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Abstract

Let X be a regular arithmetic scheme, i.e. a regular integral separated scheme flat and of finite type over
Spec Z. Assume that for all closed irreducible subschemes C ⊆ X of dimension 1 with normalisation C̃ there
are given open normal subgroups NC of π1(C̃), which fulfil the following compatibility condition: For all
x̃ ∈ C̃1 ×X C̃2 the pre-images of NC1 and NC2 in π1(x̃) coincide. If the indices of the NC are bounded,
then these data uniquely determine an open normal subgroup of π1(X), whose pre-image in π1(C̃) is NC

for all C.
© 2006 Elsevier Inc. All rights reserved.

1. Introduction

This paper has been written in the attempt to provide a tool for higher-dimensional, non-
abelian class field theory. It is a generalisation of results of [HW] for arithmetic surfaces. Its
results support the idea that monodromy phenomena for arithmetic schemes are supported on the
“1-skeleton” of the arithmetic scheme, i.e. the collection of curves on X and their incidence
relations. This opens a possible pathway from 1-dimensional class field theory to a higher-
dimensional generalisation.

Let X be an arithmetic scheme or a variety over a field K . We define a covering problem for
X as the following data: For all irreducible curves C ⊆ X with normalisation C̃ there is given an
open normal subgroup NC � π1(C̃). For all closed points x ∈ X there is given an open normal
subgroup Nx � π1(x), such that for all C and x and all x̃ ∈ C̃ ×X x the pre-images of NC and
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Nx in π1(x̃) coincide (note: Whereas the map π1(x̃) → π1(C̃) is only defined up to conjugation,
the pre-image of a normal subgroup is well defined).

A solution of a covering problem is an open normal subgroup N � π1(X) such that the NC

and the Nx are the pre-images of N . A covering problem is called bounded, if the indices of all
NC and Nx are bounded. A covering problem is called abelian, if all π1(C̃)/NC are abelian. Here
is the most important result of the paper (see Theorems 25 and 26 for more general statements).

Theorem. Let X be a regular arithmetic scheme. Then

(1) A covering problem for X has a solution iff it is bounded.
(2) If the covering problem is abelian then it is bounded.
(3) If a solution exists then it is unique.

We consider also varieties over certain fields K . We always assume K is a perfect field and
the p-Sylow subgroups of the absolute Galois group GK are infinite for all primes p. We show
the above theorem holds for a regular variety X over K under various additional assumptions
on K , e.g. finite, Hilbertian or PAC, provided the covering problem is tame (i.e. the NC define
coverings which are tame, see Definition 16). If X is proper over a curve, then the assumption on
tameness may be dropped. In case charK = 0 the assumption on tameness is void.

The paper develops further the ideas from [HW]. The first change is in the very definition of
covering problem. Here we use the normalisations of the curves on X instead of the possibly
singular curves themselves. This makes it possible to get solutions in the sense of Definition 2
instead of merely weak solutions. Then the higher-dimensional case is included as opposed to
arithmetic surfaces only. For this we use induction on the dimension. Now we get results on
varieties over certain fields, too. In the case of abelian covering problems, now the boundedness
condition on the indices is removed.

We use the Hilbert Irreducibility Theorem to prove a generalisation of the Approximation
Lemma of Raskind [Ra, Lemma 6.21], which is needed for varieties over arbitrary base fields.
[Wi2] contributes a Saito-type completely split result for regular subschemes of Henselian local
rings extending Saito’s original result which is only applicable in dimension 2. Grothendieck’s
theory of the specialisation of the fundamental group is used in the proof of Proposition 17.
We need enough inert points, a result from [Wi1], for uniqueness and working only with weak
solutions. The full strength of Čebotarev’s density theorem is used in the proof of Proposition 28.

Notation. (a) We fix a perfect field K whose absolute Galois group GK has infinite p-Sylow
subgroups for all primes p.

(b) An arithmetic scheme is an integral, separated scheme, which is flat and of finite type over
Spec Z. A variety is an integral, separated scheme, which is of finite type over K . If x is a point
of X, then κ(x) denotes the residue field.

(c) A curve on X is an integral closed subscheme of dimension 1.
(d) A cover Y → X will always be the normalisation of a normal, integral scheme in a finite

extension of its function field.

2. Covering problems and solutions

Remark 1. For a morphism Y → X, the map π1(Y, y0) → π1(X,x0) is only defined after the
choice of compatible base points. If x0 is replaced by another base point x′ , there is an iso-
0
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morphism π1(X,x0) ∼= π1(X,x′
0) which is determined up to an inner automorphism. This shows

that the pre-image NY in π1(Y ) of a normal subgroup NX � π1(X) is independent of the choice
of base points. As only this operation will be performed on fundamental groups throughout the
paper, base points for étale fundamental groups will be suppressed.

Definition 2. A covering problem on X consists of the following data. For each irreducible curve
C ⊆ X with normalisation C̃ there is given an open normal subgroup NC � π1(C̃) and for each
closed point x ∈ X an open normal subgroup Nx � π1(x) with the following compatibilities: For
all x̃ ∈ C̃ ×X x the pre-images of NC and Nx in π1(x̃) coincide.

A solution of a covering problem is an open normal subgroup N � π1(X) such that NC is the
pre-image of N in π1(C̃) for all C ⊆ X and Nx is the pre-image of N in π1(x) for all x ∈ X.
A weak solution of a covering problem is an open normal subgroup N � π1(X) such that Nx is
the pre-image of N in π1(x) for all x ∈ X (there is nothing said about the NC ).

A covering problem is called trivial if N = π1(X) is a solution, i.e. NC = π1(C̃) for all
irreducible curves C ⊆ X and Nx = π1(x) for all points x. It is called weakly trivial if N = π1(X)

is a weak solution, i.e. Nx = π1(x) for all x ∈ X.
A covering problem is bounded if the NC have bounded indices. In the case of a variety it is

called tame if the NC define covers of C̃ which are tamely ramified outside C̃ (see Definition 16).
A covering problem is abelian if the π1(C̃)/NC are abelian.

Remark 3. Every open normal subgroup N � π1(X) defines a covering problem PN on X: Let
the NC and Nx be the pre-images of N . PN has N as a solution.

Remark 4. The strategy of proof for the main result, the existence of solutions, consists of three
parts:

(1) Proposition 17 provides an upper bound for the solution: Birationally étale locally the cov-
ering problem becomes trivial.

(2) Proposition 24 yields a weak solution in the situation that is provided by (1).
(3) Weak solutions are solutions (Lemma 14).

Remark 5. On a regular scheme X of dimension � 1 a covering problem can be presented in a
slightly different manner. Assume for all irreducible curves C ⊆ X there are given open normal
subgroups NC � π1(C̃), which fulfil the following compatibility: For any two curves C1,C2 ⊆ X

and any x̃ ∈ C̃1 ×X C̃2 the pre-images of NC1 and NC2 in π1(x̃) agree.
To these data there is associated a covering problem in the above sense. Let x ∈ X be a closed

point and C a curve which contains x as a regular point. This exists as X is regular. Define
Nx � π1(x) as the pre-image of NC . The normal subgroup Nx does not depend on the choice
of C: Let C1,C2 be two curves which contain x as a regular point. There is a unique x̃ ∈ C̃1 ×X C̃2

above x. The point x̃ can be identified with x. The pre-images of NC1 and NC2 in π1(x) agree
because of the assumed compatibility.

To show that the normal subgroups NC and Nx define a covering problem in the above sense,
let x̃ ∈ C̃ ×X x. Choose a curve C′ which contains x as a regular point. x̃ can be viewed as a
point of C̃ ×X C̃′ above x. The pre-images of NC and NC′ in π1(x̃) agree. But the pre-image of
NC′ equals the pre-image of Nx because of the factorisation x̃ → x → C′. This shows that the
pre-images of NC and Nx in π1(x̃) agree.
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Remark 6 (Functorial behaviour of covering problems). Let X′ → X be a morphism of arith-
metic schemes or varieties. Let P be a covering problem on X. There is a covering problem
on X′ which is induced by P , it is called the induced covering problem: Let x′ ∈ X′ be closed.
Let x be the image of x′ in X. Define Nx′ � π1(x

′) as the pre-image of Nx . Let C′ ⊆ X′ be an
irreducible curve. The image of C′ on X either is an irreducible curve C or a closed point x.
Define NC′ � π1(C̃′) as the pre-image of NC or of Nx , respectively. We have to show that these
open normal subgroups define a covering problem on X′. Let x̃′ ∈ C̃′ ×X′ x′. The following two
commutative diagrams transform into commutative diagrams of fundamental groups, if compat-
ible base points are chosen, i.e. the images of a geometric point over x̃′. They imply that the
pre-images of NC′ and Nx′ in π1(x̃

′) are equal:

x′ x̃′ C̃′

x x̃ C̃

x′ x̃′ C̃′

x x x.

(1)

Here x̃ is the image of x̃′ in C̃ ×X x.

Definition 7. Let X be a normal scheme. Let πcs
1 (X) denote the completely split fundamental

group of X, i.e. that quotient of the fundamental group, which classifies finite, étale covers,
in which all closed points split completely. X is said to have enough inert points, if for every
morphism Y → X of finite type, where Y is normal, we have πcs

1 (Y ) = 1.

Remark 8. To establish this property for some X it is sufficient to look at the maximal abelian
quotient of πcs

1 (Y ), for all Y as in the definition. If X is the spectrum of a field it is sufficient to
look at curves over X. This can be shown by using the Approximation Lemma 20.

Lemma 9. Finite fields, Hilbertian fields and PAC fields, which have infinite p-Sylow subgroups
in their absolute Galois group for all primes p, have enough inert points. Spec Z has enough
inert points.

Proof. The first sentence is [Wi1, Remark 3]. The second statement follows from the Čebotarev
density theorem (together with the Approximation Lemma 20), or its successors ([La, p. 393],
[Ra, Lemma 1.7]). �
Lemma 10 (Splitting Principle). Let x ∈ X be a point and N1,N2 � π1(X) two normal sub-
groups such that the pre-images of N1 and N2 in π1(x) coincide. Let Y1, Y2 → X be the two
étale covers belonging to N1,N2. In the cover Y1 ×X Y2 → Y1 all the points y ∈ Y1 over x split
completely.

Proof. π1(y) can be viewed as the pre-image of N1 in π1(x). Let z ∈ Y1 ×X Y2 be a point over y.
π1(z) can be viewed as the pre-image of N1 ∩N2 in π1(x). Therefore π1(y) = π1(z) and y splits
completely as stated. �
Lemma 11. Let P1,P2 be two covering problems on X. The intersection of the respective normal
subgroups defines a covering problem P1 ∩ P2. This defines a partial ordering on the set of
covering problems on X, namely P1 � P2 :⇔P1 = P1 ∩ P2.
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Now let X be normal and let N1,N2 be solutions for P1, P2, respectively. If P1 � P2, then
N1 ⊆ N2. In particular every covering problem has at most one solution.

Proof. N1 ∩ N2 is a solution of P1 ∩ P2. As P1 = P1 ∩ P2 this implies that N1 and N1 ∩ N2
are two solutions for P1. Let Y1,2 → Y1 → X the associated étale coverings. The Approximation
Lemma 20 gives an irreducible curve C ⊆ X whose generic point is inert in Y1,2 → X. Then
it is inert in Y1 → X. We have π1(C̃)/NC

∼= π1(X)/(N1 ∩ N2) ∼= π1(X)/N1. This shows N1 ∩
N2 = N1, i.e. N1 � N2. �
Remark 12. If one is only interested in X which have enough inert points, the fact that Y1,2 → Y1
is completely split directly implies N1 ∩ N2 = N1. Then it is not necessary to use Lemma 20.

Remark 13. Let N be the solution of a covering problem on a normal scheme X. The Approxi-
mation Lemma 20 gives a curve C on X such that π1(X)/N ∼= π1(C̃)/NC . This shows that every
statement which is true for all π1(C̃)/NC holds for π1(X)/N as well.

Lemma 14. Assume that X is a normal connected scheme which has enough inert points. Let P

be a covering problem on X. Then every weak solution of P is a solution.

Proof. Uniqueness of weak solution if dim(X) = 1: Let P be a covering problem for X and
N, N ′ � π1(X) two weak solutions. These define étale covers Y,Y ′ → X. In the cover Y ×X

Y ′ → Y all closed points split completely (splitting principle, Lemma 10). Hence there is an
X-morphism Y → Y ′. This implies N ⊆ N ′. By symmetry N = N ′.

Every weak solution is a solution: Let N be a weak solution of P . For any irreducible curve
C ⊆ X let N ′

C be the pre-image of N in π1(C̃). For all x̃ ∈ C̃ the pre-image of N ′
C in π1(x̃)

equals the pre-image of Nx , since N is a weak solution. But the pre-image of NC in π1(x̃) equals
the pre-image of Nx as well, by definition of covering problem. As the normal subgroups NC

and N ′
C have the same pre-image in π1(x̃), the first part of this proof for the induced covering

problem on C̃ implies that NC = N ′
C , which means that N is a solution of P . �

3. Triviality of induced covering problems

Lemma 15. Let X be an arithmetic scheme or a variety over K . Let dimX � 1, in case of
an arithmetic scheme let dimX � 2. Then X allows étale locally the structure of a fibration
X ⊆ X̄ → W into smooth projective curves with boundary X̄ \ X a disjoint union of sections
si :W → X̄ and a section s :W → X. The scheme W can be chosen to be regular. In the case
that X is proper over a curve I may choose X = X̄ to be proper over W .

Proof. Fibration élementaire [SGA4, XI, 3.3] shows that after replacing X by an open sub-
scheme there is a fibration X ⊆ X̄ → W into smooth projective curves with boundary X̄ \ X

finite étale over W . Replace W by a finite étale cover to achieve the requirements.
Now assume X → C is a proper morphism to a curve. Let X′ → Specκ(C) be the generic

fiber. The first part of the lemma gives a rational map X′ → W ′ over Specκ(C) which satisfies
the required conditions. Since X′ is proper over κ(C) and the relative dimension is 1, the rational
map extends to a proper morphism on an open subset of X′ and W ′. This can be extended to a
proper morphism X → W over an open subscheme of C, such that the required conditions are
fulfilled. �
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Definition 16. Let C be a geometric curve. An étale cover D → C is called tamely ramified, if
its extension to the smooth completions D̄ → C̄ is tamely ramified, i.e. the ramification indices
are not divisible by the characteristic of K (recall K is assumed to be perfect).

Proposition 17. Let X be an arithmetic scheme or a variety over K . Let P be a covering problem
on X. Assume either P is bounded or all π1(C̃)/NC are abelian and have bounded exponent. If
X is a variety assume that P is tame, unless X is proper over a curve. Then the induced problem
on Y becomes weakly trivial for a suitable étale morphism Y → X.

Proof. We prove by induction on the dimension of X. If dim(X) � 1 the claim is obvious. So
assume dim(X) � 2.

We may assume X has the form of an elementary fibration as in Lemma 15.
Because of the induction hypothesis and after replacing W by an ètale cover we may assume

that the covering problem which is induced on s :W ⊆ X is weakly trivial. If X is proper over
a curve, then according to the above choices X → W is proper. As the assumption on tame
ramification will only be applied to the fibres of X → W , this is satisfied in this case as well.

Let E = κ(X) and F = κ(W). Let Falg denote the algebraic closure of F . Let M be the
common bound on the indices of the NC , or the common bound on the exponents, respectively.
We will show that there is a finite Galois extension E′|E, such that E′Falg|EFalg is the com-
positum L of all extensions of EFalg of degree � M , which are tamely ramified over X ×W F ,
respectively of all such abelian extensions of exponent � M . For this it is enough to show that
π tame

1 (X ×W Falg) is finitely generated. Then it has only a finite number of quotients of degree
� M (respectively of abelian quotients of exponent � M) and the intersection of the respective
kernels has finite index. But according to Grothendieck [SGA1, XIII, Corollaire 2.12] the group
π tame

1 (X ×W κ(W)alg) is finitely generated.
Let w ∈ W be closed. The geometric fundamental group for the fibre C of X → W over w is

π tame
1

(
C ×κ(w) κ(w)alg

)
, a quotient of π tame

1

(
X ×W κ(W)alg

)
(2)

according to Grothendieck’s theory of the specialisation of the fundamental group [SGA1, Ex-
posé X] and its generalisation to the tame case [SGA1, Exposé XIII].

We define X′ as the normalisation of X in E′|E. After finite extension of F and shrinking W ,
X′ → X is étale. Consider the commutative diagram

π tame
1 (C ×κ(w) κ(w)alg) π tame

1 (X ×W κ(W)alg)

Gal(E′|E).

(3)

The kernel of π tame
1 (X ×W κ(W)alg) → Gal(E′|E) is the intersection of all normal sub-

groups of index � M (respectively with abelian quotient of exponent � M). Hence the kernel of
π1(C ×κ(w) κ(w)alg) → Gal(E′|E) is contained in the intersection of all normal subgroups of
index � M (respectively with abelian quotient of exponent � M).

For all w ∈ W with fibre C the normal subgroup NC has index less or equal to M (respec-
tively abelian quotient of bounded exponent). Hence NC contains the kernel of π tame(C ×κ(w)
1
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κ(w)alg) → Gal(E′|E). After replacing X by X′ this kernel becomes π tame
1 (C ×κ(w) κ(w)alg).

This shows that we can assume that NC describes an extension of the field of constants.
As the covering problem is weakly trivial on W ⊆ X, for all closed points w ∈ W we have

Nw = π1(w) and w is rational on its special fibre C. This shows that the extension of the base
field κ(w) of C given by NC must be trivial, since it induces a trivial extension of κ(w). We
get π1(C) = NC for all fibres. This implies π1(x) = Nx for all closed points x ∈ X, hence the
covering problem is weakly trivial. �
4. Extension of weak solutions

Lemma 18. Let A be a regular, Henselian, excellent, Noetherian local domain of dimension
d � 1. Let B|A be a nontrivial, local, normal extension. Then the set of prime ideals p of A of
height d − 1, which do not split completely in B|A is dense in Spec(A).

Proof. As A is regular [Wi2, Proposition 5] shows that it is enough to find one prime of height
d − 1 which does not split completely. Assume there is none such. Then the extension B|A is
unramified outside the maximal ideal of A. The purity of the branch locus [SGA1, X.3.1] states
that the branch locus has pure codimension 1. As the maximal ideal has codimension at least 2,
the extension B|A must be étale. Let p be a prime ideal of height d − 1, whose closure Z in
Spec(A) is regular. The induced cover of Z is étale, hence regular. But it is connected, as B is
local. Thus it is irreducible and p is inert in B|A. This is a contradiction to the assumption. �
Proposition 19. Let X′ ⊆ X be an open inclusion of regular arithmetic schemes or regular vari-
eties. Let P be a covering problem on X. If the induced covering problem P ′ on X′ has a weak
solution N ′, then there is a unique weak solution N of P on X which induces the given weak
solution N ′.

Proof. First assume that X is a (regular) curve C. The weak solution N ′ of the induced covering
problem on X′ defines an étale cover Y ′ → X′. Let Y → X be the normalisation of X in the
function field of Y ′, which is a (ramified) cover of regular curves. The normal subgroup NC �
π1(X) defines an étale cover W → X. That N ′ is a weak solution of the induced problem means
that the pre-images of N ′ and NC in π1(x) are equal for all x ∈ X′. In the cover Y ×X W → W all
the closed points over X′ split completely (splitting principle, Lemma 10). According to [Wi1,
Theorem 1] all closed points of W split completely, whence Y → X is étale and defines an open
normal subgroup N � π1(X). Furthermore this shows that the pre-image of N in π1(x) for all
x ∈ X \ X′ contains the pre-image Nx of NC . In the cover Y ×X W → Y all the closed points
over X′ split completely (splitting principle, Lemma 10). [Wi1, Theorem 1] shows that all closed
points of Y split completely. Therefore Nx equals the pre-image of N in π1(x) for all x ∈ X \X′.
This shows that N is a weak solution, which induces the given solution N ′ on X′.

Now we prove the general case. The weak solution N ′ � π1(X
′) of P ′ on X′ defines an étale

cover Y ′ → X′. Let Y be the normalisation of X in the function field of Y ′. We have to prove
Y → X is étale and defines a weak solution of P . Let x ∈ X \X′ and b a branch of an irreducible
curve C ⊆ X in the point x, such that C meets X′. The branch b defines a point x̃ ∈ C̃ over x. Let
κ(b) denote the henselisation of κ(C) in x̃ ∈ C̃. The field κ(b) is a discretely valued Henselian
field with residue class field κ(x̃). This defines a homomorphism Gκ(b) → π1(x̃) → π1(x). There
is a morphism Spec(κ(b)) → X′. This defines a homomorphism Gκ(b) → π1(X

′).
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Claim. The pre-image of N ′ � π1(X
′) in Gκ(b) equals the pre-image of Nx � π1(x).

Let C̃′ := C̃ ×X X′. There are commutative diagrams

Spec(κ(b)) C̃′ X′

Spec(Ohen
C̃,x̃

) C̃ X

Gκ(b) π1(C̃
′) π1(X

′)

π1(x̃) π1(C̃) π1(X).

(4)

The pre-image of N ′ in π1(C̃
′) defines a weak solution of P restricted to C̃′. The first part of the

proof for the curve C̃ implies that there is a weak solution for P restricted to C̃ which we call
ÑC � π1(C̃) extending the weak solution on C̃′: The pre-image of ÑC in π1(C̃

′) equals the pre-
image of N ′. Furthermore the pre-image of Nx in π1(x̃) equals the pre-image of ÑC by definition
of induced covering problem. Now the commutativity of the diagram implies the claim.

The prime ideals of height d − 1 of the Henselian local ring Ohen
X,x correspond to the branches

b of curves C in x. The residue field of b is the Henselian field κ(b) defined above. Let D be a
local extension of Ohen

X,x defined by Y → X, namely the localisation of Ohen
X,x ×X Y at a maximal

ideal. The prime ideals b of Ohen
X,x which belong to branches of irreducible curves which meet

X′ are those contained in the open subset Spec(Ohen
X,x) ×X X′. For those b the extension of κ(b)

defined by D|Ohen
X,x equals the extension given by Nx � π1(x) as was proved above. Let A|Ohen

X,x

be the étale cover defined by the separable extension of its residue field κ(x) given by Nx . Let
B := A ⊗Ohen

X,x
D. This is a locally normal ring. In B|A all primes of height d − 1 contained in a

nonempty open subset split completely (splitting principle, Lemma 10). Lemma 18 implies that
B is a direct sum of copies of A, hence D ⊆ A is étale over Ohen

X,x . But in B|D all the prime
ideals of height d − 1 contained in a nonempty open subset split completely (splitting principle,
Lemma 10). As above this implies that B is a direct sum of copies of D, hence A = D.

This shows that Y → X is étale and defines a normal subgroup N � π1(X) whose pre-image
in π1(x) is Nx . So N is a weak solution for P which induces N ′. �
5. The Approximation Lemma

We show that there are enough curves on a regular arithmetic scheme or a regular variety. This
generalises a lemma of Raskind [Ra, Lemma 6.21]. Here we include refinement (b) and the case
of infinite K .

Lemma 20 (Approximation Lemma). Let f :X → W be a smooth, quasi-projective morphism,
where W is a regular curve over K or a regular arithmetic scheme of dimension 1. Let X be con-
nected. Let x1, . . . , xm ∈ X be closed points that have distinct images in W . Then the following
hold:

(a) There is an irreducible curve C ⊆ X which contains each xi as a regular point.
(b) If Y → X is a connected and étale cover then C can be chosen such that the generic point

of C is inert in Y → X.
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Proof. Let d be the fibre dimension of f :X → W . If d = 0 the claim is obvious. So assume
d � 1. Put wi = f (xi). First we prove a reduction step: We may assume that κ(xi) = κ(wi), if in
turn, we prove the additional claim that we may prescribe xm+1, . . . , xl which do not lie on C,
where the total number of xi in the fibre over w ∈ W is bounded by the degree of κ(w) over its
prime field, if κ(w) is finite.

Lemma 21. There exists a finite cover W ′ → W , étale in a neighbourhood of the wi , such that
there exist points w′

i ∈ W ′ over wi such that κ(xi) = κ(w′
i ). Furthermore Y ′ = Y ×W W ′ is

connected.

Proof. Let pi(t) ∈ κ(wi)[t] be a separable polynomial, one of whose roots generates the field
extension κ(xi)|κ(wi) for i = 1, . . . ,m. We may choose the pi such that they have a common
degree. According to the approximation theorem for the finite set of valuations of F defined
by the wi there is a polynomial p(t) ∈ F [t], whose image in Fwi

[t] has integer coefficients and
reduces to the pi(t). We may further assume that the image of p(t) in Fw0 [t] (for some w0 
= wi )
induces a completely ramified extension. Then p(t) is irreducible. Adjoining a root of p defines
a cover W ′ → W which is étale over the wi . For each i let w′

i ∈ W ′ be a point over wi with
κ(w′

i ) = κ(xi). Furthermore p can be chosen such that Y ×W W ′ → Y is connected, i.e. Y → X

and X×W W ′ → X are linearly disjoint. This will be the case, if the point w0 which is completely
ramified in W ′ → W has nonempty pre-image on X. �

After replacing W by a neighbourhood of the wi I may assume W ′ → W is finite étale.
Let X′ = X ×W W ′ and Y ′ = Y ×W W ′. Choose for every i = 1, . . . ,m a point x′

i on X′ over
xi and w′

i such that κ(x′
i ) = κ(w′

i ) = κ(xi). In the fibre over a point w′ ∈ W ′ there are at most
[κ(w′) : κ(w)] pre-images of a point x ∈ X on X′: The exact number is the number of factors of
κ(w′) ⊗κ(w) κ(x).

Assume the Approximation Lemma applies to Y ′ → X′ and X′ → W ′: Let there be an irre-
ducible curve C′ on X′, which contains the x′

i as regular points and does not contain the other
pre-images of xi on X′, such that the generic point of C′ is inert in Y ′ → X′. Then the image
C ⊆ X of C′ ⊆ X′ satisfies the requirements of the Approximation Lemma: The generic point
of C is inert in Y → X since it is inert in the base change Y ′ → X′. I claim xi is a regular point
on C:

The étale cover X′ → X induces a finite étale cover of the normalisations C̃′ → C̃. Here C̃′
is a connected component of C̃ ×X X′ → C̃. If C had � 2 branches in xi , there would be � 2
corresponding points of C̃, hence � 2 pre-images on C̃′. These correspond to the branches of C′
in the pre-images of xi . But this number is 1, because C′ has one branch in x′

i and no branch in
the other pre-images. The single branch of C in xi must be regular, since its pre-image in X′ is
regular, and X′ → X is étale at xi .

Now prove the lemma under the assumption κ(xi) = κ(wi).
Let X ⊆ PN

W be a locally closed immersion.

Lemma 22. Assume N > d . After shrinking W there exists a section s :W → PN
W such that the

projection

π : PN
W \ s(W) → PN−1

W

fulfils the following:
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(1) π |X is étale onto its image in a neighbourhood of the xi .
(2) The images of the xi under π are distinct.

Proof. We first show that there exists a point Pw ∈ PN
κ(w) which achieves such a projection for

each of the finitely many fibres. Then the section can be found as to reduce to each Pw in the
fibre over w for the finitely many fibres which contain one of the xi ’s.

A point Pw ∈ PN
κ(w) achieves 1, 2 above iff

(1) the projection is étale at x iff Pw does not lie on any of the tangent spaces of X ×W κ(w)

at the xi . If κ(w) is finite, then these tangent spaces together contain at most s(qd+1 −1)/(q −1)

points. Here s is the number of the xi in this fibre and q is the number of elements of κ(w);
(2) the images of the xi under the projection are distinct, iff Pw does not lie on any line through

two of the points. If κ(w) = Fq , then these together contain at most (q + 1)s(s − 1)/2 points.
Now s is bounded by the degree of κ(w) over its prime field, hence s(s + 1)/2 � q . Let

κ(w) be finite. Then this shows that the number of points which Pw must avoid is less than
(qN+1 − 1)/(q − 1). Hence there exists a centre Pw which fulfils the requirements. �

By applying the lemma N − d times, we get a morphism X → Pd
W which is étale at all the xi

and maps the xi to distinct points.
Let F be the function field of W . The field F is a global field or a function field of one

variable over K . It is Hilbertian according to [FJ, 13.4.2]. Apply Lemma 23 to the induced map
Y ×W SpecF → Pd

F . It gives an F -rational point P of Pd
F which specialises to the image of

xi in Pd(κ(wi)) for i = 1, . . . ,m, and to a point distinct from the image of xi in Pd(κ(w)) for
i = m + 1, . . . , l. Furthermore P is inert in Y ×W SpecF → Pd

F . The closure of P in Pd
W gives

rise to a section W → Pd
W , since W is regular, which passes through the images of the xi for

i = 1, . . . ,m, and does not contain the images of the points xi for i = m + 1, . . . , l. The section
defines a regular curve D ⊆ Pd

W , whose generic point is inert in Y → Pd
W by the choice of P .

Let C be the unique irreducible curve on X which maps to D. The generic point of C is inert
in Y → X. Since D contains the images of the xi for i = 1, . . . ,m, the curve C contains the xi

for i = 1, . . . ,m. Since X → Pd
W is étale at xi and D is regular, C is regular at these xi . Since

the images of xi for i = m + 1, . . . , l, are not contained in D, the curve C does not contain xi ,
i = m + 1, . . . , l. �

The following generalises a lemma of Bloch [Bl, Lemma (3.1)].

Lemma 23. Let F be a Hilbertian field. Let S be a finite set of discrete valuations of F and
Fv the completion of F at v ∈ S. Let V be an irreducible variety over F of dimension d and
π :V → Pd

F a quasi-finite, dominant and separable map. Let I ⊆ Pd(F ) be the set of rational
closed points x such that π−1(x) consists of a unique closed point y with [κ(y) : κ(x)] = degπ .
Then the image of I in

∏
v∈S Pd(Fv) is dense.

Proof. After replacing V by an open subset it is finite and étale over its image U ⊆ Ad
F ⊆ Pd

F

which is open. Let f (t1, . . . , td , x) ∈ k(t1, . . . , td)[x] be an irreducible polynomial describing
the extension of the generic fibre of V → Pd

F . After further shrinking V we may assume the
polynomial f describes the cover V → U . As U(Fv) is dense in Pd(Fv) we may assume there
are given (av) ∈ ∏

v∈S U(Fv) ⊆ ∏
v∈S Ad(Fv) and m ∈ N. We may assume that m is sufficiently

large, such that any b ∈ Pd(F ) which approximates the av to order m lies in U(F). We have to
prove that there is a b ∈ I such that b ≡ av mod πm

v , where πv is a prime element of Fv .
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Use the weak approximation theorem for a finite set of discrete valuations to find (ai) ∈ Fd :
ai ≡ (av)i mod πm

v . Put g(t1, . . . , td , x) := f (a1 + ∏
πm

v · t1, . . . , ad + ∏
πm

v · td , x).
As F is Hilbertian [FJ, 13.4.1] shows that there are elements c1, . . . , cd ∈ F , which are

integers in Fv such that g(c1, . . . , cd, x) is irreducible. This implies that the point b = (ai +∏
πm

v · ci) ∈ I fulfils the requirements. �
6. Construction of weak solutions

Proposition 24. Let P be a covering problem on a regular arithmetic scheme or a regular vari-
ety X. Let Y → X be étale. If the induced covering problem (Remark 6) on Y is trivial, then P

has a weak solution.

Proof. If dim(X) = 0, then the proposition is obvious. So assume dim(X) � 1. Proposition 19
shows that we may replace X by any open subscheme X′ during the proof. After shrinking X we
may assume that Y → X is finite and étale. After replacing Y by the Galois hull of Y → X, we
may assume Y → X Galois with group G. Furthermore we may assume that there is a smooth
morphism X → W to a regular curve W .

Look at the decomposition groups Gy of various closed points y ∈ Y . By removing finitely
many points of W we may assume that any appearing decomposition group occurs for y in infi-
nitely many fibres of Y → W . Let Gi � G represent all the occurring decomposition groups Gy .
Let yi ∈ Y be a closed point with decomposition group Gi . We may assume that the images
xi ∈ X, i = 1, . . . , n, have different images in W .

According to the Approximation Lemma 20 there is an irreducible curve C through the xi

which is regular in these points and whose generic point is inert in the cover Y → X. By shrinking
X further we may assume that C is nonsingular. Let D be the (irreducible) pre-image of C on Y .
We have an exact sequence

1 → π1(D) → π1(C) → G → 1. (5)

Since C and hence D are regular and the covering problem is trivial over Y , the induced subgroup
ND � π1(D) is the whole group. Therefore the image of π1(D) is contained in NC and NC

defines a normal subgroup N ′ of G. For an x ∈ X consider the commutative diagram

π1(X) G.

π1(x)

(6)

Let N be the pre-image of N ′ in π1(X). To prove the proposition we need to show for all points
x ∈ X (which we may assume to have an image in W distinct from the images of the xi ) that
Nx is the pre-image of N . Due to the commutativity of the above diagram this is equivalent to
showing that Nx is the pre-image of N ′ via the map π1(x) → G.

Let Gy � G be the decomposition group of a point y over x, say Gy = Gi . Because of the
factorisation π1(x) � Gy ↪→ G we may replace X by the quotient scheme Y/Gy of Y by Gy

and replace x by the image of y. Then x is inert in the extension Y → X. According to the choice
of the Gi the point x′ = xi ∈ C is inert in Y → X. The points x and x′ map to distinct points
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in W . By construction N ′ induces Nx′ � π1(x
′) (x′ is a regular point of C). The Approximation

Lemma gives a curve C′ ⊆ X which contains x and x′ as regular points. We may assume that C′
is regular by removing some points from X different from x and x′. C′ contains points which are
inert in Y → X, whence its generic point is inert in Y → X. By the same construction as above,
let N ′′ � G be the normal subgroup inducing NC′ � π1(C

′). As N ′′ induces Nx′ � π1(x
′) (x′ is

a regular point of C′), we have N ′′ = N ′ because π1(x
′) → G is surjective. But N ′′ induces Nx

since x is a regular point of C′. This shows the claim. �
7. The main results

Theorem 25. Assume X is a regular arithmetic scheme. Then every bounded covering problem
and every abelian covering problem on X has a unique solution.

Theorem 26. Assume X is a regular variety over K .

(a) Assume K has enough inert points, e.g. K is finite, Hilbertian or PAC such that all Sylow
subgroups of GK are infinite. Then every tame, bounded covering problem on X has a unique
solution.

(b) Assume K is finite. Then every tame, abelian covering problem on X has a unique solution.

Proof for both theorems. If the given covering problem P is abelian then under the assumptions
Proposition 28 shows that P is bounded. According to Proposition 17 there is an étale morphism
Y → X, such that the induced covering problem becomes weakly trivial over Y . Lemma 14
shows that the induced covering problem even becomes trivial. Now Proposition 24 shows that
P has a weak solution. Another application of Lemma 14 shows that this weak solution is unique
and a solution. �
Remark 27. In Theorem 26 the assumption on tameness can be dropped, if X is proper over a
curve. This follows by the same proof in view of Proposition 17.

8. Abelian covering problems

Proposition 28. Let X be a regular arithmetic scheme or a regular variety over the finite field K .
Let P be an abelian covering problem on X. If X is a variety assume P is tame or X is proper
over a curve. Then P is bounded.

Proof.

Claim 1. It is enough to show that there exists Y → X étale such that the exponents of π1(C̃)/NC

are bounded for the induced covering problem on Y .

This is true because the boundedness assumption only entered the proof of the main result via
Proposition 17 where the weaker assumption suffices.

Claim 2. It is enough to show that the Nx have bounded indices for all x ∈ X: If x is a reg-
ular point on C, then π1(x)/Nx � π1(C̃)/NC . The density theorem of Čebotarev shows that
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π1(C̃)/NC can be covered by π1(x)/Nx for some regular x ∈ C. If B is a bound for the indices
[π1(x) : Nx], then B is a bound for the exponents of the π1(C̃)/NC .

We prove the proposition by induction on the dimension of X. If the dimension is 0 or 1, then
the claim is obvious. So let dim(X) � 2.

By Lemma 15 we may assume there is an elementary fibration X ⊆ X̄ → W as in that lemma.
By induction hypothesis we may assume that the covering problem restricted to s :W → X

has bounded indices and by Proposition 17 and Lemma 14 is even trivial on W .
We first prove the proposition in the case all quotients π1(C̃)/NC are l-groups for a fixed

prime l. Let x0 ∈ X be a closed point in the image of the section s and w0 ∈ W its image, hence
κ(x0) = κ(w0).

Claim 3. There is a finite étale Galois cover X′ → X such that the indices of Nx are bounded
for those points x ∈ X, which have the same decomposition group in Gal(X′|X) as x0.

Proof. In case l = charκ(W) we may assume the fibers Cw are projective. It is enough to show
there is an étale cover W ′ → W such that for w ∈ W with the same decomposition group as w0,
the indices of NCw for the fibre Cw over w are bounded. Then take X′ = X ×W W ′.

For this it is enough to bound

H1(Cw ×κ(w) κ(w)alg,Ql/Zl

)Gκ(w)

for suitable w ∈ W . As the point w ∈ Cw is completely split in the cover defined by NCw , I may
look at the geometric curve. But

H1(Cw ×κ(w) κ(w)alg,Ql/Zl

)

is nothing else than the (ind-)constructible sheaf R1f�Ql/Zl . For l = charκ(W) this follows
from the proper base change theorem [Mi1, VI, Theorem 2.1]; for l 
= charκ(W) we additionally
need purity [Mi1, VI, §5]. As the rank is bounded, R1f�Ql/Zl is (ind-)locally constant after W

is replaced by an open subscheme.
Gκ(w) acts on R1f�Ql/Zl via its map to π1(W,w).
By [KL] or [Sch] the group

H1(Cw ×κ(w) κ(w)alg,Ql/Zl

)Gκ(w)

is finite. Let ln be the exponent for w = w0.
Let W ′ → W be the étale cover trivialising R1f�Z/ln+1. If w and w0 have the same decom-

position group in W ′ → W , then

H1(Cw0 ×κ(w0) κ(w0)alg,Z/ln
)Gκ(w0) = H1(Cw ×κ(w) κ(w)alg,Z/ln

)Gκ(w)

= H1(Cw ×κ(w) κ(w)alg,Z/ln+1)Gκ(w)

= H1(Cw ×κ(w) κ(w)alg,Ql/Zl

)Gκ(w)

this shows Claim 3.
Now let B be the bound in Claim 3 and d the degree of X′ over X. �
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Claim 4. The index of Nx is � Bd for all x ∈ X with f (x) 
= w0.

Proof. Let x ∈ X and f (x) 
= w0. The Approximation Lemma gives an irreducible curve C on
X which contains x0 and x as regular points and whose generic point is inert in X′ → X. Let
C′ → C be the induced étale cover of curves. Let A be the set of those regular points y ∈ C,
whose decomposition group equals the decomposition group of x0. Claim 3 says that for y ∈ A

we have [π1(y) : Ny] � B . According to the density theorem of Čebotarev for C′ → C, these
points have a Dirichlet density δ � 1/d . If the index of Nx were greater than Bd , then the ex-
ponent of π1(C̃)/NC would be greater than Bd . The subgroup of elements of order � B of the
abelian l-group π1(C̃)/NC would have index bigger than d in this group. The density theorem of
Čebotarev for the cover of C̃ given by NC shows that the density of y ∈ C, such that the index of
Ny is � B , is smaller than 1/d , in contradiction to the above density of A. This shows Claim 4
and the proposition in case all occurring groups are l-groups. �

Now prove the general case of the proposition. Let P be a covering problem as in the as-
sumptions of the proposition. The decomposition of each quotient π1(C̃)/NC into its l-Sylow
subgroups defines covering problems Pl for each l. According to what was shown, all the Pl

have bounded indices. To prove the proposition, it is enough, to show that almost all Pl are
trivial. This means they have trivial solutions.

Since the covering problem restricted to W is trivial, the solution of Pl defines a subgroup of
H1(X ×W κ(W)alg,Ql/Zl)

Gκ(W) . But this group is trivial (view [KL]) for almost all l. �
Acknowledgments

I thank W.-D. Geyer, W. Hofmann, and S. Saito for valuable suggestions and discussions. The
referee has contributed many improvements and suggestions.

References

[Bl] S. Bloch, Algebraic K-theory and class field theory for arithmetic surfaces, Ann. of Math. 114 (1981) 229–265.
[FJ] M. Fried, M. Jarden, Field Arithmetic, second ed., Ergeb. Math. Grenzgeb. (3), vol. 11, Springer, Berlin, 2005.
[HW] W. Hofmann, G. Wiesend, Non-abelian class field theory for arithmetic surfaces, Math. Z. 250 (2005) 203–224.
[KL] N.M. Katz, S. Lang, Finiteness theorems in geometric class field theory, Enseign. Math. 27 (1981) 285–319.
[La] S. Lang, Sur les séries L d’une variété algébrique, Bull. Soc. Math. France 84 (1956) 385–407.
[Mi1] J.S. Milne, Étale Cohomology, Princeton Univ. Press, Princeton, 1980.
[Ra] W. Raskind, Abelian class field theory of arithmetic schemes, in: B. Jacob, et al. (Eds.), K-Theory and Algebraic

Geometry: Connections with Quadratic Forms and Division Algebras. Summer Research Institute on Quadratic
Forms and Division Algebras, July 6–24, 1992, University of California, Santa Barbara, USA, Part 1, in: Proc.
Sympos. Pure Math., vol. 58, Amer. Math. Soc., Providence, RI, 1995, pp. 85–187.

[Sch] A. Schmidt, Tame coverings of arithmetic schemes, Math. Ann. 322 (2002) 1–18.
[SGA1] A. Grothendieck, Séminaire de géométrie algébrique du Bois Marie 1960/61 (SGA 1), Revêtements étales et

groupe fondamental. Exposés I à XIII, Lecture Notes in Math., vol. 224, Springer, Berlin, 1971.
[SGA4] M. Artin, A. Grothendieck, J.L. Verdier, Théorie des Topos et Cohomologie Étale des Schémas, Lecture Notes

in Math., vols. 269, 270, 305, Springer, Berlin, 1972, 1973.
[Wi1] G. Wiesend, Covers of varieties with completely split points, Israel J. Math., in press.
[Wi2] G. Wiesend, Tamely ramified covers of varieties and arithmetic schemes, preprint, submitted for publication.


