From Lang's "Algebra

330 GALOIS THEORY

over **Z**, i.e. the group generated by σ and σ^{μ} is free abelian of rank 2. In particular $\{\sigma\}$ and $\{\sigma, \sigma^{\mu}\}$ have the same fixed field k.

Witt vectors

46. Let x_1, x_2, \ldots be a sequence of algebraically independent elements over the integers **Z**. For each integer $n \ge 1$ define

$$x^{(n)} = \sum_{d \mid n} dx_d^{n/d}.$$

Show that x_n can be expressed in terms of $x^{(d)}$ for $d \mid n$, with rational coefficients.

Using vector notation, we call $(x_1, x_2, ...)$ the Witt components of the vector x, and call $(x^{(1)}, x^{(2)}, ...)$ its **ghost** components. We call x a Witt vector.

Define the power series

$$f_{x}(t) = \prod_{n\geq 1} (1 - x_n t^n).$$

Show that

$$-t\frac{d}{dt}\log f_x(t) = \sum_{n\geq 1} x^{(n)}t^n.$$

[By $\frac{d}{dt} \log f(t)$ we mean f'(t)/f(t) if f(t) is a power series, and the derivative f'(t) is taken formally.]

If x, y are two Witt vectors, define their sum and product componentwise with respect to the ghost components, i.e.

$$(x + y)^{(n)} = x^{(n)} + y^{(n)}$$

What is $(x + y)_n$? Well, show that

$$f_x(t)f_y(t) = \prod (1 + (x + y)_n t^n) = f_{x+y}(t).$$

Hence $(x + y)_n$ is a polynomial with integer coefficients in $x_1, y_1, \ldots, x_n, y_n$. Also show that

$$f_{xy}(t) = \prod_{d,e \ge 1} (1 - x_d^{m/d} y_e^{m/e} t^m)^{de/m}$$

where m is the least common multiple of d, e and d, e range over all integers ≥ 1 . Thus $(xy)_n$ is also a polynomial in $x_1, y_1, \dots, x_n, y_n$ with integer coefficients. The above arguments are due to Witt (oral communication) and differ from those of his original paper.

If A is a commutative ring, then taking a homomorphic image of the polynomial ring over \mathbb{Z} into A, we see that we can define addition and multiplication of Witt vectors with components in A, and that these Witt vectors form a ring W(A). Show that W is a functor, i.e. that any ring homomorphism φ of A into a commutative ring A' induces a homomorphism $W(\varphi): W(A) \to W(A')$.

VI, §Ex EXERCISES 331

47. Let p be a prime number, and consider the projection of W(A) on vectors whose components are indexed by a power of p. Now use the log to the base p to index these components, so that we write x_n instead of x_{p^n} . For instance, x_0 now denotes what was x_1 previously. For a Witt vector $x = (x_0, x_1, \ldots, x_n, \ldots)$ define

$$Vx = (0, x_0, x_1, \ldots)$$
 and $Fx = (x_0^p, x_1^p, \ldots)$.

Thus V is a shifting operator. We have $V \circ E = F \circ V$. Show that

$$(Vx)^{(n)} = px^{(n-1)}$$
 and $x^{(n)} = (Fx)^{(n-1)} + p^nx$.

Also from the definition, we have

$$x^{(n)} = x g^n + p x q^{n-1} + \cdots + p^n x_n.$$

48. Let k be a field of characteristic p, and consider W(k). Then V is an additive endomorphism of W(k), and F is a ring homomorphism of W(k) into itself. Furthermore if $x \in W(k)$ then

$$px = VFx$$
.

If $x, y \in W(k)$, then $(V^i x)(V^j y) = V^{i+j}(F^{pj}x \cdot F^{pi}y)$. For $a \in k$ denote by $\{a\}$ the Witt vector $(a, 0, 0, \ldots)$. Then we can write symbolically

$$x = \sum_{i=0}^{\infty} V^i \{x_i\}.$$

Show that if $x \in W(k)$ and $x_0 \neq 0$ then x is a unit in W(k). Hint: One has

$$1 - x\{x_0^{-1}\} = Vy$$

and then

$$x\{x_0^{-1}\}\sum_{i=0}^{\infty} (Vy)^i = (1 - Vy)\sum_{i=0}^{\infty} (Vy)^i = 1.$$

- 49. Let n be an integer ≥ 1 and p a prime number again. Let k be a field of characteristic p. Let $W_n(k)$ be the ring of truncated Witt vectors (x_0, \ldots, x_{n-1}) with components in k. We view $W_n(k)$ as an additive group. If $x \in W_n(k)$, define $\wp(x) = Fx x$. Then \wp is a homomorphism. If K is a Galois extension of k, and $\sigma \in G(K/k)$, and $x \in W_n(K)$ we can define σx to have component $(\sigma x_0, \ldots, \sigma x_{n-1})$. Prove the analogue of Hilbert's Theorem 90 for Witt vectors, and prove that the first cohomology group is trivial. (One takes a vector whose trace is not 0, and finds a cohoundary the same way as in the proof of Theorem 10.1).
- 50. If $x \in W_n(k)$, show that there exists $\xi \in W_n(k)$ such that $\wp(\xi) = x$. Do this inductively, solving first for the first component, and then showing that a vector $(0, \alpha_1, \dots, \alpha_{n-1})$ is in the image of \wp if and only if $(\alpha_1, \dots, \alpha_{n-1})$ is in the image of \wp . Prove inductively that if $\xi, \xi' \in W_n(k')$ for some extension k' of k and if $\wp \xi = \wp \xi'$ then $\xi \xi'$ is a vector with components in the prime field. Hence the solutions of $\wp \xi = x$ for given $x \in W_n(k)$ all differ by the vectors with components in the prime field, and there are p'' such vectors. We define

$$k(\xi) = k(\xi_0, \ldots, \xi_{n-1}),$$