as di 6= sir/s0r for some i by nondegeneracy of s. �

3.6. Müger’s theorem.

Theorem 3.9. Let C be a ribbon category, and D a modular subcategory in C. Then
C is naturally equivalent, as a ribbon category, to D �D′.
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3.7. The Anderson-Moore-Vafa theorem.

Theorem 3.10. (see e.g. [BK]) The squared braiding βY XβXY in a ribbon category
acts on multiplicity spaces in X ⊗ Y by multiplication by roots of unity.

3.8. The divisibility theorems. (see [ENO])

Theorem 3.11. Let C be a modular category. Then for any simple object X ∈ C,
the ratio dim(C)/ dim(X)2 is an algebraic integer.

Theorem 3.12. The Frobenius-Perron dimension of a fusion subcategory of a fu-
sion category C divides the Frobenius-Perron dimension of C.

3.9. Modular categories with a simple object of prime power dimension.
In this subsection we will generalize to modular categories Theorems 1.2 and 1.5,
which played a central role in the proof of Burnside’s theorem.

Theorem 3.13. Let X and Y be two simple objects of an integral braided category
C with coprime dimensions3 dX , dY . Then one of two possibilities hold:

(i) X and Y projectively centralize each other (i.e. the square of the braiding
on X ⊗ Y is a scalar);

(ii) sX,Y = 0.

Note that in Example 3.4, this reduces exactly to Theorem 1.2, and the proof is
an almost literal repetition of the proof of Theorem 1.2.

Proof. Since C is integral, it is ribbon. So it suffices to consider the case when
C is modular, since any ribbon category can be embedded into a modular one (its
Drinfeld center). In this case, by Corollary 3.7, sX,Y

dX
and sX,Y

dY
are algebraic integers.

Since dX and dY are coprime, sX,Y

dXdY
is also an algebraic integer.

By Theorem 3.10, the eigenvalues of the squared braiding βY XβXY are roots of
unity. Therefore, sX,Y is a sum of dXdY roots of unity, and thus by Lemma 1.3
sX,Y

dXdY
is either a root of unity (in which case the square of the braiding must be a

scalar, option (i)), or 0 (option (ii)). �

Theorem 3.14. Let E be an integral modular category which contains a simple
object X with dimension dX = pr, r > 0, where p is a prime. Then E contains a
nontrivial symmetric subcategory.

Proof. We first show that E contains a nontrivial proper subcategory. Assume not.
Take any simple Y 6= 1 with dY coprime to dX . We claim that sX,Y = 0. Indeed,
otherwise by Theorem 3.13 X and Y projectively centralize each other, hence Y
centralizes X ⊗ X∗, so the Müger centralizer of the category generated by Y is a
nontrivial proper subcategory, a contradiction.

Now, by Corollary 3.8, ∑
Y ∈IrrE

sX,Y

dX
dY = 0.

As we have shown, all the nonzero summands in this sum, except the one for Y = 1,
come from objects Y of dimension divisible by p. Therefore, all the summands in
this sum except for the one for Y = 1 (which equals 1) are divisible by p. This is
a contradiction.

3Here and below, we use shortened notation dX for the dimension dim(X).
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Now we prove the corollary by induction in FPdim(E). Let D be a nontrivial
proper subcategory of E . If D is not modular, its Müger center is a nontrivial
proper symmetric subcategory in E , and we are done. Otherwise, D is modular,
and by Theorem 3.9, E = D�D′. Thus X = X1⊗X2, where X1 ∈ D, X2 ∈ D′ are
simple. Since the dimension of X1 or X2 is a positive power of p, we get the desired
statement from the induction assumption applied to D or D′ (which are modular
categories of smaller dimension). �

Note that although Theorem 3.14 is not quite a generalization of Theorem 1.5,
its proof is rather parallel to the proof of Theorem 1.5.

3.10. Proof of the categorical Burnside theorem. We are going to prove the
following theorem, which will imply the categorical Burnside Theorem.

Theorem 3.15. Let E be an integral modular category of dimension prqs, where
p, q are primes, and r, s nonnegative integers. If E is not pointed, then it contains
a Tannakian subcategory of the form Rep(G), where G is a group of prime order (p
or q).

Let us explain how Theorem 3.15 implies categorical Burnside Theorem. Let C
be a fusion category of dimension paqb, where p, q are odd primes, and a, b ≥ 0 are
nonnegative integers. We prove that C is solvable by induction in a + b.

The category C is integral. Also, we can clearly assume that C is not pointed.
Then the center E := Z(C) is not pointed. So by Theorem 3.15, E contains a
Tannakian subcategory of the form Rep(G), where G is a group of prime order.
Consider the image of this subcategory in C under the forgetful functor Z(C) → C.
If the image is the category of vector spaces, then it is easy to show that C is graded
by a group of prime order, so it is an extension by a group of prime order of another
fusion category C1, which is solvable by the induction assumption, so C is solvable.

Otherwise, the forgetful functor embeds Rep(G) into C, and it can be shown that
C is the equivariantization of another fusion category CG, called the de-equivariantization
of C. Namely, let A be the algebra of functions on G, regarded as an algebra in
Z(C); then CG is the category of A-modules in C (since A is commutative, this is a
fusion category).

The category CG is solvable by the induction assumption. So C is solvable. This
implies the categorical Burnside theorem.

The rest of the subsection is devoted to the proof of Theorem 3.15.

Proposition 3.16. Let E be an integral modular of dimension paqb, a + b > 0,
where p, q are odd primes. Then E contains a nontrivial invertible object.

Proof. Assume the contrary. We may assume that a > 0. By Theorem 3.11, the
squared dimensions of simple objects of E divide paqb. Therefore, by the ”sum
of squares” formula, E must contain a simple object of dimension pr or qr, r >
0. Hence, by Theorem 3.14, it contains a nontrivial symmetric subcategory D.
But by Deligne’s theorem [De], any symmetric odd-dimensional fusion category is
Tannakian, so D is of the form Rep(G) for some finite group G. By Theorem 3.12,
the order of G is of the form pmqn. Therefore, by the usual Burnside theorem for
finite groups (saying that a group of order pmqn is solvable), E contains nontrivial
invertible objects. Contradiction. �
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Consider now the subcategory B spanned by all invertible objects of E . Propo-
sition 3.16 implies that this subcategory is nontrivial. If B is modular, then by
Theorem 3.9, E = B�B′, where B′ is another modular category, which is nontrivial
(as E is not pointed), but has no nontrivial invertible objects. Thus, by Proposition
3.16, this case is impossible.

Therefore, B is not modular. Consider the Müger center Z of B. It is a nontrivial
pointed symmetric subcategory in E , which by Theorem 3.12 has odd dimension.
Thus it clearly contains a subcategory Rep(G), where G is a group of prime order.
Theorem 3.15 is proved.
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