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The aim of global class field theory is the description of abelian extensions of arithmetic schemes
(i.e. regular schemes X of finite type over Spec(Z)) in terms of arithmetic invariants attached to X .
The solution of this problem in the case dim X = 1 was one of the major achievements of number
theory in the first part of the previous century. In the 1980s, mainly due to K. Kato and S. Saito [13],
a generalization to higher dimensional schemes has been found. The description of the abelian exten-
sions is given in terms of a generalized idèle class group, whose rather involved definition is based
on Milnor K -sheaves.

In the course of the last years, G. Wiesend developed a new approach to higher dimensional
class field theory which only uses data attached to points and curves on the scheme. The central
and new idea was to consider data which describe not necessarily abelian Galois coverings of all
curves on the scheme, together with some compatibility condition. Then one investigates the question
whether these data are given by a single Galois covering of the scheme. The essential advantage of
this nonabelian approach is that one can use the topological finite generation of the tame fundamental
groups of smooth curves over separably closed fields as an additional input. The restriction to abelian
coverings is made at a later stage.

One obtains an explicitly given class group CX together with a reciprocity homomorphism
ρX :CX → πab

1 (X) to the abelianized fundamental group, which has similar properties like the clas-
sical reciprocity homomorphism of one-dimensional class field theory. As a result of the method, the
full abelian fundamental group can be described only if X is flat over Spec(Z) and for varieties over
finite fields which are proper over a curve. For a general variety over a finite field, the method only
yields a description of the tame part π t,ab

1 (X) (this description is equivalent to that given by Schmidt
and Spieß in [24]).

Wiesend’s approach is independent from and easier than the original approach of Kato and
Saito [13]. Although it fails to describe the wild part in positive characteristic, it should be seen as
a substantial progress in the theory. For example, it provides an easier proof of the finite generation
of the Chow group of zero cycles modulo rational equivalence of arithmetic schemes (first proved by
Kato and Saito). Furthermore, the explicit definition of the class group will hopefully make this theory
more suited for applications.

G. Wiesend published his results in [26,27]. It is, however, not easy to follow his arguments, and
his papers contain a number of gaps and mistakes. As a result, it was not clear whether Wiesend’s
theorems should be considered as proven. The aim of this article is to provide a complete account of
the theory which is more accessible, corrects the mistakes and fills the gaps in Wiesend’s papers. We
use the same key ideas but have introduced quite a number of improvements. A more direct approach
to the reciprocity map for flat arithmetic schemes can be found in [15].

The authors want to thank U. Jannsen for helpful discussions on the subject.

1. Preliminaries

We denote by Sch(S) the category of schemes separated and of finite type over an integral noethe-
rian scheme S . The set of closed points of a scheme X is denoted |X |, and the set of regular points
by Xreg . The word curve means integral scheme of Krull dimension one. By the phrase curve on X we
mean a closed curve C ⊂ X . The normalization of a curve C in its function field is denoted by C̃ . The
phrase étale covering means finite étale morphism.

Next we introduce the notion special fibration into curves, which is a special kind of a “fibrations
élémentaire” à la Artin.

Definition. A special fibration into curves is a morphism X̄ → W of smooth schemes in Sch(S) together
with an open subscheme X ⊂ X̄ such that:

• X̄ → W is smooth, projective and of relative dimension one with geometrically connected fibres.
• X is dense in every fibre of X̄ → W .
• The boundary X̄ \ X is the disjoint union of sections si : W → X̄ .
• There exists a section s : W → X .
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Lemma 1.1. Let X ∈ Sch(S) be irreducible and generically smooth of relative dimension greater or equal to
1 over S. Then there exists an étale morphism X ′ → X with dense image and a special fibration into curves
X ′ ⊂ X̄ ′ → W .

Proof. Without loss of generality, we can assume that X is connected and smooth over S . Then [1, XI,
Proposition 3.3] (“fibrations élémentaire”) shows that, after replacing X by an étale open, there exists
an open immersion X ⊂ X̄ and a morphism f̄ : X̄ → W onto a smooth scheme W ∈ Sch(S) such that:

• X̄ → W is smooth, projective and of relative dimension one.
• X is dense in every fibre of X̄ → W .
• The induced morphism X̄ \ X → W is étale.

By [5, IV, 17.16.3], the smooth surjective morphism f̄ |X : X → W admits a section over an étale
open of W . Therefore we achieve all requirements after an étale base change W ′ → W . �

We could not find a reference for the following well-known fact. Therefore we include it here
together with a proof.

Lemma 1.2. Let X be a connected scheme of finite type over Spec(Z) and let x, y ∈ X be closed points. Then
there exists a finite chain C0, . . . , Cn of closed irreducible curves on X such that x ∈ C0 , y ∈ Cn and Ci−1 ∩
Ci �= ∅ for i = 1, . . . ,n.

Proof. By considering an affine open covering, we may reduce to the case that X is affine, and then
to the case that X is affine and irreducible. Passing to Xred and then to the normalization, we may
assume X = Spec(A), where A is a normal integral domain. We proceed by induction on dim X . The
case dim X = 1 is trivial, so assume dim X � 2. Then every closed point x ∈ X is contained in infinitely
many prime divisors. Indeed, let B = Am , where m is the maximal ideal associated to x. As B is a
noetherian, normal domain, we have (see [3, VII, 3, Corollary])

B =
⋂

ht(p)=1

Bp,

and if there would be only a finite number of primes p of height 1, then B would be a principal ideal
domain (see [17, Theorem 12.2]), contradicting dim B � 2.

By Lemma 1.1, there exists an étale morphism X ′ → X and a special fibration into curves
X ′ ⊂ X̄ ′ → W , s : W → X . Any two closed points in X ′ can be connected by a finite chain of irre-
ducible curves: connect x and y via a vertical curve to closed points in s(W ) and then apply the
induction hypothesis. Therefore it remains to show that any closed point x ∈ X can be connected with
a closed point in U = im(X ′) ⊂ X . As x is contained in infinitely many prime divisors, we find a closed
irreducible subscheme D ⊂ X with x ∈ D and D ∩U �= ∅. Now we apply the induction hypothesis again
to complete the proof. �

Let X be an integral scheme in Sch(Z) of dimension d and let M be a subset of |X |. Recall that M
has Dirichlet density

δ(M) := lim
s→d+0

( ∑
x∈M

1

N(x)s

)
/ log

(
1

s − d

)

if this limit exists. Here N(x) := #k(x). In the following we will make use of

Proposition 1.3 (Čebotarev density). (See [25, Theorem 7].) Let Y → X be a Galois covering of connected
normal schemes in Sch(Z). Let R be a subset of G = G(Y |X) with g Rg−1 = R for all g ∈ G. Set M = {x ∈ |X | |
Frobx ∈ R}. Then the density δ(M) is defined and equal to #R/#G.
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Let Y → X be an étale covering of degree n. We say that a point x ∈ X splits completely in Y |X if
the base change Y ×X x is isomorphic to the disjoint union of n copies of x. We say that x is inert if
Y ×X x is connected. As an immediate consequence of Čebotarev density, we obtain:

Proposition 1.4. Let X be a connected normal scheme of finite type over Spec(Z) and let Y → X be a connected
étale covering. If all closed points of X split completely in Y |X, then Y → X is an isomorphism.

Proof. The assumption that all closed points of X split completely remains true after replacing Y
by its Galois hull. So we can assume that Y → X is Galois with group G = G(Y |X). Proposition 1.3
implies for M = {x ∈ |X | | Frobx = 1} that

1/#G = δ(M) = δ
(|X |) = 1,

hence #G = 1. �
Proposition 1.5 (Approximation lemma). Let X → Z be a smooth morphism in Sch(Z) with Z regular and
one-dimensional, and X connected and quasi-projective. Let x1, . . . , xn be closed points of X with pairwise
different images in Z and let Y → X be a connected étale covering. Then there exists a closed curve C ⊂ X
such that:

• The points xi are in the regular locus Creg of C , and
• Y ×X C is irreducible (i.e. the generic point of C is inert in Y |X ).

Proof. By replacing Y → X by its Galois hull, we may assume that Y → X is Galois with group
G = G(Y |X). By Proposition 1.3, we can find a finite family xi (n < i � m) of closed points of X
such that every conjugacy class of G contains a Frobenius Frobxi for some i ∈ {n + 1, . . . ,m}. Fur-
thermore, we can assume that the points xi , 1 � i � m, have pairwise different images in Z . Then,
by [20, Lemma 6.21], we find a closed curve C ⊂ X with xi ∈ Creg for 1 � i � m. We claim that
Y ×X C is irreducible. Equivalently, we may show that Y ×X Creg is irreducible. Let YCreg be an
irreducible component of Y ×X Creg . The étale covering YCreg → Creg is Galois with Galois group
GC := G(YCreg |Creg) ⊂ G , and YCreg = Y ×X Creg if and only if GC = G . Since YCreg contains a point
over xi for all i, GC contains a Frobenius Frobxi for all i. Therefore the following lemma shows that
GC = G . �
Lemma 1.6. Let H be a subgroup of a finite group G and assume that

⋃
g∈G

g H g−1 = G.

Then H = G.

Proof. If G/H �= 1, then the union

⋃
g∈G/H

g H g−1 = G

is not disjoint as the unit element is contained in all members. So, if H �= G , then the left-hand side
set has less than #(G/H) · #H = #G elements, whereas the right-hand side set has #G elements.
A contradiction. �
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2. Ramification and finiteness

Let X be a normal, noetherian scheme and let X ′ ⊂ X be a dense open subscheme. Assume we are
given an étale covering Y ′ → X ′ .

Definition. Let x ∈ X \ X ′ be a point. We say that Y ′ → X ′ is unramified along x if it extends to an étale
covering of some open subscheme U ⊂ X which contains X ′ and x. Otherwise we say that Y ′ → X ′
ramifies along x. If codimX {x} = 1, then Y ′ → X ′ ramifies along x if and only if the discrete valuation
of k(X ′) associated to x ramifies in k(Y ′). In this case we can speak about tame and wild ramification
along x by referring to the associated valuation.

For a proof of the following Lemma 2.1 we refer to [16, Lemma 2.4]. In case the ring A has a finite
residue field a different proof using class field theory of local rings can be found in [15], generalizing
work of Saito [21, Part I, Proposition 3.3] for dim(A) = 2.

Lemma 2.1. Let A be a local, normal and excellent ring and let X ′ ⊂ X = Spec(A) be a nonempty open sub-
scheme. Let Y ′ → X ′ be an étale Galois covering of prime degree p. Assume that X \ X ′ contains an irreducible
component D of codimension one in X such that Y ′ → X ′ is ramified along the generic point of D. Then there
exists a curve C on X with C ′ := C ∩ X ′ �= ∅ such that the base change Y ′ ×X ′ C̃ ′ → C̃ ′ is ramified along a
point of C̃ \ C̃ ′ .

Definition. We call an integral noetherian scheme X pure-dimensional if dim X = dim O X,x for every
closed point x ∈ X .

Remark 2.2. Any integral scheme of finite type over a field or over a Dedekind domain with infinitely
many prime ideals is pure-dimensional. A proper scheme over a pure-dimensional universally cate-
nary scheme is pure-dimensional by [5, IV, 5.6.5]. The affine line A1

Zp
over the ring of p-adic integers

gives an example of a regular scheme which is not pure-dimensional.

An important ingredient in our construction of étale coverings will be the following proposition.

Proposition 2.3. Let X be a regular, pure-dimensional, excellent scheme, X ′ ⊂ X a dense open subscheme,
Y ′ → X ′ an étale covering and Y the normalization of X in k(Y ′). Suppose that for every curve C on X with
C ′ = C ∩ X ′ �= ∅, the étale covering Y ′ ×X C̃ ′ → X ′ ×X C̃ ′ extends to an étale covering of C̃ . Then Y → X is
étale.

Proof. We can assume that Y ′ → X ′ is a Galois covering. Assume Y → X were not étale. We have to
find a curve C on X with C ′ = C ∩ X ′ �= ∅ such that Y ′ ×X ′ C̃ ′ → C̃ ′ is ramified along C̃ \ C̃ ′ . By the
purity of the branch locus [6, X.3.4], there exists a component D of X \ X ′ of codimension one in X
such that Y → X is ramified over the generic point of D . Let G be a cyclic subgroup of prime order of
the inertia group of some point of Y which lies over the generic point of D . Let Y ′

G be the quotient
of Y ′ by the action of G . Consider the Galois covering Y ′ → Y ′

G of prime degree and let YG be the
normalization of X in k(Y ′

G ). By considering the localization at any closed point of YG lying over D ,
Lemma 2.1 produces a curve CG on YG with C ′

G = CG ∩ Y ′
G �= ∅ such that Y ′ × C̃ ′

G → C̃ ′
G is ramified

along C̃G \ C̃ ′
G . Let C be the image of CG under the morphism YG → X . Then C is the curve we are

looking for. �
Let from now on S be a fixed integral, pure-dimensional excellent base scheme. We work in the

category Sch(S) of separated schemes of finite type over S . In order to avoid the effect that open sub-
schemes might have smaller (Krull-)dimension than the ambient scheme (e.g. Spec(Qp) ⊂ Spec(Zp)),
we redefine the notion of dimension for schemes in Sch(S) as follows.
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Let X ∈ Sch(S) be integral and let T be the closure of the image of X in S . Then we put

dim X := deg.tr.
(
k(X)|k(T )

) + dimKrull T .

If the image of X in S contains a closed point of T , then dim X = dimKrull X by [5, IV, 5.6.5]. This
equality holds for arbitrary X ∈ Sch(S) if S is of finite type over a field or over a Dedekind domain
with infinitely many prime ideals.

Let X ∈ Sch(S) be a regular scheme together with an open embedding into a regular, proper
scheme X̄ ∈ Sch(S) such that X̄ \ X is a normal crossing divisor (NCD) on X̄ . Then, following [7,9],
an étale covering Y → X is called tamely ramified along X̄ \ X if it is tamely ramified along the generic
points of X̄ \ X . For a regular curve C ∈ Sch(S) (i.e. C is one-dimensional in the sense just introduced),
there exists a unique regular curve P (C) ∈ Sch(S) which is proper over S and contains C as a dense
open subscheme. P (C) has Krull-dimension 1 and the boundary P (C) \ C is a NCD. So there exists
a unique notion of tameness for étale coverings of regular curves in Sch(S). For a general regular
scheme X ∈ Sch(S), there might exist many or (at our present knowledge about resolution of singu-
larities) even no regular compactifications X̄ of X such that X̄ \ X is a NCD. The next definition is
motivated by Proposition 2.3. It is the ‘maximal’ definition of tameness which is stable under base
change and extends the given one for curves.

Definition. Let Y → X be an étale covering in Sch(S). We say that Y → X is tame if for each closed
curve C ⊂ X the base change Y ×X C̃ → C̃ is tamely ramified along P (C̃) \ C̃ .

Remark 2.4. The above definition of tameness had been first considered by Wiesend in [28]. See [28]
and [16] for a comparison of this notion of tameness with other possible definitions. In particular, the
following holds: if X̄ \ X is a NCD, then an étale covering Y → X is tame if and only if it is tamely
ramified along X̄ \ X .

Remark 2.5. Since the compactifications P (C̃) depend on the base scheme S , also the question
whether an étale scheme morphism Y → X is tame or not, depends on the category Sch(S) in which it
is considered. For example, the étale morphism Spec(Z[ 1

2 ,
√−1 ]) → Spec(Z[ 1

2 ]) is not tame in Sch(Z),
but is tame as a morphism in Sch(Z[ 1

2 ]). Another example is the following: any étale covering Y → X
of varieties over Qp is tame when considered in Sch(Qp). This is in general not the case if we consider
Y → X as a covering in Sch(Zp).

The tame coverings of a connected scheme X ∈ Sch(S) satisfy the axioms of a Galois category (see
[7, V, 4]). After choosing a geometric point x̄ of X we have the fibre functor (Y → X) 
→ MorX (x̄, Y )

from the category of tame coverings of X to the category of sets, whose automorphisms group is
called the tame fundamental group π t

1(X, x̄). It classifies finite tame coverings of X . Denoting the
étale fundamental group by π1(X, x̄), we have an obvious surjection

π1(X, x̄) � π t
1(X, x̄),

which is an isomorphism if X is proper.

Remark 2.6. As the notion of tameness depends on the category Sch(S) in which the morphism is
considered (cf. Remark 2.5), the same is true for the tame fundamental group. If the base scheme is
not obvious from the context, we will write the tame fundamental group in the form π t

1(X/S, x̄) to
put emphasis on S . Note that π t

1(X/X, x̄) = π1(X, x̄), since the identity on X is proper.

Next we consider finiteness properties of the maximal abelian factor group π t,ab
1 (X) of π t

1(X) in
the case S = Spec(Z), i.e. for arithmetic schemes. As the maximal abelian factor of the fundamental
group is independent of the base point, we omit base points from notation.
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We call X ∈ Sch(Z) flat if its structural morphism pr : X → Spec(Z) is flat, and a variety if pr factors
through Spec(Fp) ↪→ Spec(Z) for some prime number p. An integral scheme is either flat or a variety.
In the flat case we have the following result (previously shown in [23, Theorem 7.1], with a slightly
different proof).

Theorem 2.7. If X ∈ Sch(Z) is normal connected and flat, then π t,ab
1 (X) is finite.

If X is a normal, connected variety over a finite field F, then we have the degree map

deg : π t,ab
1 (X) → π1(F) ∼= Ẑ.

The degree map has an open image, which corresponds to the field of constants of X , i.e. the algebraic
closure of F in k(X).

Theorem 2.8. Let X be a normal connected variety over a finite field F. Then ker(deg) is finite. In particular,

π t,ab
1 (X) ∼= Ẑ ⊕ (finite group).

Our last theorem deals with the existence of “good” curves on arithmetic schemes. We call flat
curves horizontal and curves which are varieties vertical.

Theorem 2.9. Let X be a normal connected scheme of finite type over Spec(Z).

(i) If X is flat of dimension � 1, then there exists a horizontal curve C ⊂ X such that the induced homomor-
phism

π ab
1 (C̃) → π ab

1 (X)

has open image. If X is a variety such that there exists an étale open X ′ → X and a proper generically
smooth morphism X ′ → Z to a regular connected curve, then we find C ⊂ X with the same property.

(ii) For any curve C ⊂ X the homomorphism

π t,ab
1 (C̃) → π t,ab

1 (X)

has open image.
(iii) Assume there exists a generically smooth morphism X → Z , where Z ∈ Sch(Z) is a regular connected

curve. Then there exists a curve C ⊂ X which is horizontal with respect to Z such that the induced homo-
morphism

π t,ab
1 (C̃/Z) → π t,ab

1 (X/Z)

has open image.

Proof of Theorems 2.7–2.9. For an étale morphism X ′ → X , the homomorphism π ab
1 (X ′) → πab

1 (X)

has open image, and the same statement holds for the tame fundamental groups. Hence we may
replace X by an étale open in the proofs of all statements.

We start by showing Theorem 2.8. The statement π t,ab
1 (X) ∼= Ẑ⊕ (finite group) is in fact equivalent

to the finiteness of ker(deg). By [11, Theorem 4.1], after replacing X by an étale open, we may assume
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that X is a dense open subscheme in a smooth projective variety X̄ . Denoting the characteristic of F

by p, Proposition 2.3 implies an isomorphism

π t,ab
1 (X) = π ab

1 (X)(prime-to-p-part) ⊕ π ab
1 ( X̄)(p-part).

The finiteness of the degree zero parts of both summands follows from [14, Theorems 1 and 2].
Let us show Theorem 2.9. The geometric case of assertion (ii) is a direct consequence of Theo-

rem 2.8. Next we show assertion (i) if X is flat. After passing to an étale open, may assume that there
exists a smooth surjective morphism X → Z with geometrically connected fibres to some horizontal
regular curve Z ∈ Sch(Z). By [5, IV, 17.16.3], after replacing Z by an étale open, there exists a section
s : Z → X . As k(Z) is absolutely finitely generated and of characteristic zero, the kernel of the natural
homomorphism

π ab
1 (X) → π ab

1 (Z)

is finite by [14, Theorem 1]. Hence the curve s(Z) ⊂ X has the required property.
Now assume that X is a variety such that there exists an étale open X ′ → X and a proper

generically smooth morphism X ′ → Z to a regular curve. We may replace X by X ′ . Then πab
1 (X) =

π t,ab
1 (X/Z). Therefore the geometric part of (i) is a special case of (iii).

In order to show (iii), we again may pass to étale open subschemes. The assertion is clear if
dim X = 1. We assume that dim X � 2 and proceed by induction on the dimension. We first deal with
the case that X (and hence Z ) is flat. After étale shrinking, we find a special fibration into curves in
the category Sch(Z):

X ⊂ X̄ → W , s : W → X .

We obtain a commutative diagram

0 K1 π ab
1 (X) π ab

1 (W ) 0

0 K2 π t,ab
1 (X/Z) π t,ab

1 (W /Z) 0,

where K1 and K2 are defined to make the lines exact. As the section s induces compatible splittings
of the lines, the map K1 → K2 is surjective. By [14, Theorem 1], K1 is finite, hence so is K2. By
induction, there exists a curve C ⊂ W such that π t,ab

1 (C̃/Z) → π t,ab
1 (W /Z) has open image. Then

s(C) ⊂ X is a curve with the required property.
Now assume that X (and hence Z ) is vertical of characteristic, say p. Then

π t,ab
1 (X/Z)(prime-to-p) ∼= π ab

1 (X)(prime-to-p) ∼= π t,ab
1 (X)(prime-to-p).

Using (ii), it suffices to find C ⊂ X such that π t,ab
1 (C̃/Z)(p) → π t,ab

1 (X/Z)(p) has open image. We
proceed as in the flat case by induction on dim X and consider a special fibration into curves X ⊂
X̄ → W , s : W → X . By Proposition 2.3, there exists a natural surjective homomorphism π ab

1 ( X̄)(p) �
π t,ab

1 (X/Z)(p). We therefore obtain the exact commutative diagram
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0 K1 π ab
1 ( X̄)(p) π ab

1 (W )(p) 0

0 K2 π t,ab
1 (X/Z)(p) π t,ab

1 (W /Z)(p) 0.

By [14, Theorem 2], K1 is finite, and we conclude the proof in the same way as in the flat case above.
Theorem 2.7 follows from the well-known one-dimensional case and from Theorem 2.9(iii) by

setting Z = Spec(Z). The flat case of Theorem 2.9(ii) follows from Theorem 2.7. �
3. Covering data

We work in the category Sch(Z) of separated schemes of finite type over Spec(Z). We call C ∈
Sch(Z) a curve if C is integral and of dimension 1. By a curve on X we always mean a closed curve
C ⊂ X . The normalization of a curve C is denoted by C̃ . Unless specified otherwise, we will use the
word point for closed point, and we denote the set of (closed) points of X by |X |.

Recall that the étale (resp. tame) fundamental group of a connected scheme is independent of the
choice of a base point only up to inner automorphisms. Ignoring base points, we will work in the
category of profinite groups with outer homomorphisms, i.e.

Homout(G, H) := Hom(G, H)/ Inn(H),

where Inn(H) is the group of inner automorphisms of H . Note that, given an outer homomorphism
f : G → H , the preimage f −1(N) � G of a normal subgroup N � H is well-defined.

Definition. A covering datum on an integral scheme X ∈ Sch(Z) consists of the following data:

• for all curves C ⊂ X an open normal subgroup NC � π1(C̃),
• for all points x ∈ X an open normal subgroup Nx � π1(x),

such that for all C , all x ∈ C and all x̃ ∈ C̃ ×X x the preimages of NC and Nx in π1(x̃) coincide.
A covering datum is called bounded if the indices of the normal subgroups NC �π1(C̃) have a common
bound. A covering datum is called tame respectively abelian, if for all C the covering of C̃ associated
to NC has this property.

A covering datum on X is effective if there exists an open normal subgroup N � π1(X) such that
NC is the preimage of N in π1(C̃) for all C and Nx is the preimage of N in π1(x) for all x. In this case
we call N a realization of the covering datum.

Definition. Let f : X ′ → X be a morphism in Sch(Z) and let D be a covering datum on X . We define
the pull-back f ∗(D) of D as the covering datum on X ′ given by

• Nx′ is the pull-back of N f (x′) ,
• NC ′ is the pull-back of N f (C ′) .

Here f (C ′) is the closure of f (C ′) in X (which might be a curve or a point).

Definition. We say that a covering datum is trivial if π1(X) is a realization, i.e. if Nx = π1(x) for all
x and NC = π1(C̃) for all C . We say that a covering datum is trivialized by a morphism Y → X if its
pull-back to Y is trivial.
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Lemma 3.1. Assume that X ∈ Sch(Z) is normal and connected. Then the following hold:

(i) A covering datum has at most one realization.
(ii) Let D = (NC � π1(C̃), Nx � π1(x)) be a covering datum on X, U ⊂ X an open dense subscheme and

N � π1(X) an open normal subgroup. If Nx is the preimage of N in π1(x) for all x ∈ U , then N is a
realization of D.

Proof. By Proposition 1.4, normal schemes in Sch(Z) have no nontrivial connected completely split
coverings. Moreover, it suffices to have complete splitting over a dense open subscheme to conclude
the triviality of a connected covering of a normal scheme. Let N1, N2 �π1(X) be open subgroups such
that N1,x = N2,x for all points x of a dense open subscheme U ⊂ X . Then the étale covering associated
to N1/N1 ∩ N2 splits completely over the preimage of U . Hence N1 ∩ N2 = N1 and so N1 ⊂ N2. By
symmetry, we also obtain N2 ⊂ N1, hence N1 = N2. In particular, this shows (i).

Let D = (NC � π1(C̃), Nx � π1(x)) be a covering datum and assume that we have N as in (ii). We
denote the preimage of N in π1(C̃) by N(C) and the preimage of N in π1(x) by N(x). Let C be a
curve on X with C ∩ U �= ∅. Then N(C)x̃ = (NC )x̃ for every point x̃ of C̃ lying over U . By the argument
of the beginning of this proof (applied to C̃ ), the normal subgroups N(C) and NC of π1(C̃) coincide,
and so N(x) = Nx for every regular point x of C . By Proposition 1.5, every x ∈ X is a regular point
of a curve on X which meets U , hence N(x) = Nx for all x ∈ X . Now the argument just given shows
N(C) = NC for every curve C ⊂ X , i.e. N is a realization of D . This shows (ii). �
Remark 3.2. Assume that X is normal and let Y → X be the covering associated to an open normal
subgroup N � π1(X). Then, by Proposition 1.5 applied to a suitable open subscheme, we find a curve
C ⊂ X such that Y ×X C is irreducible. Hence, denoting the preimage of N in π1(C̃) by NC , we have an
isomorphism π1(X)/N ∼= π1(C̃)/NC . In particular, if N is the realization of an abelian covering datum,
then the covering Y → X is abelian.

We introduce the following weaker variant of tameness.

Definition. Let X ∈ Sch(Z) be integral and let D be a covering datum on X . We say that D is tame
over a curve if there exists an étale morphism j : X ′ → X , a regular connected curve Z ∈ Sch(Z) and a
smooth morphism X ′ → Z such that for each curve C ′ ⊂ X ′ the subgroup NC ′ �π1(C̃ ′) given by j∗(D)

defines a covering of C̃ ′ which is tame when considered in the category Sch(Z).

Remark 3.3. We always find a Zariski-open X ′ ⊂ X which admits a smooth morphism X ′ → Z to a
connected regular curve. Therefore the following hold:

(1) If D is tame, then it is tame over a curve.
(2) If X is flat and D is bounded, then D is tame over a curve (invert 1/B!, where B is a common

bound for the indices [π1(C̃) : NC ]). The same applies if all groups π1(C̃)/NC are abelian with
bounded exponent.

Remark 3.4. Assume that X is variety which has an étale open X ′ → X such that there exists a
proper and generically smooth morphism X ′ → Z to a regular curve. Then every covering datum on
X is tame over a curve (namely Z ).

One main step in establishing the reciprocity law in Section 8, is the following Theorem 3.5, which
is also of independent interest. It is due to G. Wiesend [26, Theorems 25, 26]. Our formulation is
slightly stronger by assuming only tameness over a curve instead of tameness in the case of a variety.
This extra generality is necessary to overcome a problem in Wiesends proof of [27, Theorem 1(c)]
(see Theorem 8.2 below).

Theorem 3.5. Let X ∈ Sch(Z) be regular and connected and let a covering datum D = (NC � π1(C̃), Nx �
π1(x)) on X be given. Assume that
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• X is flat or D is tame over a curve, and
• D is bounded or the groups π1(C̃)/NC are abelian with bounded exponent.

Then D is effective.

Theorem 3.5 follows in a straightforward manner from the next two propositions, which will be
proved in the next section.

Proposition 3.6 (Trivialization). Let X ∈ Sch(Z) be regular and connected and let a covering datum D =
(NC � π1(C̃), Nx � π1(x)) on X be given. Assume that

• X is flat or D is tame over a curve, and
• D is bounded or the groups π1(C̃)/NC are abelian with bounded exponent.

Then D is trivialized by some étale morphism Y → X.

Proposition 3.7 (Effectivity). Let X ∈ Sch(Z) be regular and connected and let D by a covering datum on X. If
D is trivialized by some étale morphism Y → X, then D is effective.

4. Trivialization and effectivity

In the first part of this section we prove Proposition 3.6. We follow Wiesend [26, Proof of Propo-
sition 17]. The case dim X � 1 is trivial. We assume dim X � 2 and proceed by induction on dim X .
By assumption, respectively, by Remark 3.3, and after replacing X by an étale open, we may assume
that there exists a smooth morphism X → Z to a regular connected curve Z ∈ Sch(Z) such that D
is tame over Z . Using Lemma 1.1 in the category Sch(Z) and after replacing X by an étale open,
we find a smooth W ∈ Sch(Z) such that there exists a special fibration X ⊂ X̄ → W into proper
curves.

For each closed point w ∈ W , let C w ⊂ X be the fibre over w (a smooth vertical curve). Since D is
tame over Z , the covering of C w described by NC ⊂ π1(C w) is a tame covering of C w considered in
the category Sch(k(w)).

Let B be a common bound for the indices [π1(C̃) : NC ] respectively for the exponents of the abelian
groups π1(C̃)/NC and let η ∈ W be the generic point. Then, by [7, Chapter XIII, Corollary 2.12], the
tame geometric fundamental group π t

1(Cη × k(η)) is topologically finitely generated. Therefore there
exists only a finite number of open normal subgroups of index � B (resp. open normal subgroups with
abelian quotient of exponent � B). Let N ′ � π1(Cη × k(η)) be associated to the (open) intersection of
these groups. After replacing W (and hence X ) by an étale open, we find an open normal subgroup
N � π1(X) whose preimage in π1(Cη × k(η)) contains N ′ .

Let w ∈ W be any closed point and let W sh
w be the strict henselization of W in w . By the theory

of specialization of the tame fundamental group [7, Chapter XIII], we have the following commutative
diagram in the category of profinite groups with outer homomorphisms:

π t
1(C w × k(w))

∼

φ′

π t
1(Cη × k(η))

φ

π t
1(X ×W W sh

w ) π1(X)/N.
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By construction, ker(φ) is contained in the intersection of all normal subgroups of index � B in
π t

1(Cη × k(η)) (resp. of all open normal subgroups with abelian quotient of exponent � B). Therefore
ker(φ′) � π t

1(C w × k(w)) has the same property.
Note that the construction of N was independent of w ∈ W . Let X ′ be the covering of X described

by N . We conclude that the pull-back of our covering datum to X ′ describes a constant field extension
for those curves on X ′ which lie over a closed point on W .

Replacing X by X ′ , and then W by its normalization in the function field of X , the fibres of
X → W are irreducible curves and the covering datum defines a constant field extension of C w for all
closed points w ∈ W . Replacing W by a suitable étale open (which changes X again), the projection
of X to W admits a section s : W → X . By induction hypothesis, after replacing W by an étale open,
we may assume that the covering datum on W induced by the section s is trivial. Then, for each
closed point w ∈ W , the constant field extension of C w described by the covering datum is trivial
on the rational point s(w) ∈ C w . Hence NC w = π1(C w) for all w . As every closed point of X lies on
some C w , we obtain Nx = π1(x) for all x ∈ X . By Lemma 3.1, we conclude that the covering datum is
trivial. This finishes the proof of Proposition 3.6.

In the second part of this section we prove Proposition 3.7, following Wiesend [26, Proof of Propo-
sition 24]. We start with the following useful lemma.

Lemma 4.1. Let X ′ ⊂ X be a dense open subscheme of the regular connected scheme X ∈ Sch(Z) and let D be
a covering datum on X. If its pull-back D ′ to X ′ is effective, then so is D.

Proof. Let Y ′ → X ′ be the finite étale covering corresponding to a realization N ′ �π1(X ′) of D ′ and let
Y be the normalization of X in k(Y ′). By construction, for each curve C ′ ⊂ X ′ with closure C in X , the
induced finite étale covering of C̃ ′ extends to a finite étale covering of C̃ . By Proposition 2.3, Y → X
is étale. The normal subgroup N � π1(X) corresponding to Y has the property that its preimage in
π1(x) equals Nx for all x ∈ X ′ . By Lemma 3.1(ii), N is a realization of D . �

Now we are going to prove Proposition 3.7. Using Lemma 4.1, we may replace X by any dense
open subscheme at will during the proof. The case dim X = 0 is trivial, so assume dim X � 1. We
make a series of reductions:

• Replacing X by a Zariski open, we may assume that Y → X is finite étale.
• Replacing Y by its Galois hull, we may assume that Y → X is finite Galois with group, say, G .
• Replacing X by a Zariski open, we may assume that there exists a smooth morphism X → Z to a

regular curve.

By Proposition 1.5, we find a curve C ⊂ X which does not project to a single point in Z and such that
D = Y ×X C is irreducible. We have an exact sequence

1 → π1(D̃) → π1(C̃) → G → 1.

As the covering datum is trivialized by Y , we have π1(D̃) ⊂ NC . Let M � G be the image of NC in G
and let N be the preimage of M in π1(X). We claim that N is a realization of the covering datum.

By Lemma 3.1, it suffices to show that Nx is the preimage of N for all x in a nonempty Zariski
open subset. By construction, we know this for all x ∈ Creg .

Using Čebotarev density, we find points x1, . . . , xn ∈ Creg with pairwise different images in Z such
that Frobx1 , . . . , Frobxn fill out the conjugacy classes of G = G(Y |X) = G(D̃|C̃). It suffices to show that
Nx is the preimage of N for all x ∈ X with image in Z different to the images of the xi (this set is
Zariski open).

Let x ∈ X be such a point. As, by construction, N is the preimage of M in π1(X), it suffices to show
that Nx is the preimage of M under π1(x) → G . Another application of Proposition 1.5 yields a curve
C ′ ⊂ X which contains x and x1, . . . , xn as regular points and such that D ′ = Y ×X C ′ is irreducible. As
above, we consider the exact sequence

1 → π1(D̃ ′) → π1(C̃ ′) → G → 1.
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We have π1(D̃ ′) ⊂ NC ′ and denote the (normal) image of NC ′ in G by M ′ . Then, by construction,
the preimage of M ′ in π1(xi) is Nxi for i = 1, . . . ,n. The same is true with M ′ replaced by M . In
particular, Frobxi is in M ′ if and only if it is in M . Hence the normal subgroups M and M ′ coincide.
By construction, the preimage of M ′ in π1(x) is Nx , hence the same is true for M . This finishes the
proof of Proposition 3.7.

5. Abelian covering data

The following theorem says that abelian covering data are automatically bounded (at least in the
flat case). It is crucial for the description of the norm groups given in Section 8. We follow [26, Proof
of Proposition 28].

Theorem 5.1. Let X ∈ Sch(Z) be regular and connected and let an abelian covering datum D = (NC �
π1(C̃), Nx � π1(x)) on X be given. Assume that X is flat or that D is tame over a curve. Then D is effective. In
particular, D has an abelian realization.

Proof. We start with the following observation.

Claim 1. It suffices to show that there exists an étale morphism Y → X such that the indices of the subgroups
N y � π1(y) are bounded for the induced covering datum on Y .

Proof of Claim 1. If C ⊂ Y is a curve and y ∈ C a regular point, then π1(y)/N y is a subgroup of
π1(C̃)/NC . By Čebotarev density, π1(C̃)/NC is generated by these subgroups. A common bound for
the orders of these subgroups gives a common bound for the exponents of the groups π1(C̃)/NC ,
where C runs through the curves in Y . By Proposition 3.6, the covering datum is trivialized by some
étale morphism Y ′ → Y and therefore D is effective by Proposition 3.7. This shows Claim 1. �

The assertion of the theorem is trivial for dim X � 1. We assume dim X � 2 and proceed by induc-
tion on dim X . By Claim 1, we may replace X by an étale open. Therefore we may assume that X is
quasi-projective and that there exists a smooth morphism p : X → Z to a regular connected curve. If
X is a variety, we may assume that D is tame over Z by assumption. By Lemma 1.1, after replacing X
by an étale open, we find a smooth W ∈ Sch(Z) and a special fibration

f : X ⊂ X̄
f̄−→ W , s : W → X,

into smooth proper curves. Using the induction assumption, we may replace W by an étale covering
and assume that the covering datum on W induced by s : W → X is trivial.

We first prove the statement of the theorem in the special case that all π1(C̃)/NC are finite
abelian �-groups for some fixed prime number �. If � �= char(k(W )), we make W smaller to achieve
1/� ∈ OW , hence D is tame over Z also in the flat case. For n ∈ N consider the sheaves (cf. [7, Chap-
ter XIII, 2.1.2])

R1
t f∗

(
Z/�nZ

) =
{

R1 f∗(Z/�nZ) if � �= char(k(W )),

R1 f̄∗(Z/�nZ) if � = char(k(W )).

For any (not necessarily closed) point w ∈ W , consider the geometric point w̄ = Spec(k(w)), and put
C w̄ = X ×W w̄ . Then we have isomorphisms

R1
t f∗

(
Z/�nZ

)
w̄ = H1

t

(
C w̄ ,Z/�nZ

)
,

where H1
t (C w̄ ,Z/�nZ) = H1(π t

1(C w̄),Z/�nZ).
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Claim 2. After replacing W by a dense open subscheme, the sheaves R1
t f∗(Z/�nZ) are locally constant con-

structible for all n.

Proof of Claim 2. If � �= char(k(W )), then the sheaves R1 f∗(Z/�nZ) are locally constant constructible
on W by [7, Chapter XIII, Corollary 2.8] (note that 1/� ∈ OW ). Assume that � = char(k(W )). Then the
sheaves R1 f̄∗(Z/�nZ) are constructible for all n. For a geometric point w̄ of W put C̄ w̄ = X̄ ×W w̄ . By
[8, XXII (2.0.3)], we have an injection

H2(C̄ w̄ ,Z/�Z) ↪→ H2(C̄ w̄ , OC̄ w̄
) = 0.

Hence R2 f̄∗(Z/�Z) = 0 and we obtain exact sequences for all n � 2

0 → R1 f̄∗(Z/�Z) → R1 f̄∗
(
Z/�nZ

) → R1 f̄∗
(
Z/�n−1Z

) → 0.

We choose a dense open subscheme W ′ ⊂ W such that R1 f̄∗(Z/�Z) is locally constant on W ′ . Then
the above exact sequences show that R1 f̄∗(Z/�nZ) is locally constant on W ′ for all n. This proves
Claim 2. �

Using Claim 2, we replace W by a dense open subscheme to achieve that the sheaves
R1

t f∗(Z/�nZ)a are locally constant constructible for all n. In particular, the groups H1
t (C w̄ ,Z/�nZ)

are finite and noncanonically isomorphic for different points w . We use the notational convention
Q�/Z� = Z/�∞Z and we set for n ∈ N ∪ {∞},

H(w,n) := H1
t

(
C w̄ ,Z/�nZ

)G(k(w)|k(w))
.

The group H(w,n) is finite also for n = ∞ by [14, Theorems 1 and 2]. For n ∈ N, we have the exact
sequence

0 → H(w,n) → H(w,∞)
·�n−→ H(w,∞);

in other words, H(w,n) is the subgroup of �n-torsion elements in H(w,∞). Therefore we have an
increasing sequence

H(w,1) ⊆ H(w,2) ⊆ H(w,3) ⊆ · · · ⊆ H(w,∞),

which stabilizes at a finite level. For n ∈ N, H(w,n) = H(w,n+1) is equivalent to H(w,n) = H(w,∞).
Now let η be the generic point of W and let w ∈ W be any point. Choosing a decomposition group

G w(k(η)|k(η)) ⊆ G(k(η)|k(η)) of w (well-defined up to conjugation), we obtain an isomorphism

H1
t (Cη̄,Q�/Z�)

G w (k(η)|k(η)) ∼= H1
t (C w̄ ,Q�/Z�)

G(k(w)|k(w)),

and hence an inclusion

H(η,∞) ↪→ H(w,∞).

Claim 3. After replacing W by an étale open, we find a closed point w0 ∈ W such that the inclusion
H(η,∞) ↪→ H(w0,∞) is an isomorphism, i.e. #H(η,∞) = #H(w0,∞).
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Proof of Claim 3. Put M = H1
t (Cη̄,Q�/Z�)

G w (k(η)|k(η)) and let

U := {
g ∈ G

(
k(η)|k(η)

) ∣∣ ga = a for all a ∈ M
}
.

As M is finite, U ⊂ G(k(η)|k(η)) is an open subgroup which contains G w(k(η)|k(η)). The normaliza-
tion of W in the finite field extension of k(η) inside k(η) corresponding to U is étale in a Zariski
neighbourhood W ′ of a point w0 over w . Now w0 satisfies the assertion of Claim 2. �

Following Kato and Saito, we call a w0 as in Claim 2 an �-Bloch point. Note that for an �-Bloch
point w0 we have #H(η,n) = #H(w0,n) for all n ∈ N. We make use of an �-Bloch point below in
order to fill a gap in Wiesend’s proof of [26, Proposition 28].

As decomposition groups are only well-defined up to conjugation, we make the following nota-
tional convention: Let W ′|W be a finite étale Galois covering with Galois group G . Let w1, w2 ∈ W
be points. We say that G w1 (W ′|W ) ⊆ G w2 (W ′|W ) if G w ′

1
(W ′|W ) ⊆ G w ′

2
(W ′|W ) for some prolon-

gations w ′
1 and w ′

2 of w1 and w2 to W ′ . The same convention applies to give a meaning to the
expression G w1 (W ′|W ) = G w2 (W ′|W ).

Claim 4. Let w0 ∈ W be an �-Bloch point. Then there exists a finite étale Galois covering W ′|W such that
#H(w,∞) = #H(w0,∞) for all closed points w ∈ W with G w(W ′|W ) ⊇ G w0 (W ′|W ).

Proof of Claim 4. Choose n ∈ N with H(w0,n) = H(w0,∞) and let W ′ be the finite étale Galois cov-
ering trivializing R1

t f∗Z/�n+1Z. For w ∈ W with G w(W ′|W ) ⊇ G w0 (W ′|W ), the inclusions explained
above imply inequalities

#H(η, i) � #H(w, i) � #H(w0, i) for i � n + 1.

As w0 is an �-Bloch point, these inequalities are in fact equalities. We therefore obtain

#H(w,n) = #H(w0,n) = #H(w0,n + 1) = #H(w,n + 1),

and consequently

#H(w,∞) = #H(w,n) = #H(w0,n) = #H(w0,∞).

This shows Claim 4. �
Let w0 ∈ W and W ′|W be as in Claim 2. We denote the projection by π : X → W , the section by

s : W → X , and we set x0 = s(w0) ∈ X , X ′ = X ×W W ′ .

Claim 5. Let B = #H(w0,∞). Then [π1(x) : Nx] � B for all closed points x ∈ X with Gx(X ′|X) = Gx0 (X ′|X).

Proof of Claim 5. Let x ∈ X be a closed point with Gx(X ′|X) = Gx0 (X ′|X) and put w = π(x). Then

G w0(W ′|W ) = Gx0(X ′|X) = Gx(X ′|X) ⊆ G w(W ′|W ).

Claim 4 implies #H(w,∞) = #H(w0,∞). Consider the curve C w = X ×W w , which contains the
rational point s(w). We have a (split) exact sequence

0 → π t,ab
1 (C w̄)G(k(w)|k(w))

→ π t,ab
1 (C w) → G

(
k(w)|k(w)

)ab → 0.
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According to our assumptions, the subgroup Ncw � π1(C w) describes an abelian tame covering of the

smooth curve C w . We denote by N̄C w the image of NC w in π t,ab
1 (C w). Then we have an isomorphism

of finite abelian �-groups

π1(C w)/NC ∼= π t,ab
1 (C w)/N̄C w .

As the restriction of the covering datum to W is trivial, the composite map

N̄C w ↪→ π t,ab
1 (C w) � G

(
k(w)|k(w)

)ab

is surjective. We therefore obtain a surjection

π t,ab
1 (C w̄)G(k(w)|k(w))

� π t,ab
1 (C w)/N̄C w .

This implies

[
π1(C w) : NC w

]
� #H(w,∞) = #H(w0,∞) = B.

We obtain [π1(x) : Nx] � B , showing Claim 5. �
Claim 6. Let d = [W ′ : W ]. Then [π1(x) : Nx] � Bd for all x ∈ X with image in Z different to that of x0 .

Proof of Claim 6. Assume there exists an x ∈ X with p(x) �= p(x0) and [π1(x) : Nx] > Bd. Using Propo-
sition 1.5, we find a curve C ⊂ X which contains x and x0 as regular points and such that C ′ = X ′ ×X C
is irreducible. We consider the following sets of closed points in Creg:

M = {
y ∈ Creg

∣∣ G y(C ′|C) = Gx0(C ′|C)
}
,

M ′ = {
y ∈ Creg

∣∣ [
π1(y) : N y

]
� B

}
.

As G y(C ′|C) = G y(X ′|X), Claim 3 implies M ⊆ M ′ . By Čebotarev density, we have the inequality
δ(M) � 1/d for the Dirichlet density of M . On the other hand, the assumption [π1(x) : Nx] > Bd
implies that the exponent of the abelian group π1(C̃)/NC is larger than Bd. Therefore the index of
the subgroup

U = {
a ∈ π1(C̃)/NC

∣∣ ord(a) � B
} ⊆ π1(C̃)/NC

is larger than d. All y ∈ M ′ split completely in the abelian covering of C̃ described by U . Čebotarev
density yields δ(M ′) < 1/d, which contradicts M ⊆ M ′ . This shows Claim 6. �

Passing to X \ p−1(p(x0)) and using Claim 1, this concludes the proof of Theorem 5.1 in the case
that all groups π1(C̃)/NC are finite �-groups for a fixed prime number �.

It remains to deal with the general case. We already reduced to the case of an elementary fibration

X ⊂ X̄ → W , s : W → X,

such that the restriction of D to W via s is trivial. Decomposing all (finite, abelian) groups π1(C̃)/NC

and π1(x)/Nx into their �-Sylow subgroups, we obtain Sylow covering data D� for all prime num-
bers �, which have realizations, say N� � π1(X). It therefore suffices to show that N� = π1(X) for
almost all �, because then N = ⋂

� N� is a realization of D . For each �, N� defines a connected étale
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Galois covering X� of X such that k(W ) is algebraically closed in k(X�). If N� is a proper subgroup of
π1(X), then the base change to k(W ) defines a nontrivial connected, étale, abelian Galois covering of
�-power degree of X ×W k(W ). But by [14, Theorem 1],

H1(X ×W k(W ),Q�/Z�

)G(k(W )|k(W ))

is zero for all but finitely many �. Hence N� = π1(X) for almost all �. This concludes the proof of
Theorem 5.1. �
6. Subgroup topologies

We consider abelian topological groups which are not necessarily Hausdorff. Recall that the closure
{1} of the neutral element of A is a closed subgroup and A is Hausdorff if and only if {1} = {1}. We
denote the connected component (of the neutral element) of A by A1. This is a closed subgroup,
which is contained in the intersection of all open subgroups of A.

Definition. We say that A has a subgroup topology if it has a basis of open neighbourhoods of zero
consisting of open subgroups.

If A has a subgroup topology, then so has any topological quotient group. Assume that A has a
subgroup topology and let B ⊂ A be a subgroup. Then its closure B̄ is the intersection of all open
subgroups of A containing B . In particular, A1 is the intersection of all open subgroups of A. The
following proposition is well known.

Proposition 6.1. (See [19, Section 22, Statement C and Theorem 16].) If A is locally compact, then A/A1 has a
subgroup topology.

Next note that the (additive) category of abelian topological groups admits infinite direct sums
(= coproducts). Firstly, a finite product has also the universal property of a finite coproduct by general
reasons (see, e.g., [10, II, Proposition 9.1]). The infinite direct product is then the inductive limit over
the finite partial products.

Lemma 6.2. The direct sum of a family of connected groups is connected.

Proof. This is well known for finite sums (= products) and extends to filtered direct limits at
hand. �
Lemma 6.3. Let (Ai)i∈I be a family of abelian topological groups and let Bi be a family of subgroups. Then we
have a canonical topological isomorphism

⊕
i

Ai/
⊕

Bi
∼−→

⊕
i

(Ai/Bi).

Proof. The map in question is obviously a continuous algebraic isomorphism. To see that it is a home-
omorphism, just note that both groups satisfy the same universal property. �
Proposition 6.4. Let A = ⊕

i∈N
Ai be a countable direct sum of locally compact abelian groups. Then ev-

ery neighbourhood of zero in A contains a neighbourhood of zero of the form
⊕

i U i , where Ui is a compact
neighbourhood of zero in Ai for all i ∈ N.
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Proof. The statement of the proposition is obvious for finite direct sums (= products). Now let M ⊂⊕
Ai be a neighbourhood of zero which we may assume to be open. Let, for n ∈ N, fn : ⊕n

i=1 Ai →⊕
i Ai be the natural inclusion. We construct by induction compact neighbourhoods of zero Ui ⊆ Ai

such that f −1
n (M) ⊃ ⊕n

i=1 Ui . Then U := ⊕
i∈N

Ui has the required property.
It remains to construct the Ui . The set f −1

1 (M) is an open neighbourhood of zero in A1. Choose
any compact neighbourhood of zero U1 contained in f −1

1 (M). Now assume we have constructed
U1, . . . , Un . As f −1

n+1(M) is an open neighbourhood of zero containing U1 × · · · × Un × {1}, we find for
every x ∈ U1 × · · ·× Un an open neighbourhood x ∈ Hx ⊂ A1 × · · ·× An and a compact neighbourhood
of zero Ux ⊂ An+1 such that (x,1) ∈ Hx × Ux ⊂ f −1

n+1(M). By compactness, U1 × · · · × Un is covered
by finitely many Hx , say Hx1 , . . . , Hxm . Putting Un+1 = ⋂m

i=1 Uxi , we obtain U1 × · · · × Un × Un+1 ⊂
f −1
n+1(M), as required. �

Corollary 6.5. A countable direct sum of totally disconnected locally compact abelian groups has a subgroup
topology.

Proposition 6.6. Let A be a countable direct sum of locally compact abelian groups and let B be a topological
quotient of A. Then B/B1 has a subgroup topology. In particular, B1 is the intersection of all open subgroups
in B.

Proof. We first deal with the case B = A. Let A = ⊕
Ai . Then

⊕
i A1

i is a connected subgroup of A,
hence contained in A1. Therefore we may cut out the A1

i from the very beginning, assuming the Ai to
be locally compact and totally disconnected. Then, by Corollary 6.5, A has a subgroup topology, and
so has its quotient A/A1. The general case follows, as B/B1 is a quotient of A/A1. �
7. The class group

In this section we follow Wiesend [27] in his construction of a class group for schemes in Sch(Z).
Moreover, at the end of this section we introduce a relative version of the tame class group.

For a curve C ∈ Sch(Z) we denote by P (C̃) the regular compactification of C̃ , which is a regular
proper curve over Spec(Z) containing C̃ as a dense open subscheme (cf. Section 2). If k(C) is of char-
acteristic zero (i.e. a number field), we denote by C∞ the finite set of (normalized) discrete valuation
of k(C) corresponding to the points in P (C̃) \ C̃ together with the finite set of archimedean places
of k(C). If the characteristic of k(C) is positive, we denote by C∞ the finite set of (normalized) dis-
crete valuations of k(C) corresponding to the points in P (C̃) \ C̃ . For such a valuation v ∈ C∞ , let
k(C)v be the completion of k(C) with respect to v . Using these remarks we can give the definition of
the idèle group of X .

Definition. The idèle group IX is defined to be the group

IX =
⊕
x∈|X |

Z ⊕
⊕
C⊂X

⊕
v∈C∞

k(C)×v

with the direct sum topology. Here we sum over all closed curves C ⊂ X .

The set of finitely generated ideals of a countable ring is at most countable. Therefore a countable
noetherian ring has at most countable many prime ideals. We conclude that the sets of points and
of curves on a scheme of finite type over Spec(Z) are at most countable. The idèle group IX is
Hausdorff but not locally compact in general. The subgroup

I 1
X =

⊕
C⊂X

⊕
v∈Carch

(
k(C)×v

)1
∞
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of IX is the connected component of the identity element. Here Carch∞ ⊂ C∞ is the subset of all
archimedean valuations and (k(C)×v )1 is the multiplicative group of positive real numbers or of
nonzero complex numbers. Proposition 6.5 implies that IX/I 1

X has a subgroup topology (cf. Sec-
tion 6).

If f : X → Y is a morphism of schemes in Sch(Z), we define in a functorial manner a continuous
homomorphism f∗ : IX → IY as follows.

Definition. For x ∈ |X | ∪ ⋃
C⊂X C∞ and y ∈ |Y | ∪ ⋃

D⊂Y D∞ we define the homomorphism f x→y∗ as
follows:

• If x ∈ X is a closed point and y = f (x) we let f x→y∗ : Z → Z be multiplication by deg(k(x)|k(y)).
• If v ∈ C∞ for a curve C ⊂ X and if y = f (C) is a closed point we let f v→y∗ : k(C)×v → Z be the

valuation map v .
• If v ∈ C∞ , D = f (C) ⊂ Y is a curve and v|k(D) lies over a point y ∈ D we let f v→y∗ : k(C)×v → Z

be the valuation map v .
• If v ∈ C∞ , D = f (C) ⊂ Y is a curve and v|k(D) is equal to a valuation w ∈ D∞ we let

f v→w∗ : k(C)×v → k(D)×w be the norm map.

Finally, let f∗ : IX → IY be the sum of all these homomorphism f x→y∗ , where it is understood that
f x→y∗ maps the summand corresponding to x ∈ |X | ∪ ⋃

C⊂X C∞ to the summand corresponding to
y ∈ |Y | ∪ ⋃

D⊂Y D∞ .

If C ⊂ X is a closed curve we define the map k(C)× → IC̃ to be the sum of all embeddings
k(C)× ↪→ k(C)×v ⊂ IC̃ for v ∈ C∞ and all discrete valuations k(C)× → Z ⊂ IC̃ corresponding to
closed points of C̃ . Composing with IC̃ → IX gives a canonical map k(C)× → IX .

Definition. The idèle class group CX is defined to be the cokernel of the homomorphism

⊕
C⊂X

k(C)× → IX

defined above. CX is endowed with the quotient topology.

The following example shows that CX is not Hausdorff in general.

Example 7.1. Let X = P1
Z

. We want to show

CX ∼= CZ ⊕
⊕

C⊂A
1
Z

[ ⊕
v arch

k(C)×v
]
/k(C)×,

where the sum is over all archimedean valuations associated to horizontal curves C ⊂ A1
Z

. In fact,
using the projection CX → Spec(Z) and the section at infinity s∞ : Spec(Z) → X , we can split off a
summand CZ and are left with the calculation of the cokernel of s∞∗ : CZ → CX , denoted by coK for
short. Using the fact that CXFp

∼= Z, we can ‘shift’ the summands Z of IX corresponding to the points

of A1
Z

⊂ X to infinity in CX , i.e. to the image of s∞∗ . This means that the canonical map Z
ιx−→ coK

corresponding to a point x ∈ X is the zero morphism. The remaining generating elements of coK
correspond to the archimedean places of the horizontal curves of X . This validates the isomorphism
above.

Following the notation of one-dimensional class field theory, we denote by DX be the connected
component of CX . Since IX/I 1

X has a subgroup topology, Proposition 6.6 shows the following:
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Proposition 7.2. The topological group CX/DX has a subgroup topology and DX is the closure of the image
of I 1

X in CX .

In Wiesend’s original approach [27] this result was shown in the flat case as part of the proof of
his main theorem, which made it necessary for him to use a cumbersome generalized form of the
concept of covering data.

Lemma 7.3. For a morphism X → Y of schemes in Sch(Z), the induced continuous homomorphism f∗ : IX →
IY induces a continuous homomorphism f∗ : CX → CY .

Proof. Let C ⊂ X be a closed curve. Suppose that D = f (C) ⊂ Y is also a curve. Then k(C)|k(D) is
finite and we have a commutative diagram

k(C)×

N

IC̃ IX

f∗

k(D)× ID̃ IY .

If y = f (C) is a closed point, we have a commutative diagram

k(C)× IC̃ IX

f∗

0 Z
y

IY .

�

As every point on a regular scheme X is contained in Creg for some curve C ⊂ X , we obtain:

Lemma 7.4. Let X be regular. Then the homomorphism

⊕
C⊂X

CC̃ → CX

is surjective.

In the next few paragraphs we introduce the reciprocity map and prove its basic properties. Let X
be a normal connected scheme in Sch(Z). We define a continuous group homomorphism rX : IX →
πab

1 (X) as follows:

• For a closed point x ∈ X we define rX on the summand Z corresponding to x by 1 
→ Frobx .
• For a curve C ⊂ X and a valuation v ∈ C∞ we define rX on the summand k(C)×v as the composite

k(C)×v → Gab
k(C)v

→ π ab
1 (X),

where the first arrow is the local reciprocity map [18, Theorem 7.2.11] and the second arrow is
induced by the morphism Spec(k(C)v ) → X .
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Standard facts from local class field theory show that for a morphism of connected normal schemes
f : X → Y in Sch(Z) the diagram

IX
rX

f∗

π ab
1 (X)

f∗

IY rY
π ab

1 (Y )

commutes.

Proposition 7.5. The homomorphism rX : IX → πab
1 (X) induces a homomorphism

ρX : CX → π ab
1 (X),

called the reciprocity map.

Proof. We have to show that the composite

k(C)× → IX → π ab
1 (X)

is zero for every closed curve C ⊂ X . One-dimensional global class field theory [18, Section VIII.1]
implies that in the commutative diagram

k(C)× IC̃ π ab
1 (C̃)

k(C)× IX π ab
1 (X)

the composite of the upper horizontal homomorphisms is zero. Therefore the same is true for the
composite of the lower horizontal homomorphisms. �

The next lemma follows immediately from the corresponding fact for the idèle group which was
mentioned above.

Lemma 7.6. For a morphism of normal connected schemes f : X → Y in Sch(Z) the diagram

CX
ρX

f∗

π ab
1 (X)

f∗

CY ρY
π ab

1 (Y )

commutes.
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In the last part of this section we introduce a tame version of the class group relative to some
base scheme. Let Z be a regular connected scheme in Sch(Z) with dim(Z) � 1. We will denote the
abelian tame fundamental group of a scheme X in Sch(Z) by π t,ab

1 (X/Z). Our aim is to introduce a
quotient C t

X/Z of the idèle class group CX with good functorial properties and a reciprocity map

ρt
X : C t

X/Z → π t,ab
1 (X/Z).

Definition. Let U t
X/Z ⊂ IX be the subgroup generated by the groups of principal units of all non-

archimedean local fields k(C)v for which v maps to a point of Z under P (C̃) → P (Z). Set I t
X/Z =

IX/U t
X/Z and C t

X/Z = CX/ im(U t
X/Z ). In case Z = Spec(Z) we write C t

X instead of C t
X/Z

.

The basic results of this section remain true for I t
X/Z and C t

X/Z . In particular, for a morphism

f : X → Y in Sch(Z) one gets a canonical continuous homomorphism f∗ : C t
X/Z → C t

Y /Z . If Dt
X/Z

denotes the connected component of the identity element in C t
X/Z , the topological group C t

X/Z /Dt
X/Z

has a subgroup topology. Observe that if Z = Spec(Fp), then the subgroup U t
X/Z is open in IX , so

that C t
X/Fp

= C t
X/Z

= C t
X is discrete.

As above, one shows that there is a natural reciprocity homomorphism

ρt
X : C t

X/Z → π t,ab
1 (X/Z).

For the definition of the tame fundamental group we refer to Section 2. For a morphism of connected
normal schemes f : X → Y in Sch(Z), the diagram

C t
X/Z

ρt
X

f∗

π t,ab
1 (X/Z)

f∗

C t
Y /Z

ρt
Y

π t,ab
1 (Y /Z)

commutes.

8. Main theorem

Wiesend’s main theorem for flat arithmetic schemes is the following.

Theorem 8.1. Let X be a connected regular and separated scheme, flat and of finite type over Spec(Z). Then
the sequence

0 → DX → CX
ρX−→ π ab

1 (X) → 0

is exact and induces a topological isomorphism CX/DX
∼−→ πab

1 (X). Let Y → X be a connected étale covering
and let Y ′ → X be the maximal abelian subcovering. Then ρX induces an isomorphism of finite abelian groups

CX/NY |XCY
∼−→ G(Y ′|X).

The norm groups NY |XCY for étale coverings Y → X are precisely the open subgroups in CX , which are
automatically of finite index.
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For a smooth variety over Fp , we have the degree maps

deg : CX → CFp
∼−→ Z, deg : π ab

1 (X) → π1(Fp)
∼−→ Ẑ.

Denoting the kernel of deg by C 0
X and πab

1 (X)0 respectively, we obtain a commutative exact diagram

0 C 0
X

ρX

CX

ρX

Z

can

0

0 π ab
1 (X)0 π ab

1 (X) Ẑ 0.

In the case of varieties over finite fields it is not known, whether the analogue of the previous the-
orem holds. Nevertheless, one can show the following partial result. It was stated in a slightly less
general form (and with incorrect proof) by Wiesend in [27].

Theorem 8.2. Let X/Fp be a separated, connected smooth variety. Assume that there exists an étale mor-
phism X ′ → X and a proper, generically smooth morphism X ′ → Z , where Z/Fp is a smooth curve. Then the
reciprocity map induces an exact four-term sequence

0 → DX → CX
ρX−→ π ab

1 (X) → Ẑ/Z → 0

and a topological isomorphism C 0
X/DX

∼−→ πab
1 (X)0 on the degree zero parts.

Let Y → X be a connected étale covering and let Y ′ → X be the maximal abelian subcovering. Then ρX
induces an isomorphism of finite abelian groups

CX/NY |XCY
∼−→ G(Y ′|X).

The norm groups NY |XCY for étale coverings Y → X are precisely the open subgroups of finite index in CX .
An open subgroup of CX is of finite index if and only of its image under the degree map is nonzero.

Now we come to Wiesend’s main result in the tame case. Here we have a more complete picture
even in the geometric case. If X is a variety over a finite field, then, with notation as at the end of
Section 7, we have U X ⊂ C 0

X , so that we can set C t,0
X := C 0

X/U X , and similarly for π t,ab
1 (X)0.

Theorem 8.3. Let X be a connected regular and separated scheme, flat and of finite type over Spec(Z). Then
the reciprocity map

ρt
X : C t

X/Dt
X

∼−→ π t,ab
1 (X)

is an isomorphism of finite abelian groups. Let X/Fp be a separated, smooth connected variety. Then the reci-
procity map induces an exact sequence

0 → C t
X → π t,ab

1 (X) → Ẑ/Z → 0

and an isomorphism of finite abelian groups ρt
X : C t,0

X
∼−→ π t,ab

1 (X)0 on the degree zero parts.
In either case, let Y → X be a connected tame étale covering and let Y ′ → X be the maximal abelian

subcovering. Then ρt
X induces an isomorphism of finite abelian groups

C t
X/NY |XC t

Y
∼−→ G(Y ′|X).
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The norm groups NY |XC t
Y are precisely the open subgroups of finite index in C t

X . If X is flat, then every open
subgroup of C t

X has finite index. If X is a variety, then an open subgroup of C t
X has finite index if and only if

it has nontrivial image under the degree map.

We prove the theorems above in a number of steps.

Lemma 8.4. Let X ∈ Sch(Z) be regular and connected and let N1 and N2 be open subgroups in π ab
1 (X). Then

the following are equivalent.

(i) N1 ⊂ N2 ,
(ii) ρ−1

X (N1) ⊂ ρ−1
X (N2),

(iii) (ρX ◦ ιC )−1(N1) ⊂ (ρX ◦ ιC )−1(N2) for all curves C ⊂ X, where ιC is the map CC̃ → CX ,
(iv) (ρX ◦ ιx)

−1(N1) ⊂ (ρX ◦ ιx)
−1(N2) for all x, where ιx is the map Cx → CX .

Proof. The implications (i) ⇒ (ii) ⇒ (iii) are obvious, and (iii) ⇒ (iv) follows since every point is reg-
ular on some curve. Finally, if (iv) holds, then (N1)x ⊂ (N2)x for all x. We conclude that the covering
associated to N1/N1 ∩ N2 is completely split, hence trivial, and so N1 ⊂ N2. �
Proposition 8.5. Let X ∈ Sch(Z) be regular and connected and let H ⊂ CX be an open subgroup. If X is a
variety assume that H has nontrivial image under the degree map. Then the groups HC := ι−1

C̃
(H) ⊂ CC̃ and

Hx = ι−1
x (H) ⊂ Cx are of finite index for all points x and all curves C on X.

Proof. Let us first assume that X is flat. If C is horizontal, then HC ⊂ CC̃ , being open, has finite
index by [18, (8.3.14)]. Let x ∈ X . Then there exists a horizontal curve C containing x as a regular
point. The inclusion Cx/Hx ↪→ CC̃ /HC shows that Hx has finite index in Cx . Let C be a vertical curve
and consider the degree map degC̃ : CC̃ → Z. For a regular point x ∈ C , the image of HC under degC̃
contains the image of Hx under degx : Cx → Z, which is nonzero. We conclude that HC is an open
subgroup having nontrivial image under degC̃ . Hence HC has finite index in CC̃ by [18, (8.3.16)]. This
shows the statement if X is flat.

Now assume that X is a variety and that deg(H) is nontrivial. We set H0 = H ∩ C 0
X . For a point

x ∈ X we denote by 1x ∈ CX the image of 1 ∈ Z ∼= Cx under ιx : Cx → CX .

Claim. For x, y ∈ X there exist nonzero integers n, m with n1x − m1y ∈ H0 .

Proof of Claim. According to Lemma 1.2 we can connect x and y by a chain of irreducible curves
on X . Arguing inductively, we may suppose that x and y lie on an integral curve C ⊂ X . Let x̃, ỹ ∈ C̃
be preimages. The compactness of C 0

C̃
shows that the open subgroup H0

C ⊂ C 0
C̃

has finite index.

Therefore we find nonzero integers n, m with n1x̃ − m1 ỹ ∈ H0
C . Applying ιC̃ , we obtain the required

relation in CX , showing the claim. �
Now we use the assumption that H has a nontrivial image under the degree map. Starting with an

α ∈ IX of nonzero degree whose image in CX lies in H , we may use weak approximation on curves
on X to find points x1, . . . , xr ∈ |X | and integers a1, . . . ,ar ∈ Z with

r∑
i=1

ai1xi ∈ H and deg

(
r∑

i=1

ai1xi

)
�= 0.

Let x ∈ X be an arbitrary point. Using the claim for x and xi , i = 1, . . . , r, we find an integer a ∈ Z

with a1x ∈ H and deg(a1x) �= 0. Hence a �= 0, showing that Hx ⊂ Cx ∼= Z is nontrivial, i.e. of finite
index. As in the flat case, this implies that also HC is of finite index in CC̃ for all curves C ⊂ X . �
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Proposition 8.6. Let X ∈ Sch(Z) be regular and connected and let H ⊂ CX be an open subgroup. If X is
a variety assume in addition that there exists an étale morphism X ′ → X and a generically smooth proper
morphism X ′ → Z , where Z is a smooth curve, and that H has nontrivial image under the degree map. Then
there exists a uniquely defined open subgroup N ⊂ π ab

1 (X) with H = ρ−1
X (N). In particular, H has finite index

in CX .

Proof. Uniqueness follows from Lemma 8.4, so it remains to show existence. For C ⊂ X we denote
ι−1
C (H) ⊂ CC̃ by HC . Analogously, we write Hx = ι−1

x (H) ⊂ Cx ∼= Z for x ∈ X . These open subgroups
have finite index by Proposition 8.5. By (zero and) one-dimensional class field theory, there exist
uniquely define open subgroups Nx ⊂ π1(x), NC ⊂ πab

1 (C̃) with ρ−1
x (Nx) = Hx , ρ−1

C̃
(NC ) = HC for all

x and all C . These are compatible, i.e. they define an abelian covering datum on X , which has a
realization N ⊂ πab

1 (X) by Theorem 5.1 (if X is a variety use Remark 3.4). We are going to show that
ρ−1

X (N) = H . Note that neither inclusion is obvious.

Claim 1. CX/H has finite exponent.

Proof of Claim 1. The open subgroup N ⊂ π ab
1 (X) has finite index, hence the groups π ab

1 (C̃)/NC ∼=
CC̃ /HC have bounded order for all C ⊂ X . By Lemma 7.4, CX/H has finite exponent. This shows
Claim 1. �
Claim 2. The statement of Proposition 8.6 holds if CX/H is finite cyclic.

Proof of Claim 2. We follow Wiesend [27, proof of Theorem 1, step (g)]. Let CX/H be finite cyclic of
order, say, n and let χ : CX → Z/nZ be a homomorphism with kernel H . Using Proposition 1.5, we
find a curve D ⊂ X such that D is inert in the abelian étale covering of X associated to N ⊂ π ab

1 (X).
The commutative diagram

πab
1 (X) πab

1 (X)/N

π ab
1 (D̃)

ιD̃

π ab
1 (D̃)/ND

∼

CX

ρX

CX/H
χ

∼ Z/nZ

CD̃

ιD̃

ρD̃

CD̃/H D

�

shows the existence of a homomorphism ψ : π ab
1 (X) → Z/nZ with kernel N such that χ and ψ

induce the same homomorphism on CD̃ . Put

φ := ψ ◦ ρX − χ : CX → Z/nZ.

Let H ′ = ker(φ) and let N ′ ⊂ πab
1 (X) be the open subgroup attached to H ′ in the same way as N

to H , i.e. H ′
C = ρ−1

C̃
(N ′

C ) for all C (note that H ′ has finite index in CX ). As H ′
D = CD̃ by construc-

tion, we obtain N ′
D = πab

1 (D̃). As ψ vanishes on NC and χ vanishes on HC for all C ⊂ X , also φ

vanishes on all HC . This implies N ⊂ N ′ by Lemma 8.4. In particular, D is inert in the covering of X
associated to N ′ . Hence N ′

D = πab
1 (D̃) implies N ′ = πab

1 (X). We conclude that H ′
C = CC̃ for all C , and

so H ′ = CX by Lemma 7.4. We obtain χ = ψ ◦ ρX , hence H = ker(χ) = ρ−1
X (ker(ψ)) = ρ−1

X (N). This
shows Claim 2. �
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Finally, we deduce the general case. By Claim 1, CX/H has finite exponent. A straightforward
application of Zorn’s lemma shows that we find a family (Hi) of open subgroups in CX such that
H = ⋂

Hi and CX/Hi is finite cyclic for all i. By Claim 2, we find open subgroups Ni ⊂ πab
1 (X) with

Hi = ρ−1
X (Ni). The inclusion

(ρX ◦ ιx)
−1(N) = Hx ⊂ (Hi)x = (ρX ◦ ιx)

−1(Ni)

for all x ∈ X shows N ⊂ ⋂
Ni by Lemma 8.4. In particular,

⋂
Ni is open. Furthermore,

H =
⋂

Hi =
⋂

ρ−1
X (Ni) = ρ−1

X

(⋂
Ni

)
.

This finishes the proof as we have found an open subgroup whose preimage under ρX is H . But let
us mention that

Nx = ρx(Hx) =
(⋂

Ni

)
x

for all x, hence N = ⋂
Ni by Lemma 8.4. �

With the same proof, we obtain the following tame variant of Proposition 8.6.

Proposition 8.7. Let X ∈ Sch(Z) be regular and connected and let H ⊂ C t
X be an open subgroup. If X is a

variety assume in addition that H has nontrivial image under the degree map. Then there exists a uniquely
defined open subgroup N ⊂ π t,ab

1 (X) with H = (ρt
X )−1(N).

Corollary 8.8. Let X ∈ Sch(Z) be regular, connected and flat. The assignment N 
→ ρ−1
X (N) defines a 1-1-

correspondence between the open subgroups of π ab
1 (X) and the open subgroups of CX . We obtain a contin-

uous injection CX/DX ↪→ πab
1 (X) with dense image. The same holds with CX and πab

1 (X) replaced by C t
X

and π t,ab
1 (X), respectively.

Proof. The assertion on the open subgroups is just Proposition 8.6. The fact that the image of ρX is
dense follows from the 1-1-correspondence between the open subgroups. Furthermore, since CX/DX

is Hausdorff and has a subgroup topology by Proposition 7.2, the intersection of all open subgroups
of CX/DX is zero. Since all such open subgroups are preimages of open subgroups of π ab

1 (X) the
injectivity of CX/DX → πab

1 (X) follows. The proof of the tame variant is analogous. �
Lemma 8.9. Let X ∈ Sch(Z) be regular, connected and flat. Then CX/DX is compact.

Proof. By Proposition 2.9, we find a horizontal curve C ⊂ X , such that π ab
1 (C̃) → πab

1 (X) has an open
image, say N . Recall that CC̃ /DC̃

∼−→ πab
1 (C̃) by one-dimensional class field theory. Let H be the

image of CC̃ /DC̃ in CX/DX . Then H is compact, since CC̃ /DC̃ is compact and CX/DX is Hausdorff.
Furthermore, the injection

(CX/DX )/H ↪→ π ab
1 (X)/N

shows that (CX/DX )/H is finite. Hence CX/DX is compact. �
Now we complete the proof of Theorem 8.1. The previous lemma implies that the image of ρX is

compact and therefore closed in π ab
1 (X). Since we already know that this image is dense, we have

shown the exactness of the sequence
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0 → DX → CX
ρX−→ π ab

1 (X) → 0

and that it induces a topological isomorphism CX/DX
∼−→ πab

1 (X). Now let f : Y → X be a connected
étale covering and let Y ′ be the maximal abelian subextension, i.e. Y ′ is the normalization of X in
the maximal abelian subextension of k(Y )|k(X). We obtain the commutative exact diagram

0 DY

NY |X

CY

NY |X

π ab
1 (Y )

f∗

0

0 DX CX π ab
1 (X) 0.

As the norm maps for local fields are open, NY |X (CY ) is open in CX , and hence contains DX . There-
fore the isomorphism CX/NY |XCY

∼−→ G(Y ′|X) follows from the snake lemma. This concludes the

proof of Theorem 8.1. The same arguments show the flat case of Theorem 8.3, noting that π t,ab
1 (X) is

finite by Theorem 2.7.
For the geometric cases, i.e. Theorem 8.2 and the second part of Theorem 8.3, we proceed sim-

ilarly. The isomorphism CX/NY |XCY
∼−→ G(Y ′|X) and its tame variant are deduced from the other

statements exactly as in the proof of Theorem 8.1, and we will not touch this point again.

Proposition 8.10. Let X be a separated, smooth and connected variety over Fp and let H ⊂ C t,0
X be an open

subgroup. Then there exists a uniquely defined open subgroup N ⊂ π t,ab
1 (X)0 with H = (ρt

X )−1(N). We obtain

a continuous injection C t,0
X ↪→ π t,ab

1 (X)0 with dense image.
Suppose, in addition, that there exists an étale morphism X ′ → X and a proper, generically smooth mor-

phism X ′ → Z , where Z is a smooth curve. Then the above statement about open subgroups also holds
with C t,0

X and π t,ab
1 (X)0 replaced by C 0

X and πab
1 (X)0 , respectively. We obtain a continuous injection

C 0
X/DX ↪→ πab

1 (X)0 with dense image.

Proof. We start by proving the second statement. So let us assume that there exists an étale mor-
phism X ′ → X and a proper, generically smooth morphism X ′ → Z , where Z is a smooth curve. We
show existence first.

We fix a closed point x0 ∈ X . Let H∗ be the open subgroup H + ιx0 (Cx0 ) of CX . As the composite
map deg◦ ιx0 : Cx0 → CFp is injective, we see that H = H∗ ∩ C 0

X . Since H∗ has a nontrivial image
under the degree map, Theorem 8.6 implies the existence of a uniquely defined open subgroup N∗ ⊂
πab

1 (X) with H∗ = ρ−1
X (N∗). The diagram

C 0
X π ab

1 (X)0

CX π ab
1 (X)

implies that N = N∗ ∩ πab
1 (X)0 is the open subgroup we are looking for.

It remains to show uniqueness. Let N1, N2 ⊂ πab
1 (X)0 be open subgroups having the same preim-

age H ⊂ C 0
X . For i = 1,2, let N∗

i be the open subgroup Ni + ιx0 (π1(x0)) of πab
1 (X) and let H∗

be the open subgroup H + ιx0 (Cx0 ) of CX . Then H∗ is the preimage in CX of both N∗
1 and N∗

2 .
Hence N∗

1 = N∗
2 by the uniqueness assertion of Theorem 8.6. We conclude that N1 = N∗

1 ∩ πab
1 (X)0 =

N∗
2 ∩ πab

1 (X)0 = N2.
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The proof of the assertion in the tame case is analogous. Finally, note that C t
X is discrete, hence

Dt
X = 0. �
As π t,ab

1 (X)0 is finite by Theorem 2.8, we have shown Theorem 8.3. In order to complete the proof
of Theorem 8.2, we need:

Lemma 8.11. Let X be a separated, smooth and connected variety over Fp such there exists an étale morphism
X ′ → X and a proper, generically smooth morphism X ′ → Z , where Z is a smooth curve. Then C 0

X/DX is
compact.

Proof. By Proposition 2.9, we find a curve C ⊂ X such that π ab
1 (C̃) → πab

1 (X) has open image. Also

C 0
C̃
/DC̃

∼−→ π ab
1 (C̃)0

by one-dimensional class field theory of function fields. Arguing as in the proof of Lemma 8.9, we
deduce that C 0

X/DX is compact. �
As in the proof of Theorem 8.1, this shows the exactness of the sequence

0 → DX → C 0
X

ρX−→ π ab
1 (X)0 → 0

and that we get a topological isomorphism C 0
X/DX

∼−→ πab
1 (X)0. This finishes the proof of Theo-

rem 8.2.
Let us finally note that the arguments given in this section also show the following relative variant.

Theorem 8.12. Let X ∈ Sch(Z) be regular and connected. Assume there exists a generically smooth morphism
X → Z to a regular curve. If X is flat, then the sequence

0 → Dt
X/Z → C t

X/Z

ρt
X/Z−−−→ π t,ab

1 (X/Z) → 0

is exact and induces a topological isomorphism C t
X/Z /Dt

X/Z
∼−→ π t,ab

1 (X/Z). If X is a variety, we obtain an
exact four-term sequence

0 → Dt
X/Z → C t

X/Z

ρt
X/Z−−−→ π t,ab

1 (X/Z) → Ẑ/Z → 0

and a topological isomorphism C t,0
X/Z /Dt,0

X/Z
∼−→ π t,ab

1 (X/Z)0 on the degree zero parts.

In either case let Y → X be a connected étale covering which is tame in Sch(Z) and let Y ′ → X be the
maximal abelian subcovering. Then ρt

X/Z induces an isomorphism of finite abelian groups

C t
X/Z /NY |XC t

Y /Z
∼−→ G(Y ′|X).

The norm groups NY |XC t
Y /Z are precisely the open subgroups of finite index in C t

X/Z . If X is flat, every open

subgroup of C t
X/Z has finite index. If X is a variety, then an open subgroup of C t

X/Z has finite index if and
only if it has nontrivial image under the degree map.
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9. Applications

Let Z0(X) ∼= ⊕
x∈|X | Z be the group of zero cycles and let CH0(X) be the group of zero cycles mod-

ulo rational equivalence. The next theorem was previously known by the works of Bloch, Kato/Saito
and Colliot-Thélène/Sansuc/Soulé.

Theorem 9.1. Let X ∈ Sch(Z). Then CH0(X) is a finitely generated abelian group. If X is connected, then
CH0(X) is either finite or of the form Z ⊕ (finite); the latter occurs if and only if Xred is proper over Fp for
some prime number p.

Proof. We may assume that X is reduced. The result is trivial for dim X = 0. If X is a regular curve,
the statements are well known from number theory.

In order to show that CH0(X) is finitely generated, we use induction on dim(X). If dim X � 1, the
result follows by considering the normalization morphism X̃ → X . So assume we know the result for
schemes of dimension less than dim(X). Let U ⊂ X be an open dense subscheme which is regular
and consider the exact sequence

CH0(X \ U ) → CH0(X) → CH0(U ) → 0.

Using the induction hypothesis, it suffices to show that CH0(U ) is finitely generated. So we may
assume that X is regular. Furthermore, we may reduce to the case that X is connected. Then there is a
canonical surjective morphism C t

X/Dt
X → CH0(X), and C t

X/Dt
X is finitely generated by Theorems 8.3,

2.7 and 2.8.
Now assume that X is reduced and connected. Using Lemma 1.2 and the result for regular curves,

we see that for any two closed points x, y ∈ X there exist nonzero integers n,m such that n[x]+m[y]
is zero in CH0(X). Therefore the rank of CH0(X) is at most 1. Furthermore, if [x] ∈ CH0(X) is torsion
for one point x, then the full group CH0(X) is torsion, hence finite. This is the case if there exists a
closed curve C ⊂ X which is either horizontal or vertical but not proper. We find such a curve unless
X is proper over Fp for some p. In this case the rank of CH0(X) is equal to 1 since we have the
nontrivial degree map deg : CH0(X) → CH0(Spec(Fp)) ∼= Z. �

The reader should observe that in contrast to the earlier approaches to this finiteness result in
[2,4,13], we did not use algebraic K -theory in the proof.

Now we explain how higher dimensional unramified class field theory can be deduced from our
main results of the last section. Let X be a regular connected scheme in Sch(Z). Sending a closed
point x ∈ X to its Frobenius automorphism Frobx ∈ πab

1 (X), we obtain a homomorphism

θX : Z0(X) → π ab
1 (X).

If X/Fp is proper, we denote by CH0(X)0 the subgroup of elements of degree zero in CH0(X). If X is
flat over Z, let us denote by

π ab
1 (X) → π̃ ab

1 (X)

the quotient of the abelianized fundamental group which classifies finite abelian coverings which split
completely over all points of X(R).

Theorem 9.2 (Bloch, Kato/Saito, Saito). Let X ∈ Sch(Z) be proper, connected and regular. If X/Fp is a variety,
then θX factors through CH0(X) and the resulting map

CH0(X)0 → π ab
1 (X)0
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is an isomorphism of finite abelian groups. If X is flat, then the composite

Z0(X)
θ−→ π ab

1 (X) → π̃ ab
1 (X)

factors through CH0(X) and the resulting map

CH0(X) → π̃ ab
1 (X)

is an isomorphism of finite abelian groups.

Proof. If X/Fp is a variety, then there is an isomorphism CX
∼−→ CH0(X), since for any curve C ⊂ X

the set of valuations C∞ defined in Section 8 is empty. So in this case the theorem follows from The-
orem 8.3. If X is flat, let us denote by U arch ⊂ CX the image of the archimedean part of IX , i.e. the
sum of the groups k(C)×v for all curves C ⊂ X and archimedean valuations v . One has an isomorphism
CX/U arch ∼−→ CH0(X). Theorem 8.1 shows that the left vertical arrow in the commutative diagram

CX/DX

ρX

CX/U arch
∼

CH0(X)

θX

π ab
1 (X) π̃ ab

1 (X)

is an isomorphism, so the bijectivity of the right-hand vertical arrow follows immediately. �
Remark 9.3. Theorem 9.2 is slightly more general than its foregoers in [12,22], since we did not make
any projectivity assumption.

The unramified class field theory can be generalized to a tame version: there is a natural isomor-
phism

Hsing
0 (X,Z)

∼−→ C t
X/Dt

X ,

where Hsing
0 (X,Z) is the one-dimensional integral singular homology group of X as defined in [23].

Therefore one obtains a description of tame coverings by using singular homology, see [23,24].
Finally, we want to mention that for schemes which are flat over Z it is shown in [15] how to

deduce the main results of Kato and Saito in [13] and [20] from Theorem 8.1.
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