Particular lightface and boldface complexities somewhat above Σ^1

Daniel Turetsky

Victoria University of Wellington

September 25, 2025

Definition

 $\mathcal{A}\Pi_1^1$ is the complexity of Σ_1^1 questions about Π_1^1 objects.

Some examples:

• Let $(T_n)_{n\in\omega}$ be an effective listing of Π^1_1 subtrees of $\omega^{<\omega}$.

$$\{n: T_n \text{ is ill-founded}\}.$$

• Let $(B_n)_{n\in\omega}$ be an effective listing of Π^1_1 subsets of \mathbb{Q} .

$$\{n: B_n \text{ is ill-founded}\}.$$

• Let Φ be a Π_1^1 -operator giving subsets of \mathbb{Q} .

$$\{X \in 2^{\omega} : \Phi(X) \text{ is ill-founded}\}.$$

$\mathcal{A}\Pi^1_1$

These are actually Δ_2^1 .

Consider

$$Y = \{n : T_n \text{ is ill-founded}\}.$$

$$n \in Y \iff \exists f \in \omega^{\omega} \, \forall k \, [(f \upharpoonright k) \in T_n]$$

$$n \notin Y \iff \exists S \subseteq \omega^{<\omega} [T_n \subseteq S \land S \text{ is well-founded}]$$

Complexity class notation

Suppose Γ is a complexity class.

- $\neg \Gamma = \{A : A^c \in \Gamma\}$. Example: If $\Gamma = \Sigma^0_\alpha$, then $\neg \Gamma = \Pi^0_\alpha$.
- $\Delta(\Gamma) = \Gamma \cap \neg \Gamma$. Example: If $\Gamma = \Sigma_{\alpha}^{0}$, then $\Delta(\Gamma) = \Delta_{\alpha}^{0}$.

$$\Sigma_1^0 \vee \Pi_1^0 = \{ A \cup B : A \in \Sigma_1^0, B \in \Pi_1^0 \}$$

$$\Sigma_1^0 \wedge \Pi_1^0 = \{ A \cap B : A \in \Sigma_1^0, B \in \Pi_1^0 \}$$

Note: $\Sigma_1^0 \vee \Pi_1^0 = \neg(\Sigma_1^0 \wedge \Pi_1^0)$.

Gale-Stewart games

For $A \subseteq \omega^{\omega}$, the game G_A is played:

Player I wins iff $a_0 a_1 a_2 \cdots \in A$.

A strategy is a function $\Theta: \omega^{<\omega} \to \omega$. "If it's your turn and the plays so far have been σ , then play $\Theta(\sigma)$."

A winning strategy for a player will always win, no matter how the opponent plays.

The game quantifier

For $A \subseteq \omega^{\omega}$, define ∂A to be the statement:

"Player I has a winning strategy for G_A ."

If Γ is a complexity class, $\partial \Gamma$ is the class made by game-quantifying sets from Γ .

Examples:

• Let $(A_n)_{n\in\omega}$ be an effective listing of Γ sets in ω^{ω} .

$$\{n: \partial A_n\}.$$

• Let Φ be a Γ -operator giving sets in ω^{ω} .

$$\{X: \partial \Phi(X)\}.$$

$\mathcal{A}\Pi^1_1$ and $\Im(\Sigma^0_1\vee\Pi^0_1)$

Proposition

$$\mathcal{A}\Pi^1_1 = \Im(\Sigma^0_1 \vee \Pi^0_1).$$

Proof (\Rightarrow) .

Consider $B \subseteq \mathbb{Q}$ which is Π_1^1 .

The game:

- Player I builds a descending sequence $q_0 > q_1 > \dots$ while Player II passes.
- ② After a q_i is played, Player II can object. Then Player I passes while Player II builds an f witnessing that $q_i \notin B$.

Player I wins if:

- PII never objects; or ← closed
- PII objects, but then their f fails. \leftarrow open

$\mathcal{A}\Pi^1_1$ and $\Im(\Sigma^0_1\vee\Pi^0_1)$

Proposition

$$\mathcal{A}\Pi_1^1 = \Im(\Sigma_1^0 \vee \Pi_1^0).$$

Proof (\Leftarrow) .

Take $A \in \Sigma^0_1 \vee \Pi^0_1$. Say $A = A_0 \cup A_1$, $A_0 \in \Sigma^0_1$, $A_1 \in \Pi^0_1$.

Let $T \subseteq \omega^{<\omega}$ be the set of finite partial strategies Θ for Player I such that against any finite play by Player II:

- Θ will stay on A_1 ; or \leftarrow computable
- Θ will reach a point from which there is a strategy to guarantee reaching A_0 . $\leftarrow \Pi^1_1$ (see below)

 Π_1^1 : Against any strategy of Player II continuing the game from that point, there is a finite play by Player I to reach A_0 .

Dual and Δ

Proposition

$$\mathcal{A}\Pi_1^1 = \Im(\Sigma_1^0 \vee \Pi_1^0).$$

Proposition

$$\neg \mathcal{A}\Pi^1_1 = \partial \big(\Sigma^0_1 \wedge \Pi^0_1\big).$$

Proposition

$$\Delta(\mathcal{A}\Pi_1^1)$$
 is the σ -algebra generated by Σ_1^1 .

Proof (\Leftarrow) .

Easy to check that $\Im(\Sigma_1^0 \vee \Pi_1^0)$ contains Σ_1^1 , Π_1^1 , and is closed under countable intersections and unions.

Muchnik and Medvedev

Definition

Let M and N be first order structures.

M is Muchnik reducible to N, written $M \leq_w N$, if every copy of N computes a copy of M.

M is Medvedev reducible to N, written $M \leq_s N$, if it is uniformly Muchnik reducible.

That is, there is a Turing functional Φ such that if $N_0 \cong N$, then $\Phi(N_0) \cong M$.

Question

What are the complexities of $\{(M, N) : M \leq_w N\}$ and $\{(M, N) : M \leq_s N\}$?

Upper bounds

Theorem (Greenberg, Harrison-Trainor, Scott, Shafer)

Muchnik and Medvedev reducibility are both in $\neg A\Pi_1^1$.

Proof $(M \not\leq_w N \text{ is } \mathcal{A}\Pi_1^1)$.

The game:

- Player I builds f a permutation of ω . Let $N_0 = f(N)$. Player I also builds \mathcal{O}^M and plays descending sequences witnessing each $n \notin \mathcal{O}^M$.
- ② For each e, Player I either plays a witness to $\Phi_e(N_0)$ being partial or a strategy for the $(M, \Phi_e(N_0), \omega_1^{ck}(M) + 2)$ -back-and-forth game.
- **3** At any point Player II can object and build either a descending sequence contradicting some claimed $n \in \mathcal{O}^M$ or a finite sequence defeating the strategy at some e.

Upper bounds

Theorem (Greenberg, Harrison-Trainor, Scott, Shafer)

Muchnik and Medvedev reducibility are both in $\neg A\Pi_1^1$.

Proof $(M \not\leq_{w} N \text{ is } \mathcal{A} \mathbf{\Pi}_{1}^{1}).$

Player I wins if:

- Player II never objects and no partiality witness is wrong; or
- Closed Player II objects, but their objection fails.

 \leftarrow open

Upper bounds

Theorem (Greenberg, Harrison-Trainor, Scott, Shafer)

Muchnik and Medvedev reducibility are both in $\neg A \Pi_1^1$.

Proof $(M \not\leq_s N \text{ is } \mathcal{A}\Pi_1^1)$.

Same as \leq_w , but instead of Player I dealing with every e, Player II names a single e before anything else happens.

Lower bounds

Definition

For $\gamma < \omega_1$, a set A is $D^{\gamma} \Sigma_1^1$ if there is an increasing sequence $(A_{\alpha})_{\alpha \leq \gamma}$ of Σ_1^1 sets with $A_{\gamma} = \omega^{\omega}$ and such that

$$A = \{x : \mathsf{parity}(\mathsf{min}\{\alpha : x \in A_{\alpha}\}) \neq \mathsf{parity}(\gamma)\}.$$

Recall: $\Delta(\mathcal{A}\Pi_1^1)$ is the σ -algebra generated by Σ_1^1 .

This difference hierarchy reaches partway up this σ -algebra.

Theorem (Aguilera, Greenberg, T)

Muchnik and Medvedev reducibility are both hard for every level of the Σ_1^1 difference hierarchy.

A tool

Theorem (Harrison-Trainor, Kalimullin, Melnikov)

The set $\{i: M_i^{\emptyset'} \text{ has a computable copy}\}\ is\ \Sigma_1^1$ -complete.

Theorem (T)

The above result holds for every non-computable degree, with all possible uniformity.

That is, there is a uniform process to take a Σ_1^1 sentence ψ and produce a Turing functional Φ such that:

- If ψ holds, then there is a structure M such that for every oracle X, $\Phi(X) \cong M$.
- If ψ fails, then there is a structure M such that for every non-computable oracle X, $\Phi(X) \cong M$, and further M has no computable copy.

Lower bounds

Theorem (Aguilera, Greenberg, T)

Muchnik and Medvedev reducibility are both hard for every level of the Σ_1^1 difference hierarchy.

Proof.

Suppose A is $D^{\gamma}\Sigma_1^1$, given by $(A_{\alpha})_{\alpha\leq\gamma}$. Suppose we are given x.

Let ψ_{α} be the Σ_1^1 -sentence $x \in A_{\alpha}$.

Construct M_{α} as given by the theorem, relativized to $0^{(\alpha)}$.

Let \hat{M}_{α} be an α -level marker extension of M_{α} .

If ψ_{α} holds, \hat{M}_{α} has a computable copy. If it fails, \hat{M}_{α} has copies in precisely the non-low_{α} degrees.

$$\left(\bigoplus_{\mathsf{parity}(\alpha) \neq \mathsf{parity}(\gamma)} \hat{M}_{\alpha}, \bigoplus_{\mathsf{parity}(\alpha) = \mathsf{parity}(\gamma)} \hat{M}_{\alpha}\right)$$

A different reducibility

Definition

Suppose K and L are linear orders. Define $K \leq_{woce} L$ if there are ordinals β_0, β_1 and linear orders $(K_\alpha)_{\alpha < \beta_0}$ and $(L_\alpha)_{\alpha < \beta_1}$ satisfying:

- $K \cong \sum_{\alpha < \beta_0} K_{\alpha}$;
- $L \cong \sum_{\alpha < \beta_1} L_{\alpha}$; and
- $(K_{\alpha})_{\alpha<\beta_0}$ occurs as a subsequence of $(L_{\alpha})_{\alpha<\beta_1}$.

Question

What is the complexity of $\{(K, L) : K \leq_{woce} L\}$?

Conjecture: $\neg A\Pi_1^1$.

The β s

Note that we can assume $\beta_1 = 2\beta_0 + 1$.

Example: Fix H the Harrison order. Let

$$K = \sum_{x \in H} ((H \upharpoonright x) \cdot \omega + \mathbb{Z})$$

and

$$L = (H + \mathbb{Z}) \cdot H.$$

Then $K \leq_{woce} L$, but only with $\beta_0 \geq \omega_1^{ck} + 1$.

A lower bound

Theorem (Aguilera, T)

 \leq_{woce} reducibility is hard for $\neg A\Pi_1^1$.

Proof.

Suppose $B \subseteq \mathbb{Q}$ is Π_1^1 . Build N_q such that

- $N_q \cong H$ if $q \notin B$; and
- N_a well-founded if $q \in B$.

Let

$$K = \sum_{q \in \mathbb{Q}} N_q$$

and

$$L = H \cdot \mathbb{Q}$$
.

Back to the β s

How large does β_0 need to be?

Suppose there were a $\delta < \omega_2^{ck}$ such that any computable ordinals $K \leq_{woce} L$ could be witnessed with $\beta_0 < \delta$. Fix $\delta = \Phi_e(\mathcal{O})$.

Game for $K <_{wace} L$:

- **1** Player I builds \mathcal{O} and witnesses for any claims that $n \notin \mathcal{O}$.
- **2** Player I also builds witnessing partitions and isomorphisms using $\Phi_e(\mathcal{O})$.
- **3** Player II can challenge any claim $n \in \mathcal{O}$ by building a descending sequence.

This would show \leq_{woce} is $\mathcal{A}\Pi^1_1$, a contradiction. So the necessary β s aren't bounded below ω_2^{ck} .

