
CHAPTER 4

Global Theory: Chiral Homology

Qinovnik umiraet, i ordena ego
osta�ts� na lice zemli.

Koz~ma Prutkov,
“Mysli i Aforizmy”, 1860 †

4.1. The cookware

This section collects some utensils and implements needed for the construction
of chiral homology. A sensible reader should skip it, returning to the material when
necessary.

Here is the inventory together with a brief comment on the employment mode.
(i) In 4.1.1–4.1.2 we consider homotopy direct limits of complexes and discuss

their multiplicative properties. The material will be used in 4.2 where the de Rham
complex of a D-module on Ran’s space R(X) is defined as the homotopy direct
limit of de Rham complexes of the corresponding D-modules on all the Xn’s with
respect to the family of all diagonal embeddings. See [BK], [Se].

(ii) In 4.1.3 and 4.1.4 we discuss the notion of the Dolbeault algebra which is an
algebraic version of the ∂̄-resolution. Dolbeault resolutions are functorial and have
nice multiplicative properties, so they are very convenient for computing the global
de Rham cohomology of D-modules on R(X), in particular, the chiral homology
of chiral algebras. An important example of Dolbeault algebras comes from the
Thom-Sullivan construction; see [HS] §4.

(iii) In 4.1.5 we recall the definitions of semi-free DG modules, semi-free com-
mutative DG algebras, and the cotangent complex following [H] (see also [Dr1] and
[KrM]). The original construction of the cotangent complex, due to Grothendieck
[Gr1], [Il], was performed in the setting of simplicial algebras. We follow the DG
setting of [H] (using the notation LΩF instead of the standard LF/k).

(iv) Sections 4.1.6 and 4.1.7 deal with Batalin-Vilkovisky algebras and the
corresponding homotopy categories. BV algebras are “quantum deformations” of
odd Poisson (alias braid, alias Gerstenhaber) algebras. We will see in 4.3.1 that
chiral chain complexes of, respectively, commutative DX -algebras, coisson algebras,
and general chiral algebras are naturally commutative DG algebras, odd Poisson
algebras, and BV algebras. For a more lively account, see, e.g., [Ge] and [Schw].

(v) A typical example of BV algebra is the Chevalley homology complex of a
Lie algebra; from the BV viewpoint it is the BV envelope of the Lie algebra (see
4.1.8). In 4.1.9–4.1.10 we explain what BV envelopes of Lie algebroids are. To

† “A civil servant dies, and regalia of his stay on the face of the earth.” Koz’ma Proutkoff,
“Thoughts and Aphorisms”, 1860.
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276 4. GLOBAL THEORY: CHIRAL HOMOLOGY

define it, an extra structure – that of the BV extension – is needed. The situation
is parallel to that of chiral envelopes from 3.9; we will see in 4.8 that the chiral
homology functor transforms chiral envelopes to BV envelopes. The homotopy
properties of this construction are discussed in 4.1.11 and 4.1.12; in 4.1.13 we prove
a technical statement (to be used in 4.1.18) asserting that while considering BV Lie
R-algebroids from the homotopy point of view, one can change R at will by any
cofibrant representative in its homotopy class.

If R is a plain commutative algebra (i.e., a DG algebra sitting in degree 0) and
L a plain Lie R-algebroid, then BV extensions of L are the same as right L-module
structures on R. Then the BV envelope is the de Rham-Chevalley complex for this
L-module (see 2.9.1); as a mere graded algebra it equals Sym(L[1]). They were
considered in [Kos] (the case of the tangent algebroid), [Hue], [X], and (under the
name of Calabi-Yau or vertex 0-algebroid structures) in §11 of [GMS2].

(vi) In 4.1.14 and 4.1.15 we consider homotopy unital commutative algebras
and BV algebras and show that the corresponding homotopy categories are the
same as the homotopy categories of the corresponding strictly unital objects. We
need this material since the chiral chain complexes of unital chiral algebras are
naturally homotopy unital BV algebras (not the strict ones); see 4.3.4.

(vii) In 4.1.16–4.1.18 we discuss perfect complexes, perfect commutative DG
algebras, and perfect BV algebras. Perfect commutative algebras are immediate
counterparts in the homotopy DG world of the usual smooth algebras, and perfect
BV algebras correspond to de Rham complexes for a flat connection on the line
bundle ω−1. The cohomology of a perfect BV algebra is finite-dimensional. We
show in 4.6.9 that the chiral homology of a (very) smooth commutative DX -algebra
is a perfect commutative algebra, and that of a cdo is a perfect BV algebra (see
4.8.5).

We refer to [CFK] for a geometric discussion of commutative DG algebras
supported in non-positive degrees. The perfectness property for commutative DG
algebras should be compared with a much stronger (and deeper) condition on a DG
algebra F – perfectness of F as an F ⊗F -bimodule – introduced by M. Kontsevich
(the latter property makes sense for arbitrary associative DG algebras).

4.1.1. Homotopy direct limits. Below A is a category which we tacitly
assume to be closed under direct sums of sufficiently high cardinality.

(i) Let B be a simplicial set. So for every n ≥ 0 we have a set Bn and for every
monotonous map of intervals α : [0, . . . ,m]→ [0, . . . , n] we have the corresponding
map ∂α : Bn → Bm compatible with the composition of the α’s.

Denote by C(B,A) the category of homology type coefficient systems on B with
coefficients in A. Thus F ∈ C(B,A) is a rule that assigns to every simplex b ∈ Bn
an object Fb ∈ A and to every α as above a morphism ∂α = ∂Fα : Fb → F∂α(b)

compatible with the composition of the α’s.
Denote by Cs(A) the category of simplicial objects in A. We have a functor

(4.1.1.1) Cs : C(B,A)→ Cs(A)

where Cs(F )n := ⊕
b∈Bn

Fb and the structure maps ∂α : Cs(F )n → Cs(F )m are direct

sums of the corresponding morphisms ∂Fα .

(ii) Let P be a small category. It yields a simplicial set BP (the classifying
simplicial set; see [Se] or [Q3]); an n-simplex p̃ ∈ BPn is a diagram (p0 → · · · → pn)
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in P. Consider the category Fun(P,A) of functors F : P→ A, p 7→ Fp. There is a
fully faithful embedding

(4.1.1.2) Fun(P,A) ↪→ C(BP,A)

which identifies a functor F with the system F(p0→···→pn) = Fp0 .

(iii) Suppose that A is a k-category. Let C(A) be the category of complexes in
A. By Dold-Puppe one has the fully faithful embedding

(4.1.1.3) Norm : Cs(A) ↪→ C(A)

which identifies Cs(A) with the full subcategory of complexes having degrees ≤ 0.

(iv) Suppose that A is a DG (super) k-category.1 We have the functor tot :
C(A) → A which sends a complex C = (C ·, d) to an object totC ∈ A such that
totC = ⊕Cn[−n] as a plain object without differential; the structure differential is
the sum of d and the structure differentials of Cn[−n]. Set

(4.1.1.4) Norm := totNorm : Cs(A)→ A

For F ∈ C(B,A) as in (i) set C(B,F ) := NormCs(B,F ). For a functor F :
P→ A as in (ii) set C(P, F ) := C(BP, F ); this is the homotopy direct P-limit of F .

Notice that the DG structure on A yields DG structures on all the above
categories, and (4.1.1.1)–(4.1.1.4) are DG functors.

Remark. Suppose that A = C(B) for an abelian category B. Let lim−→F ∈
C(B) be the plain direct P-limit of F . There is an obvious canonical morphism of
complexes C(P, F )→ lim−→F . If F takes values in B ⊂ A, then the complex C(P, F )
has degrees ≤ 0 and the above morphism yields an isomorphism H0C(P, F ) ∼−→
lim−→F .

Exercise. Let S ∈ P be an object such that the group G := AutP acts
freely on every set Hom(S, T ), T ∈ P. Let A ∈ A be an object equipped with an
AutS-action, and let F =IndA be the corresponding induced functor, F (T ) :=
A[Hom(S, T )]G. Then the complex C(P, F ) computes the homology of G with
coefficients in A. In particular, if G is finite and we are dealing with k-categories
where k is a field of characteristic 0, then the map C(P, F ) → lim−→F = AG is a
quasi-isomorphism.

4.1.2. Operations. From now on A is a pseudo-tensor category; we assume
that direct sums in A are compatible with operations.2

(i) Consider the category of k-modules. This is a tensor category, so both
categories of simplicial k-modules and k-complexes are tensor categories. Norm is
not a tensor functor. However for any finite set of simplicial k-modules Ni there is
a canonical functorial morphism of complexes

(4.1.2.1) c = c{Ni} : ⊗Norm(Ni)→ Norm(⊗Ni)

1We always assume A to be pretriangulated (the cones of morphisms are well defined, see

[BoKa] or [Dr1]) and closed under appropriate direct limits.
2I.e., PI({ ⊕

α∈Ai

Fαi}, G) =
Q

PI({Fαi}, G).
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which equals id⊗Ni if the Ni are constant simplicial k-modules;3 such a c is unique.
According to 1.1.6(ii), this makes Norm a pseudo-tensor functor.4

Now if C is any pseudo-tensor simplicial k-category, we define its normalization
as a pseudo-tensor DG k-category NormC having the same objects as C and op-
erations PNormC := NormPC. The composition of operation is defined using the
above c.

Remarks. (a) The plain k-categories corresponding to C and NormC coincide.
(b) Morphisms (4.1.2.1) are homotopy equivalences of complexes.

(ii) Cs(A) is a simplicial pseudo-tensor catregory. Namely, for Fi, G ∈ Cs(A)
the simplicial set PI({Fi}, G)s is defined as follows. Consider P ab := PI({Fi a}, Gb);
they form a cosimplicial-simplicial set P . Our PI({Fi}, G)s is the corresponding
total simplicial set Tot P (for the definition of Tot see, e.g., [BK]).

Remark. If A is a tensor category, then Cs(A) has an obvious structure of
a tensor simplicial category. The above pseudo-tensor simplicial structure comes
from this tensor simplicial structure.

(iii) If A is a pseudo-tensor k-category, then C(A) is a pseudo-tensor DG k-
category. The normalization functor extends in the obvious way to a pseudo-tensor
DG functor

(4.1.2.2) Norm : NormCs(A)→ C(A).

(iv) Assume that A is a pseudo-tensor DG (super) k-category. Then the cate-
gories in (4.1.2.2) are bi-DG categories and Norm is a pseudo-tensor bi-DG functor.
Let us consider them as DG categories (with respect to the total grading and dif-
ferential).

The functor tot: C(A)→ A is a pseudo-tensor DG functor in the obvious way.
We get a pseudo-tensor DG functor

(4.1.2.3) Norm := totNorm : Cs(A)→ A.

4.1.3. Dolbeault algebras. Below “scheme” means “k-scheme” where k is
our base field of characteristic 0.

Definition. Let X be a scheme. A Dolbeault OX-algebra is a commutative
unital DG OX -algebra Q, quasi-coherent as an OX -module, such that:

(a) The structure morphism OX
α−→ Q is a quasi-isomorphism.

(b) Q is homotopically OX -flat (see 2.1.1).
(c) Spec Q0 is an affine scheme.
By (c) for each OX -quasi-coherent Q-module N one has Γ(X,N) ∼−→ RΓ(X,N).
A Dolbeault DX-algebra is a DG DX -algebra which is a Dolbeault OX -algebra.

Lemma. If X is separated and quasi-compact, then it admits a Dolbeault OX-
algebra. If, in addition, X is smooth, then it admits a Dolbeault DX-algebra.

Proof. We present two constructions; for the second one X has to be quasi-
projective. In both situations the Dolbeault algebras we define satisfy Q<0 = 0.

(i) Let us begin with the Thom-Sullivan construction (see [HS] §4).

3Which amounts to the fact that the Norm(Ni) are complexes supported in degree 0.
4The associativity diagram from 1.1.6(ii) for τ = Norm, ν = c is commutative due to the

uniqueness property of c.
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For a finite set I we denote by ∆I the subscheme of AI defined by the equation
Σti = 1. Let ΩI := Γ(∆I , DR∆I

) be the de Rham algebra of ∆I ; this is a resolution
of k. For any I ′ ⊂ I we have an evident embedding ∆I′ ⊂ ∆I , hence a projection
ΩI → ΩI′ .

Choose a finite affine covering {Us}, s ∈ S, of X. For a non-empty subset I ⊂ S
we have an affine embedding jI : UI :=

⋂
i∈I

Ui ↪→ X. Our Q is a subalgebra of the DG

algebra
∏
I

jI∗OUI
⊗ΩI which consists of those collections (fI) that for every I ′ ⊂ I

the images of fI′ , fI under the maps jI′∗OUI′ ⊗ΩI′ → jI∗OUI
⊗ΩI′ ← jI∗OUI

⊗ΩI
coincide.

It follows easily from [HS] 4.1 that Q is a Dolbeault OX -algebra. IfX is smooth,
then it is a DX -algebra in the evident way.

Exercise. If X is a projective curve, then the OX -algebra Q0 is not finitely
generated.

(ii) Here is another construction. We suppose that X is quasi-projective. The
Dolbeault algebras we will construct have the property that each Qi is a locally free
OX -module.

Let π : Y → X be a Jouanolou map; i.e., Y is a torsor over X with respect to
an action of some vector bundle such that Y is an affine scheme.5 Consider now the
relative de Rham complex DR(Y/X). It is clear that Q := π∗DRY/X is a Dolbeault
OX -algebra.

Suppose X is smooth. Then the jet algebra JQ = DR(JQ0/OX)6 (see 2.3.2) is
a Dolbeault DX -algebra. Indeed, it obviously satisfies conditions (a) and (b), and
condition (c) follows since the morphism Spec JQ0 = JY → Y is affine. �

In the next lemma (parallel to the lemma from 2.2.10) we consider the category
of all Dolbeault algebras in either OX - or DX -setting. Since the tensor product of
two Dolbeault algebras is obviously a Dolbeault algebra, this is a tensor category.

Lemma. Every functor from the category of Dolbeault algebras to a groupoid is
isomorphic to a trivial functor.

Proof. Denote our functor by .̄
(i) Let ζ, η : Q1 → Q2 be any two morphisms. Let us show that ζ̄ = η̄. Consider

the morphisms χ, χ′ : Q1 → Q⊗2
1 , µ : Q⊗2

1 → Q1, ξ : Q⊗2
1 → Q2 where χ(a) = a⊗ 1,

χ′(a) = 1⊗ a, µ(a⊗ b) = ab, ξ(a⊗ b) = ζ(a)η(b). Since µχ = µχ′, one has χ̄ = χ̄′.
Since ξχ = ζ, ξχ′ = η, we have ζ̄ = η̄.

(ii) For any finite collection {Qα} of Dolbeault algebras one can find a Dolbeault
algebra Q such that for every α there is a morphism Qα → Q. Indeed, one can take
Q = ⊗Qα and the standard morphisms.

(iii) To finish the proof, let us show that for a pair Q0, Qn and a chain of

morphisms Q0
χ1← Q′1

ψ1→ Q1
χ2← · · · χn← Q′n

ψn→ Qn the composition ψ̄nχ̄
−1
n · · · ψ̄1χ̄

−1
1 :

5Recall that one constructs Y as follows. Choose an open embedding X ⊂ X̄ such that X̄ is
a projective variety. Blowing X̄ r X up if necessary, we can assume that X̄ r X ⊂ X̄ is locally

defined by one equation. Choose an embedding X̄ ↪→ Pn. Let V ⊂ Pn∗ × Pn be the complement
to the incidence divisor. Set Y := X ×

Pn
V .

6The fact that functors DR and J commute follows from their universal properties. Precisely,

for an OX -algebra B both DR(JB) and JDR(B) represent the same functor F 7→ HomOX
(B, F 0)

on the category of commutative DG DX -algebras.
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Q̄0 → Q̄n does not depend on the chain. To see this, choose φi : Qi → Q as in (ii).
Since φ̄i−1χ̄i = φ̄iψ̄i by (i), our composition equals φ̄−1

n φ̄0; q.e.d. �

4.1.4. Dolbeault resolutions. Let Q be a Dolbeault DX -algebra. For a
DX -complex the morphism αM : M → M ⊗ Q is called a Dolbeault resolution of
M . It is a quasi-isomorphism by (a), (b) from the definition in 4.1.3, and by (c) the
morphisms Γ(X,M ⊗ Q) → RΓ(X,M ⊗ Q), ΓDR(X,M ⊗ Q) → RΓDR(X,M ⊗ Q)
are quasi-isomorphisms. Thus we have canonical quasi-isomorphisms

(4.1.4.1) Γ(X,M ⊗ Q) ∼−→ RΓ(X,M), ΓDR(X,M ⊗ Q) ∼−→ RΓDR(X,M).

Remarks. (i) Another way to compute RΓDR(X,M) is to use a smaller com-
plex ΓDR(Y, π∗M) where π : Y → X is a Jouanolou map. We will use Dolbeault
D-resolutions for the computations of the de Rham homology of D-modules on
R(X) (see 4.2); it is not clear if one can do this using the above type of complexes.

(ii) Let i : X ↪→ Z be a closed embedding of smooth varieties. The for Q, M
as above one has ΓDR(Z, i∗(M ⊗ Q)) ∼−→ RΓDR(Z, i∗M).7

(iii) According to Remark (i) in 1.4.6 the functor CM(X)→ CM(X,Q), M 7→
M⊗Q, is a compound tensor DG functor (here C denotes the category of complexes
or DG modules). The “forgetting of the Q-action” functor CM(X,Q) → CM(X)
is a ∗ pseudo-tensor functor. So αM : M → M ⊗ Q is a morphism of ∗ pseudo-
tensor functors. Thus for ϕ ∈ P ∗I ({Mi}, N) its action on RΓDR coincides with the
morphism of complexes �

I
ΓDR(X,Mi ⊗ Q)→ ΓDR(XI ,∆(I)

∗ N ⊗ Q).

Lemma. Suppose X is a curve and N ∈ M(X) is such that H1(X,N) = 0.
Then H≥1(X,h(N)) = 0. In particular, if Q is a Dolbeault DX-algebra, then for
any M ∈ CM(X) one has Γ(X,h(M⊗Q)) ∼−→ RΓ(X,h(M⊗Q)). So, if M is homo-
topically quasi-induced (see 2.1.11), then Γ(X,h(M ⊗ Q)) computes RΓDR(X,M).

Proof. Set K := Ker(N � h(N)). Then Hi(X,h(N)) = Hi+1(X,K) for i ≥ 1,
and the latter groups vanish since dimX = 1. �

Sometimes it is convenient to deal with non-quasi-coherent versions of Dol-
beault algebras. Precisely, suppose we have a commutative unital DG OX -algebra
Q (which we do not assume to be OX -quasi-coherent). We say that Q is a Dolbeault-
style OX-algebra if for every quasi-coherent OX -module M the obvious morphisms
Γ(X,M⊗Q)→ RΓ(X,M⊗Q), RΓ(X,M)→ RΓ(X,M⊗Q) are quasi-isomorphisms.
For a smooth X, a Dolbeault-style DX-algebra is a Dolbeault-style OX -algebra
equipped with a flat connection. The protoexample is the classical Dolbeault alge-
bra: assuming that k = C, X is smooth and proper, we take for Q(U), where U/X

is étale, the sections of the ∂̄-resolution Ω0,0
U

∂̄−→ Ω0,1
U

∂̄−→ · · · of the algebra of holo-
morphic functions. Quasi-isomorphisms (4.1.4.1) are valid for any Dolbeault-style
DX -algebra Q.

4.1.5. A reminder on semi-free objects and the cotangent com-
plex. We follow the super conventions of 1.1.16, as always dropping the adjective
“super”; the base field k is of characteristic 0. Commutative and associative DG
k-algebras are called simply commutative algebras; the corresponding category is

7To see this, notice that the terms of the complex DR(i∗(M ⊗ Q)) admit an increasing
bounded below filtration whose successive quotients are Q0-modules; hence their higher cohomol-
ogy vanishes.
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denoted by Com. The subcategory of unital algebras is denoted by Comu. These
are tensor categories.

For all details for this section we refer to, e.g., [H] or [Dr1].
Suppose we have F ∈ Comu. A (DG) F -module P is said to be semi-free if it

admits a filtration P0 ⊂ P1 ⊂ · · · by DG submodules such that
⋃
Pi = P and each

griP is a free F -module.8 Equivalently, P is semi-free if and only if it admits a
system of semi-free generators, i.e., a base {ei} of P considered as a mere graded F -
module, with index set I equipped with a projection I → Z≥0, i 7→ n(i), such that
for every i ∈ I the element d(ei) ∈ P is a linear combination of ej ’s with n(j) < n(i)
(so d(ei) = 0 if n(i) = 0). Homotopically projective (= K-projective in the sense of
[Sp]) F -modules are the same as direct summands of semi-free F -modules. Every
F -module admits a semi-free left resolution.

An algebra F ∈ Comu is said to be semi-free if it admits a system of semi-free
generators, i.e., a system of elements {fi} ⊂ F indexed by a set I equipped with a
projection I → Z≥0, i 7→ n(i), such that for every i ∈ I the element d(fi) belongs
to the subalgebra generated by fj , n(j) < n(i), and the {fi} freely generate F as
a mere graded commutative algebra. Any commutative algebra admits a semi-free
resolution.

The category Comu of commutative unital DG algebras is naturally a closed
model category (with quasi-isomorphisms as weak equivalences, surjective mor-
phisms as fibrations). Its cofibrant objects are the same as retracts of semi-free
algebras.

For F ∈ Comu its cotangent complex (or the cotangent F -module) LΩF is an
object of the derived category D(F ) defined as follows. The cotangent module is
equipped with a canonical morphism LΩF → ΩF . If F is semi-free, then this mor-
phism is an isomorphism in D(F ). Otherwise one chooses a semi-free resolution of
F and defines LΩF as the image of ΩF̃ under the canonical equivalence of categories
D(F̃ ) ∼−→ D(F ); one checks that this definition does not depend on the choice of
F̃ ; i.e., for different F̃ the corresponding objects are canonically identified.

4.1.6. Batalin-Vilkovisky algebras. The Batalin-Vilkovisky operad BV is
a DG k-operad which coincides with the 1-Poisson (alias braid, alias Gerstenhaber)
operad as a mere Z-graded super operad. So it is generated by binary operations ·
of degree 0 (the product) and { } of degree 1 (the 1-Poisson bracket) that satisfy
the usual relations. The differential is determined by the property d(·) = { }.
Therefore for a complex C a BV algebra structure on C is a 1-Poisson structure
on C considered as a mere graded vector space (see 1.4.18) such that d(·C) :=
dC ·C − ·C dC⊗C = { }C .

Remark. So { }C measures the extent to which dC is not a derivation of ·C .
In fact, dC is a second order differential operator with respect to the commutative
algebra structure; its symbol equals { }.

Notice that the action of the Lie algebra L := C[−1] on C extends canonically
to an action of the contractible Lie algebra L† (see 1.1.16). Namely, the component
L[1] = C ⊂ L† acts on C as ·.

For a BV algebra C a structure of a BV C-module on a complex M amounts
to a BV algebra structure on C ⊕M such that C � C ⊕M are morphisms of BV
algebras and ·, hence { }, vanishes on M ⊂ C ⊕M . For m ∈ M its centralizer

8I.e., is isomorphic to a direct sum of modules isomorphic to F [n], n ∈ Z.
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Cent(m) consists of all c ∈ C such that {c,m} = 0; m is C-central if Cent(m) = C.
Notice that C-central elements form a subcomplex Mc ⊂M , and the product map
defines a morphism of complexes · : C ⊗Mc →M .

The quotient operad of BV modulo the relation { } = 0 is the unit operad
Com. Therefore a commutative (DG) algebra is the same as a commutative BV
algebra, i.e., a BV algebra C with { }C = 0.

Suppose we have a k[t]-flat family of BV algebras Ct such that C0 is commu-
tative. Then C0 acquires a 1-Poisson bracket { }, {a0, b0} := (t−1{at, bt}Ct

) mod t.
We refer to Ct as BV quantization of the 1-Poisson algebra (C0, { }).

Example. Let C be any BV algebra. Consider Ct which coincides with C[t]
as a mere commutative graded algebra and has differential dCt := tdC (so { }Ct =
t{ }C). Then Ct is a BV quantization of C considered as a 1-Poisson algebra with
zero differential.

Notice that the more non-degenerate { } on H ·C0 is, the fewer cohomology
classes of C0 survive the quantization.

The BV operad is acyclic: one has H ·(BVn) = 0 for n > 0. So the homotopy
category of BV algebras coincides with that D(k). An interesting homotopy BV
theory arises in a filtered setting. Namely, BV is naturally a DG filtered operad:
the (increasing) filtration is the stupid one BV ≥−n. Notice that grBV equals the
1-Poisson operad (the differential is trivial). A filtered BV algebra is a complex C
equipped with a BV algebra structure and an increasing filtration which is com-
patible with the BV algebra structure (i.e., the products BVn ⊗ C⊗n → C are
compatible with the filtrations). This amounts to the property that the filtration
on C is compatible with the product · and with the differential, and the induced
product on gr·C is compatible with the differential. So gr·C is a 1-Poisson DG
algebra (and Ct := ⊕Ci is its BV quantization).

We denote be BV the category of filtered BV algebras C such that C−1 = 0,⋃
Cn = C. Let B̄V ⊂ BV be the full subcategory of those C for which C0 = 0.

Notice that for any C ∈ BV the odd Poisson bracket on C0 vanishes, C0 is a
commutative DG algebra, and C1[−1] is a Lie DG algebra with respect to { }.

Remark. The embedding B̄V ↪→ BV admits a right adjoint BV → B̄V which
assigns to C· ∈ BV the same C with a new filtration which is the old Ci for i > 0,
and the new C0 equals 0.

The BV operad is augmented in the obvious way. So we have the notion of a
unital BV algebra. Explicitly, a BV algebra C is unital if it has a unit 1 ∈ C0 with
respect to · such that d(1) = 0 (then 1 lies in the { }-center of C). In the filtered
setting we assume that 1 ∈ C0. The subcategory of unital filtered algebras in BV

is denoted by BVu. The embedding BVu → BV admits an obvious left adjoint
(adding the unit) BV→ BVu.

The DG operad BV has a canonical coproduct δ : BV→BV⊗BV, δ(·) = · ⊗ ·,
so we know what the tensor product of the BV algebras is (this is the usual tensor
product of 1-Poisson algebras with the obvious differential). The tensor product of
BV compatible filtrations is BV compatible, so we know what the tensor product
of filtered BV algebras is. The tensor product of unital algebras is obviously unital.

4.1.7. Proposition. BV, B̄V, and BVu are closed model categories with weak
equivalences being filtered quasi-isomorphisms and fibrations those morphisms f for
which gr f is surjective.
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Sketch of a proof. The reference [H], strictly speaking, does not cover our
filtered setting, but the arguments easily adopt to it. Here are the needed changes;
we consider the case of BV. The general Theorem 2.2.1 of [H] remains valid if we
replace the category of complexes C(k) by the DG category of filtered complexes
C· such that C−1 = 0,

⋃
Ci = C. In Axiom (H1) from [H] 2.2 we assume that M

is contractible as a filtered complex, and in the definition of the CMC structure on
C one takes for weak equivalences filtered quasi-isomorphisms, for fibrations those
f for which gr(f \) is surjective. The only modifications in the proof are that in the
definition of standard cofibration [H] 2.2.3(i) one takes for M any filtered complex
with gr(d) = 0, and in that of the standard acyclic cofibration [H] 2.2.3(ii) a
contractible filtered complex. The proof that BV fits into this framework coincides
with that of Theorem 4.1.1 of [H]. �

Below, the homotopy category of a closed model category C is denoted by HoC.
The embedding B̄V ↪→ BV identifies HoB̄V with the full subcategory of HoBV

that consists of BV algebras C such that C0 is acyclic.9 The forgetting and adding
of the unit functors HoBVu � HoBV remain adjoint on the level of homotopy
categories.

The notion of a filtered BV algebra makes sense in any abelian tensor k-category
A; if A has a unit object, then we can consider unital filtered BV algebras. The
corresponding categories are denoted by BV(A), B̄V(A), and BVu(A).

Remark. In fact, the notion of a BV algebra makes sense in any DG pseudo-
tensor category and that of a filtered BV algebra in a filtered DG pseudo-tensor
category. Unital algebras make sense in the augmented setting (see 1.2.8).

4.1.8. BV enveloping algebras. Below we write down several constructions
of BV algebras. Let us begin with the BV envelopes of Lie algebras which are the
same as (homological) Chevalley complexes.

(a) Let Lie be the category of Lie DG algebras. The obvious functor B̄V→ Lie,
C 7→ C1[−1], admits left adjoint C̄ : Lie→ B̄V. Similarly, we have a pair of adjoint
functors BVu → Lie, C : Lie → BVu where C is the composition of C̄ and the
adding of the unit.

For L ∈ Lie the corresponding C(L) is the Chevalley complex of L, and
C̄(L) is the reduced Chevalley complex. As a plain graded commutative alge-
bra, C(L) equals Sym(L[1]), the filtration C(L)i is Sym≤i(L[1]), the differential
and the 1-Poisson bracket are determined by the condition that the embedding
L = Sym1(L[1])[−1] ⊂ C[−1] is a morphism of Lie DG algebras. Similarly, as a
plain graded commutative algebra, C̄(L) equals Sym>0(L[1]), etc.

Our functors preserve quasi-isomorphisms so they descend to homotopy cate-
gories; we get pairs of adjoint functors HoLie � HoBV, HoLie � HoBVu.

Remark. The above definitions make sense in any abelian tensor k-category
A (for the unital setting we have to assume that A has a unit).

(b) More generally, suppose we have a filtration L0 ⊂ L1 ⊂ · · · on L such
that

⋃
Li = L, [Li, Lj ] ⊂ Li+j−1 (we call such an L· a commutative filtration

on L). Then the filtration C(L)· on C(L) generated by L· (as on a commutative
algebra generated by L·[1]) is compatible with the BV structure. Denote by Lie·
the category of Lie DG algebras equipped with a commutative filtration. Then

9The inverse functor comes from Remark above.
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the functor Lie· → BVu which assigns to L· its Chevalley complex filtered in the
above manner is left adjoint to the functor BVu → Lie which assigns to a filtered
BV algebra C ∈ BVu the filtered Lie DG algebra C[−1]. The same is true for a
non-unital version.

The filtration on C(L) we considered in (a) corresponds to L0 = 0, L1 = L.

(c) Suppose we have a central extension L[ of L by k[−1]. Consider the Cheval-
ley complex C(L[) filtered according to the filtration L[0 := k[−1], L[1 = L[. Then
C(L[)0 = Sym(k) = k[t], so C(L[) is a filtered BV k[t]-algebra. Set C(L)[ :=
C(L[)t=1 ∈ BVu; this is the [-twisted Chevalley complex of L. The filtration on
C(L)[ is called the standard filtration.

4.1.9. BV extensions. To define the BV envelope of a Lie algebroid, one
needs an extra structure of its BV extension. The situation is parallel to that of
chiral envelopes of Lie∗ algebroids considered in see 3.9.

Suppose we have R ∈ Comu and a DG Lie R-algebroid L (see 2.9.1). A BV
extension of L is an extension of complexes 0 → R[−1] ι−→ L[

π−→ L → 0 together
with a Lie R-algebroid structure on L[ as on a mere graded module (i.e., with
differentials forgotten). The following properties should hold:

(i) π is a morphism of graded Lie R-algebroids, ι a morphism of R-modules,
and ι(k[−1]) belongs to the center of L[. The Lie bracket on L[ is compatible with
the differential.

(ii) The morphism10 L[ ⊗R = R⊗L[
d(·)−−→ L[[1] equals −ι composed with the

structure action of L[ on R.
We call such (L,L[) a BV Lie R-algebroid, and abbreviate it to L[. The pairs

(R,L) and (R,L[) form the categories LieAlg and LieAlgBV . So a morphism
φ : (R1,L1) → (R1,L2) is a pair (φR, φL) of a morphism φR : R1 → R2 in Comu
and a morphism φL : L1 → L2 in Lie which are compatible in the obvious sense,
a morphism in LieAlgBV is a triple φ[ = (φR, φL, φL[), etc. For a fixed R the
categories of (BV) Lie R-algebroids are denoted by LieAlgR, LieAlgBVR .

Example. Let L be a Lie algebra acting on R, L[ a central extension of L by
k[−1]. It yields the L-rigidified Lie R-algebroid LR := R ⊗ L and L[R ∈ Pc(LR)
(see 2.9.1). We also have a BV extension L[BVR ∈ PBV (L) which equals L[R as a
mere graded Lie R-algebroid and whose differential is r⊗`[ 7→ dL[

R
(r⊗`[)− ι(`(r)).

We refer to L[BVR as the L[-rigidified BV extension of LR. If L[ is the trivialized
extension of L, then L[BVR is called the L-rigidified BV extension.

Denote by Pc(L) the groupoid of Lie R-algebroid extensions Lc of L by R[−1]
(we assume that k[−1] ⊂ R[−1] belongs to the center of Lc) and by PBV (L) the
groupoid of BV extensions. The Baer sum defines a Picard groupoid (in fact, a
k-vector space groupoid) structure on Pc(L) and makes PBV (L), if non-empty, a
Pc(L)-torsor.

Let PBVs (L) be the set of (isomorphism classes of) pairs (L[, s) where s : L→
L[ is an R-linear section of π compatible with the grading, but not necessary with
the bracket and the differential. Define Pcs(L) in a similar way. Then Pcs(L) is a
vector space, and PBVs (L), if non-empty, is a Pcs(L)-torsor. Let us describe them
explicitly.

10Here · is the R-action on L[.
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For (L[, s) ∈ PBVs (L) consider a pair (ωBV , µBV ) where ωBV : L×L→ R[−1],
µBV : L → R are maps ιωBV (`, `′) := [s(`), s(`′)] − s([`, `′]), ιµBV := [d, s]. For
(L[, s) ∈ PBVs (L) we have a similarly defined pair (ωc, µc).

Lemma. Both ωBV , ωc ∈ HomR(Λ2L, R[−1]) are 2-cocycles of L considered
as a mere graded R-algebroid. The map µc : L → R is R-linear, and for r ∈ R,
` ∈ L one has µBV (r`) = rµBV (`) − `(r). Both in BV and in the c setting, one
has [d, µ] = 0 and [d, ω](`, `′) = `(µ(`′))− `′(µ(`))− µ([`, `′]).

The maps (L[, s) 7→ (ωBV , µBV ), (Lc, s) 7→ (ωc, µc) are bijections between
PBVs (L), Pcs(L) and the sets of pairs (ω, µ) that satisfy the above conditions. �

Remarks. (i) Suppose that s : L→ L[ commutes with the bracket; i.e., it is a
morphism of graded Lie R-algebroids. This amounts to the vanishing of ωBV , and
the equation on µBV just means that the formula r · ` := −`(r)+ rµBV (`) is a right
L-module structure on the R-module R. Therefore one gets a bijection between
the set of pairs (L[, s) as above and the set of right L-module structures on R.

(ii) Suppose that R, L have degree 0 (i.e., R is a plain commutative algebra,
L a plain Lie algebroid). Then any BV extension L[ admits a unique splitting s
compatible with the grading s : L

∼−→ L[0 ⊂ L[, which is automatically a morphism
of graded Lie R-algebroids. We see that BV extensions of L are the same as Calabi-
Yau, or vertex 0-algebroid, structures on L from §11 of [GMS2].

(iii) For arbitrary L consider the de Rham-Chevalley DG algebra CR(L) (see
2.9.1). Recall that as a mere graded algebra, CR(L) equals HomR(SymR(L[1]), R).
Now the conditions on (ωc, µc) from the lemma just mean that it is an even 0-cocycle
in CR(L)[1], i.e., an odd 1-cocycle in CR(L).

4.1.10. The BV envelopes of BV algebroids. If C is a unital filtered BV
algebra, then RC := C0 = gr0C is a commutative unital DG algebra, L := gr1C[−1]
is a Lie DG RC-algebroid, and C1[−1] is a BV extension of L. We have defined a
functor BVu → LieAlgBV . It admits a left adjoint LieAlgBV → BVu, (R,L[) 7→
CBV (R,L)[ (the BV envelope of L[). As a plain commutative graded algebra,
CBV (R,L)[ equals Sym[

R(L[1]) := the quotient of SymR(L[[1]) modulo the relation
1[ = 1 where 1[ := ι(1) ∈ L[[1]. The filtration subspaces CBV (R,L)[a are images
of Sym≤a(L[), and the 1-Poisson bracket and differential are uniquely determined
by the condition that L[ → CBV (R,L)[1[−1] is a morphism of Lie (DG) algebras.
The morphism of Lie algebras L → gr1CBV (R,L)[[−1] defines a morphism of 1-
Poisson algebras SymR(L[1]) → grCBV (R,L)[ which is a quasi-isomorphism if L

is homotopically R-flat.

Example. Suppose that R is a plain smooth algebra, X := SpecR. Then a
BV extension of ΘR is the same as a right D-module structure on OX (see Remark
(ii) in 4.1.9), which is the same as a left D-module structure (= the flat connection)
on ω−1

X , and CBV (R,ΘR)[ is the corresponding de Rham complex. In particular,
it has finite-dimensional cohomology.

Consider the de Rham-Chevalley DG algebra CR(L) as in Remark (iii) in 4.1.9.
Notice that CBV (R,L)[, considered as a mere graded module, is naturally a CR(L)-
module.11 One checks in a moment that this action is compatible with the differ-
entials. Therefore CBV (R,L)[ is a DG CR(L)-module.

11An element ϕ ∈ C1
R(L) = HomR(L[1], R) acts on CBV (R, L)[ as a derivation whose

restriction to CBV (R, L)[
1 is the composition L[ → L

ϕ−→ R.
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Remarks. (i) Take any element of Pcs(L); let γ = (ωc, µc) be the corresponding
odd 1-cocycle in CR(L) (see Remark (iii) in 4.1.9). Let L[γ the translation of L[ by
the corresponding “classical” extension of L. Then CBV (R,L)[γ identifies naturally
with CBV (RL)[ as a mere graded CR(L)-module, so that its differential dγ becomes
d+ γ where d is the differential of CBV (RL)[.

(ii) The DG algebra CR(L) carries a natural filtration CR(L)≥i such that
griCR(L) = HomR(Symi(L[1]), R). The cocycles γ as above lie in CR(L)≥1. In
fact, any odd 1-cocycle γ of CR(L)≥1 (not necessary coming from Pcs(L)) defines a
twisted differential dγ := d + γ on CBV (R,L)[. If f is an even element of degree
0 in CR(L)≥1, then dγ+df is equal to12 (1 + f)dγ(1 + f)−1, so the cohomology of
CBV (R,L)[ with respect to dγ depends only on the class of γ in H1CR(L)≥1.

4.1.11. Let us discuss the homotopy aspects of the above construction.

Proposition. (i) The categories LieAlg, LieAlgBV have natural closed model
category structures with weak equivalences being those morphisms φ, resp. φ[, for
which both φR, φL are quasi-isomorphisms, and fibrations those morphisms for
which both φR, φL are surjective.

(ii) For a fixed R ∈ Comu the categories LieAlgR, LieAlgBVR are naturally
closed model categories with quasi-isomorphisms as weak equivalences and surjective
morphisms as fibrations.

Sketch of a proof. Our situation does not fit into the setting of [H] 2.2 directly,
but the arguments of loc. cit. can be easily modified to do the job.

(i) Let us replace C(k) by C(k)×C(k) in the general setting of [H] 2.2. With
conditions (H0), (H1) in [H] 2.2 modified in the obvious way, Theorem 2.2.1 of
loc. cit. (together with its proof) remains valid in the present situation.

Consider a functor LieAlg → C(k) × C(k) which assigns to (R,L) the same
pair considered as mere complexes; there is a similar functor LieAlgBV → C(k)×
C(k), (R,L[) 7→ (R,L). These functors admit left adjoints F : C(k) × C(k) →
LieAlg, FBV : C(k) × C(k) → LieAlgBV . One has F (P,Q) = (R,L) where
R = Sym(P ⊗ Fr(Q)), where Fr(Q) is the free Lie algebra generated by Q, and
L = Fr(Q)R = R ⊗ Fr(Q); similarly, FBV (P,Q) = (R,Fr(Q)[R) where Fr(Q)[R is
the Fr(Q)-rigidified BV extension (see 4.1.9).

Our functors satisfy conditions (H0), (H1), and we are done.
(ii) Replace C(k) in [H] 2.2 by the category C(k)ΘR

of pairs (Q, τ) where
Q ∈ C(k), τ : Q → ΘR := Der(R,R) is a morphism of complexes. Theorem 2.2.1
from loc. cit. (with conditions (H0), (H1) modified in the evident way) remains
valid.

The functors LieAlgR → C(k)ΘR
, LieAlgBVR → C(k)ΘR

sending L or L[ to
(L, τL) admit left adjoints F and FBV . Namely, F (Q, τ) = Fr(Q)R, where the free
Lie algebra Fr(Q) acts on R according to τ , and FBV (Q, τ) is its Fr(Q)-rigidified
BV-extension.

Our functors satisfy conditions (H0), (H1), and we are done. �

The usual constructions, such as adding a variable to kill a cycle (see [H]
2.2.2), work for the above closed model categories. For example, consider the case
of LieAlg. Let L be a Lie R-algebroid, and suppose we have a datum (Q, τQ, ε)
where Q is a k-complex with zero differential, τQ : Q→ ΘR a morphism of graded

12Since f ∈ CR(L)≥1, the multiplication by 1 + f is an automorphism of CBV (R, L)[.
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vector spaces, ε : Q[−1]→ L a morphism of complexes such that τLε = dτQ. Then
we have (Cone(ε), τ) ∈ C(k)ΘR

where τ := (τL, τQ). Define a new Lie R-algebroid
L(Q, τQ, ε) such that for any L′ ∈ LieAlgR a morphism L(Q, τQ, ε) → L′ is the
same as a morphism ν : (Cone(ε), τ) → L′ in C(k)ΘR

such that ν|L : L → L′ is
a morphism of Lie R-algebroids. There is an evident morphism L → L(Q, τQ, ε)
of Lie R-algebroids; any morphism isomorphic to such an arrow for some datum
as above is called an elementary cofibration. A standard cofibration is a morphism
L → L′ such that L′ admits a filtration L′

0 ⊂ L′
1 ⊂ · · · such that

⋃
L′
i = L′,

L
∼−→ L′

0, and each L′
i → L′

i+1 is an elementary cofibration. Each cofibration in
LieAlgR is a retract of a standard one. We say that a Lie R-algebroid L is semi-free
if the morphism 0R → L is a standard cofibration. Every Lie R-algebroid admits a
left semi-free resolution.

Remark. A morphism of graded vector spaces χ : Q→ L yields an identifica-
tion L(Q, τQ, ε)

∼−→ L(Q, τQ + τLχ, ε+ dχ) coming from the standard isomorphism
Cone(ε) ∼−→ Cone(ε+ dχ) defined by χ.

4.1.12. The evident functors LieAlgBV → LieAlg → Comu, LieAlgR →
LieAlg, and LieAlgBVR → LieAlgBV preserve (co)fibrations and weak equivalences;
we have the corresponding functors between the homotopy categories. There is a
fully faithful embedding Comu ↪→ LieAlg left adjoint to the projection LieAlg →
Comu, which assigns to R the trivial R-algebroid 0R and its lifting Comu →
LieAlgBV , R 7→ 0[R. They also preserve (co)fibrations and weak equivalences

The functor LieAlgBV → BV, (R,L[) 7→ CBV (R,L)[ does not preserve weak
equivalences. But its restriction to the subcategory of those (R,L[) for which
L is homotopically R-flat (which includes cofibrant objects of LieAlgBVR ) pre-
serves them, so we have a well-defined functor between the homotopy categories
HoLieAlgBV → HoBV, (R,L[) 7→ CLBV (R,L)[.

To compute CLBV (R,L)[, one should consider a left resolution LL → L which is
homotopically R-flat as an R-module (for example, one can always find LL which is
a semi-free R-module). The BV extension L[ defines, by pull-back, a BV extension
of LL. One has CLBV (R,L)[ = CBV (R,LL)[. Notice that grCLBV (R,L)[ = SymL

RL.

4.1.13. The next technical proposition assures that while doing homotopy
computations with Lie R-algebroids, or BV Lie R-algebroids, one can replace R
by any cofibrant algebra of the same homotopy class.

For R ∈ Comu denote by [R] ∈ HoComu our R considered as an object of the
homotopy category; the same notation is used for morphisms in Comu.

Let HoLieAlg[R] be the fiber of HoLieAlg over [R]; i.e., it is the category of
pairs (LP , [φ]) where LP = (P,LP ) ∈ HoLieAlg and [φ] : [R] ∼−→ [P ] an isomor-
phism in HoComu. One has a similar category HoLieAlgBV[R] . There are evident
functors

(4.1.13.1) HoLieAlgR → HoLieAlg[R], HoLieAlgBVR → HoLieAlgBV[R] .

Proposition. For a cofibrant R these functors are essentially surjective.

Proof. We will consider the case of Lie algebroids; the BV setting is treated
similarly.

Below we denote Lie R-algebroids as LR, etc.
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Surjectivity on objects: (i) Suppose we have (LP , [ϕ]) ∈ HoLieAlg[R]. We want
to define weak equivalences LR ← LF → LP in LieAlg such that the composition
R ← F → P is of homotopy class [ϕ]. We can assume that LP is a semi-free
Lie P -algebroid. We move step-by-step by elementary layers of LP . The steps are
constructed as follows.

(ii) Suppose we have a weak equivalence ν : LS → LT in LieAlg such that
S ∈ Comu is cofibrant and an elementary cofibration iT : LT → L′

T in LieAlgT .
We will construct an elementary cofibration iS : LS → L′

S in LieAlgS homotopy
equivalent to iT . More precisely, we construct morphisms L′

S
π← LU

µ−→ L′
T and

j : LS → LU in LieAlg such that πj = iS , µj = iT ν, π is a trivial fibration, µ is a
weak equivalence.

Write L′
T = LT (Q, τTQ , ε

T ) (see the end of 4.1.11). We can find a morphism of
complexes εS : Q[−1] → LS such that νεS is homotopic to εT (since ν is a quasi-
isomorphism). By Remark at the end of 4.1.11, replacing our datum by an equiva-
lent one, we can assume that νεS = εF . Let νS : S → T be the morphism of algebras
corresponding to ν. Consider the morphisms of complexes ΘS →DerνS

(S, T )← ΘT

which send derivations θS ∈ ΘS , θT ∈ ΘT to νSθ
S , θT νS ∈DerνS

(S, T ). Since
S is cofibrant, ΩS is a homotopically projective S-module; hence the morphism
ΘS →DerνS

(S, T ) is a quasi-isomorphism. Therefore one can find morphisms of
graded modules τSQ : Q→ ΘS and κT : Q[1]→DerνS

(S, T ) such that dτSQ = τLS
εS

and dκT = τTQνS − νSτSQ.
We define iS as the elementary cofibration LS → L′

S := LS(Q, τSQ, ε
S). Define

LU as the Lie algebroid whose morphisms to any LF are the same as the triples
(φ, χ, κ), where φ : LS → LF is a morphism of Lie algebroids and χ : Q → LF ,
κ : Q[1] →DerφS

(S, F ) are morphisms of graded modules, such that dχ = φεS

and dκ = τLF
(χ)φS − φSτSQ. So one has an evident morphism j : LS → LU and

morphisms L′
S

π← LU
µ−→ L′

T corresponding to the triples (iS , χS , 0) and (ν, χT , κT )
where χS , χT are the structure embeddings of Q for our elementary cofibrations.
The promised relations between these morphisms are evident, so it remains only to
check that π and µ are weak equivalences. We leave it as an exercise to the reader.

(iii) Let us return to (i). Our LP is a semi-free Lie P -algebroid, so we have
a filtration 0P = LP0 ⊂ LP1 ⊂ · · · ,

⋃
LPn = LP , such that each iPn : LPn ↪→

LP n+1 is an elementary cofibration in LieAlgP . We will define by induction the
morphisms LRn

πn← LFn

µn−→ LTn, iRn : LRn ↪→ LRn+1, and jn : LFn → LFn+1 such
that the obvious diagram is commutative (i.e., πn+1jn = iRnπn, µn+1jn = iPnµn),
iRn are elementary cofibrations, πn are trivial fibrations, µn are weak equivalences.
Passing to the inductive limit by iRn, jn, iPn, we get the promised LR ← LF → LP .

Step 0: Our R is cofibrant, so we can realize the homotopy class [ϕ] by an
actual morphism ϕ : R→ P . Set LR0 := 0R, LF0 := 0R, π0 := idR, µ0 = ϕ.

Induction step: Suppose we have already defined LRn
πn← LFn

µn−→ LPn. Let
us apply the construction of (ii) to LS = LFn , LT = LPn, ν = µn, and iT = iPn.
The LU , j, and µ we get are our LFn+1 , jn, and µn+1. Notice that the construction
of (ii) depends on a choice of εS , τSQ, and κT from loc. cit. subject to certain
conditions, and we have to choose them properly in order to define πn+1. Since
πFn

: Fn → R is a trivial fibration and R is cofibrant, the subcomplex ΘFn,R ⊂
ΘFn

of vector fields preserving πn is quasi-isomorphic to the whole of ΘFn
. This

implies that for given εS we can choose τSQ and κT so that τSQ ∈ ΘFn,R, and we
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do it that way. Then τSQ yields τRQ : Q → ΘR. Now let iRn be the elementary
cofibration LRn ↪→ LRn+1 := LRn(Q, τRQ , πnε

S) and let πn+1 be the composition
of the trivial fibration π : LU → L′

S = LFn
(Q, τSQ, ε

S) from (ii) and the projection
LFn

(Q, τSQ, ε
S) → LRn(Q, τRQ , πnε

S) which equals πn on LFn
and idQ on Q. We

leave it to the reader to check that this is a trivial fibration, and we are done.

Surjectivity on morphisms: Suppose we have LR,L
′
R ∈ LieAlgR and a mor-

phism ν : LR → L′
R in HoLieAlg which lifts id[R]. We want to show that it

comes from a morphism LR → L′
R in HoLieAlgR. One uses a lifting of homotopy

argument.
Let π : LT → LR be a trivial fibration13 in LieAlg such that LT is cofibrant.

One can find a morphism µ : LT → L′
R in LieAlg such that µ is homotopic to νπ.

The morphism πT : T → R is a trivial fibration, so it identifies R with T/I
where I ⊂ T is a contractible ideal. So LT /ILT is a Lie R-algebroid. The morphism
µT : T → R is homotopic to πT . We will show that µ is homotopic to a morphism
κ : LT → L′

R such that κT : T → R equals πT . Then π, κ yield morphisms of
Lie R-algebroids LR ← LT /ILT → L′

R. The left one is a trivial fibration, the
composition is homotopic to ν, and we are done.

To define κ, we first choose a homotopy between πT and µT , i.e., a cofibrant S,
a trivial fibration ψ : S → T in Comu, its sections γπ, γµ : T → S, and a morphism
ρ : S → R such that ργπ = πT , ργµ = µT .

Let LQ be the colimit of the diagram LT ← 0T
γµ−→ 0S in LieAlg, and let

LT
iµ−→ LQ

εS← 0S be the structure morphisms. Notice that iµ is a trivial cofibration
since γµ is. There is a natural projection p : LQ → LT such that pεS equals

0S
ψ−→ 0T → LT and piπ = idLT

. Our p is a trivial fibration, so the morphism
0T

γπ−→ 0S → LQ extends to a morphism iπ : LT → LQ such that piπ = idLT
.

Finally, one has a morphism β : LQ → L′
R such that βiµ = µ and βεS is the

composition 0S
ρ−→ 0R → L′

R. Our κ is βiπ : LT → L′
R. �

4.1.14. Homotopy unital commutative algebras and modules. Let
Com be the category of possibly non-unital commutative DG algebras.

We say that E ∈ Com is a homotopy unit algebra if the corresponding graded
cohomology algebra H ·E is the unit algebra. Thus H 6=0E = 0, H0E = k. A mor-
phism of homotopy unit algebras is their morphism as commutative algebras which
commutes with the identification H0 = k (or, equivalently, is a quasi-isomorphism).
For every homotopy unit E one has canonical morphisms of homotopy unit alge-
bras E ← τ≤0E → H0E = k. The tensor product of homotopy unit algebras is a
homotopy unit algebra.

For R ∈ Com a homotopy unit in R is a morphism E → C such that E is a
homotopy unit algebra and k = H0E → H ·C is a unit in the (graded) algebra H ·R.
A homotopy unital commutative algebra is a commutative algebra R equipped with
a homotopy unit iR : ER → R; we often denote it simply as R. A morphism
of homotopy unital algebras R → R′ is a pair (f, fE) where f : R → R′ is a
morphism of commutative algebras, fE : ER → ER′ a morphism of the homotopy
unit algebras, such that fiR = iR′fE ; we often abbreviate (f, fE) to f . The category
Comhu of homotopy unital commutative algebras is a tensor category. One has an
obvious fully faithful embedding of tensor categories Comu ↪→ Comhu.

13Which means that both T → R and LT → LR are surjective quasi-isomorphisms.
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Proposition. (i) Comhu is a closed model category with weak equivalences
being quasi-isomorphisms and fibrations those morphisms (f, fE) for which both f ,
fE are surjective. Denote by HoComhu the corresponding homotopy category.

(ii) The functor HoComu→ HoComhu is an equivalence of categories.

Sketch of a proof. (i) Arguments of [H] work with obvious small modifications.
One should only replace the definition of a standard cofibration from [H] 2.2.3(i)
by the following: a morphism f : R → R′ in Comhu is a standard cofibration if
fE : ER → ER′ and the morphism R ∗

ER

ER′ → R′ are standard cofibrations in

Com. Here R ∗
ER

ER′ is the coproduct of R and ER′ over ER in Com.

(ii) We consider a sequence of fully faithful embeddings Comu ⊂ Com′′
hu ⊂

Com′
hu ⊂ Comhu each of which becomes an equivalence on the level of homotopy

categories:
Let Com′

hu ⊂ Comhu be the subcategory of R with E>0
R = 0. The left adjoint

functor to this embedding is (R,ER) 7→ (R, τ≤0ER). It is clear that the correspond-
ing homotopy categories are equivalent.

Let Com′′
hu ⊂ Com′

hu be the subcategory of R with ER = k. The left adjoint
functor to this embedding is R 7→ R ∗

ER

k (notice that for R ∈ Com′
hu there is a

unique morphism ER → k). If R is cofibrant, then the morphism R → R ∗
ER

k is a

weak equivalence, so the homotopy categories of Com′′
hu and Com′

hu are equivalent.
Finally, consider the embedding Comu ⊂ Com′′

hu. For R ∈ BV′′hu the element
iR(1) ∈ R is idempotent. It is clear that Ru := iR(1) · R ∈ Comu, the functor
Com′′

hu → Comu, R 7→ Ru, is both left and right adjoint to the embedding, and the
obvious arrows Ru � R are quasi-isomorphisms. It is clear that we get mutually
inverse equivalences of the homotopy categories. �

Suppose we have a homotopy unital commutative algebra R. An R-module M
is said to be homotopy unital if H ·M is a unital H ·R-module. This amounts to
the fact that the multiplication by 1 ∈ H0R endomorphism of M , considered as an
object of the derived category of R-modules, is equal to idM .14

Denote the DG category of homotopy unital R-modules by C(R)hu and the
corresponding derived category by D(R)hu. A morphism f : R → R′ of homotopy
unital algebras yields an obvious exact DG functor C(R′)hu → C(R)hu. We leave
it to the reader to show that if f is a quasi-isomorphism, then the corresponding
functor D(R′)hu

∼−→ D(R)hu is an equivalence and also to check that for R ∈ Comu
the category D(R)hu is canonically equivalent to the derived category of unital R-
modules. Therefore, by the above proposition, from the homotopy point of view
homotopy unital modules over homotopy unital algebras are the same as unital
modules over unital algebras.

The above category C(R)hu is a tensor category in the obvious manner. For
every M ∈ C(R)hu the morphism R⊗M →M , r⊗m 7→ m, is a quasi-isomorphism
whose homotopy inverse is a morphism M → R⊗M , m 7→ 1̃⊗m, where 1̃ ∈ R0 is
any lifting of 1 ∈ H0R. Similarly, the morphism M → Hom(R,M) which assigns to
m ∈ M the morphism R → M , r 7→ rm, is a quasi-isomorphism whose homotopy
inverse is f 7→ f(1̃). Thus one can compute morphisms and the tensor product in
D(R)hu using, say, semi-free resolutions just as we do in the case of unital algebras.

14Indeed, if M is homotopy unital, then this is an idempotent automorphism in the derived
category; hence it is the identity.
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4.1.15. Homotopy unital BV algebras. Here is a BV version of the above
definitions.

For a C ∈ BV a homotopy unit in C is a morphism of commutative algebras
E → C0 such that E is a homotopy unit commutative algebra, the image of E is
central in C,15 and k = H0E → H ·grC is a unit in H ·grC. A homotopy unital BV
algebra is C ∈ BV equipped with a homotopy unit iC : EC → C. The category of
homotopy unital BV algebras (cf. 4.1.14) is denoted by BVhu; it is a tensor category
which contains BVu as a full tensor subcategory.

Proposition. (i) BVhu is a closed model category with weak equivalences being
filtered quasi-isomorphisms and fibrations those morphisms (f, fE) for which both
gr fC , gr fE are surjective.

(ii) One has an equivalence of the homotopy categories HoBVu
∼−→ HoBVhu.

Proof. An immediate modification of the proof in 4.1.14. �

The construction from 4.1.9 generalizes to the homotopy unital setting as fol-
lows. For R ∈ Comhu a homotopy unital Lie R-algebroid L is a Lie R-algebroid16

such that L is a homotopy unital R-module and the image of ER → R is anni-
hilated by the action of L. For such an L its BV extension is defined exactly as
in 4.1.9 with an obvious modification (we demand that the ι-image of ER[−1] lies
in the center of L[). One calls (L,L[) a homotopy unital BV Lie R-algebroid; we
abbreviate it often to L[. The pairs (R,L[) form a category LieAlgBVhu . There
is an obvious functor BVhu → LieAlgBVhu , C 7→ (C0, C1[−1]) (we tacitly assume
that EC0 := EC and the Lie algebroid L is gr1C). It admits a left adjoint
LieAlgBVhu → BVhu, (R,L[) 7→ CBV (R,L)[. We have an obvious morphism of
1-Poisson algebras SymRL → grCBV (R,L)[ which is a quasi-isomorphism if L is
homotopically R-flat. One defines CLBV (R,L)[ ∈ HoBVhu = HoBVu as in 4.1.12.

4.1.16. Perfect complexes. Let D be an additive category which admits
arbitrary direct sums. An object P ∈ D is said to be compact if the functor
Hom(P, ·) commutes with direct sums; i.e., for any family Mα of objects of D the
obvious map ⊕Hom(P,Mα)→ Hom(P,⊕Mα) is an isomorphism.

Exercise. Suppose D is the category of S-modules where S is a plain as-
sociative algebra. Then compact objects of D are the same as finitely generated
S-modules.

If D is a triangulated category, then its compact objects are also called perfect
objects; they form a thick subcategory Dperf ⊂ D.

Let F be a commutative algebra (:= a commutative unital DG super algebra)
having degrees ≤ 0. Consider the derived category D(F ) of DG F -modules. Notice
that D(F ) is a t-category, so we have the subcategories D(F )>a, D(F )<b ⊂ D(F )
of F -modules acyclic in degrees ≤ a, resp. ≥ b. We say that a non-zero P ∈ D(F )
has finite span if Hom(P,D(F )>a) = 0 = Hom(P,D(F )<b) for some integers a,
b; then its span is the interval [b, a] formed by the smallest a and the largest b as
above. Every perfect P has finite span.17

15I.e., C is an E-algebra.
16The axioms of a Lie R-algebroid for a non-unital R are the same as in the unital setting.
17This follows from the following observation: suppose we have Mi ∈ D(F )>ai such that

ai →∞; then ⊕Mi
∼−→ ΠMi. The same is true for the b situation.
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Notice that for every f ∈ F 0 whose image in H0F is invertible, the functor
D(Ff )→ D(F ) is an equivalence of categories (here Ff is the f -localization of F ).
Take any f̄ ∈ H0F ; we see that the category D(Ff ) for f ∈ F lifting f̄ does not
depend on the choice of f ; we denote it by D(Ff̄ ). Thus D(F ) can be localized
with respect to the Zariski topology of Spec(H0F ), so we can speak of properties
of objects of D(F ) that hold Zariski locally on Spec(H0F ).

Notice that semi-free DG F -modules (see 4.1.5) with generators in degrees
bounded from above are the same as DG F -modules which are, as mere graded
F -modules, free with generators in degrees bounded from above.

Lemma. For P ∈ D(F ) and an interval [b, a] the next conditions are equivalent:
(i) P is perfect of span in [b, a];
(ii) P is a retract of an object of D(F ) represented by a semi-free F -module P̃

with finitely many generators whose degrees are in [b, a];
(iii) locally on Spec(H0F ) our P can be represented by a semi-free module P f

with finitely many generators of degrees in [b, a].

Proof. (ii)⇒(i): Clear.
(i)⇒(ii): (a) First we construct a semi-free resolution φ : T → P with finitely

many generators in each degree ≤ a. The construction goes as follows. Suppose we
have already defined T ; set Ti := FT≥a−i ⊂ T . This is a semi-free F -module with
finitely many generators in degrees [a− i, a], and HjTi → HjP is an isomorphism
for j > a − i and is surjective for j = a − i. We will define Ti and φi := φ|Ti

by
induction by i.

The first step: We know that H>aP = 0. Also HaP is a finitely generated
H0F -module (by Exercise above), so one can find (φ0, T0). Induction step: Suppose
we have (Ti, φi). Then Cone(φi) is perfect and its cohomology vanishes in degrees
≥ a− i. Then Ti+1 is obtained from Ti by adding finitely many free generators eα
in degree a− i− 1, where d(eα) ∈ T a−ii and φi+1(eα) ∈ P a−i−1 are chosen so that
the cycles (−d(eα), φi+1(eα)) generate Ha−i−1Cone(φi).

(b) So we have defined our T . Set P̃ = Ta−b, ϕ := φa−b; denote by ψ the com-
position P̃ → P → τ≥aP . Since Cone(ψ) ∈ D(F )<a, one has Hom(P,Cone(ψ)) = 0.
Thus one can find ρ : P → P̃ such that ψρ is the projection P → τ≥aP . Since
Hom(P, τ<aP ) = 0, one has ϕρ = idP ; q.e.d.

(i)⇒(iii): Choose a semi-free DG F -module P̃ such that we have a direct sum
decomposition P̃ = P ⊕ B in D(F ) and HiP̃ = HiP for i > b. Such a P̃ was
constructed in step (i)⇒(ii) above. Then B is a perfect complex of span [b, b].

Since B
L
⊗
F
H0F is a perfect H0F -complex of span [b, b], it equals Q̄[−b] where

Q̄ is a finitely generated projective H0F -module. Notice that Q̄ = HbB. Passing
to a Zariski localization, we can assume that Q̄ is a free H0F -module. Let Q be
a free F -module with generators in degree b such that HbQ = Q̄ = HbB. This
identification amounts to a morphism Q → B in D(F ) which is automatically a
quasi-isomorphism (because a morphism of perfect F -modules which becomes an
isomorphism after tensoring by H0F is a quasi-isomorphism).

The morphisms P̃ � B in D(F ) yield homotopy classes of morphisms of DG
F -modules P̃ � Q. Choose some true morphisms from the homotopy classes;
after possible further Zariski localization, we can assume that the composition
Q → P̃ → Q is an isomorphism, so Q is a retract of P̃ . The kernel P f of the
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retraction represents P . The F 0-module of degree b generators (P f/F<0P f)b is
projective and hence locally free, and we are done.

(iii)⇒(i): Perfectness is a local property: Indeed, suppose P is perfect Zariski
locally on Spec(H0F ). Then one can find a finite covering SpecF 0

fα
of SpecF 0 such

that each Pfα ∈ D(Ffα) is perfect. For any DG F -module M consider its Čech com-
plex C(M) with respect to this covering; this is a resolution of M . If g is a finite
product of fα’s, then the functor M 7→ HomD(F )(P,Mg) = HomD(Fg)(Pg,Mg)
commutes with direct sums. Hence the functor M 7→ HomD(F )(P,C(M)) =
HomD(F )(P,M) commutes with direct sums, and we are done.

The fact that the span of a perfect P is determined locally is clear from the
following observations. The upper bound of the span is the largest a such that
HaP 6= 0. The lower bound is the largest b such that for every plain H0F -module
M the complex HomF (T,M) is acyclic in degrees > −b; here T is a resolution of
P from the step (i)⇒(ii). �

Corollary. For any perfect P ∈ D(F ) the complex P ∗ := RHom(P,R) ∈
D(F ) is perfect and the canonical morphism P → (P ∗)∗ is an isomorphism. �

4.1.17. Perfect DG algebras. As above, let F be a commutative algebra
having degrees ≤ 0.

We say that F is perfect if, as an object of the homotopy category of com-
mutative DG algebras, it is a retract of a DG algebra F̃ which, as a mere graded
commutative super algebra, is free with finitely many generators of degrees ≤ 0.
Such F has span ≤ n if one can find F̃ with generators in degrees ∈ [−n, 0].

The next proposition is a non-linear version of the lemma in 4.1.16. Let us
make first two remarks:

(a) Notice that if f ∈ F 0 is such that its image in H0F is invertible, then the
morphism F → Ff is a quasi-isomorphism. Thus for any f̄ ∈ H0F the localizations
Ff for f ∈ F lifting f̄ define the same object of the homotopy category of DG
algebras; denote it by Ff̄ . So we can localize F , as an object of the homotopy
category, with respect to the Zariski topology of Spec(H0F ), and one can speak of
(homotopy) properties of F that hold Zariski locally on Spec(H0F ).

(b) F is semi-free if and only if it is free as a mere graded algebra.

Proposition. For an algebra F having degrees ≤ 0 and an integer n ≥ 1 the
following conditions are equivalent:

(i) F is perfect of span ≤ n;
(ii) Zariski locally on Spec(H0F ), our F is homotopy equivalent to a semi-free

DG algebra with finitely many generators of degrees −n, . . . , 0;
(iii) H0F is a finitely generated algebra and the cotangent complex LΩF ∈ D(F )

(see 4.1.5) is perfect of span in [−n, 0].

Proof. It is clear that (i)⇒(iii)⇐(ii). Suppose F satisfies (iii); let us check (i)
and (ii).

(a) Let us show that F admits a resolution φ : G→ F such that G is semi-free
with finitely many generators in each (non-positive) degree.

We write G =
⋃
Gi where Gi is the subalgebra of G generated by G≥−i, and

we construct Gi by induction getting on the ith step a morphism of DG algebras
φi = φ|Gi

: Gi → F such that Ha(Gi)
∼−→ HaF for a > −i, H−i(Gi) → H−iF is

surjective, and Gi is semi-free with finitely many generators in degrees −i, . . . , 0.
Then Gi+1 is obtained from Gi by adding finitely many free generators in degree
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−i − 1 and extending φ to them. To be able to do this, we need to know that
H−i−1F is a finitely generated H0F -module.18

Replacing F by an appropriate resolution, we can assume that F is obtained
from Gi by adding (possibly infinitely many) semi-free generators in degrees < −i.
The exact sequence of DG F -modules 0 → ΩGi

⊗
Gi

F → ΩF → ΩF/Gi
→ 0 shows

that ΩF/Gi
is perfect. It has generators in degrees ≤ −i − 1, so H−i−1ΩF/Gi

is
a finitely generated H0F -module. If i ≥ 1, then the universal derivation yields
F−i−1/(d(F−i−2)+G−i−1

i ) ∼−→ H−i−1ΩF/Gi
; hence H−i−1F is a finitely generated

H0F -module, and we are done. Consider the case i = 0; set I := d(F−1) ⊂
F 0 = G0 (which is a finitely generated polynomial algebra), so H0F = F 0/I.
Then F−1/(d(F−2) + IF−1) ∼−→ H−1ΩF/G0 , so F−1/(d(F−2) + IF−1) is a finitely

generated H0F -module. The exact sequence 0→ H−1F → F−1/d(F−2) d−→ I→ 0
shows then that H−1F is a finitely generated H0F -module; q.e.d.

From now on we assume, as is possible by (a), that F is a polynomial algebra
with finitely many generators in each (non-positive) degree.

(b) Let B be any commutative DG algebra, I ⊂ B a DG ideal. Recall that
n ≥ 1 is an integer such that the span of LΩF lies in [−n, 0].

Lemma. If HiI = 0 for every i > −n, then any morphism ρ̄ : F → B/I can
be lifted to ρ : F → B. If, in addition, H−nI = 0, then such ρ is unique up to a
homotopy.

Proof. One has B = lim←−B/I
m, so one can construct a lifting, and a homotopy

between two liftings, passing successively from B/Im to B/Im+1. Therefore we
can assume that I2 = 0. Replacing B by the pull-back of B → B/I by ρ, we can
assume that ρ̄ = idF . So B is an extension of F by a DG F -module I, and we want
to construct a section.

Since F is semi-free, we can find a section F → B which is a morphism of
graded algebras but may not commute with the differential d. Commuting it with
d, we get a derivation F → I[1], i.e., a morphism of DG F -modules c : ΩF → I[1].
One can modify our section to make it commute with d if and only if c is homotopic
to zero, i.e., since ΩF is semi-free, if c vanishes as an element of HomD(F )(ΩF , I[1]).
If it happens, then the homotopy classes of ρ form a HomD(F )(ΩF , I)-torsor. We
are done by the condition on n. �

(c) Let Fn ⊂ F be the (DG) subalgebra generated by F≥−n and let I ⊂ F
be the DG ideal in F generated by F<−n. By the lemma, the projection ρ̄ : F →
F/I = Fn/Fn ∩ I can be lifted to a morphism of DG algebras ρ : F → Fn.

Again by the lemma (applied to B = F , I = I) the composition F
ρ−→ Fn → F

is homotopic to idF , so F is a retract of Fn in the homotopy category, and we have
proved (i).

To prove (ii) consider step (i)⇒(iii) of the proof of the lemma in 4.1.16 for
P := ΩF , P̃ := ΩFn

⊗
Fn

F , b := −n. We can choose, after a Zariski localization of

Spec(H0F ), a direct summand P f of P̃ as in loc. cit. Then the universal deriva-
tion identifies the F 0-module (Fn/(F<0

n )2)−n of degree −n generators of Fn with

18We assume that i ≥ 0; one constructs G0 in the evident way using the fact that H0F is a
finitely generated algebra.
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(P̃ /F<0P̃ )−n. Define K ⊂ (Fn/(F<0
n )2)−n as the submodule that corresponds to

(P f/F<0P f)−n ⊂ (P̃ /F<0P̃ )−n. Let F f be the subalgebra of Fn generated by
F>−nn and the preimage of K in F−nn . Since K is a free F 0-module, our F f is semi-
free with finitely many generators in degrees −n, . . . , 0. Finally, the morphism
F f → F is a quasi-isomorphism. To see this, notice that F fi ∼−→ F i for i > −n and
H−nΩF f

∼−→ H−nΩF , and apply then the lemma from (b). �

4.1.18. Perfect BV algebras. Let C be a 1-Poisson DG algebra C having
degrees ≤ 0. We say that C is perfect if it is perfect as a commutative algebra and
the pairing ΩR ⊗ ΩR → R[1] defined by { } yields a quasi-isomorphism LΩR

∼−→
RHomR(LΩR, R)[1]. Notice that such a C has span ≤ 1.

A filtered unital BV algebra C having degrees ≤ 0 is said to be perfect if the
1-Poisson algebra grC is.

Suppose that C = CLBV (R,L)[ for some BV Lie R-algebroid L[. Then C
is perfect if and only if R is a perfect commutative algebra and the composition
L → ΘR = Hom(ΩR, R) → RHom(LΩR, R) is a quasi-isomorphism. Here the first
arrow comes from the L-action on R.

Question. Is it true that the cohomology of any perfect BV algebra is finite-
dimensional?

This happens for C = CLBV (R,L)[ as above:

Proposition. For such a C one has dimH ·C <∞.

Proof. By 4.1.13, replacing R by a quasi-isomorphic algebra, we can assume
that R is a semi-free algebra sitting in degrees ≤ 0. Our objects have the Zariski
local nature with respect to SpecR0, so it suffices to show that our cohomology is
finite-dimensional locally on SpecR0. By 4.1.17 and 4.1.13 we are reduced to the
situation when R is a semi-free algebra with finitely many generators in degrees 0
and −1. We can also assume that L is semi-free. Let us show that CBV (R,L)[

is quasi-isomorphic to the de Rham complex for a certain twisted right D-module
structure on R (cf. Example in 4.1.10).

We know that ΩR is semi-free and ΩR = LΩR. So the morphism L →
ΘR is a quasi-isomorphism. Therefore the corresponding morphism of the de
Rham-Chevalley DG algebras DR(R) = CR(R,ΘR) → CR(L) is a filtered quasi-
isomorphism.

The conditions on R imply that R admits a right D-module structure,19 so
ΘR admits a BV extension Θ[

R (see Remark (i) in 4.1.9). Its pull-back to L differs
from L[ by some “classical” extension of L given by an appropriate cocycle of
CR(L)≥1. By Remark (ii) in 4.1.10 we can replace this cocycle by a homologous one
without changing CBV (R,L)[. So we can assume that our cocycle actually comes
from an odd 1-cocycle γ in DR(R)≥1. Let P be CBV (R,ΘR)[ equipped with the
twisted differential dγ . The evident morphism of graded modules CBV (R,L)[ → P
commutes with the differential, and it is a filtered quasi-isomorphism.

It remains to show that dimH ·P <∞. Our P is a twisted de Rham complex,
hence a DG DR(R)-module. Forgetting about the differentials, one has DR(R) =
lim←−SymR(ΩR[−1])/Sym≥n

R (ΩR[−1]), P = SymR(ΘR[1]), and the DR(R)-action on

19Indeed, the dualizing module of R is isomorphic to a shift of a copy of R (as a DG R-
module).
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P is the usual convolution product. Notice that both P and DR(R) are supported
in finitely many degrees.

Consider P as a DG DR(R0)-module. We have a finite decreasing filtration
F i := Ω≥i

R0P . It suffices to prove that the terms Ep,q2 of the corresponding spectral
sequence are finite-dimensional.

Set P̄ := gr0P ; this is a complex of free R0-modules, and griP = ΩiR0 ⊗
R0
P̄ .

Thus Ep,q1 := Hp+qgrpP = ΩpR0 ⊗ HqP̄ and the differential d1 is the de Rham
differential for a DR0-module structure on HqP̄ . So it suffices to show that all
HqP̄ are holonomic DR0-modules. This amounts to the existence of a stratification
Zα of SpecR0 such that each complex P̄ |Zα

has coherent cohomology. Now the
proposition follows from the next two facts whose proof is left to the reader:20

- the complex ofH0R-modules P̄⊗R0H0R is quasi-isomorphic to (H0R)[dimR];
- the restriction of P̄ to SpecR0 r SpecH0R is acyclic. �

4.2. The construction and first properties

Chiral homology is a “quantum” version of (the algebra of functions on) the
space of global horizontal sections of an affine DX -scheme (i.e., the space of global
solutions of a system of non-linear differential equations). To define it, recall that
chiral algebras amount to factorization algebras which are D-modules on Ran’s
space R(X) (see 3.4.1 and 3.4.9). Now the chiral homology of X with coefficients
in a chiral algebra is the de Rham homology of R(X) with coefficients in the cor-
responding D-module.

Below we make the above informal definition rigorous. The technical problem
to deal with is the fact that R(X) is not an ind-scheme in the strict sense21 (recall
that the R(X)i are not algebraic varieties for i ≥ 3; see 3.4.2). So we are outside
of the documented grounds of algebraic geometry, and one has to explain what the
D-modules on R(X) are and how to compute the de Rham homology. We know
that R(X) is an ind-scheme in a broad sense: it is an inductive limit of the Xn’s
with respect to the non-directed family of all diagonal embeddings (see 3.4.1(ii)).
Luckily this inductive system satisfies a number of specific properties (listed in
4.2.1) which permit us to handle sheaves on R(X) almost as easily as if it were an
ind-scheme in the strict sense.

We begin with the definition of !-sheaves on XS and consider some special types
of complexes in 4.2.1. For a general formalism of sheaves on diagrams of spaces see
[SGA 4] Exp. Vbis; we consider the dual setting of !-sheaves. The cohomology of
!-sheaves is defined in 4.2.2. In 4.2.3 we describe a usual spectral sequence which
computes the homology beginning with the homology of the configuration spaces
strata of R(X). In 4.2.4 the !-sheaves on XS are compared, in the case of the
classical topology, with plain sheaves on R(X). The convolution tensor product ⊗∗
of !-sheaves is defined in 4.2.5. The D-module setting and the de Rham homology
are considered in 4.2.6. We explain that the de Rham homology can be computed
using Dolbeault resolutions in 4.2.7, prove the compatibility with the ⊗∗ product of
coefficients in 4.2.8, and prove a stabilization property in 4.2.9–4.2.10. The chiral
homology of a chiral algebra is defined in 4.2.11 using the Chevalley-Coisin complex
from 3.4.11. In 4.2.12 we show that the chiral homology can be computed by

20Hint: P̄ carries a natural filtration with graP̄ isomorphic to Syma(ΘR/R0 [1])[dim R0].
21I.e., R(X) is not a union of a directed system of closed subschemes.
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certain functorial chiral chain complexes C̃ch and (more economic) CchPQ. Another
chiral chain complex Cchlog is defined in 4.2.14 after a digression on forms with
logarithmic singularities (this complex will not be used in subsequent sections,
so the reader can skip 4.2.13 and 4.2.14). Section 4.2.15 contains a remark on
non-quasi-coherent Dolbeault resolutions. In 4.2.16 we consider the zero homology
Hch

0 . In the commutative case it coincides with the algebra of functions on the
space of global solutions from 2.4.1–2.4.5. Compatibility with filtrations and chiral
homology with coefficients are discussed, respectively, in 4.2.18 and 4.2.19.

4.2.1 Sheaves on XS. We begin with general definitions. Below, k is our
base field of characteristic 0.

Let I be a category equivalent to a small one, and let YI, I 7→ YI , be an I-
diagram of topological spaces or of schemes. We assume that every YI has a finite
cohomological dimension (to be able to consider painlessly infinite complexes of
sheaves) and that for each ϕ : I → J the map ϕY : YI → YJ is a closed embedding.
A !-sheaf on YI is a rule P that assigns to each I ∈ I a sheaf of k-vector spaces
PYI

on YI and to each ϕ : I → J a morphism θ(ϕ) : ϕY ·PYI
→ PYJ

. We demand
that the θ’s are compatible with the composition of the ϕ’s and that θ(id) is the
identity map. In the scheme-theoretic setting we consider sheaves with respect to
the étale topology. The !-sheaves form an abelian k-category Sh!(YI). We denote
by CSh!(YI) the corresponding DG category of complexes and by D(YI) the derived
category.

We say that a complex P of !-sheaves on YI is admissible if for each morphism
ϕ : I → J the morphism θ(ϕ) yields a quasi-isomorphism PYI

∼−→ Rϕ!
Y PYJ

. Admis-
sible complexes form a full DG subcategory CSh!(YI)adm ⊂ CSh!(YI) closed under
quasi-isomorphisms, and a full triangulated subcategory D(YI)adm ⊂ D(YI).

We apply the above considerations to I = S◦ and the diagram XS, I 7→ XI ;
the structure embeddings are diagonal ones ∆(I/J) : XJ ↪→ XI . Here X is either
a separated topological space of finite cohomological dimension or a separated k-
scheme of finite type. In the case of schemes we consider sheaves with respect to
the étale topology.

The diagram XS satisfies the following specific properties. Fix any I ∈ S. Then
- The category S◦/I of all arrows I � T is equivalent to a finite ordered set

Q(I).
- The diagonals XT , T ∈ Q(I), form a stratification of XI .
- Let j(I) : U (I) ↪→ XI be the complement to all strata XT , T ∈ Q(I), T 6= I.

Then the action of Aut I on U (I) is free.
The arguments below work for any diagram that satisfies these properties.

Every !-sheaf P onXS carries a canonical Cousin filtration P1 ⊂ P2 ⊂ · · · where
Pa ⊂ P is the smallest subsheaf such that PaXJ = PXJ for |J | ≤ a. We say that P
is nice if for every I and n the evident morphism ⊕

T∈Q(I,a)
∆(I/T )
· graPXT → graPXI

is an isomorphism.

Lemma. Suppose that P is nice and admissible. Then for any I the identifica-
tion gr|I|PU(I) = PU(I) yields a quasi-isomorphism

(4.2.1.1) gr|I|PXI
∼−→ Rj

(I)
∗ PU(I) .
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Proof. We use induction by n := |I|. Assume that our assertion is true for
all I ′ of order < n. Consider a filtration XI

1 ⊂ · · · ⊂ XI
n = XI on XI where

XI
a is the union of the diagonals of dimension ≤ a, so XI

a r XI
a−1 is the dis-

joint union of U (T ), T ∈ Q(I, a). It yields a filtration on PXI (as on an object
of the derived category of sheaves on XI) with successive quotients gr′aPXI =
⊕

T∈Q(I,a)
R(∆(I/T )j(T ))·R(∆(I/T )j(T ))!PXI = ⊕

T∈Q(I,a)
∆(I/T )
· Rj

(T )
· j(T )·R∆(I/T )!PXI .

Since PaXI are supported on XI
a , the identity morphism of PXI lifts canonically

to a morphism φ in the filtered derived category from PXI equipped with the
Cousin filtration to PXI equipped with the above filtration. Since P is nice, one
has graφ = ⊕

T∈Q(I,a)
∆(I/T )
· (φT ) where φT : graPXT → Rj

(T )
· j(T )·R∆(I/T )!PXI is

the evident morphism. Since P is admisible, we can rewrite φT as the canonical
morphism PXT → Rj

(T )
· j(T )·PXT . By the induction assumption, φT is a quasi-

isomorphism for |T | < n, so graφ is a quasi-isomorphism for a < n. Our filtration
has length n and φ lifts the identity morphism, so grnφ, which is (4.2.1.1), is a
quasi-isomorphism as well, q.e.d. �

Every P ∈ CSh!(XS) admits a canonical nice resolution P̃ → P. Namely,
P̃XI is the homotopy direct limit C(Q(I),∆(I/T )

∗ PXT ) (see 4.1.1(iv)) where the
structure morphisms are the embeddings θ(I/J) : ∆(I/J)

∗ P̃XJ ↪→ P̃XI coming from
the embedding Q(J) ⊂ Q(I). It is clear that P̃ is nice, the DG functor P 7→ P̃ is
exact, and the obvious projection P̃ → P is a quasi-isomorphism.

Notice that any quasi-isomorphism between nice complexes is automatically a
filtered quasi-isomorphism with respect to the Cousin filtrations.

4.2.2. Cohomology with coefficients in a !-sheaf. A !-sheaf P on XS

yields an S◦-diagram of vector spaces, I 7→ Γ(XI , P ) := Γ(XI , PXI ). Denote by
Γ(XS, P ) its inductive limit. The Cousin filtration on P defines a filtration on
Γ(XS, P ).

We say that P is handsome22 if it is nice and the following extra conditions
hold:

(a) The morphisms Γ(Xn, PXn)→ RΓ(Xn, PXn) are quasi-isomorphisms.
(b) The projections PXn → grnPXn admit splittings (that need not commute

with the differential).

Lemma. If P is handsome, then grnΓ(XS, P ) ∼−→ Γ(Xn, grnP )Σn
and the mor-

phisms Γ(Xn, grnP )→ RΓ(Xn, grnP ) are quasi-isomorphisms.

Proof. By (b) the Cousin filtration on P splits (the splitting need not commute
with the differential), so grnΓ(XS, P ) = grnΓ(XS, grnP ), and the first claim follows
since grnP is nice. The second claim is checked by induction by n. �

Remarks. (i) For any P ∈ CSh!(X) the nice complex P̃ automatically satisfies
(b); if P satisfies (a), then P̃ is handsome.

(ii) Every P ∈ CSh!(X) admits a flabby resolution, i.e., a quasi-isomorphism
P → P ′ such that P ′ is flabby (which means that each P ′Xn is a flabby complex of
sheaves on Xn).23

22Cf. “Teddy Bear” from “When we were very young” by A. A. Milne.
23Recall that a complex of sheaves F on Y is flabby if for every closed Z ⊂ Y the morphism

ΓZ(Y, F )→ RΓZ(Y, F ) is a quasi-isomorphism.
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Let CSh!(X)h ⊂ CSh!(XS) be the full DG subcategory of handsome com-
plexes. The above remarks imply that its localization by quasi-isomorphisms coin-
cides with D(XS). On the other hand, the lemma shows that the functor Γ(XS, ·)
sends quasi-isomorphisms in CSh!(X)h to filtered quasi-isomorphisms. Therefore
one has an exact functor RΓ(XS, ·) : D(XS) → DF (k).24 We write H ·(XS, P ) :=
H ·RΓ(XS, P ).

By Remark (i), for any P ∈ CSh!(X) one has RΓ(XS, P ) = Γ(XS, P̃ ′) where
P → P ′ is a resolution such that P ′ satisfies (a); e.g., P ′ is flabby.

4.2.3. Cohomology of configuration spaces. Set R(X)◦n := U (n)/Σn;25

this is the space of configurations of n-points on X. The projection U (n) →
R(X)◦n is an étale Σn-covering. For P ∈ Sh!(X) the sheaf PU(n) is Σn-equivariant,
so by descent it defines a sheaf PR(X)◦n

on R(X)◦n. We write Γ(R(X)◦n, P ) :=
Γ(R(X)◦n, PR(X)◦n

), etc.

Lemma. For admissible P there is a canonical quasi-isomorphism

(4.2.3.1) grnRΓ(XS, P ) ∼−→ RΓ(R(X)◦n, P ).

Proof. By Lemmas from 4.2.1, 4.2.2 one has grnRΓ(XS, P ) ∼−→ RΓ(U (n), P )Σn
.

Now the trace map yields RΓ(U (n), P )Σn

∼−→ RΓ(R(X)◦n, P ), and we are done. �

Consider the spectral sequence Ep,qr for the Cousin filtration converging to
H ·(XS, P ) (we call it the Cousin spectral sequence). If P is admissible then, by
the lemma, one has

(4.2.3.2) Ep,q1 = Hp+q(R(X)o−p, P ).

4.2.4. Comparison with sheaves on R(X). This section plays a purely
motivational role.

Suppose that our X is a locally compact separated topological space of finite
cohomological dimension. Consider the topological space R(X) defined in 3.4.1;
the obvious projections rI : XI → R(X) identify R(X) with the inductive limit
of the diagram XS. We deal only with those sheaves of k-vector spaces on R(X)
which are inductive limits of subsheaves supported on the R(X)i’s. Such sheaves
form an abelian k-category Sh(R(X)); one has the corresponding DG category of
complexes CSh(R(X)) and the derived category D(R(X)). For G ∈ Sh(R(X)) the
space of those sections of G that are supported on some R(X)i is denoted (by abuse
of notation) by Γ(R(X), G). It is naturally filtered by the subspaces Γ(R(X), G)n
of sections supported on R(X)n (the Cousin filtration). The functor Γ admits a
right derived functor RΓ(R(X), ·) : D(R(X))→ DF (k) which can be computed by
means of flabby resolutions.26 We write H ·(R(X), G) := H ·RΓ(R(X), G).

The maps rI : XI → R(X) are finite, so the push-forward functor rI∗ :
Sh(XI) → Sh(R(X)) is exact. It admits a right adjoint functor r!I : Sh(R(X)) →
Sh(XI). We have a right exact functor r∗ : Sh!(XS) → Sh(R(X)) which sends P

24For us, the filtered derived category is formed by complexes F equipped with an increasing

filtration F· such that Fa = 0 for a � 0 and
S

Fa = F ; the morphisms are morphisms of
complexes preserving filtrations localized by filtered quasi-isomorphisms (:= the morphisms that

induce quasi-isomorphisms between the successive quotients).
25Here U(n) := U({1,... ,n}) ⊂ Xn, etc.
26G ∈ CSh(R(X)) is said to be flabby if for every n the complex of sheaves i!nG on R(X)n

is flabby; here in : R(X)n ↪→ R(X).
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to the inductive S◦-limit of sheaves rI∗PXI . It admits a right adjoint which is a left
exact functor r! : Sh(R(X))→ Sh!(XS); one has r!FXI := r!IF .

The functor r∗ admits a left derived functor Lr∗ : D(XS)→ D(R(X)); for nice
P one has Lr∗P

∼−→ r∗P . Thus for any P one has r∗P̃
∼−→ Lr∗P . Similarly, r!

admits a right derived functor Rr! : D(R(X)) → D(XS). For a flabby complex
of sheaves F on R(X) one has r!F ∼−→ Rr!F ; moreover, the complex r!F is nice
and admissible, and r∗r

!F
∼−→ F . If P is admissible, then P → Rr!Lr∗P is a

quasi-isomorphism.
So the functors Lr∗ and Rr! are adjoint, and they yield mutually inverse equiv-

alences

(4.2.4.1) D(XS)adm
Lr!
�
Rr!

DR(X).

For any P ∈ CSh!(XS) an obvious projection Γ(XS, P ) → Γ(R(X), r∗P ) is
compatible with the Cousin filtrations. If P is handsome, then this projection is
an isomorphism of mere complexes;27 moreover Γ(R(X), r∗P ) ∼−→ RΓ(R(X), r∗P ).
If, in addition, P is admissible, then this is a filtered quasi-isomorphism. We get

Lemma. For P ∈ D(XS) there is a natural morphism

(4.2.4.2) RΓ(XS, P )→ RΓ(R(X), Lr∗P )

in DF (k) which is an isomorphism in D(k). If P ∈ D(XS)adm, then this is a
filtered quasi-isomorphism. �

Remark. The spectral sequence (4.2.3.2) becomes the usual spectral sequence
for the Cousin filtration R(X)· converging to H ·(R(X), Lr∗P ).

Notation. Suppose we are in the scheme-theoretic setting. In view of (4.2.4.1)
we will write D(R(X)) := D(XS)adm; admissible complexes will be also called
complexes of sheaves on R(X). Thus D(R(X)) is a full subcategory of D(XS).
The restriction of the functor RΓ(XS, ·) to D(R(X)) is denoted by RΓ(R(X), ·);
the terms of its Cousin filtration by RΓ(R(X), ·)n = RΓ(R(X)n, ·). One has
grnRΓ(R(X), P ) ∼−→ RΓ(R(X)◦n, P ) (see (4.2.3.1)), etc.

4.2.5. The convolution product. The category Sh!(XS) carries a natural
tensor structure. Namely, for a finite non-empty family Pα, α ∈ A, of !-sheaves on
XS we define their convolution tensor product ⊗∗Pα as (cf. (3.4.10.1))

(4.2.5.1) (⊗∗Pα)XI := ⊕
I�A

�
A

(PαXIα ),

where the structure arrows θ(π) are the obvious ones. Our tensor category is denoted
by Sh!(XS)∗.

The obvious natural morphisms ν{Pα} : ⊗Γ(XS, Pα)→ Γ(XS,⊗∗Pα) are com-
patible with the Cousin filtrations; they make Γ(XS, ·) a pseudo-tensor functor (see
1.1.6(ii))

(4.2.5.2) Γ(XS, ·) : Sh!(XS)∗ → CF (k)⊗.

Notice that ⊗∗Pα is nice if the Pα are nice. The same is true for “handsome”, so
RΓ(XS, ·) is also a pseudo-tensor functor.

27Not filtered ones!
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Lemma. If X is quasi-compact, then Γ(XS, ·) and RΓ(XS, ·) are tensor func-
tors.

Proof. Our condition assures that Γ(XI ,⊗∗Pα) = ⊕
I�A
⊗
A

Γ(XIα , Pα), so ν{Pα}

are filtered isomorphisms. The fact about RΓ(XS, ·) follows as above. �

Notice that P 7→ P̃ is naturally a pseudo-tensor functor, as follows from
(4.1.2.3). Namely, the compatibility morphism ⊗∗P̃α → ⊗̃∗Pα (see 1.1.6(ii)) is
formed by the maps �C(Q(Iα),∆(Iα/Tα)

∗ PαXTα ) → C(ΠQ(Iα),�∆(Iα/Tα)
∗ PαXTα )

⊂ (⊗̃∗Pα)XI where the arrow comes from (4.1.2.1). The projection P̃ → P is a
morphism of pseudo-tensor functors.

Let B be a DG k-operad. We see that if P is a B algebra in CSh!(X)∗, then so
is P̃ . By (4.2.5.2) the complexes of sections Γ(XS, P̃ ) and Γ(XS, P ) are B algebras,
and the morphism Γ(XS, P̃ )→ Γ(XS, P ) is a morphism of B algebras.

Remark. The tensor product ⊗∗ comes very naturally in the R(X) setting
of 4.2.4. Then the commutative semigroup structure on R(X) (see (iii) in 3.4.1)
yields the convolution tensor structure on Sh(R(X)): for F,G ∈ Sh(R(X)) one has
F⊗∗G := ◦∗(F�G) where ◦ : R(X)×R(X)→ R(X) is the “disjoint sum” operation.
Notice that ⊗∗ is an exact functor (since ◦ is finite). If X is quasi-compact, then
there is an obvious identification Γ(R(X), F⊗∗G) = Γ(R(X), F )⊗Γ(R(X), G), and
the same for the RΓ’s. So Γ(R(X), ·) and RΓ(R(X), ·) are tensor functors. Now
r∗ : Sh!(XS)∗ → Sh(R(X))∗, Lr∗ : D(XS)∗ → D(R(X))∗ are tensor functors in
the obvious way. This explains the name “convolution tensor product” for ⊗∗.

4.2.6. D-complexes on XS. (i) Suppose we have any diagram I 7→ YI as
in 4.2.1 where the YI are smooth algebraic varieties and morphisms are closed
embeddings. In such a situation a right D-module on Y is a rule that assigns to
each I a right D-module MI = MYI

on YI and to every ϕ : I → J a morphism
θ(ϕ) : ϕY ∗MI →MJ ; we demand that θ(ϕ) is compatible with the composition of the
ϕ’s and θ(idI) = idMI

. Right D-modules on Y form an abelian k-category M(Y ). A
complex M of right D-modules on Y (a.k.a. a right D-complex on Y ) is admissible
if for each ϕ the morphism MI → Rϕ!

YMJ defined by θ(ϕ) is a quasi-isomorphism.
Every complex quasi-isomorphic to an admissible complex is admissible.

Our prime diagram is XS where X is our curve; here the above notion of right
D-module coincides with that from 3.4.10. Admissible right D-complexes onXS are
also called right D-complexes on R(X). The corresponding DG category is denoted
by CM(R(X)) and the derived category is denoted by DM(R(X)) (cf. 4.2.4). We
have fully faithful embeddings CM(R(X)) ↪→ CM(XS), DM(R(X)) ↪→ DM(XS).
Below we skip the word “right” when it is clear that we are dealing with right
D-modules.

An increasing filtration on a D-complex M is admissible if griM are admissible
complexes. The corresponding filtered derived category is denoted byDFM(R(X)).

(ii) Recall that the tensor category M`(R(X)) acts on M(XS) (see (3.4.10.6)),
so the tensor DG category of complexes CM`(R(X)) acts on CM(XS). The action
of the tensor DG subcategory of homotopically flat complexes (see 3.4.3) preserves
admissible complexes and quasi-isomorphisms, so it yields an action on DM(R(X)).

(iii) When needed, resolutions of D-complexes on XS can be built by induction.
Here is the induction step: Suppose we have M ∈ CM(XS) and a quasi-isomorphic
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embedding of Σn-equivariant D-complexes αn : MXn ↪→ FXn which is a quasi-
isomorphism. Then there is a quasi-isomorphic embedding M ↪→ F of D-complexes
on XS which is an isomorphism on X<n and coincides with αn on Xn.28

In particular, every M ∈ CM(XS) admits a flabby resolution F (which means
that each FXn is flabby). This implies the next lemma and remark in the usual
way.

Let iY : YI ↪→ XI , I ∈ S, be closed subspaces such that for every diagonal em-
bedding XI ⊂ XJ one has YI = XI∩YJ . Let jV : VI := XIrYI be the complemen-
tary open embeddings. These spaces form S◦-diagrams Y , V of closed embeddings.
Let M(XS)Y ⊂M(XS) be the full subcategory of D-modules supported on Y . The
functor j∗V identifies M(V ) with the quotient abelian category M(XS)/M(XS)Y .
It admits right adjoint jV ∗ : M(V )→M(XS), (jV ∗N)XI = jVI∗NVI

.

Lemma. The functor D(M(XS)Y ) → DM(XS) is fully faithful; its essential
image is the thick subcategory DM(XS)Y ⊂ DM(XS) of complexes acyclic on V .
The functor j∗V induces an equivalence DM(XS)/DM(XS)Y

∼−→ DM(V ). It admits
right adjoint RjV ∗; one has (RjV ∗N)XI = RjVI∗NVI

. For any M ∈ DM(XS) there
is a canonical exact triangle MY → M → RjV ∗j

∗
VM where MY ∈ DM(XS)Y . If

M is admissible then so are all terms of the triangle. �

Remark. Suppose each YI is smooth. By Kashiwara’s lemma the functor
iY ∗ : M(Y )→M(XS) identifies M(Y ) with M(XS)Y . It admits a left adjoint i!Y :
M(XS) → M(Y ). We have the right derived functor Ri!Y : DM(XS) → DM(Y ),
and MY from the above lemma equals iY ∗Ri!YM .

(iv) A D-complex M on XS yields a complex DR(M) of !-sheaves on XS,
DR(M)XI := DR(MXI ). The DG functor DR : CM(XS) → CSh!(XS) preserves
quasi-isomorphisms and sends admissible complexes to admissible complexes, so we
have the exact functors DR : DM(XS) → D(XS), DM(R(X)) → D(R(X)). Set
ΓDR(XS,M) := Γ(XS, DR(M)) and RΓDR(XS,M) := RΓ(XS, DR(M)). These
complexes carry the Cousin filtrations coming from the Cousin filtrations on Γ
and RΓ. For an admissible M we write Hi

DR(R(X),M) := HiRΓDR(R(X),M),
Hi
DR(R(X)n,M) := Hi(RΓDR(R(X),M)n).

We will also consider the canonical nice resolution D̃R of DR (see 4.2.1) and
write ΓgDR(XS,M) := Γ(XS, D̃R(M)).

Remark. The complexes DR(M) are usually not nice. For example, for any
non-zero N ∈M(X) the complex DR(∆(S)

∗ N) (see 3.4.10) is not nice.

If we are in the situation of the above lemma, then, applying RΓDR to its exact
triangle, we get an exact triangle (here RΓDR(XS,M)Y := RΓDR(XS,MY ))

(4.2.6.1) RΓDR(XS,M)Y → RΓDR(XS,M)→ RΓDR(XS, RjV ∗j
∗
VM).

One also has RΓDR(XS, RjV ∗j
∗
VM) = RΓDR(V, j∗VM).

(v) A D-complex M on XS also yields a complex h(M) of !-sheaves on XS,
hence the filtered complex Γ(XS, h(M)). The canonical projections D̃R(M) →

28Our conditions define F on XSn . Suppose |I| > n. Define FXI as the quotient of

MXI ⊕ ( ⊕
T∈Q(I,n)

∆
(I/T )
∗ FT ) modulo the sum of the images of the maps (θ(I/T ),−∆

(I/T )
∗ (αn)) :

∆
(I/T )
∗ MXT ↪→MXI ⊕∆

(I/T )
∗ FXT .
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DR(M)→ h(M) yield morphisms of filtered complexes

(4.2.6.2) ΓgDR(XS,M)→ ΓDR(XS,M)→ Γ(XS, h(M)).

4.2.7. Dolbeault resolutions. One can represent RΓDR(XS, ·) by appropri-
ate functorial complexes.

Namely, let Q = QX be a Dolbeault DX -algebra (see 4.1.3). According to 3.4.9
and 3.4.20, it gives rise to a commutative factorization DG algebra which we denote
also by Q by abuse of notation. Thus for every n ≥ 1 we have a commutative DG
DXn-algebras QXn . We will call such a factorization algebra a Dolbeault DR(X)-
algebra.

Lemma. Every QXn is a Dolbeault DXn-algebra.

Proof. Condition (a) of 4.1.3 holds since it obviously holds on the level of the
Cousin complexes. Condition (b) follows from Remark (i) in 3.4.4. By construction,
QXn is a Q�n

X -algebra, so one has an affine morphism Spec QXn → (Spec QX)n. The
latter is an affine scheme which implies condition (c). �

Let M be a right D-complex M on XS. The above lemma together with
(4.1.4.1) show that DR(M ⊗ Q) satisfies condition (a) of 4.2.2. Thus, by Remark
(i) in loc. cit., the complex D̃R(M⊗Q) is handsome, so we have a canonical filtered
quasi-isomorphism

(4.2.7.1) ΓgDR(XS,M ⊗ Q) ∼−→ RΓDR(XS,M).

4.2.8. ⊗∗ compatibilities. According to 3.4.10 the category M(XS) carries
two canonical tensor structures ⊗∗ and ⊗ch.

The de Rham functor is a pseudo-tensor functor in an evident way:

(4.2.8.1) DR : CM(XS)∗ → CSh!(XS)∗.

Lemma. The functor

(4.2.8.2) ΓDR(XS, ·) : CM(XS)∗ → CF (k)⊗

is actually a tensor functor.

Proof. ΓDR(XS, ·) is a pseudo-tensor functor by (4.2.8.1) and (4.2.5.2). We
want to show that the compatibility arrows (see 1.1.6(ii)) are isomorphisms; this
follows from the fact that Γ(XtIα , DR(�MαXIα )) = ⊗Γ(XIα , DR(MαXIα )). �

Composing DR and ΓDR(XS, ·) with P 7→ P̃ (see 4.2.1 and 4.2.5), we get
pseudo-tensor functors

(4.2.8.3) D̃R : CM(XS)∗ → CSh!(XS)∗,

(4.2.8.4) ΓgDR(XS, ·) : CM(XS)∗ → CF (k)⊗.

Let Q ∈ CM`(R(X)) be any commutative factorization algebra. Then M 7→
M ⊗ Q (see 4.2.6(ii)) is a pseudo-tensor endofunctor of M(XS)∗. Namely, the
compatibility morphisms ⊗∗(Mα ⊗ Q)→ (⊗∗Mα)⊗ Q (see 1.1.6(ii)) are formed by
the maps �(MXIα ⊗QXIα ) = (�MXIα )⊗(�QXIα )→ (�MXIα )⊗QXtIα where the
arrow is the tensor product of the identity map for �MXIα and the factorization
product for Q.
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Suppose that Q is a Dolbeault algebra. Composing (4.2.8.4) with · ⊗Q, we get
a pseudo-tensor functor

(4.2.8.5) ΓgDR(XS, · ⊗ Q) : CM(XS)∗ → CF (k)⊗.

Since the compatibility morphisms for · ⊗ Q are quasi-isomorphisms, it descends,
by (4.2.7.1), to a tensor functor

(4.2.8.6) RΓDR(XS, ·) : DM(XS)∗ → CF (k)⊗.

Notice that h : M(XS)∗ → Sh!(XS)∗ is evidently a pseudo-tensor functor, so
composing it with Γ(XS, ·), we get a pseudo-tensor functor

(4.2.8.7) Γ(XS, h(·)) : CM(XS)∗ → CF (k)⊗.

Morphisms (4.2.6.2) are actually morphisms of pseudo-tensor functors.

4.2.9. Cousin D-complexes. Repeating the construction from 4.2.3, we
see that a D-complex M on XS defines a complex MR(X)o

n
of D-modules on ev-

ery R(X)on. One has DR(MR(X)o
n
) = DR(M)R(X)o

n
, so, by (4.2.3.1), for M ∈

DM(R(X)) we get a canonical quasi-isomorphism

(4.2.9.1) grnRΓDR(R(X),M) ∼−→ RΓDR(R(X)on,M)

and the Cousin spectral sequence Ep,qr converging to H ·
DR(R(X),M) with the first

term

(4.2.9.2) Ep,q1 = Hp+q
DR (R(X)o−p,M).

There is an exact fully faithful functor

(4.2.9.3) j
(n)
R∗ : M(R(X)on) ↪→M(XS)

defined by (j(n)
R∗N)XI := ⊕

T∈Q(I,n)
∆(I/T )
∗ j

(I)
∗ NU(T ) , N ∈ M(R(X)on). Here NU(T )

is the pull-back of N by the étale projection U (T ) → R(X)on. One has N =
(j(n)

R∗N)R(X)o
n
.

Notice that for N as above and a left D-module L on R(X) one has L⊗j(n)
R∗N =

j
(n)
R∗ (LR(X)o

n
⊗ N), so the image of j(n)

R∗ is preserved by the action of the tensor
category M`(R(X)).

A Cousin D-complex on R(X) is a complex M of right D-modules on XS such
that M−n ∈ j(n)

R∗ (M(R(X)on)) (in particular, Ma = 0 for a ≥ 0). Such M is auto-
matically admissible. Cousin D-complexes form an abelian category Cous(R(X)).

Remark. Clearly, the functor Cous(R(X)) → DM(R(X)) is a fully faithful
embedding. In fact, Cous(R(X)) is the core of a certain canonical t-structure on
DM(R(X)).

Let M be a Cousin D-complex. According to (4.2.9.1) we have a canonical
quasi-isomorphism

(4.2.9.4) grnRΓDR(R(X),M) ∼−→ RΓDR(R(X)on,M
−n).

Since dim R(X)on = n, the cohomology groups Hi
DR(R(X),M) vanish for i > 0.
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4.2.10. Lemma. The morphisms Ha
DR(R(X)n,M) → Ha

DR(R(X),M) are
surjective for a > −n and are isomorphisms for a > −n + 1. If X is affine,
then this is true, respectively, for a > −n− 1 and a > −n.

Proof. We use (4.2.9.4). If X is affine, then so are the varieties R(X)om. So the
groups HagrmRΓDR(R(X),M) vanish for a > −m, which implies our statement. If
X is compact, then we consider a coordinate projection U (m) → X. It is affine and
X is a curve, so Ha

DR(U (m),M−m) = 0 for a > 1. Since Ha
DR(R(X)om,M

−m) ⊂
Ha
DR(U (m),M−m), we see that HagrmRΓDR(R(X),M) = 0 for a > −m + 1, and

we are done. �

4.2.11. Chiral homology: definition. For the rest of this chapter we as-
sume (if not explicitly stated otherwise) that X is proper and connected. We work
in the DG setting skipping the letters “DG” whenever possible, so “chiral algebra”
means “DG chiral super algebra”; a chiral algebra which sits in degree 0 is called a
“plain chiral algebra”.

Let A be a not necessary unital chiral algebra onX. Consider the corresponding
Chevalley-Cousin complex C(A) ∈ CM(XS) as defined in 3.4.11. This complex is
obviously admissible, so C(A) is a D-complex on R(X). If A is a plain chiral
algebra, then C(A) is a Cousin complex. We define the chiral homology of X with
coefficients in A or, simply, the chiral homology of A as the de Rham cohomology
of C(A):

(4.2.11.1) Cch(X,A) := RΓDR(R(X), C(A)), Hch
a (X,A) := H−aCch(X,A).

Since Cch preserves quasi-isomorphisms, it can be considered as a functor on
the homotopy category HoCA(X) (see 3.3.13).

One has C(A)R(X)o
n

= (Symn(A[1]))R(X)o
n

(here Symn is the exterior symmetric
power), so the Cousin spectral sequence (4.2.9.2) converging to Hch

n (X,A) looks as

(4.2.11.2) E1
p,q = H−p−q

DR (R(X)op,Symp(A[1])).

Remark. The Cousin filtration on Cch(X,A) seems not to be a part of any
fundamental structure and plays mere technical role. In most cases the spectral
sequence is highly non-degenerate (of course, it degenerates when µA = 0) and of
no help for computations.

Following the notation from 2.1.12, for a plain chiral algebra A we can rewrite
(4.2.11.2) as

(4.2.11.3) E1
p,q = HDR

p+q(R(X)op,Λ
p
extA).

Here the D-module ΛpextA on R(X)op is Symp(A[1])R(X)o
p
[−p]. Notice that the vector

spaces Hch
a (X,A) vanish for a < 0.

4.2.12. Chiral chain complexes. For a chiral algebra A we have defined
Cch(X,A) as an object of the derived category. Often it is important to represent it
by means of some actual functorial complexes; we refer to any such construction as
a chiral chain complex. One defines a chiral chain complex replacing DR(C(A)) by
a quasi-isomorphic handsome complex (see 4.2.2). Two nuisances had to be dealt
with: the global one (each complex DR(C(A)Xn) needs to be resolved in order to
compute RΓDR(X,C(A)Xn)) and the local one (the complexes DR(C(A)) are not
nice). The global problem is treated by means of Dolbeault resolutions (or their
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non-quasi-coherent version; see 4.2.15). To make DR(C(A)) nice, one can either
replace DR by its canonical nice resolution D̃R or use a modified de Rham functor
from 2.2.10. One gets chiral chain complexes denoted, respectively, by C̃ch(X,A)Q

and Cch(X,A)PQ. Another possibility is to use forms with logarithmic singularities
along the diagonals; it leads to the complex Cchlog(X,A)Q to be discussed in 4.2.14.

Let us define the first chiral chain complex C̃ch. Choose a Dolbeault DX -
algebra Q and set AQ := A⊗ Q. Our complex is C̃ch(X,A)Q := ΓgDR(XS, C(AQ)).
Since C(AQ) = C(A) ⊗ Q, we have a canonical filtered quasi-isomorphism (see
(4.2.7.1))

(4.2.12.1) C̃ch(X,A)Q
∼−→ Cch(X,A).

Unfortunately, the complex C̃ch(X,A)Q is unpleasantly huge. Indeed, its sub-
quotient grnC̃ch(X,A)Q comprises, apart from relevant sections of A�n

Q over U (n),
a pile of contractible debris from lower dimensional strata. The chiral chain com-
plexes Cch(X,A)PQ we are going to consider next have the advantage of being
reasonably small.

To define it, we need to choose, apart from Q, a (non-unital) commutative DX -
algebra resolution εP : P → OX such that P>0 = 0 and each Pa is DX -flat (see
2.2.10). For example, one can take P from Example in 2.2.10.

Consider the non-unital chiral algebra APQ := A⊗P⊗Q. The promised chiral
chain complex is Cch(X,A)PQ := Γ(XS, h(C(APQ))).

Proposition. There is a canonical filtered quasi-isomorphism

(4.2.12.2) Cch(X,A)PQ
∼−→ Cch(X,A).

Proof. The quasi-isomorphisms A → AQ ← APQ yield one Cch(X,A) ∼−→
Cch(X,APQ). Consider a canonical morphism p : DR(C(APQ)) → h(C(APQ))
in CSh!(XS). We will show that (i) p is a quasi-isomorphism (thus h(C(APQ)) is
admissible), and (ii) h(C(APQ)) is handsome. Now (i) implies that Cch(X,APQ) ∼−→
RΓ(XS, h(C(APQ))), and (ii) implies that Cch(X,A)PQ

∼−→ RΓ(XS, h(C(APQ)))
(see 4.2.2). Our (4.2.12.2) is the composition.

(i) Consider the Cousin filtration on C(APQ)XI . It splits (in a way that
does not respect the differential), so it suffices to show that DR(grC(APQ)XI ) →
h(grC(APQ)XI ) is a quasi-isomorphism. This follows since P�T is DXT -flat, for
grC(APQ)XI is a direct sum of complexes ∆(I/T )

∗ ((j(T )
∗ j(T )∗(AQ[1]�T ))⊗ P�T ).

(ii) h(C(APQ)) is evidently nice and satisfies condition (b) of 4.2.2. To check
condition (a) of loc. cit., it suffices, by the above argument, to verify that each term
of the complex h(j(I)∗ j(I)∗(AQ[1]�I)⊗ P�I) has no higher cohomology. In fact, for
every Q�I [DXI ]-module N and a DXI -flat DXI -module R the sheaf h(N ⊗R) has
no higher cohomology. Indeed, the complex DR(N ⊗ R) is a left resolution of
h(N ⊗R), and each term of this resolution has no higher cohomology by condition
(c) of 4.1.3. �

Lemma. One has

(4.2.12.3) grnCch(X,A)PQ
∼−→ Γ(U (n), h((APQ[1])�n))Σn

.
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Proof. It suffices to show that

(4.2.12.4) h(j(n)
∗ j(n)∗(APQ)�n) ∼−→ j

(n)
∗ j(n)∗h((APQ)�n).

We will check this replacing the complex (APQ)�n by each of its terms. As in
the end of the proof of the proposition, these are direct sums of modules of type
N ⊗R where R is DXI -flat; hence DR(N ⊗R) is a left resolution of h(N ⊗R) and
DR(j(n)

∗ j(n)∗N ⊗R) is a left resolution of h(j(n)
∗ j(n)∗N ⊗R). Since the latter com-

plex equals j(n)
∗ j(n)∗DR(N⊗R) = Rj

(n)
∗ j(n)∗DR(N⊗R), we see that h(j(n)

∗ j(n)∗N⊗
R) ∼−→ Rj

(n)
∗ j(n)∗h(N ⊗ R). Thus, being a mere sheaf, h(j(n)

∗ j(n)∗N ⊗ R) equals
j
(n)
∗ j(n)∗h(N ⊗R), and we are done. �

Therefore we have an identification of mere graded modules

(4.2.12.5) Cch(X,A)PQ = ⊕
n≥1

Γ(U (n), h((APQ[1])�n))Σn ,

the Cousin filtration is the filtration by n.
The canonical morphism APQ → AQ provides filtered quasi-isomorphisms

(4.2.12.6) Cch(X,A)PQ ← C̃ch(X,AP)Q → C̃ch(X,A)Q

which compare the two types of chiral chain complexes.

Remark. One can define the chiral homology functor directly by formulas
(4.2.12.1) or (4.2.12.2). One has to show then that our complexes as objects of the
filtered derived category do not depend on the auxiliary choice of Q or P, Q. This
follows from the lemma in 2.2.10 (or rather the remarks after it) and the second
lemma in 4.1.3.

4.2.13. A digression on forms with logarithmic singularities. The
material of 4.2.13 and 4.2.14 will not be used in the subsequent sections and can be
skipped.

We will construct another chiral chain complex Cchlog(X,A)Q using forms with
logarithmic singularities along the diagonal divisor. This section collects some basic
facts about the logarithmic de Rham complex.

For I ∈ S consider the de Rham DG algebra DRXI which is contained in
the larger DG algebra j(I)∗ j(I)∗DRXI of forms with possible singularities along the
diagonal divisor. Let DRlog

XI ⊂ j
(I)
∗ j(I)∗DRXI be the DG subalgebra generated by

OXI and 1-forms df/f where f = 0 is an equation of a component of the diagonal
divisor. It carries an increasing filtration W0 ⊂ W1 ⊂ · · · where W0 = DRXI and
Wa is the DRXI -submodule generated by the products of ≤ a forms df/f as above.

Proposition. (i) The embedding ι : DRlog
XI ↪→ j

(I)
∗ j(I)∗DRXI is a quasi-

isomorphism.
(ii) There is a canonical identification (cf. (3.1.10.1))

(4.2.13.1) grWa DR
log
XI

∼−→ ⊕
T∈Q(I,|I|−a)

∆(I/T )
· DRXT ⊗ Lie∗I/T ⊗ (λI/λT )[−a].

Proof. Recall (see 3.1.7 and (3.1.10.1)) that j(I)∗ j(I)∗ωXI = j
(I)
∗ j(I)∗ω�I

X ⊗λI ∈
M(XI) has a canonical filtration W· with grW−`j

(I)
∗ j(I)∗ωXI = ⊕

T∈Q(I,`)
∆(I/T )
∗ ωXT ⊗

Lie∗I/T ⊗ (λI/λT ). For the corresponding filtration on the de Rham complex one
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has grW` DR(j(I)∗ j(I)∗ωXI ) = ⊕
T∈Q(I,−`)

DR(∆(I/T )
∗ ωXT ) ⊗ Lie∗I/T ⊗ (λI/λT ). Set

ΦT := ∆(I/T )
· DR(ωXT ) ⊗ Lie∗I/T ⊗ (λI/λT ). The usual quasi-isomorphic embed-

dings ∆(I/T )
· DR(ωXT ) ↪→ DR(∆(I/T )

∗ ωXT ) define a quasi-isomorphic embedding
Φ`XI := ⊕

T∈Q(I,−`)
ΦT ↪→ grW` DR(j(I)∗ j(I)∗ωXI ).

One has DR(j(I)∗ j(I)∗ωXI ) = j
(I)
∗ j(I)∗DRXI [I]. Set DRlog(ωXI ) := DRlog

XI [I],
so we have an embedding ι : DRlog(ωXI ) ↪→ DR(j(I)∗ j(I)∗ωXI ). Define the W

filtration on DRlog(ωXI ) by W`DR
log(ωXI ) := (W`+|I|DR

log
XI )[I]. We will show

that ι is compatible with the W filtrations and

(4.2.13.2) grW` ι : grW` DR
log(ωXI ) ∼−→ Φ`XI ⊂ grW` DR(j(I)∗ j(I)∗ωXI ).

This implies the proposition.
Let us check that ι sends W` to W` and that the image of grW` ι lies in Φ`XI . By

induction we can assume that the statement is known for every `′ < `. A section of
W`DR

log(ωXI ) is a linear combination of forms of type µ = ν∧df1/f1∧· · ·∧dfa/fa
where a = |I| + `, the fi are local equations of some irreducible components of
the diagonal divisor, and ν is a regular form. We can assume that the divisors
fi = 0 have normal crossings (otherwise our form lies in W`−1); let XT be their
intersection. If µ has top degree, then it evidently lies in W`j

(I)
∗ j(I)∗ωXI . Its image

µ̄ in grW` j
(I)
∗ j(I)∗ωXI is killed by multiplication by each fi; hence µ̄ ∈ ΦT . If µ is

not of top degree, then it can be written as a convolution of a similar form of top
degree with a polyvector field along the fibers of the projection (fi) : XI → Aa;
hence µ ∈W`DR(j(I)∗ j(I)∗ωXI ) and its image in grW` j

(I)
∗ j(I)∗ωXI lies in ΦT .

The surjectivity of grW` ι : grW` DR
log(ωXI ) → Φ`XI follows from the above

argument together with the fact that the Aut(I/T )-module Lie∗I/T ⊗ (λI/λT ) is
irreducible.

It remains to show that grW` ι is injective. By surjectivity it suffices to check that
for µ ∈ DRlog(ωXI )∩W`DR(j(I)∗ j(I)∗ωXI ) its image µ̄ ∈ grW` DR(j(I)∗ j(I)∗ωXI ) lies
in Φ`XI . We will prove this by induction by |I|. The case ` ≤ −|I| is evident, so
we can assume that ` > −|I|.

Consider the residue map r : j(I)∗ j(I)∗ωXI → ⊕
T∈Q(I,|I|−1)

∆(I/T )
∗ j

(T )
∗ j(T )∗ωXT .

It sends the subcomplex DRlog(ωXI ) ⊂ DR(j(I)∗ j(I)∗ωXI ) to the sum of subcom-
plexes ∆(I/T )

· DRlog(ωXT ) ⊂ DR(∆(I/T )
∗ j

(T )
∗ j(T )∗ωXT ).

The kernel of r equals ωXI = W−|I|j
(I)
∗ j(I)∗ωXI and r is strictly compatible

with W filtrations (see 3.1.6 and 3.1.7). Therefore grW` r is injective. Thus Φ`XI =
r−1(⊕∆(I/T )

· Φ`XT ). So we need to check that r(µ̄) ∈ ⊕∆(I/T )
· Φ`XT . Since r(µ) ∈

⊕∆(I/T )
· DRlog(ωXT ), this follows from the induction assumption. �

Remark. Another way to prove the above proposition is to notice that we can
assume that X = A1 and use then the Orlik-Solomon theorem [OS].

4.2.14. Now we can define the promised chiral chain complex Cchlog(X,A)Q.
We assume that A is unital. Let A`

XS be the corresponding factorization algebra
(see 3.4.9). This is a left D-module on XS, and one has a canonical isomorphism
C(ω)⊗A`

XS

∼−→ C(A) of right D-modules on XS (see (3.4.13.1)).
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Consider the Cousin complex C(ω)XI , I ∈ S. As a mere graded module, it is the
sum of components ∆(I/T )

∗ j
(I/T )
∗ j(I/T )∗(ωX [1])�T = ∆(I/T )

∗ j
(I/T )
∗ j(I/T )∗ωXT [|T |],

T ∈ Q(I). Then ∆(I/T )
· DRlog(ωXT )[|T |] ⊂ DR(∆(I/T )

∗ j
(I/T )
∗ j(I/T )∗ωXT )[|T |] form

a DG DRXI -submodule of DR(C(ω)XI ) which we denote by DRClog
XI . When I

varies, we get a !-subcomplex DRClog ⊂ DR(C(ω)).
Now consider DG DRXI -modules DRlog(AXI ) := DRlog(ωXI ) ⊗ A`XI and

DRClog(A)XI := DRClog
XI ⊗ A`XI . Since A`XI is flat along the diagonals, one has

∆(I/T )
· DRlog(ωXT )[T ] ⊗ A`XI

∼−→ ∆(I/T )
· DRlog(AXT )[T ], so there is a canonical

identification of mere graded modules

(4.2.14.1) DRClog(A)XI
∼−→ ⊕

T∈Q(I)
∆(I/T )
· DRlog(AXT )[T ].

The obvious embedding DRlog(ωXI ) ↪→ DR(j(I)∗ j(I)∗ωXI ) yields a morphism
DRlog(AXI ) → DR(j(I)∗ j(I)∗AXI ) = DR(j(I)∗ j(I)∗(AX [1])�I)[−|I|] which is an
injective quasi-isomorphism by (4.2.13.2) since A`XI is flat along the diagonals.
Similarly, we have a quasi-isomorphic embedding DRClog(A)XI ↪→ DR(C(A))XI .
When I varies, we get a quasi-isomorphic embedding of !-complexes on XS

(4.2.14.2) DRClog(A) ↪→ DR(C(A)).

The !-complex DRClog(A) is admissible by (4.2.14.1) and (i) in the proposition
in 4.2.13, and nice according to (4.2.14.1).29 Choose a Dolbeault DX -algebra Q

and set AQ := A ⊗ Q. Then DRClog(AQ) is handsome.30 Set Cchlog(X,A)Q :=
Γ(XS, DRClog(AQ)). According to 4.2.2, the arrow (4.2.14.2) defines a filtered
quasi-isomorphism

(4.2.14.3) Cchlog(X,A)Q
∼−→ Cch(X,A).

The chiral chain complexes Cchlog(X,A)Q and C̃ch(X,A)Q (see 4.2.12) are con-
nected by natural quasi-isomorphisms. Consider the morphisms DRClog(AQ) ←
D̃RC log(AQ) → D̃R(C(AQ)) where the left arrow is the canonical nice resolution
(see 4.2.1) and the right one comes from (4.2.14.2). Applying Γ(XS, ·), we get the
promised quasi-isomorphisms

(4.2.14.4) Cchlog(X,A)Q ← Γ(XS, D̃RC log(AQ))→ C̃ch(X,A)Q.

4.2.15. Variant. Sometimes it is convenient to use instead of Q some non-
quasi-coherent Dolbeault-style algebras; see 4.1.4. Namely (cf. 3.4.2), suppose that
for each I ∈ S we are given a Dolbeault-style DXI -algebra QXI and for each
π : J � I a horizontal morphism of unital DG OXI -algebras ν(π) = ν(J/I) :
∆(J/I)∗QXJ → QXI ; one assumes that the ν(π) are compatible with the composi-
tion of the π’s, ν(idI) = idQXI

. Let us call such datum a Dolbeault-style DR(X)-
algebra. For example, for k = C and X compact the classical Dolbeault algebras
on XI (see 4.1.4) form a Dolbeault-style DR(X)-algebra. Of course, any Dolbeault
DR(X)-algebra (see 4.2.7) is automatically a Dolbeault-style DR(X)-algebra.

Now such Q defines a resolution C(A)Q of C(A). As a mere graded (non-
quasi-coherent) DXI -module, C(A)QXI is equal to the direct sum of components

29Notice that DR(C(A)) is not nice.
30Properties (a) and (b) from 4.2.2 are evident.



310 4. GLOBAL THEORY: CHIRAL HOMOLOGY

∆(I/T )
∗ (j(T )

∗ j(T )∗(A[1])�T ⊗ QXT ); the definition of the differential is left to the
reader. If Q is a Dolbeault DR(X)-algebra, then C(A)Q = C(A)⊗ Q = C(AQ).

One can use C(A)Q in the same way that we have used the Dolbeault resolutions
in the previous sections. Therefore we have the corresponding chiral chain com-
plexes C̃ch(X,A)Q := Γ(XS, D̃R(C(A)Q)), Cch(X,A)PQ := Γ(XS, h(C(AP)Q)),
Cch(X,A)Q := Γ(XS, DRClog ⊗ Q⊗A`

XS), etc. The details are left to the reader.

4.2.16. The 0th chiral homology. For a plain chiral algebra A set 〈A〉 =
〈A〉(X) := Hch

0 (X,A). By construction and 3.4.12 one has

(4.2.16.1) 〈A〉 = lim−→HDR
0 (XI , AXI )

(the inductive limit of the S◦-system of vector spaces). It follows from 4.2.10 that

(4.2.16.2) 〈A〉 = Coker(H1
DR(U, j∗A�2)→ H1

DR(X,A))

where the arrow comes from the chiral product µ : j∗j∗A�A→ ∆∗A.
Suppose A is commutative. Then, by (4.2.16.2) and 2.4.5, 〈A〉 coincides with

the same noted vector space from 2.4.1. Therefore 〈A〉 is a commutative unital

algebra. Its product · is31 the quotient map of the composition HDR
0 (X,A)⊗2 �−→

HDR
0 (X×X,A�2)→ HDR

0 (X×X,AX2)→ 〈A〉; here the last arrow is the canonical
morphism and the middle one comes since A�2 ⊂ AX2 .

Example. For the unit chiral algebra ω the identification Hch
0 (X,ω) = 〈ω〉 ∼−→

k comes from the trace isomorphisms HDR
0 (XI , ωXI ) ∼−→ k.

For any unital chiral algebra A we denote by 1ch = 1chA ∈ 〈A〉 the image of
1 ∈ 〈ω〉 = k by 1A.

4.2.17. The construction of 4.2.16 can be rendered to the DG setting as follows.
For a DG super chiral algebra A let A♥ be a copy of A considered as a plain
super chiral algebra equipped with an extra Z-grading and an odd derivation δ of
degree 1 and square 0. Set 〈A〉 := 〈A♥〉; the Z-grading and δ make it a super
complex. Similarly, Cch(X,A♥) is naturally a complex in the abelian category
CVects of super complexes. Let HaCch(X,A♥) ∈ CVects be its cohomology and
τC≤0C

ch(X,A♥) the corresponding truncation. Since H0Cch(X,A♥) = 〈A〉, one has
a projection τC≤0C

ch(X,A♥)→ 〈A〉.
A complex in CVects is the same as a super bicomplex, and we can pass

to the total super complex. Then Cch(X,A♥) becomes Cch(X,A); denote by
τC≤0C

ch(X,A) the total complex of τC≤0C
ch(X,A♥). Since H>0Cch(X,A♥) = 0,

the map τC≤0C
ch(X,A)→ Cch(X,A) is a quasi-isomorphism. So the above projec-

tion yields a canonical morphism in the derived category

(4.2.17.1) φA : Cch(X,A)→ 〈A〉.

Question. Is it true that Cch is equal to the left derived functor of the functor
〈 〉? In other words, can one find for every A a morphism of chiral algebras A′ → A
which is a quasi-isomorphism and such that (4.2.17.1) for A′ is a quasi-isomorphism?

If A is commutative, then 〈A〉 is a commutative DG algebra in a natural way,
and the canonical morphism of DX -modules A` → 〈A〉 ⊗OX is a morphism of DG

31See, e.g., the proof of 2.4.5.
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commutative DX -algebras which identifies the right-hand side with the maximal
constant DX -algebra quotient of A`X (see 2.4.1–2.4.5).

We will see in 4.6.1 that the above question has a positive answer if we restrict
ourselves to commutative chiral algebras.

4.2.18. Compatibility with filtrations. A filtration A0 ⊂ A1 ⊂ · · · on a
(not necessary unital) chiral algebra A (see 3.3.12) yields an admissible filtration
C(A)0 ⊂ C(A)1 ⊂ · · · on C(A). Namely, for I ∈ S set (A[1])�I

n :=
∑
⊗
i∈I

(Ali [1]) ⊂

(A[1])�I , the summation is over the set of all collections (li) ∈ ZI≥0 such that
∑
i∈I

li ≤

n. Now one has C(A)nXI := ⊕
T∈Q(I)

∆(I/T )
∗ j

(T )
∗ j(T )∗(A[1])�T

n (see (3.4.11.1)).

Our filtration on C(A) yields a filtration on Cch(X,A). Since grC(A) =
C(grA), one has

(4.2.18.1) grCch(X,A) = Cch(X, grA).

So one has a spectral sequence converging to Hch
· (X,A) with

(4.2.18.2) E1
p,q = Hch

p+q(X, grA)p.

Here the upper index p is the grading on Hch(X, grA) that comes from the grading
gr·A.

The compatibility with filtrations can be seen on the level of concrete chiral
chain complexes C̃ch(X,A)Q and Cch(X,A)PQ from 4.2.12. Here it is convenient
to choose the Dolbeault algebra Q so that each component Qi is OX -flat. Then
An⊗Q, An⊗P⊗Q form filtrations on AQ and APQ. The corresponding filtrations
on the Chevalley-Cousin complexes satisfy grC(AQ) = C(grAQ) and grC(APQ) =
C(grAPQ). They yield filtrations on C̃ch(X,A)Q, Cch(X,A)PQ, and

(4.2.18.3) gr·C̃ch(X,A)Q = C̃ch(X, gr·A)Q, gr·Cch(X,A)PQ = Cch(X, gr·A)PQ

(the second equality needs an argument similar to the one used in the proof of the
proposition in 4.2.12; the details are left to the reader).

Example. Every A carries a (non-unital) filtration A0 = 0, A1 = A.32 The
corresponding filtration on Cch(X,A)PQ is the Cousin filtration.

4.2.19. Chiral homology with coefficients. (i) Let A be a (not necessarily
unital) chiral algebra and {Ms}, s ∈ S, a finite family of (possibly non-unital) chiral
A-modules.

Consider the chiral algebra A{Ms} := A⊕ (⊕Ms[−1]) (see 3.3.5(i)). The homo-
theties of Ms define a GS

m-action on A{Ms}. Therefore C(A{Ms}) is a ZS-graded
complex. Denote by C(A, {Ms}) its component of degree 1S . Set

(4.2.19.1) Cch(X,A, {Ms}) := RΓDR(R(X), C(A, {Ms}))

and Hch
a (X,A, {Ms}) = Hch

a (A, {Ms}) := H−aCch(X,A, {Ms}); this is a chiral
homology of A with coefficients in {Ms}. In other words, Cch(X,A, {Ms}) is the
component of degree 1S of Cch(X,A{Ms}). If S = ∅, we get the chiral homology of
A. Our complex is equipped with the Cousin filtration which is the translation by
|S| of the filtration induced by the Cousin filtration of Cch(X,A{Ms}).

32Notice that this filtration is commutative (see 3.3.12).
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If all the Ms are equal to M , we write Cch(X,A,MS) := Cch(X,A, {Ms}); if
|S| = 1, we write simply Cch(X,A,M).

Let us describe Cch(X,A, {Ms}) a bit more explicitly. Denote by SS the cate-
gory whose objects are non-empty finite sets equipped with an embedding S ↪→ I;
morphisms are surjections identical on S. We have an S◦S-diagram of closed embed-
dings XSS , I 7→ XI which carries a D-complex C ′(A, {Ms}) defined as follows.
The graded D-module C ′(A, {Ms})·XI has an additional grading by the subset
Q(I, S) ⊂ Q(I) that consists of all I � T in SS . For such T the correspond-
ing component is ∆(I/T )

∗ j
(T )
∗ j(T )∗((�Ms) � (A[1])�TrS)[|T r S|]. The differential

is the sum of two components: the first one comes from µA and µMs
and the sec-

ond one comes from the differentials on A and Ms. We have an obvious canonical
identification RΓDR(XSS , C ′(A, {Ms})) = Cch(X,A, {Ms}).

We can also use the chiral chain complexes from 4.2.12. Namely, let us de-
fine C̃ch(X,A, {Ms})Q, Cch(X,A, {Ms})PQ as the components of degree 1S of the
complexes C̃ch(X,A{Ms})Q, Cch(X,A{Ms})PQ. Then (4.2.12.1) and (4.2.12.2) yield
canonical quasi-isomorphisms

(4.2.19.2) Cch(X,A, {Ms})PQ
∼−→ Cch(X,A, {Ms})

∼← C̃ch(X,A, {Ms})Q.

As a mere graded module, our Cch(X,A, {Ms})PQ is a direct sum of components
Cchn (X,A, {Ms})PQ := Γ(XS ×Xn, h(j(S+n)

∗ j(S+n)∗(�(MsPQ) � (APQ[1])�n)))Σn ,
n ≥ 0, where MsPQ := Ms ⊗ P⊗ Q.

The chiral chain complexes are functorial with respect to chiral operations
in the following sense. For S � T and a T -family of A-modules Nt each op-
eration ϕ ∈ P chA S/T ({Ms}, {Nt}) := ⊗P chASt

({Ms}, Nt) (see 3.3.4) yields a mor-
phism Cch(ϕ) : Cch(X,A, {Ms})PQ → Cch(X,A, {Nt})PQ; one has Cch(ϕψ) =
Cch(ϕ)Cch(ψ). The same is true for C̃ch complexes.

(ii) Consider the case when S 6= ∅ and each Ms is supported at a single closed
point xs ∈ X. We can assume that these points are pairwise different (otherwise
Cch(X,A, {Ms}) = 0). Let jS : US := X r {xs} ↪→ X be the complement.
Notice that in the definition of the chiral chain complex there occur now only affine
varieties, so there is no need for using the Dolbeault DX -algebra Q. We also do not
need to use P to compute the de Rham cohomology of Ms. Therefore we see that
Cch(X,A, {Ms}) can be represented by a smaller complex Cch(X,A, {Ms})P with
components

(4.2.19.3) Cchn (X,A, {Ms})P := (⊗h(Ms))⊗ Γ(U (n)
S , h((AP[1])�n))Σn

where U
(n)
S is the complement to the diagonal divisor on (US)n, n ≥ 0. The

differential comes from the chiral product on AP and the AP-module structure on
Ms

33 in the usual manner, using the fact that sections of h((AP[1])�n) over U (n)
S

are the same as sections of h(j(n)
∗ j(n)∗(jS∗j∗SAP[1])�n) over the whole of Xn (see

(4.2.12.4)). We can consider Ms as jS∗j∗SA-modules (see 3.6.3) and one has

(4.2.19.4) Cch(X,A, {Ms})P = Cch(X, jS∗j∗SA, {Ms})P.

Sometimes it is convenient to identifyMs with the correspondingAass -module h(Ms)
(see 3.6.7) and to write Cch(X,A, {h(Ms)}) := Cch(X,A, {Ms}), etc.

33Defined by the projection idA ⊗ εP : AP → A.
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The complexes Cch(X,A, {Ms})PQ and Cch(X,A, {Ms})P are connected by
evident natural quasi-isomorphisms

(4.2.19.5) Cch(X,A, {Ms})PQ → Cch(X,AQ, {MsQ})P ← Cch(X,A, {Ms})P.

Suppose in addition that A is a plain chiral algebra and the Ms are plain A-
modules. The spectral sequence converging to Hch

n (X,A, {Ms}) for the Cousin
filtration is

(4.2.19.6) E1
p,q = (⊗h(Ms))⊗HDR

p+q(U
(p)
S , A)sgnΣp

where the right indices mean skew-coinvariants of the action of the symmetric
group. Since U (p)

S is affine, E1
p,q vanishes unless p ≥ q ≥ 0. In particular, one has

Hch
<0(X,A, {Ms}) = 0 and Hch

0 (X,A, {Ms}) is the space of the coinvariants of the
Lie algebra Γ(US , h(A)) acting on ⊗h(Ms).

(iii) The above constructions make sense for families of A-modules. Namely,
suppose Ms is a Ys-family of A-modules where Ys = SpecRs; i.e., Ms is an Rs⊗A-
module. Then Cch(X,A, {Ms})PQ is naturally an ⊗Rs-module, i.e., an O-module
on

∏
Ys. This construction is compatible with the flat base change, so one can take

for Ys any scheme (or an algebraic stack). If the Ms are DYs
-modules (in a way

compatible with the A-action), then Cch(X,A, {Ms})PQ is a D-module on
∏
Ys.

For example, for any A-module M the DX×X -module ∆∗M can be considered
as an X-family of A-modules where A acts along the second variable. Therefore
the A-modules {Ms}, s ∈ S, yield a complex of DXS -modules

(4.2.19.7) Cch(X,A, {Ms})PQ := Cch(X,A, {∆∗Ms})PQ.

One has Cch(X,A, {Ms})PQ = j
(I)
∗ j(I)∗Cch(X,A, {Ms})PQ and Cch(X,A,{Ms})PQ

= Γ(XS , hCch(X,A, {Ms})PQ) = RΓDR(XS ,Cch(X,A, {Ms})PQ). If all Ms are
equal to M , we write Cch(X,A,MS)PQ := Cch(X,A, {Ms})PQ.

As in the end of (i), our complexes are functorial with respect to chiral opera-
tions: every ϕ as in loc. cit. yields a morphism of complexes of DXS -modules

(4.2.19.8) Cch(ϕ) : Cch(X,A, {Ms})PQXS → ∆(S/T )
∗ Cch(X,A, {Nt})PQXT

and Cch(ϕψ) = Cch(ϕ)Cch(ψ) in the obvious sense.

Remark. As in (ii), in the definition of the DXS -complexes Cch(X,A, {Ms})
there is no need to use Q (for S 6= ∅).

4.3. The BV structure and products

The principal result of this section is theorem 4.3.6 which says that the chiral
homology functor commutes with the tensor product. In the case of commutative
algebras and 0th chiral homology this becomes an obvious statement (see 4.2.16
and (ii) in the lemma in 2.4.1): the functor which assigns to a DX -scheme the
space of its horizontal sections commutes with the direct products. The key tool is
a canonical Batalin-Vilkovisky algebra structure on the chiral complex Cch defined
in 4.3.1. Its “classical” counterpart is an 1-Poisson algebra structure on Cch(R)
for a coisson algebra R. If R is any commutative chiral algebra and A a chiral
R-algebra, then Cch(X,R) is a homotopy commutative algebra and Cch(X,A) is
a homotopy Cch(X,R)-module (see 4.3.2 and 4.3.4). In 4.3.3 we show that the
higher chiral homology of the unit chiral algebra ω is trivial by an adaptation of
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the topological argument of the proposition in 3.4.1. The compatibility with tensor
products is proven in 4.3.6 by a closely related argument. After the homotopy
algebra preliminaries of 4.3.7 and 4.3.8 we show in 4.3.9 that the chiral homology
of chiral R-algebras is compatible with the base change of R. This implies, in
particular, that chiral homology is compatible with relative tensor products and
direct products (see 4.3.10 and 4.3.11). It would be very interesting to understand
if the chiral homology of a chiral R-algebra has local origin with respect to Spec 〈R〉
(see 4.3.13 for a more general question); a weaker result is established in 4.3.12.

In 4.3.3–4.3.13 all chiral algebras are assumed to be unital.

4.3.1. The BV structure. For a review of basic facts on homotopy Batalin-
Vilkovisky algebras see 4.1.6–4.1.15.

Proposition. (i) For a (not necessary unital) chiral algebra A the chiral chain
complex Cch(X,A)PQ from 4.2.12 is naturally a BV algebra.

(ii) Suppose that A is commutative. Then the above BV structure is commuta-
tive; i.e., Cch(X,A)PQ is a DG commutative algebra. Therefore Cch(X,A) has a
canonical structure of the homotopy commutative algebra.

(iii) A coisson bracket on A yields a 1-Poisson bracket (see 1.4.18) on the chiral
chain complex. If At is a quantization of the coisson structure (see 3.3.11), then
the BV algebras Cch(X,At)PQ form a BV quantization of the 1-Poisson algebra
Cch(X,A)PQ.

(iv) More generally, an n-coisson bracket on A (see 1.4.18) yields an n + 1-
Poisson bracket on the chiral chain complex.

Proof. (i) Recall that the Chevalley-Cousin complex C(A) is the Chevalley
complex of the Lie algebra ∆(S)

∗ A in the tensor DG category CM(XS)ch (see 3.4.11).
Thus (see 4.1.6) C(A) carries a canonical structure of the BV algebra with respect
to ⊗ch.34 The same is true for C(APQ). By (3.4.10.4) these are automatically BV
algebras with respect to ⊗∗. We are done by (4.2.8.7).

(ii) is clear. The 1-Poisson structure on Cch(X,A)PQ for coisson A comes
from a natural 1-Poisson structure on the commutative algebra C(A) in the tensor
category CM(XS)∗; the definition is left to the reader. The n-coisson brackets are
treated similarly. �

Remarks. (i) Consider the embedding Γ(X,h(ALiePQ )) = Cch1 (X,A)PQ[−1] ↪→
Cch(X,A)PQ[−1]. This is a morphism of Lie algebras, so it extends naturally to a
morphism C̄(Γ(X,h(ALiePQ )))→ Cch(X,A)PQ of BV algebras (see 4.1.8(a)). We get
a canonical morphism of filtered complexes35

(4.3.1.1) C̄(RΓDR(X,ALie))→ Cch(X,A).

Explicitly, on the nth component of the Chevalley complex it is the composition
Symn(Γ(X,h(APQ))[1]) ∼→ Γ(Xn, h((APQ[1])�n))Σn → Γ(U (n), h((APQ[1])�n))Σn .

(ii) The above proposition (and its proof with (4.2.8.7) replaced by (4.2.8.4))
remains true for the chiral chain complex C̃ch(X,A)Q, and quasi-isomorphisms
(4.2.12.6) are compatible with the BV structure.

(iii) The chiral chain complex Cchlog(X,A)Q from 4.2.14 is not a BV algebra for
general A. However it is a commutative BV algebra if A is commutative. Indeed,

34See Remark in 3.4.11 for an explicit description of the BV operations.
35See 4.5.1 for the discussion of the homotopy Lie algebra structure on RΓDR(X, ALie).
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by (4.2.8.1) the complex DR(C(AQ)) is always a BV algebra in CSh!(XS)∗. If
A is commutative then DRClog(AQ) is a subalgebra of DR(C(AQ)) (which is a
commutative BV algebra). Now apply (4.2.5.2).

Quasi-isomorphisms (4.2.14.4) are morphisms of commutative BV algebras.

4.3.2. Further remarks. (i) For a plain commutative unital chiral algebra R
the isomorphism Hch

0 (X,R) ∼−→ 〈R〉 (see 4.2.16) identifies the product on Hch
0 (R)

with the product on 〈R〉 from 2.4.1. More generally, for any commutative R the
morphism φR : Cch(X,R) → 〈R〉 from (4.2.17.1) is naturally a morphism in the
homotopy category of commutative algebras.

(ii) Let R → A be a central morphism of chiral algebras, so A is a chiral R-
algebra. Then, in the same way as above, Cch(X,A)PQ is a Cch(X,R)PQ-module.
In fact, it is a BV Cch(X,R)PQ-algebra. Thus Cch(X,A) carries a canonical struc-
ture of the homotopy Cch(X,R)-module; i.e., it lifts canonically to an object of the
homotopy category of Cch(X,R)-modules.

(iii) If A is a chiral algebra and {Ms} a finite family of A-modules, then the
complex Cch(X,A, {Ms})PQ is a BV Cch(X,A)PQ-module.36 Here are a couple of
ways to use this structure:

(a) Suppose Ns ⊂Ms are DX -submodules such that Cent(Ns) = A (see 3.3.7).
The image of Γ(U (S), h(�NsPQ)) → Γ(U (S), h(�MsPQ)) ⊂ Cch(X,A, {Ms})PQ

consists of Cch(X,A)PQ-central elements, so we have a morphism of complexes
· : Cch(X,A)PQ ⊗ Γ(U (S), h(�NsPQ)) → Cch(X,A, {Ms})PQ, hence a canonical
morphism Cch(X,A)⊗RΓDR(U (S),�Ns)→ Cch(X,A, {Ms}).

(b) Suppose we are in situation (ii) and each Ms is a central R-module (see
3.3.7). Then Cch(X,A, {Ms})PQ is a Cch(X,R)PQ-module; hence Cch(X,A, {Ms})
is naturally a homotopy Cch(X,R)-module.

(iv) Suppose A is any (not necessary unital) chiral algebra equipped with a
commutative filtration A0 ⊂ A1 ⊂ · · · (see 3.3.12). Then the corresponding filtra-
tion on Cch(X,A)PQ (see 4.2.18) is compatible with the BV structure, so Cch(X,A)
is canonically an object of the homotopy category of filtered BV algebras HoBV

(see 4.1.6) which we denote by Cch(X,A·) by abuse of notation.
(v) Let R be a commutative chiral algebra, L a Lie∗ R-algebroid. Then the

Cch(X,R)PQ-module Cch(X,R,L)PQ is naturally a Lie Cch(X,R)PQ-algebroid.37

Indeed, SymRL is a coisson algebra (see 1.4.18, Example (ii)); its bracket shifts the
Z-grading by −1. So, by (iii) in the proposition in 4.3.1, Cch(X,SymRL)PQ is a 1-
Poisson algebra. Now Cch(X,R,L)PQ is the component of Cch(X,SymRL)PQ[−1]
of degree 1.38 The Lie algebroid structure is the restriction of the 1-Poisson struc-
ture.

4.3.3. Proposition. (i) For the unit chiral algebra ω one has Hch
6=0(X,ω) = 0,

so there is a canonical identification Cch(X,ω) ∼−→ 〈ω〉 = k.
(ii) For any unital chiral algebra A the multiplication by the generator 1ch ∈

Hch
0 (X,ω) is the identity endomorphism of Cch(X,A).

Remark. Statement (i) follows from the contractibility of R(X) in the clas-
sical topology (see the proposition in 3.4.1) combined with 4.2.4 and the usual

36This follows from (i) in the proposition in 4.3.1 and the definition of Cch(X, A, {Ms})PQ

in 4.2.19.
37In the non-unital setting.
38See 4.6.4 for a description of the whole Cch(X, SymRL)PQ.
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comparison between the de Rham and topological homology. The argument below
is an algebraic version of the topological proof of the proposition in 3.4.1.

For the chiral homology of ω with arbitrary coefficients see (4.4.7.2).

Proof. Statement (ii) requires an extra construction to be introduced in the
beginning of the proof of theorem 4.3.6; it will be proven in part (iii) of loc. cit.
We deal now with statement (i).

Let tr be the projection Cch(X,ω)→ Hch
0 (X,ω) = k and tr1, tr2 : Cch(X,ω)⊗2

→ Cch(X,ω) the maps tr1(a⊗ b) := tr(b)a, tr2(a⊗ b) := tr(a)b.
We will define a morphism δ : Cch(X,ω) → Cch(X,ω)⊗2 such that ·δ, tr1δ,

and tr2δ are the identity morphisms of Cch(X,ω).
This yields the vanishing. Indeed, suppose Hch

n (X,ω) 6= 0 for some n > 0. Take
the smallest such n; then one has H−nCch(X,ω)⊗2 = Hch

0 (X,ω) ⊗ Hch
n (X,ω) ⊕

Hch
n (X,ω)⊗Hch

0 (X,ω). For h 6= 0 ∈ Hch
n (X,ω) write δ(h) = h1 ⊗ 1ch + 1ch ⊗ h2.

Then hi = triδ(h) = h; hence h = ·δ(h) = 2(1ch · h). Since (1ch)2 = 1ch, we come
to a contradiction.

To define δ, it is convenient to represent Cch(X,ω) not by complexes from
4.2.12, but by means of the Cousin resolution, i.e., as the homotopy direct limit
of the S◦-diagram of complexes I 7→ CI := Γ(XI , DR(CXI )) where CXI is the
(whole) Cousin resolution of ωXI [|I|] = (ω[1])�I . So CI has degrees in the interval
[−2|I|, 0] and we have a canonical trace map trC : CI → k. Now Cch(X,ω)⊗2 can
be represented as the homotopy direct limit of the S◦×S◦-diagram I, J 7→ CI⊗CJ .
Consider another such diagram I, J 7→ CI,J := Γ(XI ×XJ , DR(CXI×XJ )). There
is an obvious quasi-isomorphic embedding of the diagrams CI ⊗ CJ ↪→ CI,J . The
map trC1 := idCI

⊗ trC : CI ⊗CJ → CI extends in the usual way to the morphism
of diagrams trC1 : CI,J → CI and the same for trC2. Similarly, the exterior tensor
product map ◦C : CI ⊗ CJ → CItJ extends to ◦C : CI,J

∼−→ CItJ .
Let δC : CI → CI,I be the morphism of Cousin complexes defined by the

diagonal embeddingXI ↪→ XI×XI . Let us represent Cch(X,ω)⊗2 as the homotopy
direct limit of the diagram CI,J . Our δ is the morphism defined by δC .

It remains to check that the compositions triδ and ·δ are identity morphisms.
Notice that · and tri come from the morphisms of diagrams ◦C , trCi. Since trCiδC
is the identity map, the morphism triδ is the identity. The morphism of diagrams
◦CδC is not the identity, but it becomes canonically homotopic to the identity after
passing to the homotopy limit (by the definition of the homotopy direct limit). �

4.3.4. The unital setting. From now until the end of 4.3 all chiral algebras
are assumed to be unital.

Suppose that R is a commutative chiral algebra. Then, by 4.3.3, the morphism
1R : Cch(X,ω)PQ → Cch(X,R)PQ is a homotopy unit in Cch(X,R)PQ (see 4.1.14).
Therefore, by the proposition in 4.1.14, Cch(X,R) lifts canonicaly to an object of
the homotopy category of unital commutative algebras, which we denote again by
Cch(X,R) by abuse of notation.

If A is a chiral R-algebra, then Cch(X,A)PQ is a homotopy unital Cch(X,R)-
module (see 4.1.14). Thus Cch(X,A) lives naturally in the derived category of the
unital Cch(X,R)-modules. If {Ms} is a finite family of unital A-modules such that
eachMs is a central R-module, then Cch(X,A, {Ms}) is a unital Cch(X,R)-module.

In particular, if 1chR ∈ Hch
0 (X,R) vanishes, then Cch(X,A) = 0. An example:
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Lemma. Let jU : U ↪→ X be an open subset of X, U 6= X. Then for any chiral
algebra A one has Cch(X, jU∗j∗UA) = 0.

Proof. Notice that jU∗j∗UA is a chiral jU∗OU -algebra, and Hch
0 (X, jU∗OU ) =

〈jU∗OU 〉 = 0. �

Remarks. (i) For non-commutative unital A the vanishing of 1ch ∈ Hch
0 (X,A)

need not imply that Cch(X,A) = 0.
(ii) In the above lemma the condition that A is unital is essential: for example,

if µA = 0, then Hch
· (X, jU∗j∗UA) ⊃ H ·+1

DR(U,A).

If a chiral algebra A is equipped with a unital commutative filtration, then
Cch(X,A)PQ is a filtered BV algebra (see 4.3.2), and the map 1A : Cch(X,ω)PQ →
Cch(X,A)PQ is a homotopy unit. Thus Cch(X,A) lifts canonically to an object of
HoBVu (see 4.1.6 and the proposition in 4.1.15) which we denote by Cch(X,A·) by
abuse of notation.

4.3.5. Suppose we have a finite family of chiral algebras {Ai}i∈I ; set A := ⊗Ai.
For every i ∈ I the canonical morphism νi : Ai → A (see 3.4.15) yields a morphism
of complexes Cch(X,Ai)→ Cch(X,A). One has a natural morphism of complexes
◦I : ⊗Cch(X,Ai) → Cch(X,A), ⊗ai 7→ ·I(⊗νi(ai)), where ·I ∈ BVI is the I-fold
product.39 It is a morphism of BV algebras. It is clear that ◦I define an extension
of Cch to a DG pseudo-tensor functor Cch(X, ·) : CA(X)⊗ → BV⊗.

To get interesting objects, we should infuse P ⊗ Q as was done in 4.2.12. Re-
placing νi by νiPQ := ⊗idP⊗Q : AiPQ → APQ, we get

(4.3.5.1) ◦I : ⊗Cch(X,Ai)PQ → Cch(X,A)PQ.

These morphisms define a pseudo-tensor extension of our functor

(4.3.5.2) Cch(X, ·)PQ : CA(X)⊗ → BV⊗.

Passing to homotopy categories, we get canonical morphisms

(4.3.5.3) ◦I : ⊗Cch(X,Ai)→ Cch(X,⊗Ai)

which define a pseudo-tensor extension

(4.3.5.4) Cch : HoCA(X)⊗ → D(k)⊗.

If we play with the tensor homotopy category of chiral algebras equipped with
commutative (unital) filtrations, then (4.3.5.2) defines a pseudo-tensor extension of
the functor (A,A·) 7→ Cch(X,A·) with values in HoBV⊗u (see 4.3.4).

4.3.6. Theorem. If the Ai are pairwise homotopically OX-Tor-independent,40

then the canonical morphism (4.3.5.3) is a quasi-isomorphism.

Together with 4.3.3, this shows that Cch is a unital tensor functor on the tensor
category of homotopically OX-flat chiral algebras.

39◦I commutes with the differential since {νi(ai), νj(aj)} = 0 for every i 6= j.

40I.e., Ai

L
⊗Aj

∼−→ Ai ⊗Aj for every i 6= j ∈ I.
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Remark. Suppose that the Ai carry filtrations as in 4.2.18, and let us equip
⊗Ai with the tensor product of this filtrations. Then (4.3.5.1) is a morphism of
filtered complexes which is a filtered quasi-isomorphism if the grAi are pairwise
homotopically OX -Tor-independent.41

Proof. It suffices to consider the case of two algebras A,B.
Set Cch(A) := Cch(X,A)PQ; define Cch(B), Cch(A⊗B) similarly. We want to

show that the morphism ◦ = ◦A,B : Cch(A)⊗Cch(B)→ Cch(A⊗B) of (4.3.5.1) is
a quasi-isomorphism. To do this, we will construct a certain diagram

(4.3.6.1) Cch(A)⊗ Cch(B) i→ Cch(A,B)
◦̃
�
δ
Cch(A⊗B)

such that i is a quasi-isomorphism, ◦ = ◦̃i, ◦̃δ is the identity map for Cch(A⊗B),
and δ◦ is a quasi-isomorphism. This will clearly do the job.

(i) For I, J ∈ S let C(A,B)XI×XJ be the Cousin complex of C(A)XI �C(B)XJ

with respect to the diagonal stratification of XItJ . It looks as follows (cf. 3.4.11).
As a mere graded D-module, C(A,B)XI×XJ is a direct sum of components labeled
by T ∈ Q(I t J). The T -component is equal to ∆(ItJ/T )

∗ j
(T )
∗ j(T )∗ �

t∈T
Ft where

Ft ∈ CM(X) is A[1] if t /∈ πT (J), B[1] if t /∈ πT (I), or (A ⊗ B)[1] otherwise.
The differential comes from the chiral products of A, B, A⊗ B, the chiral pairing
∈ P ch2 ({A,B}, A ⊗ B), and differentials of A, B, A ⊗ B in the usual way (see
3.4.11). We have the obvious morphisms of D-complexes C(A)XI � C(B)XJ →
C(A,B)XI×XJ → C(A ⊗ B)XItJ . The left arrow is a quasi-isomorphism since A,
B are homotopically OX -Tor-independent. Our C(A,B)XI×XJ form a D-complex
on the S◦ × S◦-diagram XS ×XS in the obvious way (see 4.2.1 and 4.2.6), and the
above arrows are morphisms of such complexes.

To compute the cohomology, we modify C(A,B)XI×XJ replacing it by a quasi-
isomorphic complex C(A,B,PQ)XI×XJ which is again a direct sum of Q(I t J)
components where the T -component is ∆(ItJ/T )

∗ j
(T )
∗ j(T )∗ �

t∈T
(Ft ⊗ P ⊗ Q), and

the differential is defined in the obvious way. We have the similar morphisms
C(APQ)XI � C(BPQ)XJ → C(A,B,PQ)XI×XJ → C((A ⊗ B)PQ)XItJ where the
left arrow is a quasi-isomorphism.

(ii) We define Cch(A,B) as the naive direct limit of the S◦ × S◦-diagram of
complexes Γ(XI ×XJ , h(C(A,B,PQ)XI×XJ )). The above arrows yield morphisms
of complexes i = iA,B : Cch(A)⊗Cch(B)→ Cch(A,B) and ◦̃ = ◦̃A,B : Cch(A,B)→
Cch(A⊗B) of (4.3.6.1). It is clear that ◦̃i = ◦.

As a mere graded vector space our Cch(A,B) decomposes into a direct sum
of subspaces Cchm,n(A,B) := Γ(Xm ×Xn, h(C(A,B,PQ)Xm×Xn))Σm×Σn

. The dif-
ferential is compatible with the corresponding bifiltration. As in 4.2.12, one shows
thatH ·

DR(XI×XJ , C(A,B,PQ)XI×XJ ) ∼−→ H ·Γ(XI×XJ , h(C(A,B,PQ)XI×XJ )).
Therefore i is a (bifiltered) quasi-isomorphism.

The obvious embeddings ∆∗C((A ⊗ B)PQ)XI ↪→ C(A,B,PQ)XI×XI , where
∆ : XI → XI ×XI is the diagonal, define a morphism δ = δA,B : Cch(A ⊗ B) →
Cch(A,B) of (4.3.6.1). It is clear that ◦̃ is left inverse to δ. To finish the proof, it
remains to check that δ◦ is a quasi-isomorphism.

41This follows from 4.3.6 and (4.2.18.1) since gr·(⊗Ai) = ⊗gr·Ai.
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(iii) Let us prove first the statement (ii) in the proposition in 4.3.3. Consider
the above picture for B = ω. By (i) in the proposition in 4.3.3, we have a canonical
identification Cch(X,A) ∼−→ Cch(X,A)⊗ Cch(X,ω). Its composition with ◦ is the
multiplication by 1ch map. Since δ is a right inverse to ◦, the multiplication by
1ch admits a right inverse. Since (1ch)2 = 1ch, the multiplication by 1ch is an
idempotent. Thus it is the identity map; q.e.d.

Therefore we know that ◦A,ω and δA,ω are mutually inverse quasi-isomorphisms,
as well as ◦ω,B and δω,B .

(iv) Let us return to the general situation. Consider a natural morphism of
complexes κ : Cch(A,ω)⊗ Cch(ω,B)→ Cch(A,B) defined by the maps

C(A,ω,PQ)XI×XJ � C(ω,B,PQ)XI′×XJ′ → C(A,B,PQ)XItI′×XJtJ′

which are the composition of the exterior product maps with the morphisms 1A :
ω → A along the I ′-variables and 1B : ω → B along the J-variables.

Our κ is a quasi-isomorphism. To see this, it suffices to check that the com-
position κ(iA,ω ⊗ iω,B) : Cch(A) ⊗ Cch(ω) ⊗ Cch(ω) ⊗ Cch(B) → Cch(A,B) is a
quasi-isomorphism. The latter map is equal to the composition iA,B(◦A,ω⊗◦ω,B)σ,
where σ is the transposition of the middle multiples Cch(ω), and we are done.

One checks immediately that the composition δA,B◦A,B : Cch(A)⊗ Cch(B)→
Cch(A,B) is equal to κ(δA,ω ⊗ δω,B). Thus it is a quasi-isomorphism; q.e.d. �

4.3.7. Resolutions of commutative DX-algebras. In this section we deal
with commutative unital DG DX -algebras and call them simply DX -algebras. If
X is affine, then DX -algebras form naturally a closed model category (with quasi-
isomorphisms as weak equivalences and surjective morphisms as fibrations; argu-
ments of [H] work in this situation). When X is proper, this is no longer true
literally. We will not use seriously the formalism of closed model categories, but
just some constructions that we are going to recall now.

Let ϕ : R→ F be a morphism of DX -algebras. We say that ϕ (or F ) is homo-
topically R-flat if F is homotopically R-flat as a DG R-module.42 It is elementary
if one can find a Z-graded DX -submodule V ⊂ F such that V is a locally projective
DX -module, R⊗SymV ∼−→ F , and dF (V ) ⊂ R. Finally, F is R-semi-free if one can
find a sequence of R[DX ]-subalgebras F0 ⊂ F1 ⊂ · · · ,

⋃
Fi = F , such that R→ F0

and all Fi → Fi+1 are elementary morphisms. If F is R-semi-free, then it is homo-
topically R-flat. For any ϕ its resolution is a morphism of R[DX ]-algebras G→ F
which is a quasi-isomorphism. A resolution is homotopically R-flat or R-semi-free
if G is. Resolutions of ϕ form a category in the obvious way.

Lemma. (i) Any ϕ admits an R-semi-free resolution.
(ii) The groupoid obtained from the category of homotopically R-flat resolutions

by localization is contractible.

Proof. (i) One constructs an R-semi-free resolution ψ : G → F as follows.
Notation: let G0 ⊂ G1 ⊂ · · · be a sequence of subalgebras of G as above, Vi ⊂ Gi
the corresponding Z-graded DX -submodules, ψi := ψ|Vi , and di := dG|Vi : V ·

i →
G·+1
i−1. We will define (Vi, di, ψi) by induction by i. Then Gi equals Gi−1⊗Sym(Vi)

as a Z-graded R[DX ]-algebra, its differential dGi is determined by di and dGi−1 ,
and ψi together with ψ|Gi−1 determines ψ|Gi

(for i = 0 it is ψ0 and ϕ).

42I.e., for every acyclic DG R-module N the complex N ⊗
R

F is acyclic; see [Sp].
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First we choose a locally projective Z-graded DX -module V0 = V ·
0 and a mor-

phism of Z-graded DX -modules ψ0 : V0 → F such that dFψ0 = 0 and the corre-
sponding morphism ψ̄0 : V ·

0 → H ·(F ) is surjective. Set G0 := R ⊗ Sym(V0) (we
consider V0 as a complex with zero differential).

Now suppose we have defined (Gi, ψ|Gi
), i ≥ 0. Then ψ|Gi

is surjective on the
cohomology (since ψ0 is). Choose a locally projective Z-graded DX -module Vi+1

and morphisms of DX -modules d·i+1 : V ·
i+1 → G·+1

i , ψ·i+1 : V ·
i+1 → F · such that

dGi
d·i+1 = 0, dFψi+1 = ψ|Gi

di+1, and the maps d̄ai+1 : V ·
i+1 → Ker(H ·+1Gi →

H ·+1F ) are surjective.

Remarks. (a) A variant of the induction procedure in the proof of the first
part of the lemma establishes the following fact: Suppose we have R-algebras M , N
such that for every a the maps HaR → HaM,HaN are surjective and have equal
kernels. Then M , N admit a simultaneous R-semi-free resolution; i.e., there exists
an R-semi-free algebra L together with morphisms of R-algebras L→M,N which
are quasi-isomorphisms.

(b) As is clear from the proof, an R-semi-free resolution G of ϕ can be chosen
so that the Vi are isomorphic to a direct sum of DX -modules of type LD = L⊗DX

where L is a line bundle on X of degree bounded from above by any constant.43

In particular, we can choose it so that Γ(X,h(Vi)) = 0. We can also assume that
d(V0) = 0.

(ii) Notice that for every finite family of homotopically R-flat resolutions {Gα}
of F one can find another homotopically R-flat resolution K together with mor-
phisms Gα → K. Namely, consider F as a ⊗

R
Gα-algebra, and take for K a homo-

topically ⊗
R
Gα-flat resolution of F .

To finish the proof, it suffices to prove that for every morphisms ζ, ζ ′ : M →
N of homotopically R-flat resolutions the corresponding arrows in the groupoid
coincide.44 To do this, it suffices to find another homotopically R-flat resolution L
and morphisms η : L → M , ξ, ξ′ : M → L, χ : L → N such that ηξ = ηξ′ = idM ,
χξ = ζ, χξ′ = ζ ′. Consider M , N as M ⊗

R
M -algebras via the morphisms m⊗m′ 7→

mm′ and m⊗m′ 7→ ζ(m)ζ ′(m′). Our L is the corresponding simultaneous M ⊗
R
M -

semi-free resolution (see Remark (a) above), η, χ are the corresponding quasi-
isomorphisms, and ξ, ξ′ come from the maps M → L⊗

R
M , m 7→ m ⊗ 1, 1 ⊗ m.

�

Exercise. Show that statement (ii) of the lemma remains valid if we replace
“homotopically R-flat” by “R-semi-free.”

4.3.8. Base change. Let ϕ : R → F be a morphism of commutative chiral
algebras. It yields the base change functor ϕ∗ : CA(X,R)→ CA(X,F ), A 7→ ϕ∗A =
A⊗
R
F . If F is homotopically R-flat, then our functor preserves quasi-isomorphisms

and hence defines a functor between the homotopy categories

(4.3.8.1) ϕ∗ : HoCA(X,R)→ HoCA(X,F ).

43It suffices to take L equal to tensor powers of a given negative line bundle.
44To show that this fact implies the lemma, one repeats the argument of part (iii) of the

proof of the second lemma in 4.1.3.



4.3. THE BV STRUCTURE AND PRODUCTS 321

To treat a non-flat ϕ, we have to change our homotopy categories. Anyway,
the homotopy category HoCA(X,R) is not a right object for it may change if we
replace R by a quasi-isomorphic algebra. To dispatch this nuisance, one considers
the category CA(X,R)̃ of pairs (A,R′) = (A,R′, θ) where θ : R′ → R is a morphism
of commutative DX -algebras which is a quasi-isomorphism, A a chiral R′-algebra.
Its localization with respect to quasi-isomorphisms is denoted by HoCA(X,R)̃ .
There is an obvious functor HoCA(X,R)→ HoCA(X,R)̃ .

Now any morphism of commutative DX -algebras ϕ : R→ F yields a functor

(4.3.8.2) Lϕ∗ : HoCA(X,R)̃ → HoCA(X,F )̃ .

Namely, Lϕ∗ sends (A,R′) to (A⊗
R′
G,G) where R′ → G→ F is any homotopically

R′-flat resolution of F . According to the lemma in 4.3.7, this is a well-defined
object of HoCA(X,F )̃ . The functors Lϕ∗ are compatible with the composition of
the ϕ’s.

For any (A,R′) as above, Cch(X,A) is a unital homotopy Cch(X,R′)-module
(see 4.3.2 and 4.3.4). Since θ : Cch(X,R′) → Cch(X,R) is a quasi-isomorphism,
it identifies the corresponding derived categories of Cch(X,R)- and Cch(X,R′)-
modules, and we can consider Cch(X,A) as a homotopy Cch(X,R)-module. Its
Cchϕ base change is a Cch(X,F )-module

(4.3.8.3) L(Cchϕ)∗Cch(X,A) := Cch(X,A)
L
⊗

Cch(X,R)
Cch(X,F )

(see e.g. [H] for details). There is a canonical base change morphism

(4.3.8.4) βϕ : L(Cchϕ)∗Cch(X,A)→ Cch(X,Lϕ∗A)

in the derived category of homotopy Cch(X,F )-modules. To define it, we can assu-
me that F is homotopically R-flat. The morphism of chiral R-algebras A→ A⊗

R
F

yields a morphism of homotopy Cch(X,R)-modules Cch(X,A) → Cch(X,A⊗
R
F ),

hence, by adjunction, a morphism L(Cchϕ)∗Cch(X,A)→ Cch(X,A⊗
R
F ) of homo-

topy Cch(X,F )-modules, which is our βϕ.

4.3.9. Theorem. The base change map (4.3.8.4) is a quasi-isomorphism.

Proof. We can assume that R′ = R and, by (i) in the lemma in 4.3.7, that F
is R-semi-free. Since chiral homology commutes with inductive limits, it suffices to
consider the case of an elementary morphism ϕ.45

Let V ⊂ F be as in 4.3.7. We have a filtration R ⊗ Sym≤aV on F , so
grF equals R ⊗ SymV as a DG DX -algebra (we consider V as a complex with
zero differential). It defines filtrations on Cch(X,F ), hence on Lϕ∗Cch(X,A) :=

Cch(X,A)
L
⊗

Cch(X,R)
Cch(X,F ) and on Cch(X,A⊗

R
F ) (see 4.2.18). The base change

morphism is compatible with filtrations,46 so it suffices to check that grβϕ is a
quasi-isomorphism. But, by (4.2.18.1), grβϕ is the base change morphism for R→
grF = R ⊗ SymV , so we have reduced our problem to the situation when V ⊂ F

45For if we have two composable morphisms ϕ and our statement holds for each of them,
then it holds for the composition.

46Recall that this means that we have a canonical morphism in the filtered derived category.
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is killed by the differential. Then A⊗
R
F = A ⊗ SymV , so 4.3.6 provides canoni-

cal isomorphisms Cch(X,F ) = Cch(X,R) ⊗ Cch(X,SymV ) and Cch(X,A⊗
R
F ) =

Cch(X,A)⊗Cch(X,SymV ). They identify βϕ with the identity map for Cch(X,A)
⊗Cch(X,SymV ), and we are done. �

Here are some corollaries. Let R be a commutative chiral algebra, {Ai}i∈I a
finite collection of chiral R-algebras. Suppose that R is homotopically OX -flat and
that the Ai are pairwise Tor-OX -independent. Then ⊗Ai is a chiral R⊗I -algebra;

set
L
⊗
R
Ai := Lδ∗(⊗Ai) where δ : R⊗I → R is the product map. One has the

following relative form of 4.3.6:

4.3.10. Corollary. There is a canonical isomorphism of the homotopy
Cch(X,R)-modules

(4.3.10.1)
L
⊗

Cch(X,R)
Cch(X,Ai)

∼−→ Cch(X,
L
⊗
R
Ai).

Proof. Use 4.3.9 for δ and ⊗Ai together with 4.3.6. �

4.3.11. Corollary. The chiral homology commutes with direct products: for
any finite collection of chiral algebras Ai the projection morphisms yield an isomor-
phism

(4.3.11.1) Cch(X,ΠAi)
∼−→ ΠCch(X,Ai).

The inverse map comes from the obvious (non-unital) morphisms Aj → ΠAi.

Remark. The assumption that our chiral algebras are unital is essential here
(consider the case of µAi = 0).

Proof. The latter map is right inverse to (4.3.11.1), so it is enough to check
that (4.3.11.1) is an isomorphism.

It suffices to consider the case when all Ai equal OX : Indeed, for arbitrary Ai
we can consider ΠAi as a chiral OIX -algebra. Then (4.3.11.1) follows from 4.3.9 for
A = ΠAi, R = OIX , F = OX .

Case Ai = OX : We know that Hch
0 (X,OIX) = 〈OIX〉 = kI (see the end of

4.2.16). Applying 4.3.9 to R = OIX , A = F = OX , and R→ A,F a projection map,
we see that the higher chiral homology of OIX vanishes. Indeed, by 4.3.9 and 4.3.3,

the first non-trivial Hch
a (X,R), a > 0, yields non-trivial Hch

a+1(X,A
L
⊗
R
F ), which

contradicts the vanishing of the higher chiral homology of A
L
⊗
R
F = OX . We are

done. �

4.3.12. Here is a more general statement.
Let ϕ : R → F be an étale morphism of plain commutative DX -algebras, A

any chiral R-algebra. Set AF := A⊗
R
F . The chiral homologies Hch

a (X,A) are 〈R〉-

modules, and the Hch
a (X,AF ) are 〈F 〉-modules (see 4.2.16), so we have a canonical

morphism

(4.3.12.1) Hch
· (X,A) ⊗

〈R〉
〈F 〉 → Hch

· (X,AF ).
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In particular, for A = R we get a morphism

(4.3.12.2) Hch
· (X,R) ⊗

〈R〉
〈F 〉 → Hch

· (X,F ).

Proposition. The morphism 〈ϕ〉 : 〈R〉 → 〈F 〉 is étale, and (4.3.12.1) and
(4.3.12.2) are isomorphisms.

Proof. (i) 〈ϕ〉 is étale: Set S := Spec〈R〉, T := Spec〈F 〉, SX := S × X,
etc. We have closed embeddings SX ↪→ SpecR, TX ↪→ SpecF . Consider ϕ|SX

:
SpecF |SX

→ SX ; then TX is the maximal constant closed DX -subscheme of
SpecF |SX

. Since ϕ|SX
is étale, it is also an open subscheme, and we are done.

(ii) By 4.3.9 it suffices to consider the case A = R, i.e., (4.3.12.2).
(iii) Set C := Cch(X,R), D := Cch(X,F ). These are commutative unital

homotopy algebras having degrees ≤ 0. Set C̄ := H0C, D̄ := H0D. We have a
morphism C → D. We want to show that the corresponding morphism H ·̃C :=
(H·C) ⊗̄

C
D̄ → H·D is an isomorphism.

Since F is R-flat, 4.3.10 implies that D
L
⊗
C
D = Cch(X,F ⊗

R
F ). Since F/R is

étale, one has a DX -algebra decomposition F ⊗
R
F = F × Q where the projection

F ⊗
R
F → F is the product map. Set E := Cch(X,Q), Ē := H0E. By 4.3.11 one

has D
L
⊗
C
D = D × E where the projection D

L
⊗
C
D → D is the product map.

One has a spectral sequence converging to H·(D
L
⊗
C
D) with the second term

equal to TorH·C
p (H·D,H·D)q. The above decomposition then gives a spectral se-

quence converging to H·D with E2
p,q = TorH ·̃C

p (H·D,H·D)q. Notice that the map
E2

0,· → H·D is just the product map H ·D ⊗
H ·̃C

H·D → H·D and hence it is surjec-

tive, i.e., E∞
>0,q = 0.

Suppose that H ãC 6= HaD for some a ≥ 1; consider the first such a. We have
E2
p,q = 0 for p ≥ 1 and q ≤ 2a− 1. This implies E2

0,a = HaD. On the other hand,
E2

0,a = (H·D ⊗
H ·̃C

H·D)a which is the cokernel of the diagonal map H ãC → HaD⊕

HaD. Thus H ãC → HaD is surjective. We have E2
1,2a = Ker(H ãC → HaD).

Since E2
1,2a = E∞

1,2a = 0, we arrive at a contradiction. �

4.3.13. Questions. Let R be a plain commutative DX -algebra. Is it true
that for any chiral R-algebra A its chiral homology has a local origin with respect
to the Zariski or étale topology of Spec〈R〉? More generally, is this true if A is
a chiral RDif -algebra (see 3.9.4)? Can one define the chiral homology for chiral
algebras on any algebraic DX -space Y or on YDif (see loc. cit.)?

4.4. Correlators and coinvariants

We begin with the definition of correlator functions for a plain chiral algebra A;
these functions (and the differential equations they satisfy) are of primary interest
for mathematical physicists (see, e.g., [BPZ]). In general, the “correlator-style”
approach to chiral homology stems from the following observation: for any finite
subset {xs} ⊂ X the complement to the subspace R(X)(xs) ⊂ R(X) whose points
are finite subsets containing {xs}, is acyclic (see 4.4.2). It permits us to identify
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the “absolute” chiral homology of A with the chiral homology of A with coeffi-
cients in fibers A`xs

(see 4.4.3). In particular, 〈A〉 identifies with coinvariants of
the action of the Lie algebra h(US , A) on ⊗A`xs

where US := X r {xs} (see 4.4.4),
so 〈A〉 is dual to the “space of conformal blocks” (see [FBZ] 8.2). To compute
the coinvariants, it suffices to consider instead of the whole of h(US , A) the space
h(US , P ) where P ⊂ A is any sub-D-module generating A (see 4.4.5).47 A relative
version of this statement (when our points vary) is discussed in 4.4.6; we briefly
mention the example of the Knizhnik-Zamolodchikov equation (see [KZ], [EFK],
and Chapter 12 of [FBZ]). In 4.4.7 the chiral homology of the unit chiral algebra ω
with arbitrary coefficients is computed. In 4.4.8 we show that the chiral homology
functor commutes with adding of unit. In 4.4.9 a spectral sequence (similar to the
Hochschild-Serre spectral sequence) for computing the chiral homology of a chiral
algebra with a given subalgebra is constructed.

Since the early days of conformal field theory, the geometry of R(X) was used in
order to write down explicit integral formulas for some correlators (the Feigin-Fuchs
integrals), see [DoF]. It is used in [BFS] to construct geometrically the category
of representations of a quantum group. We do not touch these subjects.

4.4.1 Correlators. Let us return to 4.2.16, so A is a plain chiral algebra. We
see that for every S ∈ S one has a canonical morphism of DXS -modules

(4.4.1.1) 〈 〉I : A`XS → 〈A〉 ⊗ OXS .

These morphisms are compatible with pull-backs to the diagonals, so they form a
morphism 〈 〉 : A`R(X) → 〈A〉 ⊗OR(X) of the left D-modules on R(X) (see 3.4.2 for
the terminology). So for a finite subset {xs} ⊂ X, s ∈ S, and a ∈ A`(xs) = ⊗

s∈S
A`xs

we have 〈a〉 ∈ 〈A〉.
The compatibility with respect to the restriction to the diagonals implies that

for every {xt} ⊂ X r {xs} one has

(4.4.1.2) 〈a⊗ (⊗ 1xt
)〉 = 〈a〉

where 1 is the unit section of A`. In particular, 1ch = 〈⊗1t〉 (see 4.2.16).
Restricting 〈 〉 to the complement R(X)on of the diagonal divisor on SymnX,

we get the n-point correlator morphisms

(4.4.1.3) 〈 〉n : (SymnA`)R(X)o
n
→ 〈A〉 ⊗ OR(X)o

n
.

Exercise. Show that the following diagram commutes:

(4.4.1.4)

j∗j
∗A�A −−−−→ 〈A〉 ⊗ j∗j∗ω � ωy y
∆∗A −−−−→ 〈A〉 ⊗∆∗ω

Here the horizontal arrows are the correlator morphisms and the vertical ones are
the chiral products for A and ω.

47A particular case of this statement when P is a Lie∗ subalgebra of A was considered in
[FBZ] 8.3.
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Remark. Suppose that the 2-point correlator pairing is non-degenerate; i.e.,
for every non-zero (local) section a(x) ∈ A` there exists another section b(y) such
that 〈a(x)b(y)〉 6= 0. Then the chiral algebra structure on the OX -module A is
uniquely determined by the vector space 〈A〉 and the 2- and 3-point correlator maps.
Indeed, we know that the chiral algebra structure is determined by the sub-DX×X -
module A`X×X ⊂ j∗j

∗AX � AX together with the identification ∆∗AX×X
∼−→ A`X .

Now A`X×X consists of all sections a(x, y) ∈ j∗j
∗AX � AX such that for every

section b(z) ∈ A` the correlator 〈a(x, y)b(z)〉 is regular at the divisor x = y. If a
is such a section, then a(x, x) ∈ A` is determined by the condition 〈a(x, x)b(z)〉 =
〈a(x, y)b(z)〉x=y for any b(z) ∈ A`X .

4.4.2. Let A be a unital chiral algebra and {xs} ⊂ X, s ∈ S, a finite non-
empty subset. Consider the subspace R(X)(xs) ↪→ R(X) of those points tfor which
the corresponding finite subsets of X contain {xs}. We will consider the com-
plex Cch(X,A)(xs) defined as the de Rham cohomology of R(X) with support in
R(X)(xs) and coefficients C(A).

The construction of the cohomology with support was explained in (iii) and
(iv) in 4.2.6. Precisely, let XS

(xs) ↪→ XS be the r-preimage of R(X)(xs); this
is a diagram of closed subvarieties of XS. By (iii) in 4.2.6 we have an admis-
sible D-complex C(A)(xs) := C(A)XS

(xs)
∈ DM(XS)XS

(xs)
⊂ DM(XS) equipped

with a canonical morphism C(A)(xs) → C(A). Now one defines Cch(X,A)(xs) as
RΓDR(XS, C(A)(xs)) = RΓDR(XS, C(A))XS

(xs)
.

Proposition. The canonical morphism C(A)(xs) → C(A) yields a quasi-iso-
morphism

(4.4.2.1) Cch(X,A)(xs)
∼−→ Cch(X,A).

Proof. Let jV(xs) : V(xs) ↪→ XS be the complement of XS
(xs), so we have the

exact triangle C(A)(xs) → C(A) → RjV(xs)∗j
∗
V(xs)

C(A). Let us show that the de
Rham cohomology of R(X) r R(X)(xs) with coefficients in C(A) vanishes; i.e., the
complex RΓDR(XS, RjV(xs)∗j

∗
V(xs)

C(A)) is acyclic.
Notice that R(X) r R(X)(xs) = ∪

s∈S
R(Us) where Us ⊂ X is the complement to

xs. Any intersection of these subsets is the complement UT to a non-empty subset
{xt}t∈T ofX. We can writeRjV(xs)∗j

∗
V(xs)

C(A) as the Čech resolution Č which is the
total complex of a bicomplex whose nth column is isomorphic to ⊕

|T |=n+1
C(jT∗j∗TA)

where jT : UT ↪→ X. By the lemma in 4.3.4 one has RΓDR(R(X), C(jT∗j∗TA)) =
Cch(X, jT∗j∗TA) = 0; q.e.d. �

4.4.3. Let us describe the complex C(A)(xs). Consider the embeddings is :
{xs} ↪→ X and js : Us := X r {xs} ↪→ X. For any s ∈ S we have an A-module
Ãs := Cone(A → js∗j

∗
sA) acyclic off xs. The morphism of A-modules Ãs →

Coker(A → js∗j
∗
sA) = is∗A

`
xs

is a quasi-isomorphism when A is homotopically
OX -flat at xs. Consider the complex C(A, {Ãs}) ∈ CM(XS) (see 4.2.19).

Proposition. There is a canonical quasi-isomorphism in DM(XS)

(4.4.3.1) C(A, {Ãs})
∼−→ C(A)(xs).
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Therefore, passing to de Rham cohomology and applying (4.4.2.1), we get a canon-
ical quasi-isomorphism

(4.4.3.2) Cch(X,A, {Ãs})
∼−→ Cch(X,A).

If A is homotopically OX-flat at {xs}, it can be rewritten as

(4.4.3.3) Cch(X,A, {A`xs
}) ∼−→ Cch(X,A).

Proof. We will define a complex C̃(A, {Ãs}) ∈ CM(XS) acyclic off XS
(xs) and

morphisms

(4.4.3.4) C(A, {Ãs})
α← C̃(A, {Ãs})

β−→ C(A)

such that α is a quasi-isomorphism and the morphism βS : C̃(A, {Ãs})→ C(A)(xs)

defined by β is also a quasi-isomorphism. This defines (4.4.3.1).
Set P := ⊕

s∈S
Cone(OX → js∗OUs

)[−1] ∈ CM`(X). The commutative DX -

algebra SymP is naturally ZS-graded, so the chiral algebra A⊗P is also ZS-graded.
The projection P → OSX → OX , where the right arrow is (fs) 7→ Σfs, yields
a morphism of DX -algebras SymP → OX , hence a morphism of chiral algebras
β̃ : A⊗ SymP → A. We also have a morphism of chiral algebras α̃ : A⊗ SymP →
A ⊗ (SymP/Sym≥2P ) = A{Ãs} compatible with the ZS-gradings (see 4.2.19 for
notation).

Our C̃(A, {Ãs}) is the component of degree 1S of C(A⊗SymP ), α : C̃(A, {Ãs})
→ C(A, {Ãs}) is the morphism defined by α̃,48 and β : C̃(A, {Ãs})→ C(A) is the
morphism defined by β̃.

The projection SymP → SymP/Sym≥2P induces a quasi-isomorphism be-
tween the components of degree ≤ 1S . Therefore α̃ : C(A ⊗ SymP ) → C(A{Ãs})
is a quasi-isomorphism on the components of degree ≤ 1S ; hence α is a quasi-
isomorphism. Since P is acyclic off S, our C̃(A, {Ãs}) is acyclic off XS

(xs).
It remains to check that βS : C̃(A, {Ãs}) → C(A)(xs) is a quasi-isomorphism.

We are playing with admissible complexes, so it suffices to check this on U (I) ⊂ XI

for any I ∈ S. There the complex C̃(A, {Ãs})U(I) is naturally ZS×I -graded. The
intersection ofXS

(xs) with U (I) is a disjoint union of components ((xs)×XIrS)∩U (I)

with respect to all embeddings S ↪→ I. Our problem is local, so it suffices to
check that βS is a quasi-isomorphism on the complement in U (I) to all the above
components but one. Here each of the ZS×I -components of C̃(A, {Ãs})U(I) is acyclic
except (�Ãs) � (A[1])�IrS . On the other hand, C(A)U(I) = (A[1])�I

U(I) , and the
restriction of β to the above component is the morphism (�Ãs) � (A[1])�IrS →
(A[1])�I equal to the tensor product of the projections Ãs → A[1] and the identity
map for (A[1])�IrS . It evidently identifies C̃(A, {Ãs}) with C(A)S , and we are
done. �

Remarks. (i) The above subject generalizes in an evident manner to the case
of the chiral homology with coefficients (see 4.2.19). We leave the exact formulation
of the general statement to the reader. Let us consider a particular situation when

48Recall (see 4.2.19) that C(A, {Ãs}) is the degree 1S component of C(A{Ãs}).
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A is homotopically OX -flat at {xs}, and in addition we have {xt} ⊂ X r {xs} and
A-modules Mt supported at xt. Then there is a canonical quasi-isomorphism

(4.4.3.5) Cch(X,A, {A`xs
, h(Mt)})

∼−→ Cch(X,A, {h(Mt)}).

(ii) Suppose that A is a plain chiral algebra. Then the morphism Cch(X,A) ∼−→
Cch(X,A, {Ãs})→ Cch(X,A, {A`xs

}) always yields an isomorphism Hch
0 (X,A) ∼−→

Hch
0 (X,A, {A`xs

}) (regardless of whether A is OX -flat at {xs} or not).

4.4.4. Hch
0 as coinvariants. Let A be a not necessary unital plain chiral

algebra. Suppose we have a finite non-empty subset {xs} ⊂ X and for each s ∈ S
a plain A-module Ms supported at xs; let jS : US ↪→ X be the complement to
{xs}. The spectral sequence (4.2.19.6) shows then that Hch

<0(X,A, {Ms}) = 0 and
Hch

0 (X,A, {Ms}) = Coker(d1
1,0 : (⊗h(Ms))⊗H0

DR(US , A) → ⊗h(Ms)). The latter
differential can be described as follows. By 3.6.3 Ms is a jS∗j∗SA-module, so h(Ms)
is a module over the Lie algebra h(US , A) := Γ(US , h(ALie)). By the lemma in 2.1.7
the projection H0

DR(US , A) → h(US , A) is surjective, and d1
1,0 is the composition

of this projection and the action of h(US , A) on the tensor product ⊗h(Ms). Thus
Hch

0 equals the coinvariants of this action:

(4.4.4.1) Hch
0 (X,A, {Ms}) = (⊗h(Ms))h(US ,A).

Remark. Suppose A is unital. Then the correlator map 〈 〉 : ⊗A`xs
→ 〈A〉

from 4.4.1 coincides, via the identifications 〈A〉 = Hch
0 (X, {A`xs

}) = (⊗A`xs
)h(US ,A)

(see Remark (ii) in 4.4.3) and (4.4.4.1), with the obvious projection ⊗A`xs
→

(⊗A`xs
)h(US ,A).

4.4.5. One usually computes Hch
0 (X,A, {Ms}) in a more practical way:

Proposition. Let PUS
⊂ AUS

be any D-submodule which generates AUS
as a

(non-unital) chiral algebra. Then the coinvariants for the actions of h(US , P ) :=
Γ(US , h(PUS

)) and h(US , A) on ⊗h(Ms) coincide. So, by (4.4.4.1), one has

(4.4.5.1) Hch
0 (X,A, {Ms}) = (⊗h(Ms))h(US ,P ).

In the unital setting it suffices to assume that P generates A as a unital chiral
algebra.

Proof. For a D-submodule QUS
⊂ AUS

denote by I(Q) the image of the com-
position h(US , Q) ⊗ (⊗h(Ms)) → h(US , A) ⊗ (⊗h(Ms))

·−→ ⊗h(Ms) where · is the
action map. We want to show that I(P ) = I(A).

Adding a unit to A, we can assume to be in the unital setting (see 3.3.3, 3.3.4).
Since h(US , ω · 1A) acts trivially on ⊗h(Ms), we can assume that 1A ∈ P `US

.
(i) Suppose |S| = 1. Set QUS

:= µA(j∗j∗PUS
� PUS

). It suffices to show that
I(Q) ⊂ I(P ). The maps Γ(US × US , j∗j∗PUS

� PUS
) → Γ(US × US ,∆∗QUS

) →
h(US , Q) are surjective (the first one because US is affine and the second one since,
by the lemma in 2.1.7, such is its restriction to QUS

⊂ ∆∗QUS
). So I(Q) is the image

of the composition ξ of Γ(US×US , j∗j∗PUS
�PUS

)⊗h(Ms)→ h(US , Q)⊗h(Ms)
·−→

h(Ms) where the first arrow is µA ⊗ idh(Ms). By the Jacobi identity, one has
ξ = ξ′−ξ′′ where ξ′, ξ′′ are the compositions Γ(US×US , j∗j∗PUS

�PUS
)⊗h(Ms)→

Γ(US , PUS
) ⊗ h(Ms)

·−→ h(Ms) and the first arrow is the chiral jS∗j∗SA-action on
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Ms along the second, resp. first, variable. The images of both ξ′, ξ′′ are contained
in I(P ), and we are done.

(ii) It suffices to consider the case h(Ms) = A`xs
. Indeed, both functors of

the coinvariants commute with the inductive limits of the Ms, so we can assume
that the Ms are finitely generated. The statement depends only on the restriction
of A to US , so, modifying our A at S if necessary, we can assume that each Ms

is a quotient of a sum of several copies of is∗A`xs
(see 3.6.6). If proven for some

modules, our statement is automatically true for each their quotients, and also it
is compatible with direct sums. So we can assume that h(Ms) = A`xs

.
Let us extend PUS

to a D-submodule P ⊂ A. Replacing A by its chiral subal-
gebra generated by P , we can assume that P generates A.

(iii) Suppose that |S| > 1. Let us show that (⊗A`xs
)h(US ,P )

∼−→ (⊗A`xs
)h(US ,A).

We use induction by |S|. Pick s0 ∈ S and set T := S r {s0}; we denote the
elements of T by t. Consider the map ⊗A`xt

→ ⊗A`xs
, ⊗at 7→ 1s0 ⊗ (⊗at). We

know that Hch
0 (X,A) = Hch

0 (X,A, {A`xt
}) = Hch

0 (X,A, {A`xs
}) (see Remark (ii)

in 4.4.3). So, by (4.4.4.1),49 our map induces an isomorphism (⊗A`xt
)h(UT ,A)

∼−→
(⊗A`xs

)h(US ,A). One has (⊗A`xt
)h(UT ,P )

∼−→ (⊗A`xt
)h(UT ,A) by the induction assump-

tion. Thus it suffices to prove that (⊗A`xt
)h(UT ,P ) → (⊗A`xs

)h(US ,P ) is surjective.
This follows immediately from the fact that the image of h(US , P )→ Aasxs0

generates
Aasxs0

as a topological associative algebra.50 �

4.4.6. The material of 4.4.2–4.4.5 immediately generalizes to the situation
where points xs vary, i.e., to the relative situation over U (S). For example, the
relative version of 4.4.5 looks as follows.

Suppose A is a plain chiral algebra and P ⊂ A a DX -submodule that generates
A as a chiral algebra. Let {Ms} be an S-family of A-modules, S ∈ S. We have
the left DU(S)-modules P \

U(S) := j(S)∗P \
XS and A\

U(S) (see (3.7.6.1)). The latter
is a Lie algebra in the tensor category of left DU(S)-modules which acts naturally
on j(S)∗ �Ms. Consider the DU(S)-modules of coinvariants (j(S)∗ �Ms)A\

U(S)
and

(j(S)∗ �Ms)P \

U(S)
:= Coker(P \

U(S) ⊗ j(S)∗ �Ms → j(S)∗ �Ms). The relative version

of 4.4.4 and 4.4.5 says that (see (4.2.19.7) for the notation)

(4.4.6.1) H0Cch(X,A, {Ms}) = j
(S)
∗ (j(S)∗ �Ms)A\

U(S)
= j

(S)
∗ (j(S)∗ �Ms)P \

U(S)
.

Example. Let A be the twisted enveloping algebra U(gD)κ of the Kac-Moody
extension gκD; see 2.5.9. Then one can take P = gκD, and the DU(S)-module from
(4.4.6.1) is called the Knizhnik-Zamolodchikov (KZ) equation.

4.4.7. Let A be a chiral algebra. Then for any DX -module M the tensor
product M ⊗A is naturally a chiral A-module (see Remark (i) in 3.3.4).

Suppose we have a finite non-empty collection {Ms}, s ∈ S, of DX -modules
such that the Ms are Tor-independent from A (i.e., the supports of the OX -torsion
of Ms are disjoint from that of A).

49See also Remark in 4.4.4 and (4.4.1.2).
50To see this, consider a filtration A`

xs0n := h(US , P )n · 1s0 on A`
xs0

. Then the images of

A`
xs0n ⊗ (⊗A`

xt
) form a constant filtration in (⊗A`

xs
)h(US ,P ).
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Proposition. There is a canonical quasi-isomorphism

(4.4.7.1) Cch(X,A)⊗ j(S)
∗ j(S)∗ �Ms

∼−→ Cch(X,A, {Ms ⊗A}).

Proof. Notice that the image of the morphism M → M ⊗ A, m 7→ m ⊗ 1A,
consists of A-central sections (see 3.3.7). Therefore, by (a) in 4.3.2(iii), we have the
product morphism · : Cch(X,A)⊗ j(S)

∗ j(S)∗ �Ms → Cch(X,A, {Ms ⊗A}).
To check that it is a quasi-isomorphism, we use the relative version of 4.4.3.

When (xs) ∈ U (S) varies, the complexes Cch(X,A, {Ãs}) form a complex C of left
D-modules on U (S), and the quasi-isomorphism (4.4.3.1) (coming from (4.4.3.4))
identifies it with the constant D-module Cch(X,A) ⊗ OU(S) . Tensoring our D-
modules by (�Ms)|U(S) , we get α : j(S)

∗ C ⊗ (�Ms)
∼−→ Cch(X,A)⊗ j(S)

∗ j(S)∗ �Ms.
On the other hand, the projections Ãs

∼−→ is∗A
`
xs

yield β : j(S)
∗ C ⊗ (�Ms)

∼−→
Cch(X,A, {Ms ⊗A}). One checks immediately that · = βα−1, and we are done. �

For A = ω the functor M(X) → M(X,ω), M 7→ M ⊗ ω, is an equivalence of
categories (see Example in 3.3.4). Combining the proposition with 4.3.3(i), we get

Corollary. For any finite collection {Ms}, s ∈ S, of DX-modules one has

(4.4.7.2) j
(S)
∗ j(S)∗ �Ms

∼−→ Cch(X,ω, {Ms}).

4.4.8. Proposition. Let A be a non-unital chiral algebra, A+ := A ⊕ ω the
corresponding unital algebra (see 3.3.3). Then the embeddings A, ω ↪→ A+ yield a
quasi-isomorphism

(4.4.8.1) Cch(X,A)⊕ k ∼−→ Cch(X,A+).

Proof. Notice that Cch(X,A+)PQ = Cch(X,A)+PQ ⊕ Cch(X,ω)PQ where the
subcomplex Cch(X,A)+PQ is generated by all chains f � ai ∈ Γ(U (I), (A+

PQ)�I),
f ∈ OU(I) , ai ∈ A+

PQ such that at least one of the ai’s belongs to A ⊂ A+. By 4.3.3(i)
it suffices to show that Cch(X,A)PQ ↪→ Cch(X,A)+PQ is a quasi-isomorphism.

Both complexes are filtered: the first one by the Cousin filtration and the
second one by the number of ai’s from A as above. The embedding is compatible
with filtrations. It is a filtered quasi-isomorphism: indeed, grnCch(X,A)PQ =
Γ(U (n), h((APQ[1])�n))Σn

∼−→ RΓDR(U (n), A�n)Σn , and also grnCch(X,A)+PQ =
Cch(X,ω, {A}n copies)Σn , so we are done by (4.4.7.2). �

Remark. Suppose that A is equipped with a commutative filtration; it extends
in the obvious manner to A+. We have Cch(X,A·) ∈ HoBV and Cch(X,A+

· ) ∈
HoBVu (see 4.3.2(iv) and 4.3.4). The above lemma (together with 4.1.7 and 4.1.15)
shows that Cch(X,A+

· ) comes from Cch(X,A·) by adding the unit. The same is
true in the setting of commutative chiral algebras.

4.4.9. We return to the unital setting.
For a chiral subalgebra B ⊂ A one defines the relative Chevalley-Cousin com-

plex C(B,A)PQ ∈ CM(R(X)) as follows. Consider A as a B-module. For each
I ∈ S we have a complex of DXI -modules Cch(X,B,A[1]I)PQ (see 4.2.19). As a
mere graded DXI -module, our complex C(B,A)PQXI equals

(4.4.9.1) C(B,A)·PQXI := ⊕
T∈Q(I)

∆(I/T )
∗ Cch(X,B,A[1]T )PQ.
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Its differential is the sum of the differentials of ∆(I/T )
∗ Cch(X,B,A[1]T )PQ and the

morphisms ∆(I/T )
∗ Cch(X,B,A[1]T )PQ[−1] → ∆(I/S)

∗ Cch(X,B,A[1]S)PQ for S ∈
Q(T, |T | − 1) coming from the binary chiral operation µA (cf. 3.4.11). For any
J � I one has an evident embedding ∆(J/I)

∗ C(B,A)PQXI ↪→ C(B,A)PQXJ . We
have defined the right D-complex C(B,A)PQ on XS; it is clearly admissible.

Set Cch(X,B,A)PQ := Γ(XS, h(C(B,A)PQ)). As a mere graded module, our
complex equals

∑
m≥0,n>0

Γ(U (m+n), h((BPQ[1])�m�(APQ[1])�n)). As in the proof of

the proposition in 4.2.12 we see that Cch(X,B,A)PQ
∼−→ RΓDR(R(X), C(B,A)PQ).

We have the Cousin spectral sequence (see 4.2.3)

(4.4.9.2) E1
p,q = Hch

p+q(X,B,A[1][1,p])Σp

converging to H−p−qCch(X,B,A)PQ.
Consider an evident embedding of complexes Cch(X,A)PQ ↪→ Cch(X,B.A)PQ.

It has a left inverse Cch(X,B,A)PQ � Cch(X,A)PQ formed by the morphisms
Γ(U (m+n), h((BPQ[1])�m � (APQ[1])�n))→ Γ(U (m+n), h((APQ[1])�m+n)).

Proposition. The embedding Cch(X,A)PQ ↪→ Cch(X,B.A)PQ is a quasi-
isomorphism. Therefore the spectral sequence (4.4.9.2) converges to Hch

p+q(X,A).

Proof. The complex C = Cch(X,B,A)PQ carries an increasing filtration Cm
that corresponds to the first grading (by m), and C0 = Cch(X,A)PQ. It suffices to
check that grmC is acyclic for m > 0.

Consider the embedding j̃ : U (1+m) ↪→ X × U (m). Set A(m) := j̃∗j̃
∗A� OU(m) ;

this is a U (m)-family of chiral algebras on X. Let C(m) be the relative version of the
chiral cochain complex for A(m); this is a complex of OU(m)-modules. It is acyclic
by the relative version of the lemma from 4.3.4. Now C(m) is a left DU(m)-module
(since A(m) is), and grmC = RΓDR(U (m), B�m ⊗ C(m)) = 0; q.e.d. �

4.5. Rigidity and flat projective connections

Suppose one has a Z-family of curves X = {Xz} equipped with (not necessary
unital) chiral algebras Az. The fiberwise chiral homologies Hch

· (Xz, Az) form quasi-
coherent sheaves on Z. In this section we discuss an X-local structure on A which
provides a flat projective connection ∇ on the chiral homology sheaves.

An example of such a structure is an extension of the DX/Z-action on A to
a DX -action compatible with the chiral product: then the C(Az) form complexes
of D-modules on the fibration of Ran’s spaces R(Xz), and ∇ is the corresponding
Gauss-Manin connection. Such a simple picture occurs quite rarely though. Usually
the action of “horizontal” vector fields on A is well defined only up to the adjoint
action of ALie; i.e., more precisely, A carries an action of an extension of the Lie
algebra of horizontal vector fields by the (relative) de Rham complex of ALie (which
is naturally a homotopy Lie algebra). This suffices for the definition of ∇ due to
a key rigidity property of chiral homology: the action of the homotopy Lie algebra
RΓDR(Xz, A

Lie
z ) on Cch(Xz, Az) is canonically homotopically trivialized. A weaker

structure, when ALie is replaced by ALie/ωX/Z1A, leads to a projective connection.
In practice, one always considers instead of the whole of ALie its smaller Lie∗

subalgebra determined by the geometry of the situation. For example, suppose
that our family of chiral algebras comes from a universal setting (i.e., from a vertex
algebra). Then a flat projective on the chiral homology is produced by a Virasoro
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vector (see 3.7.25). For a family of Kac-Moody algebras, the Sugawara tensor, and
the 0th chiral homology, we get the Knizhnik-Zamolodchikov connection. Another
example: suppose we have a chiral algebra A on a curve X equipped with an action
of the group of G-valued functions, G is an algebraic group. We get a family of
twisted chiral algebras parametrized by the moduli space BunG of G-bundles on X
(see 3.4.17). Then any Kac-Moody tensor in A provides a flat projective connection
on the corresponding sheaves of chiral homology on BunG. Connections of this type
on the 0th chiral homology are treated in Chapters 16–17 of [FBZ].

In 4.5.1 we explain why the de Rham complex of a Lie∗ algebra is a homotopy
Lie algebra. In 4.5.2 the above-mentioned rigidity property of chiral homology is es-
tablished; the key tool here is the BV algebra structure on the chiral chain complex.
Some variants of the rigidity property, in the format needed for the construction of
the connection, are discussed in 4.5.3. The input package for the construction of the
connection on chiral homology is defined in 4.5.4; the corresponding connection is
constructed in 4.5.5. The twisted seting, leading to a projective connection, is dis-
cussed in 4.5.6. Section 4.5.7 contains a streamlined construction of the O-extension
of the Lie algebra of vector fields on Z acting on chiral homology, and also com-
patibility with tensor products. Section 4.5.8 considers the case of chiral homology
with coefficients, 4.5.9 compares the two settings, 4.5.10 gives a different construc-
tion of the connection in the case when the coefficient sheaves are supported at
points (for a convenient explicit formula, see 4.5.12), and 4.5.11 compares the two
constructions. In 4.5.13 we discuss the above-mentioned examples in more detail.

As always, we deal with differential graded super objects, so “Lie algebra”
means “DG super Lie algebra”, etc.

4.5.1. Let L be a Lie∗ algebra on X. Then the de Rham complex DR(L)
is naturally a homotopy Lie algebra. This means that there is a canonical object
in the homotopy category of sheaves of Lie algebras identified with DR(L) in the
derived category of sheaves. Similarly, RΓDR(X,L) is naturally a homotopy Lie
algebra; i.e., there is a canonical object in the homotopy category of Lie algebras
identified with RΓDR(X,L) as a mere object of D(k). We denote these homotopy
Lie algebras by DR(L), RΓDR(X,L) by abuse of notation. One constructs them
as follows.

Take P, Q as in 4.2.12 and write LP := L ⊗ P, LPQ := L ⊗ P ⊗ Q, etc. We
have the quasi-isomorphisms of Lie∗ algebras L ← LP → LPQ which yield quasi-
isomorphisms of Lie algebras h(LP) → h(LPQ). They are canonically identified
with DR(L) in DSh(X) (see 2.2.10), so we have defined the homotopy Lie algebra
structure on DR(L). The Lie algebra Γ(X,h(LPQ)) is identified with RΓDR(X,L)
in D(k);51 it provides the homotopy Lie algebra structure on RΓDR(X,L). The
independence of the auxiliary choice of P, Q follows from the lemma in 2.2.10 (or
rather Remark after it) and the second lemma in 4.1.3.

Suppose that L acts on a not necessary unital chiral algebra A (see 3.3.3).
Then LPQ acts on APQ, so the Lie algebra Γ(X,h(LPQ)) acts on APQ by deriva-
tions. Therefore Γ(X,h(LPQ)) acts on Cch(X,A)PQ by transport of structure. In
particular, this action is compatible with the BV structure (see 4.3.1).

We see that Cch(X,A) is naturally an RΓDR(X,L)-module.52

51This follows by an argument from the proof of the proposition in 4.2.12.
52The independence of this construction from the auxiliary choice of P, Q can be seen as

above.
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4.5.2. Rigidity. Suppose that the L-action on A comes from a morphism of
Lie∗ algebras ι : L→ ALie and the adjoint action of A.

Lemma. The homotopy action of RΓDR(X,L) on Cch(X,A) is canonically
homotopically trivialized.

Proof. Let us show that the action of Γ(X,h(LPQ)) extends naturally to an
action on Cch(X,A)PQ of the contractible Lie algebra Γ(X,h(LPQ))† (see 1.1.16).
This action comes from the BV structure on Cch(X,A)PQ (see 4.3.1). Indeed, we
have morphisms Γ(X,h(LPQ)) ι−→ Γ(X,h(ALiePQ )) ↪→ Cch(X,A)PQ[−1] of Lie alge-
bras, so Γ(X,h(LPQ))† acts via the canonical action of Cch(X,A)PQ[−1]† defined
by the BV structure (see 4.1.6). �

4.5.3. Variants. The material of this section will not be used until 4.5.5; the
reader can skip it at the moment.

Below, our L is a Lie∗ algebra which is homotopically quasi-induced as a DX -
complex (see 2.1.11), so the natural projections DR(LQ)→ h(LQ), ΓDR(X,LQ)→
Γ(X,h(LQ)) are quasi-isomorphisms (see the lemma in 4.1.4). The corresponding
projection Γ(X,h(LPQ))→ Γ(X,h(LQ)) is a quasi-isomorphism of Lie algebras.

If L acts on a (not necessary unital) chiral algebra A, then LQ acts on AQ and
APQ and so Γ(X,h(LQ)) acts on Cch(X,A)PQ.

(i) Suppose that we are in the situation of 4.5.2. Let us show that the action
of Γ(X,h(LQ)) on Cch(X,A)PQ is canonically homotopically trivialized.

One proceeds by providing a homotopy between this action and the one consid-
ered in the proof in 4.5.253 and then applying 4.5.2; for technical reasons we have to
pass to a larger chiral chain complex Cch(X,A)P̃Q. Here is a precise construction.

Let P+ be the unital DX -algebra corresponding to P, so P = P ⊕ OX as an
DX -module, ε+P : P+ → OX the morphism of unital algebras defined by εP. Set
I := KerεP, I+ := Kerε+P . Then P, I, I+ are ideals in P+; one has I+ · P ⊂ I, and I

is contractible and DX -flat.54

Set P̃ := Cone(I → P), P̃+ := Cone(I+ → P+). Then P̃+ is a unital DX -
algebra, so that P+ ↪→ P̃+ is an embedding of algebras, and P̃ is an ideal in P̃+.
Our ε+P extends to a quasi-isomorphism of OX -algebras P̃+ → OX . Its restriction
εP̃ : P̃ → OX is also a quasi-isomorphism, so (P̃, εP̃) satisfies the same conditions
as (P, εP). Set P̃+

‡ := Cone(P̃→ P̃+); this is a contractible DX -algebra.
Consider the chiral algebra AP̃Q := A ⊗ P̃ ⊗ Q. The Lie∗ algebra LP̃+Q :=

L ⊗ P̃+ ⊗ Q acts on it. The action of the normal Lie∗ subalgebra LP̃Q ⊂ LP̃+Q

coincides with the adjoint action via ιP̃Q : LP̃Q → ALie
P̃Q

, and LQ ⊂ LP̃+Q acts via
ιQ by the adjoint action of AQ and the trivial action on P̃.

Now the contractible Lie algebra Γ(X,h(LP̃+Q))‡ := Γ(X,h(LP̃+
‡ Q)) acts nat-

urally on Cch(X,A)P̃Q. Namely, the subalgebra Γ(X,h(LP̃+Q)) ⊂ Γ(X,h(LP̃+Q))‡
acts via the above action on AP̃Q, and the ideal Γ(X,h(LP̃Q))† ⊂ Γ(X,h(LP̃+Q))‡
acts as in the proof in 4.5.2 (with P replaced by P̃).

This action provides the homotopical trivialization of the Γ(X,h(LQ))-action
we promised.

53Note that the LQ-action cannot be realized directly as a part of the LPQ-action used in

4.5.2: since P is non-unital, there is no embedding LQ → LPQ, and the projection LPQ → LQ is
not compatible with the actions.

54The Tor-dimension of DX equals 1 since dim X = 1.
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(ii) Suppose that A is unital and the L-action on A comes from a morphism of
Lie∗ algebras ῑ : L → ALie/ω1A and the adjoint action of ALie/ω1A on A. Let us
show that the Γ(X,h(LQ))-action on Cch(X,A)P̃Q is homotopically equivalent to
the multiplication by a character. Below P̃, etc., are as in (i).

Denote by L[ an ω-extension of L defined as the pull-back of the ω-extension
ALie of ALie/ω1A by ῑ. So we have a morphism of Lie∗ algebras ι[ : L[ → ALie

with i[1[ = 1A. Set L[
P̃Q

:= L[ ⊗ P̃⊗ Q, etc.
As in (i), we have the Lie∗ algebra LP̃+Q which acts naturally on AP̃Q, and a

contractible Lie∗ algebra LP̃+
‡ Q. Set L♦

P̃+
‡ Q

:= Cone(L[
P̃Q
→ LP̃+Q); this is a Lie∗

algebra55 which is a central ωP̃Q[1]-extension of LP̃+
‡ Q.

The Lie algebra Γ(X,h(L♦
P̃+
‡ Q

)) is a central extension of the contractible Lie

algebra Γ(X,h(LP̃+Q))‡ := Γ(X,h(LP̃+
‡ Q)) from (i) by Γ(X,h(ωP̃Q))[1]. Denote by

Γ(X,h(LP̃+Q))[‡ its push-out by the embedding Γ(X,h(ωP̃Q))[1] ↪→ Cch(X,ω)P̃Q.
Now the Lie algebra Γ(X,h(LP̃+Q))[‡ acts naturally on Cch(X,A)P̃Q in a way

that the central subalgebra Cch(X,ω)P̃Q ⊂ Γ(X,h(LP̃+Q))[‡ acts by homotheties
according to the Cch(X,ω)P̃Q-module structure on Cch(X,A)P̃Q. This action is
determined by the property that Γ(X,h(LP̃+Q)) ⊂ Γ(X,h(LP̃+Q))[‡ acts according
to the LP̃+Q-action on AP̃Q, and the image of Γ(X,h(L[

P̃Q
))† in Γ(X,h(L♦

P̃+
‡ Q

)) ⊂

Γ(X,h(LP̃+Q))[‡ acts as in the proof in 4.5.2 (with L, ι, P replaced by L[, ι[, P̃).
Our Γ(X,h(LP̃+Q))[‡ is homotopically equivalent to k acting on Cch(X,A)P̃Q

by homotheties (see 4.3.3). Since the Γ(X,h(LQ))-action on Cch(X,A)P̃Q is a part
of the Γ(X,h(LP̃+Q))[‡-action, it is homotopically multiplication by a character, as
was promised.

Remark. As follows from the above, the Lie algebra H0
DR(X,L) acts on

Hch
· (X,A) according to the character H0

DR(X,L) → H1
DR(X,ω) tr−→ k where the

first arrow is minus the boundary map for the extension L[.

4.5.4. Concocting a connection. Let Z be an affine k-scheme. Let π : X →
Z be a smooth proper Z-family of curves;56 for a point z ∈ Z the corresponding
curve is denoted by Xz. The notions we dealt with have an obvious relative version:
we consider DX/Z-modules, and it is clear what chiral algebras on X/Z (= Z-
families of chiral algebras) are, Lie∗ algebras on X/Z, etc. A Lie∗ algebra L on
X/Z yields a sheaf h/Z(L) := L/(LΘX/Z) of Lie π−1OZ-algebras.

So let A be a (not necessary unital) chiral algebra on X/Z which we assume to
be OZ-flat. It defines a complex of quasi-coherent OZ-modules πch· (X/Z,A) which
is a relative version of the complex Γch(X,A) from 4.2.11. Replacing A by A⊗ Q,
where Q is a Dolbeault DX/Z-algebra, we get a chiral chain complex Rπch· (X/Z,A),
which is an object of the derived category D(Z,OZ) of quasi-coherent OZ-modules
(= Γ(Z,OZ)-modules). Also choosing P as in 4.2.12, we can representRπch· (X/Z,A)
by a complex Cch(X/Z,A)PQ (see (4.2.12.2)).

We are going to describe a certain structure of X-local origin which yields an
integrable connection on Rπch· (X/Z,A). In fact, we consider a slightly more general

55Since LP̃+Q acts on L[
P̃Q

and the arrow is compatible with the LP̃+Q-actions.
56We are sorry for the abuse of notation: before X meant an individual curve.
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situation starting with a given Lie algebroid L on Z (see 2.9.1); the output is a
homotopy L-action on Rπch· (X/Z,A). The case of the connection corresponds to
L = ΘZ (for a smooth Z).

So let L be a Lie algebroid on Z. It yields a Lie π−1OX -algebroid π]L acting
on OX which is an extension of π−1L by ΘX/Z (see 2.9.5).57

Suppose we have the following package:
(a) a Lie∗ algebra L on X/Z,
(b) a Lie π−1OZ-algebroid extension K of π]L by h/Z(L) and a section s :

ΘX/Z → K,
(c) an action of K on L,
(d) an action of K on A and a morphism of Lie∗ algebras ι : L→ ALie.
The following properties should hold:
(i) The K-action on L and A is compatible with the DX/Z-module structure

on them,58 the Lie∗ bracket on L, and the chiral product on A. It is π−1OZ-linear
with respect to the K-variable.59 The morphism ι : L → A commutes with the
K-actions.

(ii) s(ΘX/Z) ⊂ K is a normal Lie π−1OZ-subalgebra.
Therefore K is an extension of π−1L by K0 := h/Z(L)×ΘX/Z .
(iii) The Lie subalgebra ΘX/Z ⊂ K0 acts on A and L via the DX/Z-module

structures, and h/Z(L) ⊂ K0 acts on L via the adjoint action and on A via ι and
the adjoint action. The adjoint action of K on h/Z(L) ⊂ K0 coincides with the
K-action on h/Z(L) coming from the K-action on L.

We call such a package an L-action on A governed by ι : L→ ALie.

4.5.5. Proposition. Suppose that as a mere DX/Z-complex our L is homo-
topically quasi-induced. Then our package yields a homotopy left L-module structure
on the complex Rπch· (X/Z,A). In particular, if L is a plain Lie OZ-algebroid, then
the Riπch· (X/Z,A) are left L-modules.

Proof. We get the homotopy L-action from the obvious Rπ·K-action trivializing
homotopically the action of Rπ·K0 by means of (i) in 4.5.3. Here is the precise
construction.

(i) We use Cch chiral chain complexes, so one has to make some auxiliary
choices of resolutions:

(a) Notice that our datum is contravariantly functorial with respect to mor-
phisms of L. Replacing L by its appropriate left resolution, we can assume that L

is homotopically flat (or even semi-free) as a complex of OZ-modules.
(b) Choose a Dolbeault OX -algebra Q equipped with a left π†L-action.
To construct Q one can essentially repeat the construction from the proof of

the first lemma in 4.1.3. Namely, we pick a Jouanolou map p : Y → X which
yields a Dolbeault OX -algebra P := p·ΩY/X . Let Q be a DG OX -algebra equipped
with a left π†L-action (see 2.9.5) and a morphism of OX -algebras P → Q which is
universal with respect to this structure. Our Q is a Dolbeault OX -algebra.60

57We apologize for the discrepancy of notation: the smooth map π : Y → X from 2.9.5 is
now π : X → Z.

58Our K acts on OX (via K→ π†L) preserving π−1OZ ⊂ OX ; hence it acts on DX/Z .
59I.e., A and L are left K-modules with respect to the Lie π−1OZ -algebroid structure on K.
60Let us check that Q is a homotopically flat resolution of OX . Since π†L is OX -flat, the

enveloping algebra U(π†L) is also homotopically OX -flat (see 2.9.2). Locally on X our P is



4.5. RIGIDITY AND FLAT PROJECTIVE CONNECTIONS 335

(c) Choose a non-unital OX -algebra resolution εP : P → OX equipped with a
left π†L-action such that P>0 = 0 and each Pa is DX/Z-flat. Here we consider P as
a DX/Z-module via the standard embedding ΘX/Z ↪→ π†L.

One can construct P by an obvious modification of Example in 4.2.12. Set
P0 := Sym>0U(π†L), where U(π†L) is considered as a left π†L-module. Let εP :
P0 → OX be the morphism of algebras with π†L-action defined by the morphism
of left π†L-modules U(π†L) → OX , 1U(π†L) 7→ 1OX

. Finally set P−1 := Ker εP,
and Pa = 0 for a 6= 0,−1.

(ii) Since ΘX/Z ⊂ π†LZ , our P, Q are automatically DX/Z-algebras. The Lie
π−1OZ-algebroid K acts on them via K→ π†L.

Set KQ0 := h/Z(LQ)× (Q⊗ΘX/Z); let KQ be the push-out of K by the obvious
morphism of Lie π−1OZ-algebras K0 → KQ0. Since K acts on the target of this
morphism, our KQ is a Lie π−1OZ-algebroid extension of π−1L by KQ0. Set K̄Q :=
KQ/Q ⊗ ΘX/Z ; this is a Lie π−1OZ-algebroid which is an extension of π−1L by
h/Z(LQ).

(iii) As in (i) in 4.5.3, our P yields modified algebras P̃ (which satisfies the same
conditions as (P, εP), see (i)(c) above), P̃+, and P̃+

‡ . Each of them is naturally π†L-
equivariant. We have the chiral algebra AP̃Q together with the action of the Lie∗

algebra LP̃+Q on it (see (i) in 4.5.3).
The Lie π−1OZ-algebroid KQ acts naturally on AP̃Q. The restriction of this

action to h/Z(LQ) ⊂ KQ0 coincides with the action via the embedding LQ ↪→ LP̃+Q.
Our algebroid acts also on LP̃+Q, and the above constructions are compatible with
this action.

(iv) Consider the complex of OZ-modules Cch(X,A)P̃Q which represents the
object of the derived category Rπch· (X/Z,A). It carries an action of the OZ-algebra
π·h/Z(LP̃+Q)‡ := π·h/Z(LP̃+

‡ Q), defined in (i) in 4.5.3, and the Lie OZ-algebroid
π·KQ. Notice that π·h/Z(LP̃+Q)‡ is contractible, as follows from the relative version
of the lemma in 4.1.4 applied to LQ.61 The action of π·KQ vanishes on π·(Q⊗ΘX/Z),
so it factors through the quotient π·K̄Q which is an extension of L by π·h/Z(LQ).

Let L̃ be the push-out of π·K̄Q by the morphism π·h/Z(LQ) ↪→ π·h/Z(LP̃+Q)‡.
This is a Lie OZ-algebroid62 which is an extension of L by a contractible ideal
π·h/Z(LP̃+Q)‡. The above actions form an L̃-action on Cch(X,A)P̃Q.

The homotopy category of left L̃-modules is naturally equivalent to that of L-
modules, so Cch(X,A)P̃Q defines an object of the latter category. Its independence
from the auxiliary choices from (i) above is left to the reader. This is the promised
homotopy left L-module structure on Rπch· (X/Z,A). �

Remark. The construction of the Lie algebroid L̃ used only data (a)–(c) of
4.5.4.

4.5.6. A twisted version. In practice, one usually finds a weaker variant of
the package from 4.5.4 which leads to a twisted L-action (i.e., an action of a central
extension of L) on chiral homology. If L = ΘZ , we get a flat projective connection.

isomorphic to SymV where V is an acyclic complex of free OX -modules, hence Q is isomorphic to
Sym(U(π†L)⊗ V ).

61The relative version of the lemma in 4.1.4, together with its proof, remains true because
the functor Rπ· has homological dimension 1 (since π is proper of relative dimension 1).

62Since π·KQ0 → π·h/Z(LP̃+Q)‡ is a π·KQ-equivariant morphism of Lie OZ -algebras.
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Below we assume that our chiral algebra A is unital. So suppose we have L

and data (a)–(c) as in 4.5.4, and a version of (d) that looks as follows:
(d̄) an action of K on A and a morphism of Lie∗ algebras ῑ : L→ ALie/ω1A.
We demand properties (i)–(iii) of 4.5.4 with ι replaced with ῑ.
Our ῑ defines, as in (ii) in 4.5.3, an ω-extension L[ of L and a morphism of Lie∗

algebras ι[ : L[ → ALie which lifts ῑ and such that ι[1[ = 1A. The K-action on L
lifts to L[ so that ι[ commutes with the K-actions.

The ω-extension L[ is important for the reasons explained in the remark after
the proposition below.63 Our package is called a twisted L-action on A governed
by ι[ : L[ → ALie.

Proposition. Suppose that L is a homotopically quasi-induced DX/Z-complex.
Then the above package yields a homotopy OZ-extension L[ of L and a left unital
homotopy L[-action on the chiral complex Rπch· (X/Z,A).

Remark. The extension L[ depends only on data (a)–(c), L[, and the K-action
on L[. It does not depend on A and ι[.

Proof. Let us repeat steps (i)–(iii) of the proof in 4.5.5. So we have the
complex Cch(X/Z,A)P̃Q which represents Rπch· (X/Z,A). It is a module over the
commutative non-unital algebra Cch(X/Z, ω)P̃Q (where ω := ωX/Z) which is a
homotopy unit OZ-algebra (see 4.3.4). We will define a Cch(X/Z, ω)P̃Q-extension
L̃[ of the Lie OZ-algebroid L̃ from step (iv) of the proof in 4.5.5 and an action
of L̃[ on Cch(X/Z,A)P̃Q such that Cch(X/Z, ω)P̃Q ⊂ L̃[ acts according to the
Cch(X/Z, ω)P̃Q-module structure.

Let π·h/Z(LP̃+Q)[‡ be the relative version of the Lie algebra Γ(X,h(LP̃+Q))[‡
defined in (ii) in 4.5.3. This is a Lie OZ-algebra which is a central extension of the
contractible Lie algebra π·h/Z(LP̃+Q)‡ by Cch(X/Z, ω)P̃Q.

Now Cch(X/Z,A)P̃Q carries a natural action of π·h/Z(LP̃+Q)[‡ (see (ii) in 4.5.3)
and of the Lie OZ-algebroid π·K̄Q (see steps (ii) and (iv) in 4.5.5). The latter
algebroid is an extension of L by π·h/Z(LQ). Let L̃[ be the push-out of π·K̄Q

by the morphism π·h/Z(LQ) ↪→ π·h/Z(LP̃+Q)[‡ (see (II) in 4.5.3). This is a Lie
OZ-algebroid64 which is a Cch(X/Z, ω)P̃Q-extension of L̃. Our actions define the
promised action of L̃[ on Cch(X/Z,A)P̃Q. �

Remark. One can rephrase slightly the definition of L̃[. Consider the Lie∗ al-
gebra L♦

P̃+
‡ Q

from (ii) in 4.5.3. Let K̄�
‡ be an extension of π−1L by h/Z(L♦

P̃+
‡ Q

) defined

as the push-out of K̄Q by the morphism h/Z(LQ)→ h/Z(L♦
P̃+
‡ Q

). This is naturally a

Lie π−1OZ-algebroid. Then π·K̄Q is an extension of L̃ by π·h/Z(ωP̃Q)[1]. It is clear
that L̃[ is the push-out of this extension by π·h/Z(ωP̃Q)[1] ↪→ Cch(X/Z,A)P̃Q.

4.5.7. Remarks. (i) Suppose we are in the situation of 4.5.6 and L is a
plain Lie algebroid. Then H 6=0L̃[ = 0, and the definition of L[ = H0L̃[ can be
streamlined as follows.

Set K̄ := K/ΘX/Z ; this is a Lie π−1OZ-algebroid which is an extension of
π−1L by h/Z(L). Since L is a quasi-induced DX/Z-module, h/Z(L[) is a central

63The package can be easily reformulated so that L[ and ι[ become entry data.
64Since π·h/Z(LQ) ↪→ π·h/Z(LP̃+Q)[

‡ is a π·K̄Q-equivariant morphism of Lie OZ -algebras.
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extension of h/Z(L) by h/Z(ω). Set N := Cone(h/Z(L[) → K̄); this is a complex
with cohomology H0N = L, H−1N = h/Z(ω). The K-action on h/Z(L[) factors
through K̄, so N is naturally a Lie π−1OZ-algebroid. Thus R0π·N is a Lie OZ-
algebroid which is an extension of L by R1π·h/Z(ω) = OZ .

Now there is a canonical isomorphism of the Lie algebroid OZ-extensions

(4.5.7.1) L[
∼−→ H0Rπ·N.

To see this, we use the description of L̃[ from the remark at the end of 4.5.6.
Notice that as a morphism in the derived category π·h/Z(ωP̃Q)[1]→ Cch(X/Z,A)P̃Q

amounts to the trace morphism π·h/Z(ωP̃Q)[1] → τ≥0(π·h/Z(ωP̃Q)[1]) ∼−→ OZ .
Therefore L[ = H0π·K̄Q.

Now the standard morphisms P̃+ → OX , OX → Q yield morphisms of Lie
π−1OZ-algebroids K̄�

‡ → NQ ← N where NQ := Cone(h/Z(L[Q)→ K̄Q). The second
arrow is a quasi-isomorphism; the first one induces an isomorphism of cohomology
in degrees ≥ −1. Therefore we get H0π·K̄Q

∼−→ H0Rπ·N which is (4.5.7.1).
(ii) Suppose that for a given L we have a finite family of chiral algebras Aα

together with twisted L-actions on each Aα. Then one has a natural twisted L-
action on ⊗Aα such that the corresponding OX -extension of L is (homotopically
equivalent to) the Baer sum of the corresponding extensions L[α . Namely, we take
L = ΠLα, K the fibered product of Kα over π\L, and ι = Σια. The product map
(4.3.5.1) is compatible with the (twisted) L-actions.

4.5.8. Suppose we are in the situation of 4.5.6; let us show that the con-
struction of loc. cit. generalizes immediately to the case of chiral homology with
coefficients.

Let {Ms}s∈S be a finite non-empty family of OZ-flat chiral A-modules. By
4.2.19, we have the corresponding chiral homology complex Rπch· (X/Z,A, {Ms}) of
OZ-modules.

Now suppose that the Lie π−1OS-algebroid K acts on each Ms. We assume that
this action is compatible with the DX/Z-module and the chiral A-module structure
on Ms, and is π−1OS-linear with respect to K, that the Lie subalgebra h/Z(L) ⊂ K

acts via ῑ and the h/Z(ALie/1Aω)-action on Ms, and that ΘX/Z ⊂ K acts according
to the DX/Z-module structure on Ms.

Such a package yields then a left unital homotopy action of L[ on the complex
Rπch· (X/Z,A, {Ms}). Namely, it defines in the obvious manner a twisted L-action
governed by ι[ on the chiral algebra A{Ms} (see 4.2.19), so the Lie algebroid L̃[

from the proof in 4.5.6 acts on Cch(X/Z,A, {Ms})P̃Q as on the direct summand
of Cch(X/Z,A{Ms})P̃Q. This action is homotopy unital, i.e., Cch(X/Z,A, {Ms})P̃Q

is naturally a homotopy unital Cch(X/Z, ω)P̃Q-module, and Cch(X/Z, ω)P̃Q ⊂ L̃[

acts on Cch(X/Z,A, {Ms})P̃Q according to this module structure.

4.5.9. Suppose we have a finite non-empty set S and for each s ∈ S a section
xs : Z → X whose images for different s do not intersect. As in 4.4.3 we get the
A-modules Ãs. The K-action on A yields one on Ãs which evidently satisfies the
above compatibilities, so L[ acts on Rπch· (X/Z,A, {Ãs}).

Lemma. The identification Rπch· (X/Z,A, {Ãs})
∼−→ Rπch· (X/Z,A) of (4.4.3.2)

is compatible with the L[-actions.



338 4. GLOBAL THEORY: CHIRAL HOMOLOGY

Proof. We want to show that the above canonical isomorphism in the derived
category of OZ-modules lifts naturally to an isomorphism between the objects in the
derived category of OZ-modules equipped with homotopically unital left L̃[-actions.

Recall (see the proof in 4.4.3) that our isomorphism comes from diagram
(4.4.3.4) which, in turn, arises from the morphisms of chiral algebras A{Ãs} α̃←

A ⊗ SymP
β̃−→ A. The twisted L-action governed by ι[ on A defines one on each

of the above chiral algebras; the morphisms α̃, β̃ are compatible with this action,
and it preserves the ZS-gradings on A{Ãs} and A ⊗ SymP . Passing to the cor-
responding Cch

P̃Q
-complexes, we get quasi-isomorphisms65 Cch(X/Z,A, {Ãs})P̃Q

α←

C̃ch(X/Z,A, {Ãs})P̃Q

β→ Cch(X/Z,A)P̃Q of left homotopically unital L̃[-modules,
which form the promised lifting. �

4.5.10. Suppose we are in the situation of 4.5.8 and each Ms is supported at
the image of a section xs : Z → X; assume that the images of xs for different s do
not intersect. Then one can compute Rπch· (X/Z,A, {Ms}) by means of an economic
complex Cch(X/Z,A, {Ms})P̃ that does not use Q; see (4.2.19.3). Let us describe
a variant L̂[ of the extension L̃[ that acts naturally on Cch(X/Z,A, {Ms})P̃. This
construction will be compared with the general one from 4.5.8 in 4.5.11.

Below, jS : US ↪→ X is the complement to
⋃
xs(Z); P, P̃, etc., are as in (iii) in

4.5.5 and in 4.5.2.
(i) Consider the Lie π−1OZ-algebroid K̄ := K/s(ΘX/Z) which is an extension

of π−1L by h/Z(L), and the Lie∗ algebra L♦
P̃+
‡

:= Cone(L[
P̃
→ LP̃+) (cf. (ii) in

4.5.3). Let Φ, Φ̃ be the push-outs of K̄ by, respectively, h/Z(L) → h/Z(jS∗j∗SLP̃+)
and h/Z(L)→ h/Z(jS∗j∗SL

�
P̃+
‡
). Thus Φ ⊂ Φ̃ are naturally Lie π−1OZ-algebroids, so

π·Φ ⊂ π·Φ̃ are Lie OZ-algebroids. We have an embedding 1[ : π·h/Z(jS∗j∗SωP̃)[1] ↪→
π·Φ̃ whose cokernel maps quasi-isomorphically onto L.66 Let L̂ be the push-out of
π·Φ̃ by π·h/Z(jS∗j∗SωP̃)[1] ↪→ Cch(X/Z, jS∗j∗Sω)P̃. The latter complex (which is the
relative version of Γ(XS, h(jS∗j∗SωP̃))) is acyclic, so L̂→ L is a quasi-isomorphism
of Lie algebroids.

We will define an OZ-extension L̂[ of L̂ that acts on Cch(X/Z,A, {Ms})P̃.
(ii) For s ∈ S set Ss := Sr{s} and consider a Lie∗ algebra jS∗j∗SL

[/1[jSs∗j
∗
Ss
ω

which is a central xs∗OZ-extension of jS∗j∗SL. Applying h/Z , we get a central
xs·OZ-extension h/Z(jS∗j∗SL)[s of h/Z(jS∗j∗SL). Pulling this extension back to
h/Z(jS∗j∗SLP̃+), we get a central xs·OZ-extension h/Z(jS∗j∗SLP̃+)[s of the latter
Lie algebra.

Notice that the morphisms h/Z(jS∗j∗SL
[) → h/Z(jS∗j∗SL) ← h/Z(L) lift nat-

urally to h/Z(jS∗j∗SL)[s . Denote by h/Z(jS∗j∗SL
�
P̃+
‡
)[s the cone of the morphism

h/Z(jS∗j∗SL
[) → h/Z(jS∗j∗SLP̃+)[s ; this is a Lie algebra which is a central s·OZ-

extension of h/Z(jS∗j∗SL
�
P̃+
‡
). Let Φ[s ⊂ Φ̃[s be the push-outs of K̄ by, respectively,

the morphisms h/Z(L) → h/Z(jS∗j∗SLP̃+)[s , h/Z(L) → h/Z(jS∗j∗SL
�
P̃+
‡
)[s . These

are Lie π−1OZ-algebroid s·OZ-extensions of Φ and Φ̃.

65Here C̃ch(X/Z, A, {Ãs})P̃Q is the component of Cch(X/Z, A⊗ SymP )P̃Q of degree 1S .
66We use here, as in the proof of 4.5.5, a relative version of the lemma from 4.1.4.
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(iii) So for each s ∈ S we have an OZ-extension π·Φ̃[s of the Lie OZ-algebroid
π·Φ̃; denote by π·Φ̃[ the Baer sum of these extensions. Define π·Φ[ ⊂ π·Φ̃[ in a
similar way. By construction, π·Φ̃[ contains π·h/Z(jS∗j∗SL

[
P̃
)[1] as a submodule. By

the sum of residues formula π·h/Z(jS∗j∗SωP̃)[1] ⊂ π·h/Z(jS∗j∗SL
[
P̃
)[1] is a subcomplex

in π·Φ̃[. Let L̂[ be the push-out of π·Φ̃[ by the morphism π·h/Z(jS∗j∗SωP̃)[1] ↪→
Cch(X/Z, jS∗j∗Sω)P̃. Our L̂[ is naturally a Lie OZ-algebroid which is an OZ-
extension of L̂.

(iv) Let us define the L̂[-action on Cch(X/Z,A, {Ms})P̃. Our L̂[ is the sum of
the ideals Cch(X/Z, jS∗j∗Sω)P̃, π·h/Z(jS∗j∗SL

[
P̃
)[1], and the subalgebroid π·Φ[. We

define the action on these submodules separately, leaving it to the reader to check
the compatibilities. Take any chain c = (⊗ms) ⊗ cA ∈ Cchn (X/Z,A, {Ms})P̃ :=
(⊗h/Z(Ms)) ⊗ Γ(U (n)

S , h/Z((AP̃[1])�n))Σn
. For any α ∈ Cch(X/Z, jS∗j∗Sω)P̃ and

β ∈ π·h/Z(jS∗j∗SL
[
P̃
)[1] one has α(c) := c � 1A(α), β(c) := c � ι[(β). A section

φ[ ∈ (π·Φ)[ can be represented by a collection (φ, {`[s}) where φ ∈ π·Φ and `[s ∈
π·h/Z(jS∗j∗SL

[) are such that for any s ∈ S the image of φ − `s in Γ(US , K̄) is
regular at xs(Z); i.e., it belongs to Γ(USs

, K̄). Now

(4.5.10.1) φ[(c) := (⊗ms)⊗ φ(cA) +
∑
s∈S

( ⊗
s′ 6=s

ms′)⊗ ((φ− `s)ms + `[sms)⊗ cA.

4.5.11. Let us show that the construction from 4.5.10 is naturally homo-
topically equivalent to the general construction from 4.5.8. Consider the quasi-
isomorphisms

(4.5.11.1) Cch(X,A, {Ms})P̃Q → Cch(X,AQ, {MsQ})P̃ ← Cch(X,A, {Ms})P̃,

comparing the chiral chain complexes we consider (see (4.2.19.5)). The left complex
carries the action of the extension L̃[ from 4.5.8 and 4.5.6; the right one carries the
action of L̂[ from 4.5.10. The middle complex carries an action of an extension L̂

′[

defined in the same way as L̂[ with L, L[ replaced by LQ := L⊗Q, L[Q := L[⊗Q and
the h/Z(L)-extension K̄ of π−1L replaced by its push-out K̄Q by h/Z(L)→ h/Z(LQ).
Thus L̂

′[ is an extension of L̂′ by ⊗Qs; the details of the construction are left to
the reader. There are evident quasi-isomorphisms

(4.5.11.2) L̃[ → L̂
′[ ← L̂[

of Lie algebroid extensions of L, and (4.5.11.1) is equivariant with respect to these
morphisms. This establishes the promised homotopy equivalence.

4.5.12. Suppose we are in the situation of 4.5.10 and L is a plain Lie algebroid,
so L[

∼−→ H0L[. Let us extract from 4.5.10 a description of the action of L[ on
Cch(X/Z,A, {Ms})P̃ as on a mere object of the derived category of OZ-modules.

First, as in the end of 4.5.10, for γ ∈ L its lifting γ[ ∈ L[ is given by a collection
(φ, {`[s}) where φ is a section of K̄ over US that lifts γ and the `[s ∈ h/Z(jS∗j∗SL

[)
are such that the sections φ− `s ∈ Γ(US , K̄) lie in Γ(USs

, K̄), i.e., they are regular
at xs(Z). Now γ[ acts on the chiral chain complex as the endomorphism given by
formula (4.5.10.1).

In particular, suppose that A is a plain chiral algebra and the Ms are plain A-
modules. Then Hch

0 (X/Z,A, {Ms}) =〈A〉/Z= (⊗h/Z(Ms))h/Z(US ,A) (see (4.4.4.1)),
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and L[ acts on it as

(4.5.12.1) γ[(⊗ms) =
∑
s∈S

( ⊗
s′ 6=s

ms′)⊗ ((φ− `s)ms + `[sms).

4.5.13. Examples. Below we assume for simplicity that Z is smooth.
(i) Let X be a Z-family of curves as in 4.5.4. Consider the following canonical

package (a)–(c) from 4.5.4:
Take L = ΘZ , so π†L = ΘX and π]L is the algebra of vector fields on X

preserving π. Let L = ΘX/ZD = ΘX/Z ⊗DX/Z be the Lie∗ algebra corresponding
to the Lie algebra of vertical vector fields (see Example (i) in 2.5.6(b)), so h/Z(L) =
ΘX/Z . Then π]L acts on L by transport of structure. Let K be the push-out
of π]L by the diagonal embedding morphism ΘX/Z ↪→ ΘX/Z × h/Z(L), and let
s : ΘX/Z ↪→ K be the embedding of the first multiple. Our K is a Lie π−1OZ-
algebroid in the obvious manner. It acts naturally on L so that π]L ⊂ K acts
by transport of structure, h/Z(L) by the adjoint action, and ΘX/Z

s
↪→ K via the

DX/Z-module structure on L. Our datum satisfies the properties (i)–(iii) in 4.5.4.
Now let A be a (not necessary unital) chiral algebra on X equipped with an

action of π]L. For example, such is any universal chiral algebra in the sense of
3.3.14. The π]L-action extends then to a K-action so that ΘX/Z

s
↪→ K acts via the

DX/Z-module structure on A. To complete datum (d) of 4.5.4, we need a Virasoro
vector, i.e., a morphism of Lie∗ algebras ι : L → ALie. The conditions from 4.5.4
mean that ι commutes with the L]-actions and ΘX/Z ⊂ L] acts on A according to
the Lie action defined by ι (see (3.7.25.1)); i.e., for any vertical field τ ∈ ΘX/Z its
L]-action on A is a 7→ adι(τ)a− a · τ where the first term is the adjoint action and
the second term is the right DX/Z-module action.

According to 4.5.5, such datum provides a flat connection on the chiral homol-
ogy sheaves. Usually one finds a twisted version of the above situation, when A is
unital and ι is replaced by ῑ : L→ ALie/ω1A. It leads, by 4.5.6, to a flat projective
connection. The corresponding ι[ : L[ → A is then a Virasoro vector of a certain
central charge c (see 3.7.25).

(ii) Suppose we are in the situation of 3.4.17, so X is a single curve and we
have a group DX -scheme G acting on a chiral algebra A. Assume that G is smooth;
let L =Lie(G) be its Lie∗ algebra (see (iv) in 2.5.7) which is a vector DX -bundle.
Suppose we have a G-equivariant morphism of Lie∗ algebras ι : L → ALie; here G
acts on L by the adjoint action.

Let P = PZ be a Z-family of DX -scheme G-torsors on X, which is the same as
a G-torsor on X × Z67 equipped with a relative connection68 compatible with the
G-action. By 3.4.17, our P yields then a Z-family of twisted chiral algebras A(P )
on X × Z.

Let us show that our datum defines then a package (a)–(d) from 4.5.4 for A(P )
and the Lie OZ-algebroid L = ΘZ . The Lie∗ algebra from (a) is L(P ) := the
P -twist of L with respect to the adjoint action. Then h/Z(L(P )) identifies in the
usual way with the Lie algebra of vertical vector fields on P which commute with
the G-action and are compatible with the connection.

67I.e., a torsor with respect to the pull-back of G by the projection X × Z → X.
68I.e., a connection along X-directions.
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Our family of curves is constant, so L] is a semi-direct product of π−1L (acting
by vector fields along X-directions) and ΘX/Z . Let K̄ be the sheaf of pairs (τ, τP )
where τ ∈ π−1L ⊂ ΘX×Z and τP is its lifting to a vector field on P which commutes
with the G-action and is compatible with the connection. This is naturally a
Lie π−1OZ-algebroid which is an extension of π−1L by h/Z(L(P )).69 Set K :=
K̄nΘX/Z . Then K acts in an evident manner on L(P ), so we have defined data (b)
and (c) from 4.5.4. The morphism from (d) is ι(P ) : L(P )→ A(P )Lie, the P -twist
of ι.

Properties (i)–(iii) of 4.5.4 are immediate, so 4.5.5 defines a flat connection on
the chiral cohomology of the family A(P ). One finds more often a twisted version
of the above situation, when instead of ι one has a G-equivariant morphism of Lie∗

algebras ῑ : L → ALie. Then we get a twisted package from 4.5.6, hence a flat
projective connection on the chiral homology.

The most interesting particular case of the above situation occurs when G is the
jet scheme of an algebraic groupH (see Remark (iv) in 3.4.17) and L[ corresponding
to ῑ is a Kac-Moody extension (see 2.5.9). Then DX -scheme G-torsors are the same
as G-torsors on X (see (3.4.17.2)), so the chiral homology of A(P ) forms a twisted
D-module on the moduli space BunH of H-bundles on X.

4.6. The case of commutative DX-algebras

For a commutative chiral algebra its chiral homology is naturally a homotopy
commutative algebra (see 4.3.1 and 4.3.4). So we have a functor from the homo-
topy category of commutative DX -algebras to that of commutative DG algebras.
The theorem in 4.6.1 says that it is equal to the left derived functor of the functor
R` 7→ 〈R〉 from 2.4.1. The key point is the computation of the chiral homology of a
polynomial DX -algebra done in 4.6.2. Its relative version is presented in 4.6.4 after
some needed preliminaries on semi-free modules (see 4.6.3). The linearized version
of 4.6.1 (that deals with the chiral homology of R`[DX ]-modules) is considered in
4.6.5. It implies that the chiral homology commutes with the cotangent complex
functor (see 4.6.6). We show also that chiral homology functor preserves perfect
complexes (see 4.6.7) and commutes with their duality (see 4.6.8). By the propo-
sition in 4.1.17, these facts imply that for a (very) smooth DX -algebra its chiral
homology algebra is essentially a complete intersection (see 4.6.9).

As in 4.3.7, “DX -algebra” means “commutative unital DG super DX -algebra”
and “plain DX -algebra” means “DX -algebra supported in degree 0”.

4.6.1. The chiral homology as a left derived functor. Let F ` be a
DX -algebra. We say that F is semi-free if it is OX -semi-free in the sense of 4.3.7
and is convenient if it is semi-free and one can find F0 ⊂ F1 ⊂ · · · ⊂ F as in
loc. cit. such that the corresponding Vi have the property Γ(X,h(Vi)) = 0. We call
F· a convenient filtration on F and {Vi} ⊂ F convenient generators.

By Remark (b) in (the proof of) 4.3.7 every DX -algebra admits a convenient
left resolution.

Consider the morphism φF : Cch(X,F ) → 〈F 〉 from (4.2.17.1); it is naturally
a morphism in the homotopy category of commutative algebras (see 4.3.2(i)).

69The projection K̄→ π−1L is surjective since G is smooth as a DX -scheme.
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Theorem. If F is convenient, then φF is a quasi-isomorphism:

(4.6.1.1) φF : Cch(X,F ) ∼−→ 〈F 〉.

Therefore on the category of commutative unital chiral algebras, Cch coincides with
the left derived functor of 〈 〉.

Proof. (a) Since both parts of (4.6.1.1) are compatible with inductive limits,
our problem reduces to the following statement:

Let R→ F be an elementary morphism (see 4.3.7) such that the corresponding
V ⊂ F has the property Γ(X,h(V )) = 0. Suppose that φR : Cch(X,R)→ 〈R〉 is a
quasi-isomorphism. Then φF : Cch(X,F )→ 〈F 〉 is also a quasi-isomorphism.

(b) Let us show that the above statement follows from its particular case when
R` = OX and the differential of F vanishes.

Recall that as a mere Z-graded DX -algebra, F equals R ⊗ SymV , and the
ring filtration Fa := R ⊗ Sym≤aV is compatible with the differential. The functor
〈 〉 commutes with tensor products, so as a mere Z-graded algebra, 〈F 〉 equals
〈R〉 ⊗ 〈SymV 〉. Notice that 〈SymV 〉 = SymK where K = H0

DR(X,V [1]) since, by
2.1.12, the maximal constant quotient of V ` equalsK⊗OX . The filtration Fa defines
a filtration on Cch(X,F ) (see 4.2.18); we also have a filtration 〈R〉⊗Sym≤aK on 〈F 〉
compatible with the differential. Our morphism is compatible with filtrations, so, by
(4.2.18.1), it suffices to check that grφF is a quasi-isomorphism. Now grφF = φgrF ,
and grF equals R⊗ SymV as a DG algebra (the differential kills V ). By 4.3.6 we
are reduced to the situation of R` = OX ; i.e., F = SymV .

(c) Now F = SymV , dF = 0, so 〈F 〉 = SymK where K := H0
DR(X,V [1]). We

want to show that φF : Cch(X,Sym>0V )→ Sym>0K is a quasi-isomorphism.

4.6.2. We will deduce this fact from the next proposition which is valid under
less restrictive assumptions on V . Take any V ∈ CM(X); set F := SymV . Let
us represent Cch(X,F ) by the commutative algebra Cch(X,F )PQ (see 4.3.2) and
RΓDR(X,V ) by the complex Γ(X,h(VPQ)). The embedding Γ(X,h(VPQ))[1] ⊂
Cch1 (X,F ) ↪→ Cch(X,F ) (see 4.2.12) yields a morphism of commutative algebras

(4.6.2.1) Sym(Γ(X,h(VPQ))[1])→ Cch(X,F ).

Proposition. If V is homotopically OX-flat, then this is a quasi-isomorphism.

End of the proof of the theorem. Consider V as in part (c) of the proof in 4.6.1.
We know that Γ(X,h(VPQ))[1] ∼−→ RΓDR(X,V [1]) ∼−→ H0

DR(X,V [1]) = K, and it
is clear that (4.6.2.1) is right inverse to φF . So the proposition implies that φF is
a quasi-isomorphism, and we are done.

Proof of Proposition. (i) Set F>0 := Sym>0V . By 4.4.8 it suffices to show that

(4.6.2.2) Sym>0(Γ(X,h(VPQ))[1])→ Cch(X,F>0)

is a quasi-isomorphism.
(ii) Let us show first that (4.6.2.2) comes from a morphism of certain D-

complexes on XS. Recall that the Chevalley-Cousin complex C(F>0) is a com-
mutative algebra in CM(XS)∗. Set P := Sym>0

∗ (∆(S)
∗ V [1]) (see 3.4.10); this is

again a commutative algebra in CM(XS)∗. The embeddings ∆(S)
∗ V ↪→ ∆(S)

∗ F>0 ↪→



4.6. THE CASE OF COMMUTATIVE DX -ALGEBRAS 343

C(F>0) define a morphism of commutative algebras P → C(F>0). Passing to the
de Rham cohomology, we get

(4.6.2.3) RΓDR(XS, P )→ RΓDR(XS, C(F>0)) = Cch(X,F>0).

Now there is a canonical quasi-isomorphism

(4.6.2.4) Sym>0RΓDR(X,V [1]) ∼−→ RΓDR(XS, P ).

Namely, we know that RΓDR(X,V [1]) ∼−→ RΓDR(XS,∆(S)
∗ V [1]), and (4.6.2.3) is

the symmetric power of this quasi-isomorphism via (4.2.8.6).
It is immediate that (4.6.2.2) is the composition of (4.6.2.3) and (4.6.2.4). So

to prove the proposition, one needs to check that (4.6.2.3) is a quasi-isomorphism.
(iii) Consider a filtration W· on C(F>0) defined as follows. On each C(F>0)XI

our filtration is compatible with the Q(I)-grading (see (3.4.11.1)), and for T ∈ Q(I)
one has Wn∆

(I/T )
∗ j

(T )
∗ j(T )∗(F>0[1])�T := ∆(I/T )

∗ ((F>0[1])�T ·Wnj
(T )
∗ OU(T )); see

3.1.6 and 3.1.7. Our C(F>0) also carries a Z>0-grading defined by the action
of homotheties on V ; denote the components by C(F )(n). Subcomplex P and
filtration W· are compatible with the grading. One has W−1C(F>0) = C(F>0),
and W−n−1C(F )(n) = 0, W−nC(F>0)(n) = P (n). To prove the proposition, it
suffices to show that

(4.6.2.5) RΓDR(XS, P (n)) ∼−→ RΓDR(XS, grW−nC(F>0)).

One has grW−nC(F>0)XI = ⊕
S∈Q(I)

⊕
T∈Q(S,n)

∆(I/T )
∗ (�T (F>0[1])⊗St) ⊗ Lie∗S/T ;

see (3.1.10.1) (we forget about the differential). Therefore

(4.6.2.6) grW−1C(F>0)XI = ⊕
S∈Q(I)

∆(I)
∗ (F>0[1])⊗S ⊗ Lie∗S ,

and there is an obvious identification

(4.6.2.7) grW−nC(F>0) = Symn
∗grW−1C(F>0).

Here Symn
∗ is nth symmetric power with respect to the ⊗∗ tensor structure (see

3.4.10). Now (4.6.2.7) is compatible with the differentials; i.e., it is an isomorphism
of complexes. Since P (n) = Symn

∗P
(1), (4.6.2.5) for arbitrary n follows from the

case n = 1 by (4.2.8.6).
(iv) The complex grW−1C(F>0) is supported on the diagonal X ⊂ XS, so we can

consider it as an S◦-diagram Φ of complexes of D-modules on X. The subcomplex
P (1) identifies with a constant subdiagram V ⊂ Φ. Now RΓDR(XS, grW−1C(F>0))
is the de Rham cohomology of X with coefficients in the homotopy direct limit
C(S◦,Φ) (see 4.1.1(iv)). Similarly, RΓDR(XS, P (1)) = RΓDR(X,C(S◦, V )), and
C(S◦, V ) ∼−→ V . We will show that V → C(S◦,Φ) is a quasi-isomorphism. This
implies (4.6.2.5) for n = 1, hence finishes the proof.

Define a grading Φ = ⊕Φm so that the subdiagram Φm collects all summands
in (4.6.2.6) with |S| = m. Then d(Φm) ⊂ Φm−1, and every Φm is the induced
S◦-diagram that corresponds to a representation of the symmetric group Σm on
(F>0[1])⊗n ⊗ Lie∗n (see Exercise in 4.1.1(iv)). Therefore, by loc. cit., the projec-
tion C(S◦,Φ) → lim−→Φ is a quasi-isomorphism, and lim−→Φ is a complex with terms
((F>0[1])⊗m⊗Lie∗m)Σm . In other words, lim−→Φ`, as a mere graded D-module, coin-
cides with the cofree Lie coalgebra generated by the left D-module (Sym>0V `)[1].
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The differential equals the canonical differential defined by the commutative alge-
bra structure on F>0`. Therefore V → lim−→Φ is a quasi-isomorphism (see theorem
7.5 in [Q1]),70 and we are done. �

4.6.3. Semi-free modules. We need to fix some terminology. Let R` be a
DX -algebra. The DG category of R`[DX ]-modules (which are the same as central
chiral R-modules) is denoted by M(X,R`) and its derived category by DM(X,R`).

An R`[DX ]-module M is said to be semi-free if it admits a filtration M−1 =
0 ⊂M0 ⊂M1 ⊂ · · · ,

⋃
Mi = M , such that for each i there exists a Z-graded DX -

submodule Ni ⊂ Mi which is a locally projective DX -module, d(Ni) ⊂ Mi−1, and
the morphism R`⊗Ni → griM is an isomorphism. We refer to the Ni as semi-free
generators of M . We say that the generators Ni are convenient if Γ(X,h(Ni)) = 0;
in this situation M is said to be convenient. A semi-free module is automatically
R`-flat.

A linearized version of the proof of part (i) of the lemma in 4.3.7 (which is an
immediate modification of the usual construction of [Sp]) shows that every R`[DX ]-
module admits a semi-free resolution. Moreover, one can choose it so that Ni is
isomorphic to a direct sum of (shifts of) DX -modules LD where L is a line bundle
on X. If wanted, we can assume that the L are of sufficiently negative degree
(cf. Remark (b) in 4.3.7), so the resolution is convenient.

A morphism of DX -algebras f : R → F yields an evident exact DG functor
f· : M(X,F `)→M(X,R`) and its left adjoint f∗ : M(X,R`)→M(X,F `), f∗M :=
F ` ⊗

R`
M .

Lemma. The left derived functor Lf∗ : DM(X,R`) → DM(X,F `) is well
defined and is left adjoint to f· : DM(X,F `) → DM(X,R`). If f is a quasi-
isomorphism, then

(4.6.3.1) DM(X,R`)
Lf∗

�
f·

DM(X,F `)

are mutually inverse equivalences.

Proof. Use semi-free resolutions of R`[DX ]-modules. �

4.6.4. The proposition in 4.6.2 admits a version with parameters. Let R` be
a DX -algebra, V an R`[DX ]-module. Consider the symmetric R`-algebra F ` :=
SymR`V `.

Fix auxiliary P, Q and set Cch(·) := Cch(X, ·)PQ (see 4.2.12). We have a com-
mutative homotopy unital Cch(R)-algebra Cch(F ) and a homotopy unital Cch(R)-
module Cch(R, V ) := Cch(X,R, {V })PQ (see 4.2.19). Let SymL

Cch(R)C
ch(R, V ) be

the symmetric algebra of a homotopically Cch(R)-flat resolution of Cch(R, V ). The
obvious morphism of Cch(R)-modules Cch(R, V ) → Cch(F ) yields a morphism of
the homotopy unital Cch(R)-algebras

(4.6.4.1) SymL
Cch(R)C

ch(R, V )→ Cch(F ).

70Strictly speaking, [Q1] considers the setting of complexes over a field of characteristic 0
subject to some boundedness condition. From the modern point of view, the statement is a
consequence of the Koszul duality of the operads Com and Lie (in characteristic 0); see [GK].
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Theorem. If V is homotopically R-flat, then (4.6.4.1) is a quasi-isomorphism.

Proof. Choose a semi-free resolution W → V . Since V is homotopically R-flat,
the morphism SymRW → SymV is a quasi-isomorphism. Replacing V by W , we
can assume that V is semi-free (we use the fact that SymL

Cch(R) preserves quasi-
isomorphisms). The corresponding filtration on V makes (4.6.4.1) a morphism of
filtered Cch(R)-algebras. Using (4.2.18.3), one can replace V by grV ; hence we are
reduced to the case when V = R` ⊗ N where N is a locally projective Z-graded
DX -module (considered as a complex with zero differential). So F = R⊗ SymN `.

By (4.4.7.1), one has Cch(X,R) ⊗ RΓDR(X,N) ∼−→ Cch(X,R, V ); by 4.3.6,
Cch(X,R)⊗ Cch(X,SymN) ∼−→ Cch(X,F ). This identifies (4.6.4.1) with (4.6.2.1)
(for V = P ) tensored by Cch(X,R), so we are done by the proposition in 4.6.2. �

4.6.5. Here is a version of 4.6.1 for the chiral homology with coefficients.
Let R` be a DX -algebra. Recall that the constant DX -algebra 〈R〉 ⊗ OX is a

quotient of R`. Let M be a (DG) R`[DX ]-module (= the central chiral R-module).
Consider M〈R〉 := (〈R〉 ⊗ OX) ⊗

R`
M ; this is the maximal quotient of M which is a

〈R〉 ⊗DX -module.
The functor M → M〈R〉 is right exact. Let M 7→ ML

〈R〉 be its left derived
functor DM(X,R`) → D(X, 〈R〉 ⊗ OX). So if M is homotopically R`-flat, then
ML
〈R〉

∼−→M〈R〉.
Passing to the de Rham cohomology, we get a triangulated functor DM(X,R`)

→ D(〈R〉), M 7→ RΓDR(X,ML
〈R〉); here D(〈R〉) is the derived category of unital

〈R〉-modules.
Now let 〈M〉R be the maximal constant quotient of M `

〈R〉.
71 This is naturally

an 〈R〉-module. The functor M 7→ 〈M〉R is right exact. As is clear from the proof
of the next lemma, it admits the left derived functor M 7→ 〈M〉LR.

Lemma. One has a natural isomorphism

(4.6.5.1) RΓDR(X,ML
〈R〉)

∼−→ 〈M〉LR[−1].

Proof. One has a natural morphism RΓDR(X,ML
〈R〉) → 〈M〉R[−1] coming

from the canonical morphisms ML
〈R〉 → M〈R〉 → 〈M〉R ⊗ ω and the trace map

RΓDR(X, 〈M〉R ⊗ ω) = 〈M〉R ⊗ RΓDR(X,ω) tr−→ 〈M〉R[−1]. For convenient M it
is a quasi-isomorphism (see 4.6.3), and we are done. �

Suppose now that R is convenient (see 3.6.1), so 〈R〉 = Cch(X,R). By 4.3.4,
we have a triangulated functor DM(X,R`)→ D(〈R〉), M 7→ Cch(X,R,M).

Proposition. One has a natural isomorphism

(4.6.5.2) Cch(X,R,M) ∼−→ 〈M〉LR[−1].

Proof. Let us define a natural morphism

(4.6.5.3) Cch(X,R,M)→ 〈M〉R[−1].

71So 〈M〉R is obtained from the complex M〈R〉 by term-by-term application of the functor

HDR
0 (X, ·) (see 2.1.12).
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We have the Z-graded DX -algebra R{M}` with components R{M}0 = R, R{M}1

= M [−1], and Cch(X,R,M) is the degree 1 component of Cch(X,R{M}) (see
4.2.19). The Z-graded algebra 〈R{M}〉 has components 〈R{M}〉0 = 〈R〉, 〈R{M}〉1 =
〈M〉R[−1]. The morphism φR{M} : Cch(X,R{M})→ 〈R{M}〉 of commutative alge-
bras (see 4.2.17 and (i) in 4.3.2) then yields (4.6.5.3).

Let us check that (4.6.5.3) is a quasi-isomorphism for convenient M (see 4.6.3).
This establishes (4.6.5.2).

The filtration Mi induces on 〈M〉R a filtration such that gri〈M〉R = 〈griM〉.
The same is true for Cch(X,R,M), so it suffices to check our statement for M
replaced by grM . Thus we can assume that M = R`⊗N where N is a complex of
locally projective DX -modules with zero differential such that Γ(X,h(N)) = 0.

Consider S` := SymR`(M `[−1]) = R` ⊗ Sym(N `[−1]). One has an evident
projection S → R{M} compatible with the Z-gradings on both algebras. It yields
an isomorphism between the degree 1 components of the chiral homology, so one has
Cch(X,R,M) = Cch(X,S)1. We also have 〈S〉 = Sym〈R〉(〈M〉R), so our projection
yields an isomorphism of the degree 1 components 〈S〉1 ∼−→ 〈R{M}〉1 = 〈M〉R[−1].
Since S is convenient, we have Cch(X,S) = 〈S〉 (see 4.6.1). Therefore (4.6.5.3) is a
quasi-isomorphism; q.e.d. �

Corollary. The functor Cch(X,R, ·) : DM(X,R`) → D(〈R〉) is left adjoint
to the functor D(〈R〉)→ DM(X,R`), P 7→ P ⊗ ωX [1]. �

Remark. Here is a version of the above statements for several R`[DX ]-modules
Ms (we will not use it). One has an 〈R〉 ⊗ DXS -module �

〈R〉
Ms〈R〉 which yields

RΓDR(U (S), �
〈R〉

Ms〈R〉) ∈ D(〈R〉). Now for R convenient and Ms homotopically

R-flat there is a canonical isomorphism

(4.6.5.4) Cch(X,R, {Ms})
∼−→ RΓDR(U (S), �

〈R〉
Ms〈R〉).

4.6.6. The cotangent complex. The definition of the cotangent complex
(we recalled it in 4.1.5) renders itself immediately into the setting of DX -algebras.
Namely, for a commutative DX -algebra R` we have its R`[DX ]-module of differ-
entials ΩR := ΩR`/X . Now LΩR is an object of DM(X,R`) equipped with a
morphism LΩR → ΩR defined as follows. If R` is semi-free, then LΩR = ΩR.
One checks that if φ : R` → F ` is a quasi-isomorphism of semi-free algebras, then
dφ : Lφ∗ΩR → ΩF is a quasi-isomorphism. If R is arbitrary, then one chooses a
semi-free resolution R̃→ R and defines LΩR as the image of ΩR̃ by the equivalence
DM(X, R̃`) ∼−→ DM(X,R`); its independence of the choice of R̃ follows from the
exercise in 4.3.7. Notice that the image of LΩR in the derived category of DG
R`-modules (forgetting the DX -action) equals the usual cotangent complex of R`

relative to OX .

Proposition. There is a canonical quasi-isomorphism

(4.6.6.1) LΩCch(X,R)
∼−→ Cch(X,R, LΩR)[1].

Proof. Let ΩCch(X,R)PQ
be the module of Cch(X,R)PQ-differentials relative to

Cch(X,ω)PQ. The canonical odd derivation of the algebra R{ΩR} (see 4.2.19 for
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notation) yields a derivation Cch(X,R)PQ → Cch(X,R,ΩR)PQ[1] by transport of
structure. So we have a morphism of Cch(X,R)PQ-modules

(4.6.6.2) ΩCch(X,R)PQ
→ Cch(X,R,ΩR)PQ[1].

Its composition with the canonical morphism LΩCch(X,R) → ΩCch(X,R)PQ
is a mor-

phism LΩCch(X,R) → Cch(X,R,ΩR)[1] in the derived category of unital Cch(X,R)-
modules. Replacing R by a semi-free resolution, we get an arrow LΩCch(X,R) →
Cch(X,R, LΩR)[1]. It remains to show that this is a quasi-isomorphism.

We need a lemma. For arbitrary R consider the 〈R〉-module 〈ΩR〉R (see 4.6.5).
The universal derivation R` → ΩR yields a derivation 〈R〉 → 〈ΩR〉R between the
constant quotients, hence a morphism of DG 〈R〉-modules

(4.6.6.3) Ω〈R〉 → 〈ΩR〉R.

Lemma. Suppose that, as a mere graded DX-algebra, R is freely generated by
some DX-module. Then (4.6.6.3) is an isomorphism.

Proof of Lemma. Our statement has nothing to do with the differential on R,
so we can forget about it. Suppose that R` = SymV `. Denote by 〈V 〉 the maximal
constant quotient of V `. Then 〈R〉 = Sym〈V 〉; hence Ω〈R〉 = 〈R〉⊗〈V 〉 (we identify
〈V 〉 with its image in Ω〈R〉 by the universal derivation). Similarly, ΩR = R`⊗V , so
〈ΩR〉R = 〈R〉⊗ 〈V 〉. Now (4.6.6.3) identifies the generators of the free 〈R〉-module,
and we are done. �

Let us finish the proof of the proposition. We can assume that R is conve-
nient. Then, by the theorem in 4.6.1, one has Cch(X,R) ∼−→ 〈R〉. The arrow
Cch(X,R,ΩR)[1] → 〈ΩR〉R from (4.6.5.3) is also a quasi-isomorphism. Indeed,
ΩR is convenient (since the images of convenient generators of R by the universal
derivation are convenient generators of ΩR), and our assertion was checked in the
proof of the proposition in 4.6.5. The above isomorphisms identify our morphism
LΩCch(X,R) → Cch(X,R, LΩR)[1] with (4.6.6.3). We are done by the lemma. �

4.6.7. Perfect R`[DX ]-complexes. Let us check that the chiral homology
preserves perfect complexes.

Let R` be any commutative DX -algebra. We have the derived category of
R`[DX ]-modules DM(X,R`) and its subcategory DM(X,R`)perf of perfect com-
plexes (see 4.1.16).

Proposition. (i) Perfectness is a local property for the Zariski topology of X.
(ii) The functor Cch(X,R, ·) : DM(X,R`) → D(Cch(X,R)) preserves perfect

complexes.

Proof. (i) Suppose we have P ∈ DM(X,R`) and a finite covering {Uα} of X
such that the PUα

are perfect. For an R`[DX ]-module M let M → C(M) be the
Čech resolution of M with respect to this covering.

If j : U ↪→ X is an intersection of some Uα’s, then P |U is perfect; hence
the functor M 7→ Hom(P, j∗j∗M) = Hom(P |U ,MU ) commutes with direct sums.
Thus M 7→ Hom(P,M) = Hom(P,C(M)) also commutes with direct sums, so P is
perfect; q.e.d.

(ii) Follows from the fact that the right adjoint functor to Cch(X,R, ·), as
described in the corollary in 4.6.5, commutes with direct sums. �
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Suppose that R has non-positive degrees, so DM(X,R`) is a t-category. We
define the span of its objects as in 4.1.16; every perfect complex has finite span.

Lemma. (i) If an object M ∈ DM(X,R`) has span in [b, a] locally on X, then
the span of M lies in [b− 1, a].

(ii) If M ∈ DM(X,R`) has span [b, a], then Cch(X,R,M) ∈ D(Cch(X,R)) has
span in [b+ 1, a+ 1].

Proof. (i) Clear since the cohomological dimension of X equals 1.
(ii) Use the corollary from 4.6.5. �

Corollary. If R` is a plain DX-algebra and M a finitely generated locally
projective R`[DX ]-module, then Cch(X,R,M) is a perfect Cch(X,R)-module of
span [0, 1]. �

4.6.8. Compatibility with duality. Suppose that R has non-positive de-
grees.

Proposition. (i) An object P ∈ DM(X,R`) is perfect of span [b, a] if and only
if it can be represented as a retract in DM(X,R`) of a semi-free R`[DX ]-module
with finitely many generators whose degrees are in [b, a].

(ii) For a perfect P its dual is perfect, and the functor Cch(X,R, ·) commutes
with duality. �

4.6.9. Theorem. For a plain very smooth DX-algebra R` (see 2.3.15) the
algebra Cch(X,R) is perfect of span ≤ 1 (see 4.1.17). In particular, if the higher
chiral homology of R vanishes, then 〈R〉 is a complete intersection.

Remark. Probably, the theorem remains true if X is a projective variety of
arbitrary dimension n, and one defines Cch(X,R) as the left derived functor of
R 7→ 〈R〉 (see 3.4); the estimate for the span is ≤ n.

Proof of Theorem. We know that 〈R〉 = H0Cch(X,R) is finitely generated (see
(ii) in the proposition in 2.4.2), so, by 4.1.17, it suffices to check that the cotangent
complex LΩCch(X,R) is a perfect Cch(X,R)-module of span in [−1, 0].

Since R is very smooth, one has LΩR
∼−→ ΩR. Since ΩR is a locally projective

DX -module, Cch(X,R,ΩR) is a perfect Cch(X,R)-module of span in [0, 1] (see the
corollary in 4.6.7). By 4.6.6, it equals LΩCch(X,R)[−1], and we are done. �

4.7. Chiral homology of the de Rham-Chevalley algebras

In this section we consider the chiral homology of (the DG version of) the
orbit space of a Lie∗ R-algebroid. In particular, we interpret the homotopy 1-
Poisson structure on the chiral homology of a coisson algebra R. Namely, under
appropriate regularity condition it defines a Lagrangian embedding of Spec〈R〉 into
a formal symplectic tube. If R is the Gelfand-Dikii coisson algebra (see 2.6.8), then
this is the formal neighbourhood of the space of global opers on X in the symplectic
space of all local systems.

4.7.1. The orbit space of a Lie∗ algebroid. Let R` be a plain commutative
DX -algebra and L a Lie∗ R-algebroid which is a vector DX -bundle on SpecR`. Let
us show that the DG version of the orbit space functor commutes with the chiral
homology.
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The dual DX -bundle L◦ is a Lie R-coalgebroid, so we have the corresponding
de Rham-Chevalley DG DX -algebra CR(L◦) =: CR(L) (see (ii) and (iii) in 1.4.14).
It carries a decreasing filtration by DG ideals Fn := CR(L)≥n with grFCR(L) =
SymR(L◦[−1]),72 and we consider CR(L) = lim←−CR(L)/Fn as a filtered topological
DG DX -algebra. Thus CR(L)PQ := lim←−(CR(L)/Fn)PQ is also a filtered topological
algebra, grFCR(L)PQ = SymR(L◦[−1])PQ. We get a filtered topological homotopy
unital commutative DG algebra Cch(X,CR(L))PQ := lim←−C

ch(X,CR(L)/Fn)PQ;
one has grFCch(X,CR(L))PQ = Cch(X,SymR(L◦[−1]))PQ. As an object of the
corresponding homotopy category HoComuT,73 our algebra does not depend on
the auxiliary choice of P, Q, so we write simply Cch(X,CR(L)).

Consider now a homotopy unital commutative algebra Cch(X,R)PQ and a
homotopy unital Lie Cch(X,R)PQ-algebroid Cch(X,R,L)PQ (see (v) in 4.3.2).74

Choose any left resolution (which is a quasi-isomorphism of homotopy unital Lie
Cch(X,R)-algebroids) P → Cch(X,R,L)PQ which is homotopically Cch(X,R)PQ-
projective. Consider the de Rham-Chevalley complex C(P ) := CCch(X,R)PQ

(P )
which is a filtered homotopy unital topological DG algebra. In the unital setting
it was defined in 2.9.1, and in the present homotopy unital setting the defini-
tion is similar. Namely, as a mere topological graded module our C(P ) is equal
to Cch(X,R)PQ ⊕ HomCch(X,R)PQ

( ⊕
i>0

Symi
Cch(X,R)PQ

(P [1]), Cch(X,R)PQ), the al-

gebra structure on C(P ) comes since Sym>0(P [1]) is naturally a Cch(X,R)PQ-
coalgebra (the coproduct comes from the diagonal map P [1]→ P [1]×P [1]). As an
object of HoComuT, C(P ) does not depend on the auxiliary choice of P , P, Q, so
we denote it simply by CCch(X,R)(Cch(X,R,L)).

Proposition. There is a canonical isomorphism in HoComuT

(4.7.1.1) Cch(X,CR(L)) ∼−→ CCch(X,R)(C
ch(X,R,L)).

Proof. We will define a natural morphism of homotopy unital filtered topolog-
ical DG algebras

(4.7.1.2) Cch(X,CR(L))PQ → C(P )

which induces a quasi-isomorphism of the associated graded algebras.
The action of L onR extends naturally to an action of the contractible Lie∗ alge-

bra L† on CR(L) (see 1.4.14). Thus Cch(X,R,L)†, hence P†, acts on Cch(X,CR(L)).
If we forget about the differential, then the filtrations F · naturally split, so

both terms of (4.7.1.2) acquire an extra Z≥0-grading, not merely a filtration. We
define (4.7.1.2) as a unique Cch(X,R)PQ-linear morphism which is compatible with
the grading, commutes with the action of the P [1]-part of P†, and is the identity
map on the degree 0 component Cch(X,R)PQ. We leave it to the reader to check
that it is actually a morphism of DG algebras. It is a quasi-isomorphism on grF

due to 4.6.8 and 4.6.4. �

72This is not a filtration in the sense of 3.3.12 and 4.2.18, so the corresponding spectral
sequence need not converge.

73It is the same as the homotopy category of commutative unital DG algebras A equipped
with a filtration by DG ideals A = F 0 ⊃ F 1 ⊃ · · · with homotopy equivalences being morphisms

f such that grF f is a quasi-isomorphism.
74Here “homotopy unital Lie algebroid” means that we have a Lie algebroid which is a

homotopy unital Cch(X, R)PQ-module and whose action kills the homotopy unit in Cch(X, R)PQ.
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4.7.2. A description of Hch
0 . We are in the situation of 4.7.1. Suppose, in

addition, that the top cohomology H1Cch(X,R,L◦) = H1
DR(X,L◦

〈R〉) vanishes (see
2.4.7 and 4.6.5 for notation). By 2.2.17 (or 4.6.8 and 4.6.7), this amounts to the
fact that H0

DR(X,L〈R〉) = 0 and H1
DR(X,L〈R〉) is a projective 〈R〉-module. Then

H0Cch(X,R,L◦) = H0
DR(X,L◦

〈R〉) and H1
DR(X,L〈R〉) are mutually dual projective

〈R〉-modules of finite rank.
By 4.7.1, the positive cohomology groups H>0Cch(X,CR(L)/Fn) vanish for

each n, so · · · → H0Cch(X,CR(L)/Fn+1) → H0Cch(X,CR(L)/Fn) → · · · are
surjective maps . The projective limit Hch

0 (X,CR(L)) is a complete topological
algebra, and 〈R〉 = Hch

0 (X,CR(L))/I where I is an open ideal. As follows from
4.7.1, the topology on Hch

0 (X,CR(L)) coincides with the I-adic topology, and one
has an exact sequence Hch

1 (X,R)→ H0
DR(X,L◦

〈R〉)→ I/I2 → 0.
We see that the formal scheme SpfHch

0 (X,CR(L)) is a “formal tube” around
〈Y〉 where Y := SpecR`. Let us describe it in geometric terms using the formal
DX -scheme groupoid G on Y defined by L (see 1.4.15).

We have the sheaf of ind-affine ind-schemes 〈Y〉X on Xét and a formal groupoid
〈G〉X on it (see 2.4.1),75 hence for a test commutative algebra F the sheaf of F -points
〈Y〉X(F ) and the sheaf of groupoids 〈G〉X(F ) on it. Denote by 〈Y/G〉(F ) the stack of
sections of the quotient stack 〈Y〉X(F )/〈G〉X(F ). Its objects can be seen explicitly
as pairs (U·, f·) where U· is an étale hypercovering of X and f· : U· × SpecF → G·
is a morphism of simplicial DX -spaces; here G·, Gi = G×

Y
· · · ×

Y
G (i copies), is

the classifying simplicial formal DX -scheme.76 We leave the description of the
morphisms in 〈Y/G〉(F ) to the reader.

The stack 〈Y/G〉(F ) depends on F in a functorial way.

Proposition. (i) Automorphisms of objects of 〈Y/G〉(F ) are all trivial, so
〈Y/G〉 is a set-valued functor on the category of commutative algebras.

(ii) There is a natural isomorphism

(4.7.2.1) 〈Y/G〉 ∼−→ SpfHch
0 (X,CR(L)).

Proof. (i) Take any object φ ∈ 〈Y/G〉(F ) and its automorphism ν. Since G is
a formal groupoid, there are nilpotent ideals I and J of F such that ν modI is the
identity and φ modJ comes from some ψ ∈ 〈Y〉(F/J). It suffices to show that ν̄ := ν
modI(I + J) also equals the identity. Consider ψ as a morphism of DX -algebras
R` → F/J ⊗OX . One can view ν̄ as a section of h(L ⊗

R`
(I/(I + J)⊗OX)). This is

a trivial vector space by our conditions on L, and we are done.
(ii) Take any φ ∈ 〈Y/G〉(F ). We will show that φ defines naturally a homotopy

morphism φC : CR(L)` → OX ⊗ F . Then (4.7.2.1) is the map φ 7→ φ̃ := Hch
0 (φC).

Recall first the construction of G· from part (a) of the proof of the proposition
in 1.4.15. Fix n ≥ 0 and set Cn := CR(L)`/Fn+1. Choose a Cn-semi-free resolution
Ψn → R` (see 4.3.7); let T (a)

n be the Cn-tensor product of a + 1 copies of Ψn.

75We extend functor 〈 〉 to ind-affine DX -schemes in the obvious way.
76Of course, it suffices to consider U· associated to a covering {Uα}; then f· amounts to a

collection (fα, gαβ) where fα : Uα×Spec F → YUα and gαβ : Uαβ×Spec F → GUαβ
are morphisms

of DUα - and DUαβ
-schemes (here Uαβ := Uα×

X
Uβ) such that gαβ connects the restriction of fα,

fβ to Uαβ , and gαβgβγ = gαγ on Uαβγ .
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Then T
(·)
n is naturally a cosimplicial DG DX -algebra. One has H>0T

(·)
n = 0, so

τ≤0T
(·)
n ↪→ T

(·)
n is a quasi-isomorphism. Set E(·)

n := H0T
(·)
n ; then SpecE(·)

n is the
nth infinitesimal neighborhood of SpecR` ⊂ G·.

Write φ as a pair (U·, f·) (see above). Choose n sufficiently large so that f·
takes values in SpecE(·)

n ⊂ G·. Consider the evident morphisms of cosimplicial DG
DX -algebras77

(4.7.2.2) CR(L)` � Cn → T (·)
n ←↩ τ≤0T

(·)
n → E(·)

n
f·−→ OU· ⊗ F ←↩ OX ⊗ F.

Choose a homotopy inverse functor which assigns to a cosimplicial DG DX -algebra
a DG DX -algebra (e.g., the Thom-Sullivan construction from [HS] will do). Apply
it to (4.7.2.2); we get a sequence morphisms of DG DX -algebras where every arrow
directed to the left is a homotopy equivalence. Our φC is the composition. As a
morphism in the homotopy category, it does not depend on the auxiliary choices
involved.

(iii) It remains to check that the morphism 〈Y/G〉 → SpfHch
0 (X,CR(L)), φ 7→ φ̃,

is an isomorphism. Both spaces are formal neighborhoods of SpecHch
0 (X,R), so it

suffices to show that for any φ as above we have an isomorphism between the first
infinitesimal neighborhoods of φ and φ̃. Fix an extension F ′ of F by an ideal J of
square 0, and consider the sets of liftings E, Ẽ of φ, φ̃ to F ′. We want to show that
the map E→ Ẽ, φ′ 7→ φ̃′, is bijective.

Set K := LΩCR(L)

L
⊗
φC

(OX ⊗F ) ∈ DM(X,OX ⊗F ) where LΩCR(L) is the cotan-

gent complex (see 4.6.6). It follows from (4.6.6.1), (4.6.5.1), (4.6.5.2) that the
pull-back of the cotangent complex LΩCch(X,CR(L)) by the composition of mor-

phisms Cch(X,CR(L)) → Hch
0 (X,CR(L))

φC−−→ F equals RΓDR(X,K)[1] ∈ D(F ).
Then Ẽ is controlled by this complex in the usual way. Namely, there is a class
c̃ ∈ Ext1F (RΓDR(X,K)[1], J) = Ext1(K,ωX ⊗ J) which vanishes if and only if
Ẽ 6= ∅; if c = 0, then Ẽ is a HomF (RΓDR(X,K)[1], J) = Hom(K,ωX ⊗ J)-torsor.78

Locally on X our φC factors through a morphism f : R` → OX ⊗F . Therefore

the canonical exact triangle LΩCR(L)

L
⊗

CR(L)
R → LΩR → L◦ in DM(X,R`) shows

that H>1K = 0 and c vanishes locally on X if and only if f lifts (locally) to
f ′ : R` → OX ⊗F ′. We can assume that the latter condition holds (otherwise both
E and Ẽ are empty). Then c̃ ∈ Ext1(τ≥0K,ωX ⊗ J) ⊂ Ext1(K,ωX ⊗ J);79 if c̃ = 0,
then Ẽ is a Hom(τ≥0K,ωX ⊗ J)-torsor.

Let us describe τ≥0K. For any a ≥ 1 and i ∈ [0, a] the sheaf of relative 1-
forms with respect to the ith boundary projection Ga → Ga−1 identifies canonically
with p∗iL

◦ where πi : Ga → Y is the ith structure projection (see the proof of the
proposition in 1.4.15), so we have a canonical morphism χa : ΩGa → ⊕

i∈[o,a]
π∗iL

◦.

Let χ0 : ΩY → L◦ be the coaction morphism. Then the χ· form a morphism
of simplicial DX -modules on G·; set Ξ· := Cone(χ·)[−1]. This complex has the
property that for every simplicial structure map ∂ : Ga → Gb the corresponding
morphism ∂∗Ξb → Ξa is a quasi-isomorphism.

77Here OU· is the cosimplicial OX -algebra such that Spec OU· = U·.
78We use the global duality for the de Rham cohomology.
79More precisely, c̃ ∈ Ker(Ext1(τ≥0K, ωX ⊗ J)→ Ext1(H0K, ωX ⊗ J)).
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Thus we get a complex of cosimplicial (OU· ⊗ F )[DX ]-modules f∗· Ξ. The to-
tal complex tot f∗· Ξ is a complex of (OX ⊗ F )[DX ]-modules. It follows from the
construction of φC that it identifies canonically with τ≥0K.

Now E is controlled by the Hom complex Hom(tot f∗· Ξ, totωU·⊗J) (we assume
that U0 is affine). Since L◦ is locally projective, one has H1Hom(tot f∗· Ξ, totωU· ⊗
J) ⊂ Ext1(τ≥0K,ωX ⊗ J), H0Hom(tot f∗· Ξ, totωU· ⊗ J) ∼−→ Hom(τ≥0K,ωX ⊗ J).
One checks that the embedding transforms the obstraction c to non-emptiness of
E to c̃, and if c = 0, then our map E→ Ẽ is a morphism of torsors with respect to
the second isomorphism map, and we are done. �

Remark. Suppose in addition that R` is a smooth DX -algebra, H0
DR(X,Ω〈R〉)

= 0, and H1
DR(X,Ω〈R〉) is a projective 〈R〉-module, so, by (ii) in the proposition

in 2.4.7, 〈Y〉 is smooth. Then 〈Y/G〉 is a smooth formal scheme, and the normal
bundle to 〈SpecR`〉 ↪→ 〈Y/G〉 is equal to H1

DR(X,L〈R〉).

4.7.3. The case of a coisson algebra. Suppose that R is a plain very
smooth coisson algebra, so Ω = ΩR is a Lie∗ R-algebroid. As in the end of 1.4.18,
consider the filtered topological (−1)-coisson algebra Ccois(R). According to (iv)
in the proposition in 4.3.1, Cch(X,Ccois(R))PQ = Cch(X,CR(Ω))PQ is a homotopy
unital topological filtered Poisson algebra (we follow the notation of 4.7.1). As
an object of the corresponding homotopy category,80 it does not depend on the
auxiliary choices of P, Q, so we use the notation Cch(X,Ccois(R)).

On the other hand, by (iii) in the proposition in 4.3.1, Cch(X,R)PQ is a homo-
topy unital 1-Poisson algebra. Choose its semi-free resolution ψ : Φ→ Cch(X,R)PQ

as a 1-Poisson algebra. Then ΩΦ[−1] is a Lie Φ-algebroid. It is semi-free as a Φ-
module and is perfect by 4.6.9. Consider the topological filtered Poisson algebra
Cpois(Φ); as a mere topological filtered algebra it equals the de Rham-Chevalley
algebra of the Lie algebroid ΩΦ[−1] (see 2.9.1).81 As an object of the homotopy
category of topological filtered Poisson algebras, Cpois(Φ) does not depend on the
auxiliary choices of P, Q, Φ, so we denote it simply by Cpois(Cch(X,R)).

Proposition. There is a canonical homotopy equivalence of topological filtered
Poisson algebras

(4.7.3.1) Cch(X,Ccois(R)) ∼−→ Cpois(Cch(X,R)).

Proof. We can assume that the quasi-isomorphism ψ : Φ → Cch(X,R)PQ

of 1-Poisson algebras is surjective. Then ψ yields a morphism (Φ,ΩΦ[−1]) →
(Cch(X,R)PQ,ΩCch(X,R)PQ

[−1]) in LieAlg. The arrow (coming from (4.6.6.2))
ΩCch(X,R)PQ

[−1]→ Cch(X,R,Ω)PQ is a morphism of Lie Cch(X,R)PQ-algebroids;
the composition ΩΦ[−1] → Cch(X,R,Ω)PQ is a quasi-isomorphism by (4.6.6.1).
Set P := Cch(X,R)PQ⊗

Φ
ΩΦ[−1]; the morphism P → Cch(X,R,Ω)PQ is a quasi-

isomorphism of Lie Cch(X,R)PQ-algebroids since ΩΦ is a semi-free Φ-module. We

80Which coincides with the homotopy category of (unital) filtered Poisson algebras, i.e.,

Poisson algebras A equipped with a filtration A = A0 ⊃ A1 ⊃ · · · by DG ideals such that

{Ai, Aj} ⊂ Ai+j−1, and homotopy equivalences are morphisms that induce quasi-isomorphisms
between gr’s. One can assume that filtrations are complete, i.e., A = lim←−A/Ai.

81In 2.9.1 we considered the unital setting; in the present homotopy unital setting the def-
inition of the de Rham-Chevalley complex should be modified as in 4.7.1, so Cpois(Φ) equals

Φ⊕HomΦ(Sym>0ΩΦ, Φ) as a mere topological graded module.
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get the filtered quasi-isomorphisms of DG algebras

(4.7.3.2) Cch(X,Ccois(R))PQ → CCch(X,R)PQ
(P ) � Cpois(Φ)

where the left arrow is (4.7.1.2). Let T ↪→ Cch(X,Ccois(R))PQ × Cpois(Φ) be the
fibered product of these arrows. Our T carries the induced filtration, and both
projections

(4.7.3.3) Cch(X,Ccois(R))PQ ← T → Cpois(Φ)

are filtered quasi-isomorphisms. One checks that T is a Poisson subalgebra of
Cch(X,Ccois(R))PQ × Cpois(Φ), and we are done. �

4.7.4. The formal neighbourhood of global opers. We are in the situ-
ation of 4.7.3. Suppose in addition that H0

DR(X,Ω〈R〉) = 0 and H1
DR(X,Ω〈R〉) is

a projective 〈R〉-module, so Cch(X,R) ∼−→ 〈R〉 is a smooth algebra. Its homotopy
1-Poisson algebra structure yields a filtered topological Poisson algebra Cpois(〈R〉)
which is concentrated in degree 0. The corresponding reduced algebra equals 〈R〉,
and Spec〈R〉 ↪→ SpfCpois(〈R〉) is a Lagrangian embedding. According to 4.7.3 and
(4.7.2.1), one has a canonical identification

(4.7.4.1) SpfCpois(〈R〉) ∼−→ 〈SpecR`/G〉

where G is the formal DX -scheme groupoid on SpecR` defined by the Lie∗ algebroid
ΩR.

Here is an important example of this situation. Let R be the Gelfand-Dikii
coisson algebra Wκ

c for a non-degenerate κ, so SpecR` = Opg (see 2.6.8). If our
curve X has genus > 1, then the above conditions are satisfied, so Spec〈R〉 =
Opg(X) = the space of global g-opers on X has a canonical Lagrangian embedding
into a symplectic formal tube SpfCpois(〈R〉). It is known (see [BD]) that the
forgetting-of-B-structure map (FB ,∇) 7→ (FG,∇) is a closed embedding of Opg(X)
into the moduli space LocSysG of G-bundles with connection on X. It follows then
from (4.7.4.1) and the second proposition in 2.6.8 that SpfCpois(〈R〉) coincides with
the formal neighbourhood of Opg in LocSysG.

Remark. One can show that the latter identification is compatible with sym-
plectic structures where LocSysG is equipped with the usual symplectic structure
defined by κ.

4.8. Chiral homology of chiral envelopes

We show that the chiral homology of the chiral enveloping algebra of a Lie∗

algebra L is equal to the homology of the homotopy Lie algebra RΓDR(X,L).
Similar facts hold for the chiral homology with coefficients, in the twisted setting,
and in the chiral Lie algebroid setting. As an application, we show that the chiral
homology of a cdo on a very smooth DX -scheme SpecR` can be interpreted as a
certain twisted de Rham homology of SpecCch(X,R`). In particular, it is finite-
dimensional.

4.8.1. Enveloping algebras of Lie∗ algebras. Let L be a Lie∗ DG algebra
on X. We have a homotopy Lie algebra RΓDR(X,L) (see 4.5.1) which yields the
Chevalley homology complex C(RΓDR(X,L)) canonically defined as an object of
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HoBVu; similarly, we have the reduced complex C̄(RΓDR(X,L)) ∈ HoB̄V (see (a)
in 4.1.8).

Consider the chiral envelope U(L). The standard commutative filtration de-
fines, by 4.3.4, a homotopy filtered unital BV algebra structure on Cch(X,U(L));
i.e., we have Cch(X,U(L)) ∈ HoBVu.

Theorem. There is a canonical morphism in HoBVu

(4.8.1.1) C(RΓDR(X,L))→ Cch(X,U(L))

which is an isomorphism if L is OX-flat. Therefore Hch
· (X,U(L)) is the homology

of the homotopy Lie algebra RΓDR(X,L).

Proof. Denote by U(L)>0 the kernel of the augmentation morphism U(L)→ ω
(which sends L to 0). This is a non-unital chiral algebra, and U(L) = (U(L)>0)+.
Thus, by Remark in 4.4.8, Cch(X,U(L)) ∈ HoBVu is obtained from the non-unital
algebra Cch(X,U(L)>0) ∈ HoB̄V by adding the unit. We will define a canonical
morphism in HoB̄V

(4.8.1.2) C̄(RΓDR(X,L))→ Cch(X,U(L)>0)

which is an isomorphism when L is OX -flat. Adding the unit, one gets (4.8.1.1).
Let us represent Cch(X,U(L)>0) by a filtered BV algebra Cch(X,U(L)>0)PQ

(see (iv) in 4.3.2 and 4.2.18) and RΓDR(X,L) by a Lie algebra Γ(X,h(LPQ)) (see
4.5.1). The embeddings of the Lie algebras Γ(X,h(LPQ)) ↪→ Γ(X,h(U(L)>0

PQ)) ↪→
Cch(X,U(L)>0)PQ[−1] identify Γ(X,h(LPQ)) with the first term of the filtration
on Cch(X,U(L)>0)PQ[−1]. By adjunction (see (a) in 4.1.8), one has a morphism
α : C̄(Γ(X,h(LPQ))) → Cch(X,U(L)>0)PQ of filtered BV algebras which is our
(4.8.1.2).

Consider the morphism Sym>0(Γ(X,h(LPQ))[1])
grα−−→ gr·Cch(X,U(L)>0)PQ =

Cch(X, grU(L)>0)PQ (see (4.2.18.3)). It equals the composition of the map (4.6.2.2)
for V = L and the map Cch(X,Sym>0L) → Cch(X, grU(L)>0) coming from the
canonical morphism Sym>0L→ grU(L)>0. If L is OX -flat, then the latter map is a
quasi-isomorphism by the Poincaré-Birkhoff-Witt (see 3.7.14), and the former one
is a quasi-isomorphism by the proposition in 4.6.2. We are done. �

Here are some variants of the above theorem:

4.8.2. Coefficients. Let T ⊂ X be a finite non-empty subset and jUT
: UT :=

X r T ↪→ X its complement. Suppose we have a Lie∗ algebra L on UT and for
every t ∈ T a chiral L-module Mt supported at t (see 3.7.16–3.7.19).

We have the enveloping chiral algebra U(L) and the Mt are U(L)-modules, so
one has the corresponding chiral homology complex Cch(X,U(L), {Ms}); the stan-
dard filtration on U(L) makes it a filtered complex. On the other hand, we have a
homotopy Lie algebra RΓDR(UT , L) and each h(Mt) is an RΓDR(UT , L)-module, so
we have the corresponding Lie algebra homology complex C(RΓDR(UT, L),⊗h(Mt))
filtered in the obvious way.

Proposition. There is a canonical morphism of filtered complexes

(4.8.2.1) C(RΓDR(UT , L),⊗h(Mt))→ Cch(X,U(L), {Mt}),

which is a filtered quasi-isomorphism if L is OX-flat.
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Proof. Let us represent RΓDR(UT , L) by a Lie algebra Γ(UT , h(LP)), so the
h(Mt) are Γ(UT , h(LP))-modules, and we have the corresponding filtered Cheval-
ley complex C(Γ(UT, h(LP)),⊗h(Mt)). Similarly, Cch(X,U(L), {Mt}) comes as the
filtered complex Cch(UT , U(L), {Mt})P (see (4.2.19.3)). The morphism of Lie∗ alge-
bras LP → U(L)P yields then in the obvious way a morphism of filtered complexes
C(Γ(UT , h(LP)),⊗h(Mt))→ Cch(UT , U(L), {Mt})P which is our (4.8.2.1).

Let us show that (4.8.2.1) is a filtered quasi-isomorphism if L is OX -flat. By
(4.2.18.3) and the PBW theorem in 3.7.14, one can pass to gr reducing our statement
to the case when L is commutative and its action on Mt is trivial. Then one
has C(Γ(UT , h(LP)),⊗h(Mt)) = (⊗h(Mt)) ⊗ (k ⊕ Sym>0(Γ(X,h(jT∗j∗TLP))[1]))
and Cch(UT , U(L), {Mt})P = (⊗h(Mt)) ⊗ (k ⊕ Cch(X, jT∗j∗T (Sym>0L)P)). Our
morphism is the tensor product of the identity map for ⊗h(Mt) and the direct sum
of idk and the arrow (4.6.2.2) for V = jT∗j

∗
TL . We are done by 4.6.2. �

4.8.3. Twisted enveloping algebras. Let L be a Lie∗ DG algebra on X, L[

its ω-extension, and U(L)[ the corresponding twisted chiral envelope (see 3.7.20).
The standard filtration U(L)[· defines a homotopy unital BV structure on the chiral
complex, so we have Cch(X,U(L)[· ) ∈ HoBVu (see 4.3.4). Explicitly, it is repre-
sented by the homotopy unital filtered BV algebra Cch(X,U(L)[)PQ.

As in 4.5.1, we have a Lie algebra Γ(X,h(L[PQ)) which is a central extension
of Γ(X,h(LPQ)) by Γ(X,h(ωPQ)). The latter complex computes the de Rham
homology of X (shifted by 1), so we have a trace map tr : Γ(X,h(ωPQ)) → k[−1]
which is canonical up to a homotopy. Pushing out our central extension by tr, we
get a central k[−1]-extension Γ(X,h(LPQ))[ of Γ(X,h(LPQ)) by k[−1]. It yields the
twisted Chevalley complex C(Γ(X,h(LPQ)))[ which is a filtered unital BV algebra
(see (c) in 4.1.8). As an object of the homotopy category HoBVu, it does not
depend on the auxiliary choices; we denote it by C(RΓDR(X,L))[ ∈ HoBVu.

Proposition. For an OX-flat L there is a canonical isomorphism in HoBVu

(4.8.3.1) Cch(X,U(L)[· )
∼−→ C(RΓDR(X,L))[.

Sketch of a proof. One can either repeat the arguments in the non-twisted case
or reduce the twisted situation to the non-twisted one using the fact that U(L)[ is
a specialization of U(L[) and applying 4.3.9. The details are left to the reader. �

The picture of 4.8.2 admits the following twisted versions (the proofs are similar
to the proof of the proposition in 4.8.2):

(i) Let T and UT be as in 4.8.2, let L be an O-flat Lie∗ algebra on UT and L[ its
ω-extension. We have the Lie algebra Γ(UT , h(LP)) and its central Γ(UT , h(ωP))-
extension Γ(UT , h(L[P)).

Let {Mt}, t ∈ T , be chiral U(L)[-modules supported at t ∈ T . Then ⊗h(Mt)
is naturally a Γ(UT , h(LP))-module (indeed, it is a Γ(UT , h(L[P))-module, and the
action of Γ(UT , h(ωP)) is trivial). We have an evident morphism

(4.8.3.2) C(Γ(UT , h(LP)),⊗h(Mt))→ Cch(X,U(L)[, {Mt})P

which is a filtered quasi-isomorphism.

(ii) Let L be an O-flat Lie∗ algebra on X and L[ its ω-extension. For T ∈ S

consider the corresponding Lie algebra L\
PXT in the tensor category of left DXT -

modules (see 3.7.6) and its central extension L[\
PXT by ω\

PXT .
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Let {Mt} be a T -family of chiral U(L)[-modules. Then j(T )∗�Mt is an L\
PU(T )-

module (as in (i), j(T )∗ �Mt carries a natural L[\
PU(T )-action which factors through

L\
PU(T )). We have the Lie algebra homology complex C(L\

PU(T ) , j
(T )∗�Mt) and an

evident morphism of filtered complexes of DXT -modules

(4.8.3.3) j
(T )
∗ C(L\

PU(T ) , j
(T )∗ �Mt)→ Cch(X,U(L)[, {Mt})P

which is a filtered quasi-isomorphism. Notice also that j(T )
∗ C(L\

PU(T ) , j
(T )∗�Mt) =

C(L\
PXT , j

(T )
∗ j(T )∗ �Mt).

4.8.4. Chiral differential operators. Let R` be a commutative unital DX -
algebra, L a Lie∗ R-algebroid, L[ its chiral R-extension (see 3.9.6). Below we fix
P, Q and write Cch(·) for Cch(X, ·)PQ.

Consider the chiral envelope U(L)[ (see 3.9.11) equipped with the PBW filtra-
tion. It yields a filtered homotopy unital BV algebra Cch(U(R,L)[) (see 4.3.2 and
4.3.4).

On the other hand, we have a homotopy unital commutative algebra Cch(R)
and a homotopy unital Cch(R)-module Cch(R,L) := Cch(X,R,L)PQ (see 4.3.2 and
4.3.4). The latter is naturally a Lie Cch(R)-algebroid: the Lie bracket comes in the
obvious manner from the Lie∗ bracket on LPQ and the LPQ-action on RPQ, and
the action on Cch(R) comes from the LPQ-action on RPQ.

The complex Cch(R,L[) is an extension of Cch(R,L) by Cch(R,R). Let
Cch(R,L)[ be its push-out by the obvious map Cch(R,R) → Cch(R)[−1]. Our
Cch(R,L)[ is naturally a homotopy unital BV extension of Cch(R,L) (see 4.1.9
and 4.1.15). Namely, the Lie bracket on Cch(R,L)[ comes from the Lie∗ bracket on
L[PQ and the LPQ-action on RPQ, and the Cch(R)-module structure is the obvious
“exterior product” map Cch(R) ⊗ Cch(R,L)[ → Cch(R,L)[. The Cch(R)-action
does not commute with the differential due to the fact that L[ is not a central
R-module; the discrepancy is given by axiom (ii) of BV extensions (see 4.1.9)82

following from the definition of chiral extension (see 3.9.6).
There is an obvious map Cch(R,L)[ → Cch(U(R,L)[)[−1] compatible with

the embeddings of Cch(R)[−1]. It is also compatible with the Lie bracket and the
Cch(R)-action, and its image lies in the first term of the filtration. By universality
we get a morphism CBV (Cch(R), Cch(R,L))[ → Cch(U(R,L)[) of the homotopy
unital filtered BV algebras, hence a morphism in HoBVu (see 4.1.9 and 4.1.15)

(4.8.4.1) CLBV (Cch(R), Cch(R,L))[ → Cch(U(R,L)[).

Theorem. If R is homotopically OX-flat and L is a homotopically flat R`-
module, then this is a filtered quasi-isomorphism.

Proof. By PBW, SymRL
∼−→ grU(R,L)[. Now use (4.2.18.3) and 4.6.4. �

Exercise. Suppose that R, L have degree 0. By (3.9.21.1), the category of chi-
ral extensions of L is a torsor over the 2-term complex τ≤2RΓ(X,h(F 1CR(L))) =
τ≤2RΓDR(X,F 1CR(L)) where F is the stupid filtration. The category of homo-
topy BV extensions of the homotopy Lie Cch(R)-algebroid Cch(R,L) is a tor-
sor over the 2-term complex τ≤2τ≥1F

1CCch(R)(Cch(R,L)) = τ≤2τ≥1C
ch(F 1CR(L))

82We sincerely apologize for a hideous incongruency of notation: R and L[ from 4.1.9 are
now Cch(R) and Cch(R, L)[.
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(see (4.6.10.1)). The canonical morphism RΓDR(X,F 1CR(L))→ Cch(X,F 1CR(L))
maps the first truncated complex to the second one. Show that the functor L[ 7→
Cch(R,L)[ from the category of chiral extensions of L to the one of homotopy BV
extensions of Cch(R,L) is affine with respect to the map e : τ≤2RΓDR(X,F 1CR(L))
→ τ≤2τ≥1C

ch(F 1CR(L)).

Example. Let Y be a smooth affine variety, X = P1, JYX = SpecR` the jet
scheme for Y × X/X, L = ΘR. Then Spec〈R〉 = Y and Hch

>0(X,R) = 0. So for
a cdo A on Y the complex Cch(X,A) is the de Rham complex of Y with coeffi-
cients in OY with respect to certain right DY -module structure on OY , which is
the same as a flat connection ∇A on ω−1

Y . The isomorphism classes of cdo form an
H2
DR(X,DR(JYX/X)≥1) = H2(X,hDR(JYX/X)≥1)-torsor. The “constant jet”

embedding of DX -schemes Y × X ↪→ JYX yields a morphism of DX -modules
DR(JYX/X) → DR(Y ) ⊗ ωX . Passing to de Rham cohomology and applying
tr : RΓDR(X,ωX)[1] ∼−→ k, we get a morphism e : H2

DR(X,DR(JYX/X)≥1) →
H0DR(Y )≥1 = the closed 1-forms on Y . By the exercise above, the map A 7→ ∇A
is e-affine.

Notice that the canonical projection JYX → Y × X yields a morphism of
complexes DR(Y ) ⊗ OX → DR(JYX/X)`, hence the one DR(Y )≥1 ⊗ ωX →
DR(JYX/X)≥1 → hDR(JYX/X)≥1. Applying the functor H2(X, ·), we get a right
inverse to e. Thus e is a surjective map, so ∇A can have arbitrary irregular singu-
larities at infinity.

Question. According to §12 of [GMS2], any right DY -module structure on
OY , i.e., a flat connection ∇ on ω−1

Y , yields a Virasoro vector in any cdo on the
“universal” jet scheme of Y in the setting of graded vertex algebras. The latter
produces an action of the the group ind-scheme Autk[[t]] on the cdo, which can be
planted then on the jet scheme of Y over any curve X. Take for A in the above
example such a cdo. Is it true that ∇A = ∇?

4.8.5. Corollary. Suppose R` is a very smooth plain DX-algebra and A is
a chiral R`-cdo. Then dimHch

· (X,A) <∞.

Proof. By the above theorem, 4.6.9, 4.6.8, and 4.6.6, Cch(X,A) is a perfect BV
algebra (see 4.1.18), and we are done by the proposition in 4.1.18. �

Question. Is it true that the chiral homology of a (formal) quantization of
any symplectic coisson algebra is finite-dimensional?

Presumably, the finiteness can be seen from the first order of deformation, so
the picture of 3.9.10 may provide the clue.

4.9. Chiral homology of lattice chiral algebras

The fact that conformal blocks of a lattice Heisenberg algebra with positive κ
are appropriate θ-functions is standard in mathematical physics; for a mathematical
proof see [Ga] 6.2.2 and also [FS]. The proof of the theorem in 4.9.3 presented below
uses the Fourier-Mukai transform which helps to reduce it to the particular case of
the simplest commutative lattice chiral algebra. The descent construction in 4.9.1
is a particular case of [BD] 4.3.12, 4.3.13.
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4.9.1. We follow the notation of 4.10, so we have a lattice Γ and the corre-
sponding torus T = Gm ⊗ Γ. Let Tors(X,T ) be the algebraic Picard stack of
T -torsors on X; this is an algebraic stack.

For a test affine scheme Z set T (X)rat(Z) := lim−→T (U) where the limit is over
the set of all open U ⊂ X × Z such that the fiber of U over any point of Z is
non-empty. In other words, an element of T (X)rat(Z) is a family of rational maps
X → T parametrized by Z. One easily checks that T (X)rat is a sheaf for the fppf
topology. We also have a sheaf of Γ-divisors Div(X,Γ) := Div(X)⊗Γ (see 3.10.7),
a morphism of sheaves div: T (X)rat → Div(X,Γ), and a canonical identification of
the Picard stacks

(4.9.1.1) π : Cone(div) ∼−→ Tors(X,T )

where the projection Div(X,Γ)→ Tors(X,T ) is D ⊗ γ 7→ O(D)⊗γ .

Proposition. This projection yields an equivalence of the Picard groupoids of
line bundles

(4.9.1.2) Pic(Tors(X,T )) ∼−→ Pic(Div(X,Γ)).

Proof. It suffices to check that for any test scheme Z
- every regular function ϕ on T (X)rat × Z comes from Z;
- every line bundle M on T (X)rat × Z comes from Z.
It suffices to prove our statements for T = Gm. Choose an ample line bundle L

on X and set Vn := H0(X,L⊗n), V ′
n := Vnr{0}. Define pn : V ′

n×V ′
n → Gm(X)rat

by (f, g) 7→ f/g.
Our ϕ defines a regular function p∗nϕ on V ′

n × V ′
n × Z which is invariant with

respect to the obvious action of Gm on V ′
n × V ′

n. Suppose that n is big enough, so
dimVn > 1. Then p∗nϕ extends to a Gm-invariant regular function on Vn× Vn×Z,
which necessarily comes from Z. Similarly, p∗nM extends to a Gm-equivariant line
bundle on Vn×Vn×Z whose restriction to the diagonally embedded Vn×Z comes
from Z; such an object comes from a uniquely defined line bundle on Z. �

4.9.2. By 3.10.7 and the above proposition we have canonical morphisms of
the Picard groupoids

(4.9.2.1) Pθ(X,Γ) ∼−→ Picf (Div(X,Γ))→ Pic(Tors(X,T ))

where Pic is the Picard groupoid of super line bundles. For λ ∈ Picf (Div(X,Γ))
we denote the corresponding super line bundle on Tors(X,T ) also by λ.

Example. Suppose Γ = Z and λ ∈ Picf (Div(X)) is defined by formula
(3.10.7.4). The corresponding super line bundle on Tors(X,Gm) = Pic(X) is
λL = detRΓ(X,L)⊗ det⊗−1RΓ(X,OX).

The group of connected components of Tors(X,T ) equals Γ (the degree of the
T -torsor), Tors(X,T ) =

⊔
Tors(X,T )γ . Each line bundle λ on Tors(X,T ) yields

a map δλ : Γ→ Γ∨ so that for F ∈ Tors(X,T )γ the group T = Aut(F) acts on the
fiber λF by the character δλ(γ) : T → Gm. The map λ 7→ δλ is Z-linear: one has
δλ⊗λ′ = δλ + δλ′ .

For θ ∈ Pθ(X,Γ) we write δθ := δλ where λ corresponds to θ by (4.9.2.1).
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Lemma. (i) For θ ∈ Pθ(X,Γ)κ (see 3.10.3) the map δθ : Γ→ Γ∨ is affine with
the linear part equal to κ, 〈κ(γ), γ′〉 = κ(γ, γ′). If θ is symmetric,83 then δθ = κ.

(ii) For θ ∈ Pθ(X,Γ)0 = P(X,Γ) = Tors(X,T∨) (see (3.10.3.1) the map δθ is
constant with image equal to the degree of the T∨-torsor.

Proof. Let us check (ii) first. For θ ∈ P(X,Γ) the corresponding λ is an
extension of Tors(X,T ) by Gm (see (3.10.7.3)). So δθ is constant and its value is
clear from [SGA 4] Exp. XVIII 1.3. Let us prove (i). By linearity and the argument
from the end of the proof of the proposition in 3.10.7, it suffices to check the first
statement for Γ = Z and κ the product pairing, which follows from the example
above. The second statement follows from the first one. �

Remark. If δλ(γ) = 0, then the restriction of λ to Tors(X,T )γ is the pull-
back of a uniquely defined line bundle on Tors (X,T )γ (the coarse moduli space of
classes of isomorphisms of T -torsors of degree γ) which we denote also by λ.

4.9.3. Let A be a lattice chiral algebra. Let θ ∈ Pθ(X,Γ)κ be its θ-datum (see
3.10.4), λ the super line bundle on Tors(X,T ) defined by θ, and λ∗ = λ⊗−1 the
dual bundle.

Theorem. There is a canonical quasi-isomorphism

(4.9.3.1) Cch(X,A) ∼−→ RΓ(Tors(X,T ), λ∗)∗ = ⊕
γ∈Γ

RΓ(Tors(X,T )γ , λ∗)∗

compatible with the Γ-gradings.

Here the Γ-grading of Cch(X,A) comes from the Γ-grading of A.

Remarks. (i) The γ-components of the right-hand side of (4.9.3.1) for which
δλ(γ) 6= 0 vanish. If δλ(γ) = 0, then RΓ(Tors(X,T )γ , λ∗) = RΓ(Tors(X,T )γ , λ∗).
If κ is non-degenerate, then there is only one such γ; in particular, the chiral
homology is finite-dimensional.

(ii) More precisely, the numerical class of λ∗ on Tors(X,T )γ (which is a J(X)⊗
Γ-torsor) equals ξ ⊗ κ where ξ is the canonical polarization of the Jacobian J(X).
Therefore for κ non-degenerate, the only non-zero chiral homology group occurs in
the degree equal to the product of g and the number of negative squares in κ; its
dimension is equal to |detκ|g.

(iii) The description of the chiral homology of A with coefficients84 is left to
the inquisitive reader.

4.9.4. Proof of the theorem. First let us check that the chiral homology satisfies
the same vanishing property as the right-hand side of (4.9.3.1):

Lemma. If δλ(γ) 6= 0, then Cch(X,A)γ = 0.

Proof. Consider the Lie∗ subalgebra αθ : tθD ↪→ A0 (see 3.10.9). Therefore
t = Γ(X,h(tD)) acts on A by the adjoint action. By (ii) and (iv) in the proposition
in 3.10.9, t acts on each Aγ by the character κ(γ) ∈ Γ∨, so it acts on C(X,A)γ in the
same manner. On the other hand, according to Remark in 4.5.3 and Remark (ii) in
3.10.9, t acts on C(X,A) by the character −deg F∨ ∈ Γ∨ where θ = θsymF, θsym ∈
Pθ(X,Γ)κ is symmetric and F ∈ Tors(X,T∨) = P(X,Γ). So if Cch(X,A)γ 6= 0,
then κ(γ) + deg F∨ = 0, and we are done by the lemma from 4.9.2. �

83I.e., invariant with respect to the involution γ 7→ −γ.
84The category of A-modules was described in 3.10.13 and 3.10.14.
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4.9.5. We use the notation from 3.10.8.
For each I ∈ S we have an ind-XI -scheme Div(X,Γ)XI := Div(X,Γ)S,XI

(where S is the standard divisor ∪xi). These ind-schemes form naturally an S◦-
diagram. Interpreting Γ-divisors as T -torsors equipped with meromorphic trivial-
izations, we get a canonical projection ϕ = ϕI : Div(X,Γ)XI → Tors(X,T ) which
is formally smooth. So our diagram lives over Tors(X,T ). Notice that the canoni-
cal connection ∇ from the remark in 3.10.8 acts along the fibers of ϕ. Our ϕ yields
the projection φ = φI : Div(X,Γ)XI → Tors(X,T ).

Let us fix some γ ∈ Γ such that δλ(γ) = 0, and consider the γ-component of
our picture. Set P := Tors(X,T )γ , P := Tors(X,T )γ , and GXI := Div(X,Γ)γ

XI

(the Γ-divisors of degree γ). The GXI ’s form an S◦-diagram GXS of ind-schemes.
We have the projections π : GXS → XS and GXS

ϕ−→ P → P ; the composition of
the latter arrows is φ. As was mentioned in the remark in 4.9.2, our λ is a super
line bundle on P .

4.9.6. Let us recall some terminology from [BD] 7.11.4. Let Y be an ind-
scheme of ind-finite type. An O!-module M on Y is a rule that assigns to any
closed subscheme Z ⊂ Y a quasi-coherent OZ-module MZ , and to any Z ′ ⊂ Z
an embedding MZ′ ⊂ MZ which identifies MZ′ with the submodule of sections of
MZ killed by the ideal IZ′ of Z ′; the embeddings should be transitive. If L is a
line bundle on Y , then L ⊗M , (L ⊗M)Z := LZ ⊗MZ , is an O!-module on Y .
For a morphism p : Y → B where B is a scheme, we set p!M :=

⋃
p|Z∗MZ ; for

B = Spec k we write p!M =: Γc(Y,M). All O!-modules on Y form an abelian
category.

For a scheme Q of finite type we denote by DQ the dualizing complex of Q
realized as the Cousin complex (see [Ha]). For Y as above the complexes DZ form
an O!-module DY on Y . If p : Y → B is ind-proper and B is of finite type, then
we have the canonical trace map trp : p!DY → DB .

4.9.7. We will consider O!-modules on the ind-schemes GXI . Recall (see 3.10.8)
that GXI = SpfR where R = RXI is a topological OXI -algebra which is the pro-
jective limit of its quotients Rα = R/Iα which are finite and flat over OXI . For
any O!-module M on GXI its image π!M is naturally a discrete R-module; this
establishes an identification of the category of O!-modules on GXI and that of
discrete R-modules (which are quasi-coherent as OXI -modules). The functor π!

admits a right adjoint π! which assigns to an OXI -module N the discrete R-module
π!N = HomOXI

(R,N) :=
⋃

HomOXI
(Rα, N); both π! and π! are exact functors.

A line bundle on GXI is the same as an invertible topological R-module.
One has DGXI

= π!DXI . Since DXI is a right DXI -complex and ΘXI acts
on R via ∇, our π!DGXI

is a right DXI -complex. Since ∇ acts along the fibers
of φ, the line bundle φ∗λ on GXI is equipped with a left ΘXI -action. Therefore
π!(φ∗λ⊗DGXI

) = φ∗λ⊗
R
π!DGXI

is a right DXI -complex.

The above objects are compatible with the embeddings coming from arrows in
S, so the DGXI

form a !-complex on GXS , etc. The right D-complex π!(φ∗λ⊗DG
XS

)
on XS is evidently admissible.

Proposition. There is a canonical quasi-isomorphic embedding in CM(XS)

(4.9.7.1) C(A)γ
XS ↪→ π!(φ∗λ⊗DG

XS
).
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Proof. According to (3.10.8.1), one has A`γ
XI = π!(φ∗λ ⊗ π!OXI ). Therefore

C(A)γ := A`γ
XI ⊗ C(ω)XI = π!(φ∗λ ⊗ π!C(ω)XI ). Since C(ω)XI is the Cousin

resolution of ωXI [|I|] with respect to the diagonal stratification andDXI is its whole
Cousin resolution, we have a canonical quasi-isomorphic embedding C(ω) ↪→ DXI .
Our (4.9.7.1) is the embedding π!(φ∗λ⊗ π!C(ω)XI ) ↪→ π!(φ∗λ⊗ π!DXI ). �

4.9.8. Passing to the de Rham cohomology, the proposition yields an identifi-
cation (see 4.2.6(iv) for the notation)

(4.9.8.1) Cch(X,A)γ ∼−→ ΓgDR(XS, π!(φ∗λ⊗DG
XS

)).

Let DR∇(DG
XS

) and DR∇(φ∗λ ⊗ DG
XS

) be the de Rham complexes along
the ∇-foliation; denote by D̃R∇ the corresponding canonical nice resolutions (see
4.2.6(iv)). These are complexes of !-sheaves on GXS , and ΓgDR(XS, π!(φ∗λ⊗DG

XS
))

= Γc(GXS , D̃R∇(φ∗λ⊗DG
XS

)).
The differential of the DR∇ complexes is φ−1OP -linear. Therefore we have S◦-

systems of complexes φ!DR∇(DG
XS

) and φ!DR∇(φ∗λ⊗DG
XS

) = λ⊗φ!DR∇(DG
XS

).
The same is true for the D̃R∇-complexes. One has Γc(GXS , D̃R∇(DG

XS
⊗φ∗λ)) =

Γ(P, λ ⊗ lim−→φ!D̃R∇(DG
XS

)) where lim−→ is the inductive S◦-limit. Combining the
identifications, we get

(4.9.8.2) Cch(X,A)γ ∼−→ Γ(P, λ⊗ lim−→φ!D̃R∇(DG
XS

)).

4.9.9. We have the trace maps trφ : φ!DGXI
→ DP which extend canonically

to the morphisms φ!DR∇(DGXI
) → DP (killing all the other components of the

DR∇-complex). Passing to the inductive limit, we get lim−→φ!DR∇(DG
XS

)→ DP .
Composing it with the projection D̃R∇ → DR∇, we get a morphism of complexes
of OP -modules

(4.9.9.1) trφ∇ : lim−→φ!D̃R∇(DG
XS

)→ DP .

We define the γ-component of (4.9.3.1) as the composition of (4.9.8.2) and the
morphisms Γ(P, λ⊗ lim−→φ!D̃R∇(DG

XS
))→ Γ(P, λ⊗DP ) ∼−→ RΓ(P, λ∗)∗ where the

first arrow comes from idλ ⊗ trφ∇ and the second arrow is the Serre duality. To
finish the proof of the theorem, we need to prove that the constructed arrow is a
quasi-isomorphism. This follows from the next proposition:

Proposition. trφ∇ is a quasi-isomorphism of complexes of OP -modules.

Proof. A morphism f of complexes of OP -modules is a quasi-isomorphism if
(and only if) its Fourier-Mukai transform Φ(f) is. We will check that it happens
with trφ∇.

The Fourier-Mukai transform85 Φ takes values in the derived category of com-
plexes of O-modules on the (coarse) moduli space of line bundles on P which are
algebraically equivalent to 0. The latter identifies in the usual way with the moduli
space Q := Tors(X,T∨)0 of T∨-torsors of degree 0. Namely, for q ∈ Q the corre-
sponding line bundle λq on P is constructed as follows. Let Fq be the T∨-torsor of
degree 0. It defines a line bundle on Tors(X,T ) according to, say, (3.10.7.3) and
(4.9.1.2); since Fq has degree 0, our line bundle comes from a (uniquely defined)

85See the recent book [Po] on the subject.
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line bundle on Tors(X,T ). Our Lq is its restriction to P := Tors(X,T )γ . Therefore
λq coincides with the line bundle λ that corresponds to the commutative lattice
chiral algebra Aq such that SpecA`q = JFq (the jet scheme of F; see 3.10.2).

Recall that Φ is defined by means of a “kernel” which is a line bundle on Q×P
whose restriction to the fiber over each q equals λq. Looking back at (4.9.8.2), we
see that Φ(trφ∇) is equal to the γ-component of the morphism (4.9.3.1) for the
family of lattice chiral algebras AQ parametrized by Q.86 So, what we want to do
is to prove our theorem for our special family of commutative lattice algebras.

Notice that φ(DP ) = δ0 := the skyscraper O-module at 0 ∈ Q. Summing up
with respect to all γ ∈ Γ, we get a morphism of OQ-complexes τ : Cch(X,AQ) →
k[Γ]⊗ δ0. We want to check that this is a quasi-isomorphism.

First notice thatH0τ : 〈AQ〉 = Hch
0 (X,AQ) ∼−→ k[Γ]⊗δ0. Indeed, the Q-scheme

Spec 〈AQ〉 is the space of horizontal sections of SpecA`Q, so it is a copy of T∨ which
lives over 0 ∈ Q. One checks in a moment that H0τ does not vanish on each of the
γ-components, so it is an isomorphism.

Since Hch
· (X,AQ) is a unital 〈AQ〉-module, we see that it vanishes outside

0 ∈ Q. It remains to check that the morphism Li∗0τ , where i0 : {0} ↪→ Q, is a
quasi-isomorphism. We have Li∗0C

ch(X,AQ) = Cch(X,A0) and Li∗0k[Γ] ⊗ δ0 '
k[Γ] ⊗ Tor·(δ0, δ0) = k[Γ] ⊗ Sym(V [1]) where V is the cotangent space to Q at 0.
It follows from the construction that our map Hch

· (X,A0) → k[Γ] ⊗ Sym(V [1]) is
a morphism of commutative algebras. It is isomorphism in degree 0 and surjective
in degree −1 (since H0τ is an isomorphism).

To finish the proof, it suffices to check that the commutative algebraHch
· (X,A0)

is generated by Hch
0 and Hch

1 , and dimHch
1 is equal to dimQ = rk(Γ)g where g

is the genus of X. Let us embed our torus T∨ into a vector space K of the same
dimension. We have the open embedding of the jet schemes JT∨ = SpecA`0 ↪→
JK =: SpecR`. Therefore Hch

· (X,A0) = Hch
· (X,R) ⊗

〈R〉
〈A0〉 (see (4.3.12.2)), and

Hch
· (X,R) = Sym(K∗ ⊗RΓ(X,ω)[1]) by the proposition in 4.6.2. We are done. �

4.9.10. Questions. What would be an analog of the above theorem for a
chiral algebra coming from an arbitrary ind-finite chiral mononoid (see 3.10.16)?

Suppose A is the integrable quotient of the Kac-Moody algebra U(gD)κ defined
by a semi-simple algebra g and a positive integral level κ. Is it true that all the
higher chiral homologies of A vanish?

86The above considerations generalize to the situation of families of lattice algebras in a
straightforward way.


