True Stages and Descriptive Set Theory

Matthew Harrison-Trainor

University of Michigan

Midwest Computability Seminar, May 2023

Baire Space

We work in Baire space ω^{ω} (or Cantor space 2^{ω}).

Baire Space

We work in Baire space ω^{ω} (or Cantor space 2^{ω}). This is a (Polish) topological space with basic clopen sets

$$[\sigma] = \{\tau \in \omega^{<\omega} : \tau \ge \sigma\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Closed sets correspond to paths through trees.

The Borel Hierarchy

The Borel sets are the least collection of sets closed under countable intersections, countable unions, and complements.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The Borel sets can be classified by the number of intersections and unions required to construct them:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Σ_1^0 : Open sets.

The Borel sets can be classified by the number of intersections and unions required to construct them:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Σ_1^0 : Open sets.
- Π_1^0 : Closed sets.

The Borel sets can be classified by the number of intersections and unions required to construct them:

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Σ_1^0 : Open sets.
- Π_1^0 : Closed sets.
- Σ^0_{α} : Countable unions of Π^0_{β} sets for $\beta < \alpha$.

The Borel sets can be classified by the number of intersections and unions required to construct them:

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Σ_1^0 : Open sets.
- Π_1^0 : Closed sets.
- Σ^{0}_{α} : Countable unions of Π^{0}_{β} sets for $\beta < \alpha$.
- Π^0_{α} : Countable intersections of Σ^0_{β} sets for $\beta < \alpha$.

The Difference Hierarchy

We will need two more types of sets as well:

• A set is Δ^0_{α} if it is both Σ^0_{α} and Π^0_{α} .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The Difference Hierarchy

We will need two more types of sets as well:

- A set is $\mathbf{\Delta}^{0}_{\alpha}$ if it is both $\mathbf{\Sigma}^{0}_{\alpha}$ and $\mathbf{\Pi}^{0}_{\alpha}$.
- A set is D_η(Σ⁰_α) if it is a difference of η-many Σ⁰_α sets. E.g., if η even, of the form

$$\bigcup_{\gamma < \eta \text{ odd}} \left(U_{\gamma} - \bigcup_{\gamma' < \gamma} U_{\gamma'} \right)$$

where each U_{γ} is Σ_{α}^{0} .

The Difference Hierarchy

We will need two more types of sets as well:

- A set is $\mathbf{\Delta}^{0}_{\alpha}$ if it is both $\mathbf{\Sigma}^{0}_{\alpha}$ and $\mathbf{\Pi}^{0}_{\alpha}$.
- A set is D_η(Σ⁰_α) if it is a difference of η-many Σ⁰_α sets. E.g., if η even, of the form

$$\bigcup_{\gamma < \eta \text{ odd}} \left(U_{\gamma} - \bigcup_{\gamma' < \gamma} U_{\gamma'} \right)$$

where each U_{γ} is Σ^0_{α} . For example, a $D_2(\Sigma^0_{\alpha})$ set is of the form

$$U_1 - U_0$$

and a $D_3(\mathbf{\Sigma}^0_{\alpha})$ set is of the form

$$U_2 - (U_1 - U_0).$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Theorem (Hausdorff-Kuratowski) $\Delta_2^0 = \bigcup_{\eta} D_{\eta}(\Sigma_1^0).$ Proof. See blackboard.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem (Hausdorff-Kuratowski)

$$\boldsymbol{\Delta}_{\alpha+1}^{0} = \bigcup_{\eta} D_{\eta}(\boldsymbol{\Sigma}_{\alpha}^{0}).$$

If you look in Kechris, the proof is essentially:

Proof. Let A be $\Delta^0_{\alpha+1}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem (Hausdorff-Kuratowski)

$$\boldsymbol{\Delta}_{\alpha+1}^{0} = \bigcup_{\eta} D_{\eta}(\boldsymbol{\Sigma}_{\alpha}^{0}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If you look in Kechris, the proof is essentially:

Proof.

Let A be $\mathbf{\Delta}^{\mathbf{0}}_{\alpha+1}$.

Change the topology so that A is Δ_2^0 .

Theorem (Hausdorff-Kuratowski)

$$\boldsymbol{\Delta}_{\alpha+1}^{0} = \bigcup_{\eta} D_{\eta}(\boldsymbol{\Sigma}_{\alpha}^{0}).$$

If you look in Kechris, the proof is essentially:

Proof.

Let A be $\mathbf{\Delta}^{\mathbf{0}}_{\alpha+1}$.

Change the topology so that A is Δ_2^0 .

By the $\alpha = 1$ case, A is $D_{\eta}(\boldsymbol{\Sigma}_{1}^{0})$ in the new topology.

Theorem (Hausdorff-Kuratowski)

$$\boldsymbol{\Delta}_{\alpha+1}^{0} = \bigcup_{\eta} D_{\eta}(\boldsymbol{\Sigma}_{\alpha}^{0}).$$

If you look in Kechris, the proof is essentially:

Proof. Let A be $\Delta_{\alpha+1}^{0}$. Change the topology so that A is Δ_{2}^{0} . By the $\alpha = 1$ case, A is $D_{\eta}(\Sigma_{1}^{0})$ in the new topology. Each Σ_{1}^{0} sets in the new topology is Σ_{α}^{0} in the old topology.

Change-of-Topology

Change-of-topology is a useful tool in descriptive set theory.

Theorem

Let (X, \mathcal{T}) be a Polish space with topology \mathcal{T} . Let B_1, B_2, \ldots be any countable collection of Borel sets in (X, \mathcal{T}) . There is a finer Polish topology $\mathcal{T}' \supseteq \mathcal{T}$ such that B_1, B_2, \ldots are open.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Change-of-Topology

Change-of-topology is a useful tool in descriptive set theory.

Theorem

Let (X, \mathcal{T}) be a Polish space with topology \mathcal{T} .

Let B_1, B_2, \ldots be any countable collection of Borel sets in (X, \mathcal{T}) .

There is a finer Polish topology $\mathcal{T}' \supseteq \mathcal{T}$ such that B_1, B_2, \ldots are open.

Often you can also say something about the open sets in the new topology. Before, we needed that the open sets in the new topology are Σ^0_{α} in the old topology.

What is this talk about?

This talk will be about a way of understanding change-of-topology in descriptive set theory using iterated true stages from computability theory.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The Effective Borel Hierarchy

The effective Borel hierarchy allows only computable unions and intersections. For α a computable ordinal:

- Σ_1^0 : Effectively open sets, i.e., sets of the form $\bigcup_{\sigma \in W} [\sigma]$ for W c.e.
- Π_1^0 : Effectively closed sets, i.e., paths through a computable tree.
- Σ_{α}^{0} : Unions of c.e. collections of (names for) Π_{β}^{0} sets for $\beta < \alpha$.
- Π^0_{α} : Intersections of c.e. collections of (names for) Σ^0_{β} sets for $\beta < \alpha$. We can also define Δ^0_{α} , $D_n(\Sigma^0_{\alpha})$, etc.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

These hierarchies also relativize to an oracle.

Effective Descriptive Set Theory

Any Σ_{α}^{0} set is $\Sigma_{\alpha}^{0}(X)$ (relative to X) for some set X. Thus it can be useful to apply effective methods even if we are not initially interested in computability.

Theorem (Hausdorff-Kuratowski, Selivanov)

$$\Delta_2^0 = \bigcup_{\eta < \omega_1^{CK}} D_\eta(\Sigma_1^0).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The key connection is that there is a way of thinking about $\Sigma_{\alpha+1}^0$ sets using the α th jump.

Fact

A set $A \subseteq \omega^{\omega}$ is $\Sigma_{\alpha+1}^{0}$ if and only if there is a Σ_{1}^{0} set $V \subseteq \omega^{\omega}$ such that $A = \{x : x^{(\alpha)} \in V\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We will use true stage constructions to approximate the jumps.

Iterated True Stage Constructions

The idea is to think of $\mathscr{D}^{(\alpha)}$ as an iteration of the limit lemma. Each jump is a simple step, and we just need a good way to organize how they fit together.

Iterated True Stage Constructions

The idea is to think of $\mathscr{D}^{(\alpha)}$ as an iteration of the limit lemma. Each jump is a simple step, and we just need a good way to organize how they fit together.

Many computability-theoretic frameworks have been introduced to help organize this:

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Harrington worker arguments
- Lempp and Lerman's tree of strategies
- Ash and Knight's α -systems
- Montalbán's η-systems
- Greenberg and Turetsky's variation on the η -systems

Consider the Halting problem K.

Consider the Halting problem K.

We can computably approximate K by

 $K = \bigcup K_s$

where K_s is the finite set containing e < s if the *e*th program has halted at stage *s*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Consider the Halting problem K.

We can computably approximate K by

 $K = \bigcup K_s$

where K_s is the finite set containing e < s if the *e*th program has halted at stage *s*.

We could think of approximating the infinite binary string K by the finite binary strings $K_s \upharpoonright s$. But it might be that every $K_s \upharpoonright s$ makes some incorrect guess.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The solution is Dekker non-deficiency stages.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The solution is Dekker non-deficiency stages.

Suppose that at each stage s, a single element n_s enters K.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The solution is Dekker non-deficiency stages.

Suppose that at each stage s, a single element n_s enters K.

Say that s is a Dekker non-deficiency stage if for all t > s, $n_t > n_s$. There are infinitely many non-deficiency stages.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The solution is Dekker non-deficiency stages.

Suppose that at each stage s, a single element n_s enters K.

Say that s is a Dekker non-deficiency stage if for all t > s, $n_t > n_s$. There are infinitely many non-deficiency stages.

Suppose that at stage s, we guess that $K_s \upharpoonright n_s$ is an initial segment of K. At non-deficiency stages, our guess is correct.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The solution is Dekker non-deficiency stages.

Suppose that at each stage s, a single element n_s enters K.

Say that s is a Dekker non-deficiency stage if for all t > s, $n_t > n_s$. There are infinitely many non-deficiency stages.

Suppose that at stage s, we guess that $K_s \upharpoonright n_s$ is an initial segment of K. At non-deficiency stages, our guess is correct.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A stage s is 1-true if $K_s \upharpoonright n_s \prec K$.

- A stage s is 1-true if $K_s \upharpoonright n_s < K$.
 - There are infinitely many 1-true stages.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

A stage s is 1-true if $K_s \upharpoonright n_s \prec K$.

- There are infinitely many 1-true stages.
- If s is a 1-true stage, then it appears 1-true at every stage t > s.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A stage s is 1-true if $K_s \upharpoonright n_s < K$.

- There are infinitely many 1-true stages.
- If s is a 1-true stage, then it appears 1-true at every stage t > s.
- If s is not 1-true, then there might be stages t > s which do not have enough information to see this, i.e.,

$$K_s \upharpoonright n_s \prec K_t \upharpoonright n_t.$$

We say that *s* appears 1-true at stage *t*. Such *t* are also not 1-true.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Approximating More Jumps

Montalbán: Iterate this through the hyperarithmetic hierarchy:

Having approximated Ø^(α) at stage s by a finite string ∇^α_s, use this finite string as an oracle to approximate Ø^(α+1) by a finite string ∇^α_{s+1}.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Montalbán: Iterate this through the hyperarithmetic hierarchy:

Having approximated Ø^(α) at stage s by a finite string ∇^α_s, use this finite string as an oracle to approximate Ø^(α+1) by a finite string ∇^α_{s+1}.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

At limits, take joins.

Montalbán: Iterate this through the hyperarithmetic hierarchy:

Having approximated Ø^(α) at stage s by a finite string ∇^α_s, use this finite string as an oracle to approximate Ø^(α+1) by a finite string ∇^α_{s+1}.

- At limits, take joins.
- Use non-deficiency stages to ensure that there are infinitely many α -true stages *s* with $\nabla_s^{\beta} \prec \emptyset^{(\beta)}$ for $\beta \le \alpha$.

Montalbán: Iterate this through the hyperarithmetic hierarchy:

- Having approximated Ø^(α) at stage s by a finite string ∇^α_s, use this finite string as an oracle to approximate Ø^(α+1) by a finite string ∇^α_{s+1}.
- At limits, take joins.
- Use non-deficiency stages to ensure that there are infinitely many α -true stages *s* with $\nabla_s^{\beta} \prec \emptyset^{(\beta)}$ for $\beta \le \alpha$.
- Say that s appears α -true at stage t, and write $s \leq_{\alpha} t$, if $\nabla_s^{\beta} \leq \nabla_t^{\beta}$ for $\beta \leq \alpha$.

Montalbán: Iterate this through the hyperarithmetic hierarchy:

- Having approximated Ø^(α) at stage s by a finite string ∇^α_s, use this finite string as an oracle to approximate Ø^(α+1) by a finite string ∇^α_{s+1}.
- At limits, take joins.
- Use non-deficiency stages to ensure that there are infinitely many α -true stages *s* with $\nabla_s^{\beta} \prec \emptyset^{(\beta)}$ for $\beta \leq \alpha$.
- Say that s appears α -true at stage t, and write $s \leq_{\alpha} t$, if $\nabla_s^{\beta} \leq \nabla_t^{\beta}$ for $\beta \leq \alpha$.

• The ∇_{s}^{α} and the relations \leq_{α} are all computable.

Montalbán: Iterate this through the hyperarithmetic hierarchy:

- Having approximated Ø^(α) at stage s by a finite string ∇^α_s, use this finite string as an oracle to approximate Ø^(α+1) by a finite string ∇^α_{s+1}.
- At limits, take joins.
- Use non-deficiency stages to ensure that there are infinitely many α -true stages *s* with $\nabla_s^{\beta} \prec \emptyset^{(\beta)}$ for $\beta \le \alpha$.
- Say that s appears α -true at stage t, and write $s \leq_{\alpha} t$, if $\nabla_s^{\beta} \leq \nabla_t^{\beta}$ for $\beta \leq \alpha$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• The ∇_s^{α} and the relations \leq_{α} are all computable.

Disclaimer: This is all morally correct, but needs some adjustment for technical reasons.

References

For the technical details, see:

- Ash and Knight's book Computable Structures and the Hyperarithmetical Hierarchy
- Montalban, η-systems, in Priority Arguments via True Stages and Computable Structure Theory: Beyond the arithmetic
- Day, Greenberg, HT, Turetsky, An effective classification of Borel Wadge classes and Iterated priority arguments in descriptive set theory

In the true stage constructions before, we approximated \emptyset , \emptyset' , \emptyset'' , We can also relativise this to any x, approximating x, x', x'',

In the true stage constructions before, we approximated $\varnothing,\, \varnothing',\, \varnothing'',\, \ldots$.

We can also relativise this to any x, approximating x, x', x'',

In fact, given $x \in \omega^{\omega}$, we can make it so that the approximation to $x^{(\alpha)}$ at stage *s* only depends on $x \upharpoonright s$:

For each finite string σ and computable ordinal α, define σ^(α), the approximation to x^(α) for x extending σ at stage |σ|.

In the true stage constructions before, we approximated $\varnothing,\, \varnothing',\, \varnothing'',\, \ldots$.

We can also relativise this to any x, approximating x, x', x'',

In fact, given $x \in \omega^{\omega}$, we can make it so that the approximation to $x^{(\alpha)}$ at stage *s* only depends on $x \upharpoonright s$:

- For each finite string σ and computable ordinal α, define σ^(α), the approximation to x^(α) for x extending σ at stage |σ|.
- Define $\sigma \leq_{\alpha} \tau$ if $\sigma^{(\beta)} \leq \tau^{(\beta)}$ for $\beta \leq \alpha$. We say σ appears α -true at τ .

In the true stage constructions before, we approximated $\varnothing,\, \varnothing',\, \varnothing'',\, \ldots$.

We can also relativise this to any x, approximating x, x', x'',

In fact, given $x \in \omega^{\omega}$, we can make it so that the approximation to $x^{(\alpha)}$ at stage *s* only depends on $x \upharpoonright s$:

- For each finite string σ and computable ordinal α, define σ^(α), the approximation to x^(α) for x extending σ at stage |σ|.
- Define $\sigma \leq_{\alpha} \tau$ if $\sigma^{(\beta)} \leq \tau^{(\beta)}$ for $\beta \leq \alpha$. We say σ appears α -true at τ .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Say that σ is α -true for $x \in 2^{\omega}$, and write $\sigma \leq_{\alpha} x$, if $\sigma^{(\beta)} \leq x^{(\beta)}$ for $\beta \leq \alpha$.

Note that being true is now relative to the extension x.

These orderings \leq_{α} on $\omega^{<\omega} \cup \omega^{\omega}$ have lots of nice properties:

The relations ≤_α, when restricted to finite strings ω^{<ω}, are computable.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

These orderings \leq_{α} on $\omega^{<\omega} \cup \omega^{\omega}$ have lots of nice properties:

The relations ≤_α, when restricted to finite strings ω^{<ω}, are computable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• $\sigma \leq_0 \tau \Leftrightarrow \sigma \leq \tau$.

These orderings \leq_{α} on $\omega^{<\omega} \cup \omega^{\omega}$ have lots of nice properties:

The relations ≤_α, when restricted to finite strings ω^{<ω}, are computable.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- $\sigma \leq_0 \tau \Leftrightarrow \sigma \leq \tau$.
- $\sigma \leq_{\alpha} \tau \Rightarrow \sigma \leq_{\beta} \tau$ for $\beta < \alpha$.

These orderings \leq_{α} on $\omega^{<\omega} \cup \omega^{\omega}$ have lots of nice properties:

- The relations ≤_α, when restricted to finite strings ω^{<ω}, are computable.
- $\sigma \leq_0 \tau \Leftrightarrow \sigma \leq \tau$.
- $\sigma \leq_{\alpha} \tau \Rightarrow \sigma \leq_{\beta} \tau$ for $\beta < \alpha$.
- for each $x \in \omega^{\omega}$, there infinitely many strings which are α -true for x:

$$\sigma_0 \leq_\alpha \sigma_1 \leq_\alpha \sigma_2 \leq_\alpha \cdots \leq_\alpha x.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• $(\omega^{<\omega}, \leq_{\alpha})$ is a tree/forest.

True Stages and Topology

Some additional properties of our true stages:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

•
$$[\sigma]_{\alpha} = \{ \bar{x} : \sigma \leq_{\alpha} \bar{x} \}$$
 is Σ_{α}^{0} .

True Stages and Topology

Some additional properties of our true stages:

- $[\sigma]_{\alpha} = \{ \bar{x} : \sigma \leq_{\alpha} \bar{x} \}$ is Σ_{α}^{0} .
- Each Σ^0_{α} set is of the form

$$\bigcup_{\sigma \in W} [\sigma]_{\alpha} = \bigcup_{\sigma \in W} \{ \bar{x} : \sigma \leq_{\alpha} \bar{x} \}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

for some c.e. set W.

True Stages and Topology

Some additional properties of our true stages:

- $[\sigma]_{\alpha} = \{ \bar{x} : \sigma \leq_{\alpha} \bar{x} \}$ is Σ_{α}^{0} .
- Each Σ^0_{α} set is of the form

$$\bigcup_{\sigma \in W} [\sigma]_{\alpha} = \bigcup_{\sigma \in W} \{ \bar{x} : \sigma \leq_{\alpha} \bar{x} \}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

for some c.e. set W.

Taking $[\sigma]_{\alpha} = \{\bar{x} : \sigma \leq_{\alpha} \bar{x}\}$ as a basis, we get a Polish topology \mathcal{T}' extending the standard topology where the open sets are exactly those generated by the Σ_{α}^{0} sets.

Hausdorff-Kuratowski

This way of constructing the change of topology is particularly nice because it looks like the standard topology on ω^{ω} in the sense that it comes from a tree.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Hausdorff-Kuratowski

This way of constructing the change of topology is particularly nice because it looks like the standard topology on ω^{ω} in the sense that it comes from a tree.

We can adjust our proof of the Hausdorff-Kuratowski theorem to get a proof for $\Delta^0_{\alpha+1}$ by replacing the standard tree $(\omega^{<\omega}, \leq)$ by the tree $(\omega^{<\omega}, \leq_{\alpha})$.

Theorem (Hausdorff-Kuratowski, Selivanov)

For all computable α ,

$$\Delta^0_{\alpha+1} = \bigcup_{\eta < \omega_1^{ck}} D_\eta(\Sigma^0_\alpha).$$

Proof.

See blackboard.

This sounds great, but can we do anything new?

・ロト・(型ト・(型ト・(型ト))

Wadge Reducibility

Definition (Wadge)

Let A and B be subsets of Baire space ω^{ω} .

We say that A is Wadge reducible to B, and write $A \leq_W B$, if there is a continuous function f on ω^{ω} with $A = f^{-1}[B]$, i.e.

$$x \in A \iff f(x) \in B.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Structure of Wadge Degrees

Theorem (Martin and Monk, AD) The Wadge order is well-founded.

Theorem (Wadge's Lemma, AD)

Given $A, B \subseteq \omega^{\omega}$, either $A \leq_W B$ or $B \leq_W \omega^{\omega} - A$.

These theorems are proved by playing a game. For Borel sets, we have Borel Determinacy without having to assume AD, and so these are always true for Borel sets.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Wadge Degrees in Second-order Arithmetic

Borel determinacy requires iterations of power-set.

Theorem (Friedman)

Borel determinacy requires ω_1 iterations of the Power Set Axiom.

Martin showed that $\boldsymbol{\Sigma}_4^0$ Determinacy is not provable in second-order arithmetic.

One the other hand, one can prove that Borel Wadge games are determined in second-order arithmetic.

Theorem (Louveau and Saint-Raymond)

Borel Wadge determinacy is provable in second-order arithmetic.

Description of Wadge Degrees

There are also many comprehensive descriptions of the Borel Wadge classes:

- Louveau (1983)
- Duparc (2001)
- Selivanov, for k-partitions (2007, 2017)
- Kihara and Montalbán, for functions into a countable BQO (2019)

We use our true stage machinery to give a new description of the Borel Wadge classes, and use them to prove Borel Wadge determinacy in a reasonable fragment of second-order arithmetic.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Theorem (Day, Greenberg, HT, Turetsky)

Borel Wadge determinacy is provable in $ATR_0 + \Pi_1^1$ -Ind, and there is a complete description of the Borel Wadge classes.

Thus the Borel Wadge degrees are semilinearly ordered and well-founded.

This simplifies Louveau and Saint-Raymond's proof in second-order arithmetic and uses a weaker subsystem. Our descriptions of the classes are inherently dynamic, and naturally lightface.

- Make a list of described classes. These are non-self-dual. Our descriptions are dynamic in nature.
- Prove a Louveau-Saint Raymond separation result for each described class Γ, which implies that if A is universal for Γ, and B is Borel, then either A ≤_W B or B ∈ Ť, in which case B ≤_W A^c.
- Prove that the intersection of a described class and its dual is either a union of described classes of lower Wadge degree, like

$$\Delta_{\xi+1}^0 = \bigcup_{\eta} D_{\eta}(\Sigma_{\xi}^0),$$

or is a Wadge class in its own right like Δ_1^0 .

 Given a Borel set, take the least described class (or dual of a described class, or Δ(Γ)) containing it. Prove that it is complete for that class.

Theorem (Loueveau, Saint Raymond)

Suppose that Γ is a described class. Let $A \in \Gamma$. Let B_0 and B_1 be two disjoint Σ_1^1 sets. Then either:

- There is a continuous reduction of (A, A^c) into (B_0, B_1) , or
- There is a $\check{\Gamma}$ separator of B_0 from B_1 .

If A is universal for Γ , and B is Borel, then either $A \leq_W B$ or $B \in \check{\Gamma}$, in which case $B \leq_W A^c$.

The direct way to prove this would be to use Borel determinacy for a naturally associated game.

Louveau and Saint Raymond show by an unravelling process that there is an associated closed game.

Using true stages, we get a relatively simple description of such a game.

Theorem (Loueveau, Saint Raymond)

Suppose that Γ is a described class. Let $A \in \Gamma$. Let B_0 and B_1 be two disjoint Σ_1^1 sets. Then either:

- There is a continuous reduction of (A, A^c) into (B_0, B_1) , or
- There is a $\check{\Gamma}$ separator of B_0 from B_1 .

Take $\Gamma = \Sigma_{\varepsilon}^{0}$. Let T_{i} be a tree whose projection is B_{i} .

- Player 1 plays x in A or A^c .
- Player 2 attempts to play y in B₀ (if x ∈ A) or B₁ (if x ∉ A), with a corresponding witness f in [T₀] or [T₁].
- Player 2 guesses, using the true stage machinery, at whether x is in A or not. At each stage, they play an attempt at extending y and f. But they are only committed to which f they play at true stages.

Theorem (Day, Greenberg, HT, Turetsky)

Borel Wadge determinacy is provable in $ATR_0 + \prod_{1}^{1} - \text{Ind}$, and there is a complete description of the Borel Wadge classes.

Thus the Borel Wadge degrees are semilinearly ordered and well-founded.

This simplifies Louveau and Saint-Raymond's proof in second-order arithmetic and uses a weaker subsystem. Our descriptions of the classes are inherently dynamic, and naturally lightface.

References

Day, Greenberg, Harrison-Trainor, Turetsky:

Iterated priority arguments in descriptive set theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

An effective classification of Borel Wadge classes

Thanks!