A non-trivial 3-REA Set Not Computing a Weak 3-generic

Peter M. Gerdes

Midwest Computability Seminar, 2023

Outline

(1) Notation \& Definitions
(2) Background

- Weak 1-genericity
- R.E. Sets and 1-genericity
- 2-genericity
- 3-genericity
(3) 3-REA Sets
- Differences From Δ_{3}^{0} Escaping Functions
- Main Result
- Naive Strategies
- Complications

Table of Contents

(1) Notation \& Definitions

(2) Background

- Weak 1-genericity
- R.E. Sets and 1-genericity
- 2-genericity
- 3-genericity
(3) 3-REA Sets
- Differences From Δ_{3}^{0} Escaping Functions
- Main Result
- Naive Strategies
- Complications

Notation

- $\sigma, \tau, \nu, \delta$ range over $\{0,1, \uparrow\}^{<\omega}$ (partial binary valued functions with finite domain).
- We write $\sigma<\tau$ if τ extends σ and $\sigma<X$ if σ is extended by the characteristic function of X.
- θ meets $\Gamma \subset\{0,1, \uparrow\}^{<\omega}(\theta \Vdash \Gamma)$ if $(\exists \sigma \in \Gamma)(\theta>\sigma)$ and θ strongly avoids $\Gamma(\theta \Vdash \neg \Gamma)$ if some $(\exists \tau<\theta)(\forall \sigma \in \Gamma)(\tau \nless \gamma)$.
- $f \in \omega^{\omega}$ dominates $g \in \omega^{\omega}(f \gg g)$ if $\left(\forall^{*} x \in \omega\right)(f(x) \geq g(x))$.
- f is Δ_{n+1}^{0} escaping if f isn't dominated by any $g \leq_{\mathbf{T}} \mathbf{0}^{(n)}$

α-REA Sets

- The i-th hop is $\mathcal{H}_{i}(A) \stackrel{\text { def }}{=} A \oplus W_{i}^{A}$.
- REA sets are the result of iterating the Hop operation on \varnothing.
- The 1-REA sets are just the r.e. sets.
- The 2-REA sets are sets of the form $W_{i} \oplus W_{j}^{W_{i}}$

See Jockusch and Shore [2] for a more explicit definition.

Components as Columns

- For this talk we only care about n-REA sets up to Turing degree.
- Useful to identify the components of n-REA sets with their columns.

Genericity

- In this talk we only consider the (standard) forcing relation on $2^{<\omega}$
- G is n-generic $(n>0)$ if $G \Vdash \phi$ or $G \Vdash \neg \phi$ for all $\Sigma_{n}^{0, G}$ sentences.
- Equivalently, G is n-generic if G meets or strongly avoids every Σ_{n}^{0} subset of $2^{<\omega}$ (equivalently $\{0,1, \uparrow\}^{<\omega}$)
- $\Gamma \subset 2^{<\omega}$ is dense if $\left(\forall \tau \in 2^{<\omega}\right)(\exists \sigma \in \Gamma) \tau<\sigma$
- G is weakly n-generic if G meets every dense Σ_{n}^{0} subset of $2^{<\omega}$

Table of Contents

(1) Notation \& Definitions

(2) Background

- Weak 1-genericity
- R.E. Sets and 1-genericity
- 2-genericity
- 3-genericity
(3) 3-REA Sets
- Differences From Δ_{3}^{0} Escaping Functions
- Main Result
- Naive Strategies
- Complications

Table of Contents

(1) Notation \& Definitions

(2) Background

- Weak 1-genericity
- R.E. Sets and 1-genericity
- 2-genericity
- 3-genericity
(3) 3-REA Sets
- Differences From Δ_{3}^{0} Escaping Functions
- Main Result
- Naive Strategies
- Complications

Computing Weak 1-Generics

Theorem

If $f \in \omega^{\omega}$ is Δ_{1}^{0} escaping then f computes a weak 1-generic

- WLOG f is monotonicly increasing and let U_{i} be i-th r.e. subset of $2^{<\omega}$.
- Build $\left.G=\lim _{n \rightarrow \infty} \tau_{n}, \tau_{0}=\langle \rangle, \tau_{n+1}\right\rangle \tau_{n}$.
- Let $\tau_{n+1}>\tau_{n}$ be in $U_{i, f(n+1)}$ for least $i \leq n$ or τ_{n} if no such i exists.

Verifying Weak 1-Generic

- Suppose U_{i} is dense but G doesn't meet U_{i}.
- Let $n>0$ large enough that τ_{n} meets every $U_{j}, j<i G$ will ever meet.
- Suppose we can compute a bound $l_{m}>\left|\tau_{m}\right|$ for $m>n$.
- Let $h(m)$ be the least stage s such that $U_{i, h(m)}$ includes an extension of every string of length l_{m}.
- If $f(m) \geq h(m), m>n$ then τ_{m} meets U_{i}.
- We compute l_{m} by assuming $f(x)<h(x)$ for $n<x<m$.

Can't extend to 1-generics because we can't guarantee number of stages needed to find an extension in a non-dense U_{i} is computably bounded.

Table of Contents

(1) Notation \& Definitions

(2) Background

- Weak 1-genericity
- R.E. Sets and 1-genericity
- 2-genericity
- 3-genericity
(3) 3-REA Sets
- Differences From Δ_{3}^{0} Escaping Functions
- Main Result
- Naive Strategies
- Complications

R.E. Sets Compute 1-generics

Theorem

If $A \not \mathbb{Z}_{\mathbf{T}} \mathbf{0}$ is r.e. then A computes a 1-generic

- The modulus for $A\left(m(n) \stackrel{\text { def }}{=} \mu t\left(A_{t} \upharpoonright_{n+1}=A \upharpoonright_{n+1}\right)\right)$ is Δ_{1}^{0} escaping.
- But we can compute full 1-generic by using the computable approximation to A.
- Same construction as before but we use stagewise approximations and allow restraint.
- Now, if we extend $\tau_{n, s}$ to $\tau_{n+1, s}$ to meet U_{i} then we preserve $\tau_{n+1, s}$ from changes trying to meet $U_{j}, j>i$

Constructing 1-generic Below R.E.

$$
\begin{aligned}
& m_{s}(n) \stackrel{\text { def }}{=} \mu t\left(A_{t} \upharpoonright_{n+1}=A_{s} \upharpoonright_{n+1}\right) \\
& r_{s}(i) \stackrel{\text { def }}{=} \max \left\{n \mid n \leq s \wedge\left(\exists \sigma \succ \tau_{n, s}\right)\left(\tau_{n, s} \neg \Vdash U_{i, s-1} \wedge \sigma \Vdash U_{i, s-1}\right)\right\} \\
& \bar{r}_{s}(i) \stackrel{\text { def }}{=} \max _{j<i} r_{s}(i) \\
& i_{n+1, s}^{*} \stackrel{\text { def }}{=} \min _{i \leq n} \neg\left(\tau_{n, s} \Vdash U_{i, m_{s}(n)}\right) \wedge\left(\exists \sigma>\tau_{n, s}\right)\left(\sigma \Vdash U_{i, m_{s}(n+1)}\right) \\
& \tau_{n, s} \stackrel{\text { def }}{=} \begin{cases}\langle \rangle & \text { if } s \leq n \vee s=0 \vee n=0 \\
\tau_{n, s-1} & \text { unless } m_{s}(n+1)>m_{s-1}(n) \\
\tau_{n, s-1} & \text { if } \bar{r}_{s}\left(i_{n, s}^{*}\right) \geq n \\
\sigma & \text { o.w. where } \sigma \text { is least witness for } i_{n, s}^{*}\end{cases} \\
& \quad G \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty} \lim _{s \rightarrow \infty} \tau_{n, s}
\end{aligned}
$$

Note that $\tau_{n, \infty}=\tau_{n, m(n)}$ so $G \leq_{\mathbf{T}} A$.

Verifying R.E. Sets Compute 1-generics

- Suppose i is least s.t. $G \neg \Vdash U_{i} \wedge G \neg \Vdash \neg U_{i}$. We show that A is computable.
- Let n large enough that $n>\bar{r}_{\infty}(i)$ (exists by fact i least) and for all $j<i \tau_{n} \Vdash U_{j} \vee \tau_{n} \Vdash \neg U_{j}$ and t large enough that $\tau_{n, t}=\tau_{n}$.
- If there are $n^{\prime} \geq n, s \geq \max \left(t, n^{\prime}\right), \sigma>\tau_{n^{\prime}, s}, \sigma \Vdash U_{i, s}$ then $m\left(n^{\prime}\right)<s$.
- Otherwise we'd preserve $\tau_{n^{\prime}, s}$ and have $\tau_{n^{\prime}, m\left(n^{\prime}\right)} \Vdash U_{i}$.
- But, by assumption, there must be infinitetly many such m, s showing $m \leq_{\mathbf{T}} \mathbf{0}$
- Contradiction.

Table of Contents

(1) Notation \& Definitions

(2) Background

- Weak 1-genericity
- R.E. Sets and 1-genericity
- 2-genericity
- 3-genericity
(3) 3-REA Sets
- Differences From \triangle_{3}^{0} Escaping Functions
- Main Result
- Naive Strategies
- Complications

Computing Weak 1-Generics

Theorem (Andrews, Gerdes and Miller)

If $f \in \omega^{\omega}$ is Δ_{2}^{0} escaping then f computes a weak 2-generic

- Proved in [1]. Won't prove it here.
- Idea is to try and extend to meet Σ_{2}^{0} sets \mathfrak{U}_{i} by favoring those σ for which $(\exists x)(\forall y) \phi(\sigma, x, y)$ appears true with least $\max (|\sigma|, x)$.

Hypothesis

If $A \not \not_{\mathbf{T}} \mathbf{0}^{\prime}$ is 2-REA then A computes a 2-generic

Table of Contents

(1) Notation \& Definitions

(2) Background

- Weak 1-genericity
- R.E. Sets and 1-genericity
- 2-genericity
- 3-genericity
(3) 3-REA Sets
- Differences From Δ_{3}^{0} Escaping Functions
- Main Result
- Naive Strategies
- Complications

Pattern Ends at $n=3$

Theorem (Andrews, Gerdes and Miller)

There is a (pruned) perfect ω-branching tree $T \subset \omega^{<\omega}, T \leq_{\mathbf{T}} \mathbf{0}^{\prime \prime}$ such that if $f \in[T]$ then f doesn't compute a weak 3-generic.
vertex Node with multiple successors ($\sigma^{\wedge}\langle i\rangle, \sigma^{\wedge}\langle j\rangle \in T, i \neq j$). ω-branching Every vertex has infinitely many immediate successors. pruned No terminal nodes (all nodes extend to paths) perfect Every node is extended by a vertex.

Pattern Ends at $n=3$

Theorem (Andrews, Gerdes and Miller)

There is a (pruned) perfect ω-branching tree $T \subset \omega^{<\omega}, T \leq_{\mathbf{T}} \mathbf{0}^{\prime \prime}$ such that if $f \in[T]$ then f doesn't compute a weak 3-generic.

- No amount of (countable) non-domination suffices to compute a weak 3 -generic, e.g., $g_{j} \gg f, j \in \omega$.
- View T as function on ω^{ω} by defining $T[h]$ to be the path taking the $h(n)$-th option at the n-th vertex.
- Let $f=T[h]$ with $h(k)$ picked large enough that $T[h]\left(n_{k}\right)>g_{j}\left(n_{k}\right), j \leq k$ where $T[h] \upharpoonright_{n_{k}}$ is the k-th vertex along $T[h]$
- Note that if f is monotonic and $\Delta_{n+3}^{0}, n \geq 0$ escaping then $T[f] \leq_{\mathbf{T}} f \oplus \mathbf{0}^{\prime \prime}$ is as well.
- If $g \gg T[f]$ then $g^{*}(k)=g\left(n_{k}\right)$ satisfies $g^{*} \gg f, g^{*} \leq_{\mathbf{T}} g \oplus \mathbf{0}^{\prime \prime}$

Intuition Behind Failure

Question

What prevents the pattern from continuing indefinitely?

- Pattern worked because more non-domination strength gave us more computational power (guessing at membership in Σ_{1}^{0} sets then Σ_{2}^{0} sets).
- But, a computable reduction can't hope to always distinguish $\mathbf{0}^{(n)}$ big and $\mathbf{0}^{(n+k)}$ big.
- Given finitely many potential values of $\Phi_{e}\left(\sigma^{\wedge}\langle n\rangle\right), \mathbf{0}^{\prime \prime}$ can figure out which value is compatible with infinitely many n.
- Allows us to limit $\Phi_{e}(f)$ to a narrow range of options (while allowing f to take arbitrarily large values).
- Can build $\mathfrak{U}_{e} \subset 2^{<\omega}$ a dense Σ_{3}^{0} set $\Phi_{e}(f)$ can't meet by enumerating strings outside that narrow range.

Utility Lemma

Lemma

Suppose for infinitely many $l \in \omega, \mathbf{0}^{\prime \prime}$ can enumerate $k>0$, $\eta_{i} \in 2^{<\omega}, i<2^{k}-1,\left|\eta_{i}\right| \geq l+k$. If $f \in[T] \wedge \Phi_{e}(f) \downarrow \Longrightarrow \Phi_{e}(f)>\eta_{i}$ then $\Phi_{e}(f)$ isn't weakly 3-generic for any $f \in[T]$.

Proof.

For each σ with $|\sigma|=l$ there are 2^{k} strings $\tau>\sigma$ of length $l+k$. At least one of those strings τ_{σ} must be incompatible with $\eta_{i}, i<2^{k}-1$.

For each such $l>0$ and σ with $|\sigma|=l$ enumerate τ_{σ} into $\mathfrak{U}_{e} . \mathfrak{U}_{e}$ is a dense Σ_{3}^{0} set that isn't met by $\Phi_{e}(f)$ for any $f \in[T]$.

Building T

Conditions

- A finite set V_{s} of vertexes ()
- For each $\sigma \in V_{s}$ an infinite r.e. set of strings
$\Sigma_{s}(\sigma) \subset\left\{\sigma^{\wedge}\langle n\rangle \wedge \tau \mid n \in \omega, \tau \in 2^{<\omega}\right\}$
- $\theta_{s}^{e}: 2^{<\omega} \mapsto 2^{<\omega} \cup\{\uparrow\}, e \in \omega$ such that if $\sigma \in V_{s}, \tau \in \Sigma_{s}(\sigma)$ then $\Phi_{e}(\tau) \succ \theta_{s}^{e}(\sigma)$ (where that means $\Phi_{e}(f) \uparrow$ if $f>\tau$ if $\theta_{s}^{e}(\sigma)=\uparrow$)
V_{s} : Nodes we commit to making ω-branching vertexes in T.
$\Sigma_{s}(\sigma)$: Possible (i.e. not in V_{s}) branches extending σ.
$\theta_{s}^{e}(\sigma)$: Specifies initial segment of $\Phi_{e}(\tau)$ agreed on by all $\tau \in \Sigma_{s}(\sigma)$ (or that all such τ force partiality)

Building T

Conditions

- A finite set V_{s} of vertexes ()
- For each $\sigma \in V_{s}$ an infinite r.e. set of strings
$\Sigma_{s}(\sigma) \subset\left\{\sigma^{\wedge}\langle n\rangle \wedge \tau \mid n \in \omega, \tau \in 2^{<\omega}\right\}$
- $\theta_{s}^{e}: 2^{<\omega} \mapsto 2^{<\omega} \cup\{\uparrow\}, e \in \omega$ such that if $\sigma \in V_{s}, \tau \in \Sigma_{s}(\sigma)$ then $\Phi_{e}(\tau)>\theta_{s}^{e}(\sigma)$ (where that means $\Phi_{e}(f) \uparrow$ if $f>\tau$ if $\theta_{s}^{e}(\sigma)=\uparrow$)
- $V_{0}=\{\langle \rangle\}$ if $s=0 \vee \sigma \notin V_{s} \vee e \geq s$ then $\Sigma_{s}(\sigma)=\left\{\sigma^{\wedge}\langle n\rangle\right\}$ and $\theta_{s}^{e}(\sigma)=\langle \rangle$.
- $V_{s+1}=V_{s} \bigcup\left\{\tau_{\sigma} \mid \sigma \in V_{s}\right\}$ where $\tau_{\sigma} \in \Sigma_{s}(\sigma)$ with $\tau_{\sigma}(|\sigma|)$ large. (Hence $\left|V_{s}\right|=2^{s}$).
- $\Sigma_{s+1}(\sigma) \subset \Sigma_{s}(\sigma)$ and $\theta_{s+1}^{e}(\sigma)>\theta_{s}^{e}(\sigma)$ (where \uparrow is considered $>$ maximal).
- We ensure that if $e<s, \sigma \in V_{s}$ then $\left|\theta_{s}^{e}(\sigma)\right|>2 s+1$

Visualizing T Construction

- Every $\sigma_{i} \in \Sigma_{0}(\langle \rangle)$ has $\Phi_{e}\left(\sigma_{i}\right)>\theta_{0}^{e}(\langle \rangle)$

Visualizing T Construction

- Add new vertex in $\Sigma_{s}(\tau)$ for each $\tau \in V_{s}$.

Visualizing T Construction

- Prune and extend (e.g. replace σ_{i} with an extension) so $\sigma_{i} \in \Sigma_{1}(\langle \rangle) \Longrightarrow \Phi_{e}\left(\sigma_{i}\right) \succ \theta_{1}^{e}(\langle \rangle)$ (now longer) and $\Phi_{e}\left(\sigma_{0 i}\right)>\theta_{1}^{e}\left(\sigma_{0}\right)$

Visualizing T Construction

- If $f \in[T]$ then $\Phi_{e}(f)>\theta_{1}^{e}(\langle \rangle)$ or $\Phi_{e}(f)>\theta_{1}^{e}\left(\sigma_{0}\right)$

Visualizing T Construction

- Extend each vertex with a node from allowed branches.

Visualizing T Construction

- If If $f \in[T]$ then $\Phi_{e}(f)>\theta_{2}^{e}(\langle \rangle)$ or $\Phi_{e}(f)>\theta_{2}^{e}\left(\sigma_{0}\right)$ or $\Phi_{e}(f) \succ \theta_{2}^{e}\left(\sigma_{2}\right)$ or $\Phi_{e}(f) \succ \theta_{2}^{e}\left(\sigma_{00}\right)$

Verifying Construction

- To complete proof we must only show that we can always construct $\Sigma_{s+1}(\tau)$ from $\Sigma_{s}(\tau)$ that makes $\theta_{s+1}^{e}(\tau)$ sufficently long.
- But given the length $\mathbf{0}^{\prime \prime}$ can ask if there are infinitely many elements $\sigma \in \Sigma_{s}(\tau)$ that can be extended to σ^{\prime} with $\Phi_{e}\left(\sigma^{\prime}\right)$ of sufficent length.
- If not remove the finitely many elements that allow convergence.
- If so $\mathbf{0}^{\prime \prime}$ can determine which of the finitely many options for $\Sigma_{s+1}(\tau)$ permits $\Sigma_{s+1}(\tau)$ to be infinite.
- Repeat for each $e<s+1$ and $\tau \in V_{s+1}$.

Table of Contents

(1) Notation \& Definitions

(2) Background

- Weak 1-genericity
- R.E. Sets and 1-genericity
- 2-genericity
- 3-genericity
(3) 3-REA Sets
- Differences From Δ_{3}^{0} Escaping Functions
- Main Result
- Naive Strategies
- Complications

Table of Contents

(1) Notation \& Definitions

(2) Background

- Weak 1-genericity
- R.E. Sets and 1-genericity
- 2-genericity
- 3-genericity
(3) 3-REA Sets
- Differences From Δ_{3}^{0} Escaping Functions
- Main Result
- Naive Strategies
- Complications

Genericity From 3-REA Sets

Question

If $A \not \not_{\mathbf{T}} \mathbf{0}^{\prime \prime}$ is 3-REA does A compute a (weak) 3-generic?

- A computes a Δ_{3}^{0} escaping function $m^{[3]}(x)$ (where $m^{[n+1]}(x)$ is modulus of $A^{[n+1]}$ over $A^{[n]}$) but that's not enough.
- But several reasons to think that 3-REA sets have extra power to compute generics.
- We get $m^{[3]}, m^{[2]}, m^{[1]}$ with $m^{[n]} \Delta_{n}^{0}, 1 \leq n \leq 3$ escaping. Modifications even ensure all three functions simultaneously escape a tuple $h^{1} \leq_{\mathbf{T}} \mathbf{0}, h^{2} \leq_{\mathbf{T}} \mathbf{0}^{\prime}, h^{3} \leq_{\mathbf{T}} \mathbf{0}^{\prime \prime}$
- Our ability to effectively approximate A offers additional power (remember non-trivial r.e. sets compute 1 -generics not just weak 1-generics).
- Approach used to build T doesn't directly translate.

Isolating Large Values

- When we built T functionals $\Phi_{e}(f)$ had to meet \mathscr{U}_{e} using only one large value.
- If $\sigma \in V_{s}, e<s, x \in \omega$ we could wait until we found $\tau>\sigma^{\wedge}\langle n\rangle$ with $\Phi_{e}(\tau ; x)$ converging before choosing the next large value.
- Given $A \not 女_{\mathbf{T}} \mathbf{0}^{\prime \prime}$,3-REA, $k>1$ and $h \leq_{\mathbf{T}} \mathbf{0}^{\prime \prime}$ there are infinitely many tuples $x_{0}<x_{1},<, \ldots,<x_{k}<m^{[3]}\left(x_{0}\right)$ such that $m^{[3]}\left(x_{i}\right)>h\left(x_{i}\right), i \leq k$.
- So, infinitely often, $\Phi_{e}(A ; x)$ can consult k large values before trying to meet \mathfrak{U}_{e}.

Table of Contents

(1) Notation \& Definitions

(2) Background

- Weak 1-genericity
- R.E. Sets and 1-genericity
- 2-genericity
- 3-genericity

(3) 3-REA Sets

- Differences From Δ_{3}^{0} Escaping Functions
- Main Result
- Naive Strategies
- Complications

Ultimately Insufficent

Theorem

There is a 3-REA set $A \not \mathbf{Z}_{\mathbf{T}} \mathbf{0}^{\prime \prime}$ that doesn't compute a weak 3-generic.

- We know A computes a weak 2-generic
- By result in [1] every Δ_{3}^{0} escaping function computes a 2-generic.
- Thus, result is sharp.

Requirements

Requirements

$\mathscr{P}_{i}: \quad A^{[3]}\left(c^{i}\right) \neq \lim _{s \rightarrow \infty} \lim _{t \rightarrow \infty} p_{i}\left(c^{i}, s, t\right)$
$\mathcal{Q}_{e, \sigma}: X_{e} \downarrow \Longrightarrow[\exists \tau>\sigma]\left(\tau \in \mathfrak{U}_{e} \wedge \tau \nless X_{e}\right)$

$$
X_{e} \stackrel{\text { def }}{=} \Phi_{e}(A) \stackrel{\text { def }}{=} \Phi_{e}(A) \quad \mathcal{U}_{e}: \Sigma_{1}^{0}\left(\mathbf{0}^{\prime \prime}\right) \text { subset of } 2^{<\omega}
$$

\mathscr{P}_{i} Ensures that $A \not \Varangle_{\mathbf{T}} \mathbf{0}^{\prime \prime}$
$\mathbb{Q}_{e, \sigma}$ Builds dense \mathfrak{U}_{e} avoiding X_{e} (no other additions)

- We'll want to break these requirements up into Π_{2}^{0} subrequirements (to use tree method and let $\mathbf{0}^{\prime \prime}$ see outcome).

(Alt) Requirements

Requirements

$\mathscr{P}_{\alpha}: \quad A^{[3]}\left(c^{\alpha}\right) \neq \lim _{s \rightarrow \infty} \lim _{t \rightarrow \infty} p_{\alpha}\left(c^{\alpha}, s, t\right)$
$\mathbb{Q}_{\alpha, \sigma}: X_{\alpha} \downarrow \Longrightarrow[\exists \tau>\sigma]\left(\tau \in \mathfrak{U}_{\alpha} \wedge \tau \nless X_{\alpha}\right)$

$$
X_{\alpha} \stackrel{\text { def }}{=} \Phi_{\alpha}(A) \stackrel{\text { def }}{=} \Phi_{e_{\alpha}}(A) \quad \mathfrak{U}_{\alpha}: \Sigma_{1}^{0}\left(\mathbf{0}^{\prime \prime}\right) \text { subset of } 2^{<\omega}
$$

\mathscr{P}_{α} Ensures that $A \not \not_{\mathbf{T}} \mathbf{0}^{\prime \prime}$
$\widehat{Q}_{\alpha, \sigma}$ Builds dense \mathfrak{U}_{α} avoiding X_{e} (no other additions)

- We'll want to break these requirements up into Π_{2}^{0} subrequirements (to use tree method and let $\mathbf{0}^{\prime \prime}$ see outcome).

Table of Contents

(1) Notation \& Definitions
(2) Background

- Weak 1-genericity
- R.E. Sets and 1-genericity
- 2-genericity
- 3-genericity
(3) 3-REA Sets
- Differences From Δ_{3}^{0} Escaping Functions
- Main Result
- Naive Strategies
- Complications

Strategy for \mathscr{P}_{α}

Requirement

$\mathscr{P}_{\alpha}: A^{[3]}\left(c^{\alpha}\right) \neq \lim _{s \rightarrow \infty} p_{\alpha}^{\prime}\left(c^{\alpha}, s\right) \quad$ where $\quad p_{\alpha}^{\prime}\left(c^{\alpha}, s\right) \stackrel{\text { def }}{=} \lim _{t \rightarrow \infty} p_{\alpha}\left(c^{\alpha}, s, t\right)$

Sub-requirements

$\mathscr{P}_{\alpha}^{k}:$

$$
b_{k}^{\alpha} \in A^{[2]} \Longleftrightarrow\left|\left\{t \mid p_{\alpha}^{\prime}\left(c^{\alpha}, t\right)\right\}=1\right|>k
$$

- Place $c^{\alpha} \in A^{[3]}$ iff $(\exists k)\left(b_{k}^{\alpha} \notin A^{[2]}\right)$
- At stage s place b_{k} into $A^{[2]}$ if it's not currently in and $\left|\left\{t \mid p_{\alpha}\left(c^{\alpha}, t, s\right)\right\}=1\right|>k$.
- We remove b_{k} at $s_{1}>s$ (by enumerating into $A^{[1]}$) if $\left|\left\{t \mid\left(\forall s^{\prime} \in\left[s, s_{1}\right]\right)\left(p_{\alpha}\left(c^{\alpha}, t, s^{\prime}\right)=1\right)\right\}\right| \leq k$
- $c^{\alpha} \notin A^{[3]}$ if $\lim _{s \rightarrow \infty} p_{\alpha}^{\prime}\left(c^{\alpha}, s\right)$ is 1 or DNE

First Attempt At $\mathbb{Q}_{\alpha, \sigma}$

- Let's try same approach as constructing T, ensure that all 'options' for A agree on 'alot' of $\Phi_{e}(A)$.
- But $\mathbf{0}^{\prime \prime}$ can't determine if $c^{\alpha} \in A^{[3]}$. But we can accomodate both options by agreeing on sufficently long initial segments.
- Harder problem is ensuring that $\Phi_{e}(A)$ takes the same value no matter what value we get for $\bar{k}^{\alpha} \stackrel{\text { def }}{=} \mu k\left(b_{k}^{\alpha} \notin A^{[3]}\right)$.
- This is analog of allowing $f(x)$ to take on infinitely many values in construction of T.
- (Up to $\mathbf{0}^{\prime \prime}$ equivalence) \bar{k}^{α} measures stage at c^{α} enters $A^{[3]}$
- Effectively, we need to accomodate infinitely many options for $m^{[3]}\left(c^{\alpha}\right)$.

Ensuring $\Phi_{e}(A) \succ \tau$

- Satisfy \mathscr{P}_{α} allowing $\mathbf{0}^{\prime \prime}$ to determine
 $\tau,|\tau|=2$ with $\Phi_{e}(A) \succ \tau$ assuming $c^{\alpha} \in A^{[3]}$
- $\operatorname{Try} \tau=\langle 00\rangle$ with highest priority, then $\langle 01\rangle,\langle 10\rangle$ and then $\langle 11\rangle$
- $\mathbf{0}^{\prime \prime}$ would find some other long τ if $c^{\alpha} \notin A^{[3]}$. Easy (can only happen one way).
- Remember, elements can be removed from $A^{[2]}$ by enumeration into $A^{[1]}$
- Like a Δ_{2}^{0} construction for $A^{[2]}$ but stays out if removed infinitely many times.
- For simplicity assume totality ($\mathbf{0}^{\prime \prime}$ will be able to check)

Ensuring $\Phi_{e}(A) \succ \tau$

- Satisfy \mathscr{P}_{α} allowing $\mathbf{0}^{\prime \prime}$ to determine

Ensuring $\Phi_{e}(A) \succ \tau$

- Satisfy \mathscr{P}_{α} allowing $\mathbf{0}^{\prime \prime}$ to determine
 $\tau,|\tau|=2$ with $\Phi_{e}(A) \succ \tau$ assuming $c^{\alpha} \in A^{[3]}$
- $\operatorname{Try} \tau=\langle 00\rangle$ with highest priority, then $\langle 01\rangle,\langle 10\rangle$ and then $\langle 11\rangle$
- Enumerate b_{1}.
- $\Phi_{e}\left(A_{s}\right)>\langle 00\rangle$.

Ensuring $\Phi_{e}(A) \succ \tau$

- Satisfy \mathscr{P}_{α} allowing $\mathbf{0}^{\prime \prime}$ to determine
 $\tau,|\tau|=2$ with $\Phi_{e}(A) \succ \tau$ assuming $c^{\alpha} \in A^{[3]}$
- $\operatorname{Try} \tau=\langle 00\rangle$ with highest priority, then $\langle 01\rangle,\langle 10\rangle$ and then $\langle 11\rangle$
- Enumerate b_{1}.
- $\Phi_{e}\left(A_{s}\right)>\langle 00\rangle$.
- Preserve higher priority string.
- Cancelation can only happen at b_{k} removing b_{k} and all larger enumerations.

Ensuring $\Phi_{e}(A) \succ \tau$

- Satisfy \mathscr{P}_{α} allowing $\mathbf{0}^{\prime \prime}$ to determine
 $\tau,|\tau|=2$ with $\Phi_{e}(A) \succ \tau$ assuming $c^{\alpha} \in A^{[3]}$
- $\operatorname{Try} \tau=\langle 00\rangle$ with highest priority, then $\langle 01\rangle,\langle 10\rangle$ and then $\langle 11\rangle$
- Enumerate b_{1}.
- $\left.\Phi_{e}\left(A_{s}\right)\right\rangle\langle 10\rangle$.

Ensuring $\Phi_{e}(A) \succ \tau$

- Satisfy \mathscr{P}_{α} allowing $\mathbf{0}^{\prime \prime}$ to determine $\tau,|\tau|=2$ with $\Phi_{e}(A)>\tau$ assuming $c^{\alpha} \in A^{[3]}$
- $\operatorname{Tr} y=\langle 00\rangle$ with highest priority, then $\langle 01\rangle,\langle 10\rangle$ and then $\langle 11\rangle$
- Enumerate b_{2}.
- $\Phi_{e}\left(A_{s}\right)>\langle 01\rangle$.

Ensuring $\Phi_{e}(A) \succ \tau$

- Satisfy \mathscr{P}_{α} allowing $\mathbf{0}^{\prime \prime}$ to determine $\tau,|\tau|=2$ with $\Phi_{e}(A) \succ \tau$ assuming $c^{\alpha} \in A^{[3]}$
- $\operatorname{Try} \tau=\langle 00\rangle$ with highest priority, then $\langle 01\rangle,\langle 10\rangle$ and then $\langle 11\rangle$
- Enumerate b_{2}.
- $\Phi_{e}\left(A_{s}\right)>\langle 01\rangle$.
- Preserve higher priority string.
- But don't restrain/move b_{1} because that belongs to higher priority string $\langle 00\rangle$.

Ensuring $\Phi_{e}(A) \succ \tau$

- Satisfy \mathscr{P}_{α} allowing $\mathbf{0}^{\prime \prime}$ to determine
 $\tau,|\tau|=2$ with $\Phi_{e}(A) \succ \tau$ assuming $c^{\alpha} \in A^{[3]}$
- $\operatorname{Try} \tau=\langle 00\rangle$ with highest priority, then $\langle 01\rangle,\langle 10\rangle$ and then $\langle 11\rangle$
- Enumerate b_{2}.
- $\Phi_{e}\left(A_{s}\right)>\langle 00\rangle$.

Ensuring $\Phi_{e}(A) \succ \tau$

- Satisfy \mathscr{P}_{α} allowing $\mathbf{0}^{\prime \prime}$ to determine $\tau,|\tau|=2$ with $\Phi_{e}(A)>\tau$ assuming $c^{\alpha} \in A^{[3]}$
- $\operatorname{Try} \tau=\langle 00\rangle$ with highest priority, then $\langle 01\rangle,\langle 10\rangle$ and then $\langle 11\rangle$
- Enumerate b_{2}.
- $\Phi_{e}\left(A_{s}\right)>\langle 00\rangle$.
- Preserve higher priority string.
- Don't restrain/move b_{1} because it belongs to same string $\langle 00\rangle$.

Ensuring $\Phi_{e}(A) \succ \tau$

- Satisfy \mathscr{P}_{α} allowing $\mathbf{0}^{\prime \prime}$ to determine
 $\tau,|\tau|=2$ with $\Phi_{e}(A) \succ \tau$ assuming $c^{\alpha} \in A^{[3]}$
- $\operatorname{Try} \tau=\langle 00\rangle$ with highest priority, then $\langle 01\rangle,\langle 10\rangle$ and then $\langle 11\rangle$
- Later we may need to cancel b_{1}
- But this restores state we had at earlier $\langle 00\rangle$ stage so $\left.\Phi_{e}\left(A_{s}\right)\right\rangle\langle 00\rangle$.

Ensuring $\Phi_{e}(A) \succ \tau$

- Satisfy \mathscr{P}_{α} allowing $\mathbf{0}^{\prime \prime}$ to determine $\tau,|\tau|=2$ with $\Phi_{e}(A) \succ \tau$ assuming $c^{\alpha} \in A^{[3]}$
- $\operatorname{Try} \tau=\langle 00\rangle$ with highest priority, then $\langle 01\rangle,\langle 10\rangle$ and then $\langle 11\rangle$
- If $c^{\alpha} \in A^{[3]}$ then $\Phi_{e}(A)$ extends highest priority $\tau,|\tau|=2$ seen infinitely.
- Critically $\mathbf{0}^{\prime \prime}$ can determine what τ would be if $c^{\alpha} \in A^{[3]}$.
- Doesn't affect whether (eventually) all b_{k} stay in $A^{[3]}$

Table of Contents

(1) Notation \& Definitions

(2) Background

- Weak 1-genericity
- R.E. Sets and 1-genericity
- 2-genericity
- 3-genericity
(3) 3-REA Sets
- Differences From Δ_{3}^{0} Escaping Functions
- Main Result
- Naive Strategies
- Complications

Limit May Not Exist

- Fortunately (for me), the method derived from T isn't enough.
- If the limit DNE then $\mathbf{0}^{\prime \prime}$ never gets confirmation that $c^{\alpha} \notin A^{[3]}$
- So, unlike T, we can't wait to see how \mathscr{P}_{α} is met before starting on \mathscr{P}_{β}.
- Requirements guessing that $\bar{k}^{\alpha}=n$ (i.e. each way $c^{\alpha} \in A^{[3]}$) can execute on cancelation of b_{n} (e.g. they get to know how \mathscr{P}_{α} is met)
- But \mathscr{P}_{β} - which guesses that $c^{\alpha} \notin A^{[3]}$ - can't wait.
- If guess $c^{\alpha} \notin A^{[3]}$ we do know how \mathscr{P}_{α} is met but must work on \mathscr{P}_{β} allowing for possibility $c^{\alpha} \in A^{[3]}$ with really large \bar{k}^{α}
- This is the concrete instantiation of fact that $\Phi_{e}(A)$ can wait to see multiple large values before commiting.

Interference Finding $\tau<\Phi_{e}(A)$

- Trick to let $\mathbf{0}^{\prime \prime}$ determine common $\tau<\Phi_{e}(A)$ above can't respect both \mathscr{P}_{α} and \mathscr{P}_{β} simultaneously.
- \mathscr{P}_{β} is guessing $c^{\alpha} \in A^{[3]}$ so even if b_{m}^{β} is cancelled infinitely often that must not cancel any b_{k}^{α} infinitely many times.
- Has consequence that we can't ensure that cancelling b_{m}^{β} doesn't return us to a lower priority option for τ.

Final Trick

- Instead of ensuring that if b_{i}^{α} gets cancelled we restore $\Phi_{e}(A) \succ \tau$ instead ensure that if b_{i}^{α} cancelled we restore $\Phi_{e}(A)>\sigma^{\widehat{ }}\langle 00 \cdots 0\rangle$ where $|\langle 00 \cdots 0\rangle|=i$.
- $\mathbf{0}^{\prime \prime}$ can tell if we eventually succeed at this for infinitely many i.
- If this succeeds we can (at stages we see progress) then go ahead and try to meet $\mathscr{P}_{\beta^{\prime}}$ (where β^{\prime} guesses this succeeds) certain that when $\mathbf{0}^{\prime \prime}$ finds out that $b_{i}^{\alpha} \in A^{[2]}$ we can conclude $\Phi_{e}(A) \succ \sigma^{\wedge}\langle 00 \cdots 0\rangle$.
- This means that even if $\mathbf{0}^{\prime \prime}$ never sees exactly how \mathscr{P}_{α} is satisfied we can enumerate a dense set of strings that $\Phi_{e}(A)$ avoids if $c^{\alpha} \in A^{[3]}$.
- OTOH, if this fails we $\mathbf{0}^{\prime \prime}$ discovers a string $\sigma^{\wedge}\langle 00 \cdots 0\rangle$ that $\Phi_{e}(A)$ avoids.
- We can try this again and again for different σ and interleave (in priority) with \mathscr{P}_{β}^{k} meaning each \mathscr{P}_{β}^{k} is only injured finitely many times.

References I

[1] Uri Andrews, Peter Gerdes, and Joseph S. Miller. "The degrees of bi-hyperhyperimmune sets". en. In: Annals of Pure and Applied Logic 165.3 (Mar. 2014), pp. 803-811. ISSN: 0168-0072. DOI: 10.1016/j.apal.2013.10.004. URL: https://www.
sciencedirect.com/science/article/pii/S0168007213001528 (visited on 10/15/2021).
[2] Carl G Jockusch and Richard A Shore. "PSEUDO JUMP OPERATORS. I: THE R. E. CASE". en. In: Transactions of the American Mathematical Society 275.2 (Feb. 1983), p. 11. DOI: 10/fdstv2.

