A non-trivial 3-REA Set Not Computing a Weak 3-generic

Peter M. Gerdes

Midwest Computability Seminar, 2023

Peter M. Gerdes

3-REA No Generic

▲ 불 ▶ ▲ 불 ▶ 월
 Chicago, 2023

1/40

Image: A matrix and a matrix

Outline

Notation & Definitions

Background 2

- Weak 1-genericity
- R.E. Sets and 1-genericity
- 2-genericity
- 3-genericity
- 3-REA Sets 3
 - Differences From Δ_3^0 Escaping Functions
 - Main Result
 - Naive Strategies
 - Complications

< ∃ >

Notation & Definitions

- Weak 1-genericity
- R.E. Sets and 1-genericity
- 2-genericity
- 3-genericity

- Differences From Δ_3^0 Escaping Functions
- Main Result
- Naive Strategies
- Complications

글 에 에 글 어

Image: A matrix of the second seco

- $\sigma, \tau, \nu, \delta$ range over $\{0, 1, \uparrow\}^{<\omega}$ (partial binary valued functions with finite domain).
- We write $\sigma \prec \tau$ if τ extends σ and $\sigma \prec X$ if σ is extended by the characteristic function of *X*.
- θ meets $\Gamma \subset \{0, 1, \uparrow\}^{<\omega} (\theta \Vdash \Gamma)$ if $(\exists \sigma \in \Gamma)(\theta \succ \sigma)$ and θ strongly avoids $\Gamma (\theta \Vdash \neg \Gamma)$ if some $(\exists \tau \prec \theta)(\forall \sigma \in \Gamma)(\tau \not\prec \gamma)$.
- $f \in \omega^{\omega}$ dominates $g \in \omega^{\omega} (f \gg g)$ if $(\forall^* x \in \omega)(f(x) \ge g(x))$.
- f is Δ^0_{n+1} escaping if f isn't dominated by any $g \leq_{\mathbf{T}} \mathbf{0}^{(n)}$

- The *i*-th hop is $\mathcal{H}_i(A) \stackrel{\text{def}}{=} A \oplus W_i^A$.
- REA sets are the result of iterating the Hop operation on \emptyset .
- The 1-REA sets are just the r.e. sets.
- The 2-REA sets are sets of the form $W_i \oplus W_i^{W_i}$

See Jockusch and Shore [2] for a more explicit definition.

< ロト < 同ト < 三ト

- For this talk we only care about *n*-REA sets up to Turing degree.
- Useful to identify the components of *n*-REA sets with their columns.

Peter	Μ.	Gerd	es

6/40

- In this talk we only consider the (standard) forcing relation on $2^{<\omega}$
- G is n-generic (n > 0) if $G \Vdash \phi$ or $G \Vdash \neg \phi$ for all $\Sigma_n^{0,G}$ sentences.
- Equivalently, G is n-generic if G meets or strongly avoids every Σ_n⁰ subset of 2^{<ω} (equivalently {0, 1, ↑ }^{<ω})
- $\Gamma \subset 2^{<\omega}$ is dense if $(\forall \tau \in 2^{<\omega})(\exists \sigma \in \Gamma)\tau \prec \sigma$
- G is weakly *n*-generic if G meets every dense Σ_n^0 subset of $2^{<\omega}$

Notation & Definitions

2 Background

- Weak 1-genericity
- R.E. Sets and 1-genericity
- 2-genericity
- 3-genericity

3 3-REA Sets

- Differences From Δ_3^0 Escaping Functions
- Main Result
- Naive Strategies
- Complications

< ∃ >

Background 2

Weak 1-genericity

- R.E. Sets and 1-genericity
- 2-genericity
- 3-genericity

- Differences From Δ_3^0 Escaping Functions
- Main Result
- Naive Strategies
- Complications

< ∃ >

Theorem

If $f \in \omega^{\omega}$ is Δ_1^0 escaping then f computes a weak 1-generic

- WLOG f is monotonicly increasing and let U_i be *i*-th r.e. subset of $2^{<\omega}$.
- Build $G = \lim_{n \to \infty} \tau_n$, $\tau_0 = \langle \rangle, \tau_{n+1} \succ \tau_n$.
- Let $\tau_{n+1} \succ \tau_n$ be in $U_{i,f(n+1)}$ for least $i \le n$ or τ_n if no such i exists.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- Suppose U_i is dense but G doesn't meet U_i .
- Let n > 0 large enough that τ_n meets every U_j , $j < i \ G$ will ever meet.
- Suppose we can compute a bound $l_m > |\tau_m|$ for m > n.
- Let h(m) be the least stage s such that $U_{i,h(m)}$ includes an extension of every string of length l_m .
- If $f(m) \ge h(m), m > n$ then τ_m meets U_i .
- We compute l_m by assuming f(x) < h(x) for n < x < m.

Can't extend to 1-generics because we can't guarantee number of stages needed to find an extension in a non-dense U_i is computably bounded.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Notation & Definitions

2 Background

Weak 1-genericity

• R.E. Sets and 1-genericity

- 2-genericity
- 3-genericity

3 3-REA Sets

- Differences From Δ_3^0 Escaping Functions
- Main Result
- Naive Strategies
- Complications

э

< ∃ >

Theorem

If $A \not\leq_{\mathbf{T}} \mathbf{0}$ is r.e. then A computes a 1-generic

- The modulus for $A\left(m(n) \stackrel{\text{def}}{=} \mu t\left(A_t \upharpoonright_{n+1} = A \upharpoonright_{n+1}\right)\right)$ is Δ_1^0 escaping.
- But we can compute full 1-generic by using the computable approximation to *A*.
- Same construction as before but we use stagewise approximations and allow restraint.
- Now, if we extend $\tau_{n,s}$ to $\tau_{n+1,s}$ to meet U_i then we preserve $\tau_{n+1,s}$ from changes trying to meet $U_i, j > i$

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\begin{split} m_{s}(n) & \stackrel{\text{def}}{=} \mu t \left(A_{t} \upharpoonright_{n+1} = A_{s} \upharpoonright_{n+1} \right) \\ r_{s}(i) & \stackrel{\text{def}}{=} \max \left\{ n \mid n \leq s \land \left(\exists \sigma \succ \tau_{n,s} \right) \left(\tau_{n,s} \neg \Vdash U_{i,s-1} \land \sigma \Vdash U_{i,s-1} \right) \right\} \\ \bar{r}_{s}(i) & \stackrel{\text{def}}{=} \max_{j < i} r_{s}(i) \\ i^{*}_{n+1,s} & \stackrel{\text{def}}{=} \min_{i \leq n} \neg (\tau_{n,s} \Vdash U_{i,m_{s}(n)}) \land \left(\exists \sigma \succ \tau_{n,s} \right) \left(\sigma \Vdash U_{i,m_{s}(n+1)} \right) \\ \tau_{n,s} & \stackrel{\text{def}}{=} \begin{cases} \langle \rangle & \text{if } s \leq n \lor s = 0 \lor n = 0 \\ \tau_{n,s-1} & \text{unless } m_{s}(n+1) > m_{s-1}(n) \\ \tau_{n,s-1} & \text{if } \bar{r}_{s}(i^{*}_{n,s}) \geq n \\ \sigma & \text{o.w. where } \sigma \text{ is least witness for } i^{*}_{n,s} \end{cases} \\ G & \stackrel{\text{def}}{=} \lim_{n \to \infty} \lim_{s \to \infty} \tau_{n,s} \end{split}$$

Note that $\tau_{n,\infty} = \tau_{n,m(n)}$ so $G \leq_{\mathbf{T}} A$.

14 / 40

- Suppose *i* is least s.t. $G \neg \Vdash U_i \land G \neg \Vdash \neg U_i$. We show that *A* is computable.
- Let *n* large enough that $n > \bar{r}_{\infty}(i)$ (exists by fact *i* least) and for all $j < i \ \tau_n \Vdash U_j \lor \tau_n \Vdash \neg U_j$ and *t* large enough that $\tau_{n,t} = \tau_n$.
- If there are $n' \ge n, s \ge \max(t, n'), \sigma \succ \tau_{n',s}, \sigma \Vdash U_{i,s}$ then m(n') < s.
- Otherwise we'd preserve $\tau_{n',s}$ and have $\tau_{n',m(n')} \Vdash U_i$.
- But, by assumption, there must be infinitely many such m, s showing $m \leq_{\mathbf{T}} \mathbf{0}$
- Contradiction.

1 Notation & Definitions

2 B

Background

- Weak 1-genericity
- R.E. Sets and 1-genericity
- 2-genericity
- 3-genericity

3 3-REA Sets

- Differences From Δ_3^0 Escaping Functions
- Main Result
- Naive Strategies
- Complications

э

-

Image: Image:

Theorem (Andrews, Gerdes and Miller)

If $f \in \omega^{\omega}$ is Δ_2^0 escaping then f computes a weak 2-generic

- Proved in [1]. Won't prove it here.
- Idea is to try and extend to meet Σ₂⁰ sets U_i by favoring those σ for which (∃x)(∀y)φ(σ, x, y) appears true with least max(|σ|, x).

Hypothesis

If $A \not\leq_{\mathbf{T}} \mathbf{0}'$ is 2-REA then A computes a 2-generic

イロト イポト イヨト イヨト 二日

1 Notation & Definitions

2 Background

- Weak 1-genericity
- R.E. Sets and 1-genericity
- 2-genericity
- 3-genericity

3 3-REA Sets

- Differences From Δ_3^0 Escaping Functions
- Main Result
- Naive Strategies
- Complications

э

-

Image: Image:

Theorem (Andrews, Gerdes and Miller)

There is a (pruned) perfect ω -branching tree $T \subset \omega^{<\omega}, T \leq_{\mathbf{T}} \mathbf{0}''$ such that if $f \in [T]$ then f doesn't compute a weak 3-generic.

vertex Node with multiple successors $(\sigma \langle i \rangle, \sigma \langle j \rangle \in T, i \neq j)$. ω -branching Every vertex has infinitely many immediate successors. **pruned** No terminal nodes (all nodes extend to paths) **perfect** Every node is extended by a vertex.

Theorem (Andrews, Gerdes and Miller)

There is a (pruned) perfect ω -branching tree $T \subset \omega^{<\omega}, T \leq_{\mathbf{T}} \mathbf{0}''$ such that if $f \in [T]$ then f doesn't compute a weak 3-generic.

- No amount of (countable) non-domination suffices to compute a weak 3-generic, e.g., g_j≫f, j ∈ ω.
 - View T as function on ω^{ω} by defining T[h] to be the path taking the h(n)-th option at the n-th vertex.
 - Let f = T[h] with h(k) picked large enough that $T[h](n_k) > g_j(n_k), j \le k$ where $T[h] \upharpoonright_{n_k}$ is the k-th vertex along T[h]
- Note that if f is monotonic and $\Delta^0_{n+3}, n \ge 0$ escaping then $T[f] \le_{\mathbf{T}} f \oplus \mathbf{0}''$ is as well.
 - If $g \gg T[f]$ then $g^*(k) = g(n_k)$ satisfies $g^* \gg f, g^* \leq_{\mathbf{T}} g \oplus \mathbf{0}''$

19/40

Question

What prevents the pattern from continuing indefinitely?

- Pattern worked because more non-domination strength gave us more computational power (guessing at membership in Σ_1^0 sets then Σ_2^0 sets).
- But, a computable reduction can't hope to always distinguish $\mathbf{0}^{(n)}$ big and $\mathbf{0}^{(n+k)}$ big.
- Given finitely many potential values of $\Phi_e(\sigma \langle n \rangle)$, **0**" can figure out which value is compatible with infinitely many n.
- Allows us to limit $\Phi_{\rho}(f)$ to a narrow range of options (while allowing f to take arbitrarily large values).
- Can build $\mathfrak{U}_e \subset 2^{<\omega}$ a dense Σ_3^0 set $\Phi_e(f)$ can't meet by enumerating strings outside that narrow range.

Lemma

Suppose for infinitely many $l \in \omega$, $\mathbf{0}''$ can enumerate k > 0, $\eta_i \in 2^{<\omega}, i < 2^k - 1, |\eta_i| \ge l + k$. If $f \in [T] \land \Phi_e(f) \downarrow \implies \Phi_e(f) \succ \eta_i$ then $\Phi_e(f)$ isn't weakly 3-generic for any $f \in [T]$.

Proof.

For each σ with $|\sigma| = l$ there are 2^k strings $\tau > \sigma$ of length l + k. At least one of those strings τ_{σ} must be incompatible with $\eta_i, i < 2^k - 1$.

For each such l > 0 and σ with $|\sigma| = l$ enumerate τ_{σ} into \mathfrak{U}_{e} . \mathfrak{U}_{e} is a dense Σ_{3}^{0} set that isn't met by $\Phi_{e}(f)$ for any $f \in [T]$.

	4	ㅁ › ㆍ 웹 › ㆍ 볼 › ㆍ 볼 ›	E 990
Peter M. Gerdes	3-REA No Generic	Chicago, 2023	21 / 40

Conditions

- A finite set V_s of vertexes ()
- For each $\sigma \in V_s$ an infinite r.e. set of strings $\Sigma_s(\sigma) \subset \left\{ \sigma^{\wedge}(n)^{\wedge} \tau \mid n \in \omega, \tau \in 2^{<\omega} \right\}$
- $\theta_s^e : 2^{<\omega} \mapsto 2^{<\omega} \cup \{\uparrow\}, e \in \omega$ such that if $\sigma \in V_s, \tau \in \Sigma_s(\sigma)$ then $\Phi_e(\tau) \succ \theta_s^e(\sigma)$ (where that means $\Phi_e(f)\uparrow$ if $f \succ \tau$ if $\theta_s^e(\sigma) =\uparrow$)
 - $$\begin{split} V_s\colon \text{Nodes we commit to making } \omega\text{-branching vertexes in } T.\\ \Sigma_s(\sigma)\colon \text{Possible (i.e. not in } V_s) \text{ branches extending } \sigma.\\ \theta_s^e(\sigma)\colon \text{Specifies initial segment of } \Phi_e(\tau) \text{ agreed on by all } \tau\in\Sigma_s(\sigma)\\ \text{ (or that all such } \tau \text{ force partiality)} \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Building T

Conditions

• A finite set V_s of vertexes ()

• For each
$$\sigma \in V_s$$
 an infinite r.e. set of strings
 $\Sigma_s(\sigma) \subset \left\{ \sigma^{\widehat{}} \langle n \rangle^{\widehat{}} \tau \mid n \in \omega, \tau \in 2^{<\omega} \right\}$

- $\theta_s^e : 2^{<\omega} \mapsto 2^{<\omega} \cup \{\uparrow\}, e \in \omega \text{ such that if } \sigma \in V_s, \tau \in \Sigma_s(\sigma) \text{ then } \Phi_e(\tau) \succ \theta_s^e(\sigma) \text{ (where that means } \Phi_e(f)\uparrow \text{ if } f \succ \tau \text{ if } \theta_s^e(\sigma) = \uparrow \text{)}$
- $V_0 = \{\langle \rangle\}$ if $s = 0 \lor \sigma \notin V_s \lor e \ge s$ then $\Sigma_s(\sigma) = \{\sigma^{\widehat{}}\langle n \rangle\}$ and $\theta_s^e(\sigma) = \langle \rangle$.
- $V_{s+1} = V_s \bigcup \{ \tau_{\sigma} \mid \sigma \in V_s \}$ where $\tau_{\sigma} \in \Sigma_s(\sigma)$ with $\tau_{\sigma}(|\sigma|)$ large. (Hence $|V_s| = 2^s$).
- $\Sigma_{s+1}(\sigma) \subset \Sigma_s(\sigma)$ and $\theta_{s+1}^e(\sigma) > \theta_s^e(\sigma)$ (where \uparrow is considered > maximal).
- We ensure that if $e < s, \sigma \in V_s$ then $|\theta_s^e(\sigma)| > 2s + 1$

≣ । < ≣ । E - • • • •

• Every
$$\sigma_i \in \Sigma_0(\langle \rangle)$$
 has $\Phi_e(\sigma_i) \succ \theta_0^e(\langle \rangle)$

E

590

<ロト <回ト < 回ト < 回ト < 回ト -

• Add new vertex in $\Sigma_s(\tau)$ for each $\tau \in V_s$.

	Peter	M. G	erdes
--	-------	------	-------

э

< □ > < 同 >

• Prune and extend (e.g. replace σ_i with an extension) so $\sigma_i \in \Sigma_1(\langle \rangle) \implies \Phi_e(\sigma_i) > \theta_1^e(\langle \rangle)$ (now longer) and $\Phi_e(\sigma_{0i}) > \theta_1^e(\sigma_0)$

Image: Image:

• If $f \in [T]$ then $\Phi_e(f) > \theta_1^e(\langle \rangle)$ or $\Phi_e(f) > \theta_1^e(\sigma_0)$

• Extend each vertex with a node from allowed branches.

Peter		

Chicago, 2023

∃ ⊳

< □ > < 同 >

23 / 40

э

• If If $f \in [T]$ then $\Phi_e(f) > \theta_2^e(\langle \rangle)$ or $\Phi_e(f) > \theta_2^e(\sigma_0)$ or $\Phi_e(f) > \theta_2^e(\sigma_0)$ or $\Phi_e(f) > \theta_2^e(\sigma_0)$

Peter M. Gerdes

Chicago, 2023

23 / 40

- To complete proof we must only show that we can always construct $\Sigma_{s+1}(\tau)$ from $\Sigma_s(\tau)$ that makes $\theta_{s+1}^e(\tau)$ sufficiently long.
- But given the length $\mathbf{0}''$ can ask if there are infinitely many elements $\sigma \in \Sigma_s(\tau)$ that can be extended to σ' with $\Phi_e(\sigma')$ of sufficent length.
- If not remove the finitely many elements that allow convergence.
- If so **0**" can determine which of the finitely many options for $\Sigma_{s+1}(\tau)$ permits $\Sigma_{s+1}(\tau)$ to be infinite.
- Repeat for each e < s + 1 and $\tau \in V_{s+1}$.

Notation & Definitions

Background

- Weak 1-genericity
- R.E. Sets and 1-genericity
- 2-genericity
- 3-genericity

3-REA Sets

- Differences From Δ_3^0 Escaping Functions
- Main Result
- Naive Strategies
- Complications

э

글 🖌 🖌 글 🕨

Notation & Definitions

Background

- Weak 1-genericity
- R.E. Sets and 1-genericity
- 2-genericity
- 3-genericity

3-REA Sets

- Differences From Δ_3^0 Escaping Functions
- Main Result
- Naive Strategies
- Complications

э

글 🖌 🖌 글 🕨

Image: Image:

Question

If $A \not\leq_{T} 0''$ is 3-REA does A compute a (weak) 3-generic?

- A computes a \$\Delta_3^0\$ escaping function \$m^{[3]}(x)\$ (where \$m^{[n+1]}(x)\$ is modulus of \$A^{[n+1]}\$ over \$A^{[n]}\$) but that's not enough.
- But several reasons to think that 3-REA sets have extra power to compute generics.
 - We get $m^{[3]}, m^{[2]}, m^{[1]}$ with $m^{[n]} \Delta_n^0, 1 \le n \le 3$ escaping. Modifications even ensure all three functions simultaneously escape a tuple $h^1 \le_{\mathbf{T}} \mathbf{0}, h^2 \le_{\mathbf{T}} \mathbf{0}', h^3 \le_{\mathbf{T}} \mathbf{0}''$
 - Our ability to effectively approximate A offers additional power (remember non-trivial r.e. sets compute 1-generics not just weak 1-generics).
 - Approach used to build T doesn't directly translate.

▲ロト ▲ 課 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

- When we built T functionals $\Phi_e(f)$ had to meet \mathfrak{U}_e using only one large value.
 - If $\sigma \in V_s, e < s, x \in \omega$ we could wait until we found $\tau \succ \sigma^{\widehat{}}\langle n \rangle$ with $\Phi_e(\tau; x)$ converging before choosing the next large value.
- Given $A \not\leq_{\mathbf{T}} \mathbf{0}''$, 3-REA, k > 1 and $h \leq_{\mathbf{T}} \mathbf{0}''$ there are infinitely many tuples $x_0 < x_1, <, \ldots, < x_k < m^{[3]}(x_0)$ such that $m^{[3]}(x_i) > h(x_i), i \leq k$.
- So, infinitely often, $\Phi_e(A; x)$ can consult k large values before trying to meet \mathfrak{U}_e .

Notation & Definitions

Background

- Weak 1-genericity
- R.E. Sets and 1-genericity
- 2-genericity
- 3-genericity

3-REA Sets

- Differences From Δ_3^0 Escaping Functions
- Main Result
- Naive Strategies
- Complications

3

-

Image: Image:

Theorem

There is a 3-REA set $A \not\leq_{\mathbf{T}} \mathbf{0}''$ that doesn't compute a weak 3-generic.

- We know A computes a weak 2-generic
- By result in [1] every Δ_3^0 escaping function computes a 2-generic.
- Thus, result is sharp.

イロト 人間ト イヨト イヨト

Requirements

$$\begin{aligned} \mathcal{P}_{i} \colon & A^{[3]}(c^{i}) \neq \lim_{s \to \infty} \lim_{t \to \infty} p_{i}(c^{i}, s, t) \\ \mathcal{Q}_{e,\sigma} \colon & X_{e} \downarrow \implies [\exists \tau \succ \sigma] \big(\tau \in \mathfrak{U}_{e} \land \tau \not\prec X_{e} \big) \end{aligned}$$

$$X_e \stackrel{\text{\tiny def}}{=} \Phi_e(A) \stackrel{\text{\tiny def}}{=} \Phi_e(A) \qquad \qquad \mathfrak{U}_e \, : \, \Sigma_1^0\left(\mathbf{0}''\right) \text{ subset of } 2^{<\omega}$$

 \mathscr{P}_i Ensures that $A \nleq_T \mathbf{0}''$ $\mathscr{Q}_{e,\sigma}$ Builds dense \mathfrak{U}_e avoiding X_e (no other additions)

• We'll want to break these requirements up into Π_2^0 subrequirements (to use tree method and let $\mathbf{0}''$ see outcome).

Peter M. Gerdes

(Alt) Requirements

Requirements

$$\mathcal{P}_{\alpha}: \quad A^{[3]}(c^{\alpha}) \neq \lim_{s \to \infty} \lim_{t \to \infty} p_{\alpha}(c^{\alpha}, s, t)$$
$$\mathcal{Q}_{\alpha,\sigma}: X_{\alpha} \downarrow \implies [\exists \tau \succ \sigma] \left(\tau \in \mathfrak{U}_{\alpha} \land \tau \measuredangle X_{\alpha} \right)$$

$$X_{\alpha} \stackrel{\text{def}}{=} \Phi_{\alpha}(A) \stackrel{\text{def}}{=} \Phi_{e_{\alpha}}(A) \qquad \mathfrak{U}_{\alpha} : \Sigma_{1}^{0} \left(\mathbf{0}'' \right) \text{ subset of } 2^{<\omega}$$

 \mathscr{P}_{α} Ensures that $A \not\leq_{\mathbf{T}} \mathbf{0}''$ $\mathscr{Q}_{\alpha,\sigma}$ Builds dense \mathfrak{U}_{α} avoiding X_e (no other additions)

• We'll want to break these requirements up into Π_2^0 subrequirements (to use tree method and let $\mathbf{0}''$ see outcome).

Peter M. Gerdes

31 / 40

イロト イポト イヨト イヨト 二日

Table of Contents

- Weak 1-genericity
- R.E. Sets and 1-genericity
- 2-genericity
- 3-genericity

3-REA Sets 3

- Differences From Δ_3^0 Escaping Functions
- Main Result
- Naive Strategies
- Complications

-

Image: Image:

Strategy for \mathscr{P}_{α}

Requirement

$$\mathscr{P}_{\alpha}$$
: $A^{[3]}(c^{\alpha}) \neq \lim_{s \to \infty} p'_{\alpha}(c^{\alpha}, s)$

$$p'_{\alpha}(c^{\alpha},s) \stackrel{\text{def}}{=} \lim_{t \to \infty} p_{\alpha}(c^{\alpha},s,t)$$

Sub-requirements

$$\mathcal{P}^k_{\alpha}: \qquad \qquad b^{\alpha}_k \in A^{[2]} \iff |\left\{t \mid p'_{\alpha}(c^{\alpha}, t)\right\} = 1| > k$$

• Place
$$c^{\alpha} \in A^{[3]}$$
 iff $(\exists k) (b_k^{\alpha} \notin A^{[2]})$

- At stage s place b_k into $A^{[2]}$ if it's not currently in and $|\{t \mid p_{\alpha}(c^{\alpha}, t, s)\} = 1| > k.$
- We remove b_k at $s_1 > s$ (by enumerating into $A^{[1]}$) if $|\{t \mid (\forall s' \in [s, s_1])(p_{\alpha}(c^{\alpha}, t, s') = 1)\}| \le k$
- $c^{\alpha} \notin A^{[3]}$ if $\lim_{s \to \infty} p'_{\alpha}(c^{\alpha}, s)$ is 1 or DNE

イロト 不得下 イヨト イヨト 二日

- Let's try same approach as constructing *T*, ensure that all 'options' for *A* agree on 'alot' of $\Phi_e(A)$.
- But 0" can't determine if c^α ∈ A^[3]. But we can accomodate both options by agreeing on sufficiently long initial segments.
- Harder problem is ensuring that $\Phi_e(A)$ takes the same value no matter what value we get for $\bar{k}^{\alpha} \stackrel{\text{def}}{=} \mu k \left(b_k^{\alpha} \notin A^{[3]} \right)$.
- This is analog of allowing f(x) to take on infinitely many values in construction of T.
 - (Up to $\mathbf{0}''$ equivalence) $ar{k}^{lpha}$ measures stage at c^{lpha} enters $A^{[3]}$
 - Effectively, we need to accomodate infinitely many options for $m^{[3]}(c^{\alpha})$.

- Satisfy \mathcal{P}_{α} allowing $\mathbf{0}''$ to determine $\tau, |\tau| = 2$ with $\Phi_e(A) \succ \tau$ assuming $c^{\alpha} \in A^{[3]}$
- Try $\tau = \langle 00 \rangle$ with highest priority, then $\langle 01 \rangle, \langle 10 \rangle$ and then $\langle 11 \rangle$
- 0" would find some other long τ if c^α ∉ A^[3]. Easy (can only happen one way).
- Remember, elements can be removed from $A^{[2]}$ by enumeration into $A^{[1]}$
- Like a Δ_2^0 construction for $A^{[2]}$ but stays out if removed infinitely many times.
- For simplicity assume totality (0" will be able to check)

- Satisfy \mathscr{P}_{α} allowing $\mathbf{0}''$ to determine $\tau, |\tau| = 2$ with $\Phi_e(A) \succ \tau$ assuming $c^{\alpha} \in A^{[3]}$
- Try $\tau = \langle 00 \rangle$ with highest priority, then $\langle 01 \rangle, \langle 10 \rangle$ and then $\langle 11 \rangle$

•
$$\Phi_e(A_s) > \langle 11 \rangle$$
.

Peter M. Gerdes

Chicago, 2023 35 / 40

3

- Satisfy \mathscr{P}_{α} allowing $\mathbf{0}''$ to determine $\tau, |\tau| = 2$ with $\Phi_e(A) \succ \tau$ assuming $c^{\alpha} \in A^{[3]}$
- Try $\tau = \langle 00 \rangle$ with highest priority, then $\langle 01 \rangle, \langle 10 \rangle$ and then $\langle 11 \rangle$
- Enumerate b_1 .

•
$$\Phi_e(A_s) \succ \langle 00 \rangle$$
.

3

- Satisfy \mathcal{P}_{α} allowing $\mathbf{0}''$ to determine $\tau, |\tau| = 2$ with $\Phi_e(A) \succ \tau$ assuming $c^{\alpha} \in A^{[3]}$
- Try $\tau = \langle 00 \rangle$ with highest priority, then $\langle 01 \rangle, \langle 10 \rangle$ and then $\langle 11 \rangle$
- Enumerate b_1 .
- $\Phi_e(A_s) \succ \langle 00 \rangle$.
- Preserve higher priority string.
- Cancelation can only happen at b_k removing b_k and all larger enumerations.

Chicago, 2023

<ロト < 同ト < 国ト < 国ト < 国ト 三 国

35 / 40

- Satisfy \mathscr{P}_{α} allowing $\mathbf{0}''$ to determine $\tau, |\tau| = 2$ with $\Phi_e(A) \succ \tau$ assuming $c^{\alpha} \in A^{[3]}$
- Try $\tau = \langle 00 \rangle$ with highest priority, then $\langle 01 \rangle, \langle 10 \rangle$ and then $\langle 11 \rangle$
- Enumerate b_1 .

•
$$\Phi_e(A_s) \succ \langle 10 \rangle$$
.

3

- Satisfy \mathcal{P}_{α} allowing $\mathbf{0}''$ to determine $\tau, |\tau| = 2$ with $\Phi_e(A) \succ \tau$ assuming $c^{\alpha} \in A^{[3]}$
- Try $\tau = \langle 00 \rangle$ with highest priority, then $\langle 01 \rangle, \langle 10 \rangle$ and then $\langle 11 \rangle$
- Enumerate b_2 .

•
$$\Phi_e(A_s) \succ \langle 01 \rangle$$
.

3

- Satisfy \mathcal{P}_{α} allowing $\mathbf{0}''$ to determine $\tau, |\tau| = 2$ with $\Phi_e(A) \succ \tau$ assuming $c^{\alpha} \in A^{[3]}$
- Try $\tau = \langle 00 \rangle$ with highest priority, then $\langle 01 \rangle, \langle 10 \rangle$ and then $\langle 11 \rangle$
- Enumerate b_2 .
- $\Phi_e(A_s) \succ \langle 01 \rangle$.
- Preserve higher priority string.
- But don't restrain/move b_1 because that belongs to higher priority string $\langle 00 \rangle$.

イロト イポト イヨト イヨト

35 / 40

- Satisfy \mathscr{P}_{α} allowing $\mathbf{0}''$ to determine $\tau, |\tau| = 2$ with $\Phi_e(A) \succ \tau$ assuming $c^{\alpha} \in A^{[3]}$
- Try $\tau = \langle 00 \rangle$ with highest priority, then $\langle 01 \rangle, \langle 10 \rangle$ and then $\langle 11 \rangle$
- Enumerate b_2 .

•
$$\Phi_e(A_s) \succ \langle 00 \rangle$$
.

3

- Satisfy \mathscr{P}_{α} allowing $\mathbf{0}''$ to determine $\tau, |\tau| = 2$ with $\Phi_e(A) \succ \tau$ assuming $c^{\alpha} \in A^{[3]}$
- Try $\tau = \langle 00 \rangle$ with highest priority, then $\langle 01 \rangle, \langle 10 \rangle$ and then $\langle 11 \rangle$
- Enumerate b_2 .
- $\Phi_e(A_s) \succ \langle 00 \rangle$.
- Preserve higher priority string.
- Don't restrain/move b_1 because it belongs to same string $\langle 00 \rangle$.

3

- Satisfy \mathscr{P}_{α} allowing $\mathbf{0}''$ to determine $\tau, |\tau| = 2$ with $\Phi_{\rho}(A) \succ \tau$ assuming $c^{\alpha} \in A^{[3]}$
- Try $\tau = \langle 00 \rangle$ with highest priority, then $\langle 01 \rangle, \langle 10 \rangle$ and then $\langle 11 \rangle$
- Later we may need to cancel b₁
- But this restores state we had at earlier $\langle 00 \rangle$ stage so $\Phi_e(A_s) \succ \langle 00 \rangle$.

Image: A matrix and a matrix

3

- Satisfy \mathcal{P}_{α} allowing $\mathbf{0}''$ to determine $\tau, |\tau| = 2$ with $\Phi_e(A) \succ \tau$ assuming $c^{\alpha} \in A^{[3]}$
- Try $\tau = \langle 00 \rangle$ with highest priority, then $\langle 01 \rangle, \langle 10 \rangle$ and then $\langle 11 \rangle$
- If c^α ∈ A^[3] then Φ_e(A) extends highest priority τ, |τ| = 2 seen infinitely.
- Critically 0" can determine what τ would be *if* $c^{\alpha} \in A^{[3]}$.
- Doesn't affect whether (eventually) all b_k stay in $A^{[3]}$

Image: A matrix and a matrix

Table of Contents

- Weak 1-genericity
- R.E. Sets and 1-genericity
- 2-genericity
- 3-genericity

3-REA Sets 3

- Differences From Δ_3^0 Escaping Functions
- Main Result
- Naive Strategies
- Complications

< ∃ >

- Fortunately (for me), the method derived from T isn't enough.
- If the limit DNE then $\mathbf{0}''$ never gets confirmation that $c^{\alpha} \notin A^{[3]}$
- So, unlike T, we can't wait to see how \mathscr{P}_{α} is met before starting on $\mathscr{P}_{\beta}.$
 - Requirements guessing that $\bar{k}^{\alpha} = n$ (i.e. each way $c^{\alpha} \in A^{[3]}$) can execute on cancelation of b_n (e.g. they get to know how \mathscr{P}_{α} is met)
 - But \mathscr{P}_{β} which guesses that $c^{\alpha} \notin A^{[3]}$ can't wait.
- If guess $c^{\alpha} \notin A^{[3]}$ we do know how \mathscr{P}_{α} is met but must work on \mathscr{P}_{β} allowing for possibility $c^{\alpha} \in A^{[3]}$ with really large \bar{k}^{α}
- This is the concrete instantiation of fact that $\Phi_e(A)$ can wait to see multiple large values before commiting.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のの⊙

- Trick to let $\mathbf{0}''$ determine common $\tau \prec \Phi_e(A)$ above can't respect both \mathscr{P}_{α} and \mathscr{P}_{β} simultaneously.
- \mathscr{P}_{β} is guessing $c^{\alpha} \in A^{[3]}$ so even if b_m^{β} is cancelled infinitely often that must not cancel any b_k^{α} infinitely many times.
- Has consequence that we can't ensure that cancelling b_m^β doesn't return us to a lower priority option for τ .

Final Trick

- Instead of ensuring that if b_i^{α} gets cancelled we restore $\Phi_e(A) > \tau$ instead ensure that if b_i^{α} cancelled we restore $\Phi_e(A) > \sigma^{\widehat{}}\langle 00 \cdots 0 \rangle$ where $|\langle 00 \cdots 0 \rangle| = i$.
- 0" can tell if we eventually succeed at this for infinitely many *i*.
- If this succeeds we can (at stages we see progress) then go ahead and try to meet $\mathscr{P}_{\beta'}$ (where β' guesses this succeeds) certain that when $\mathbf{0}''$ finds out that $b_i^{\alpha} \in A^{[2]}$ we can conclude $\Phi_e(A) > \sigma^{\widehat{}}\langle 00 \cdots 0 \rangle$.
 - This means that even if $\mathbf{0}''$ never sees exactly how \mathscr{P}_{α} is satisfied we can enumerate a dense set of strings that $\Phi_{e}(A)$ avoids if $c^{\alpha} \in A^{[3]}$.
- OTOH, if this fails we $\mathbf{0}''$ discovers a string $\sigma \widehat{} \langle 00 \cdots 0 \rangle$ that $\Phi_e(A)$ avoids.
- We can try this again and again for different σ and interleave (in priority) with \mathscr{P}^k_β meaning each \mathscr{P}^k_β is only injured finitely many times.

イロト 不得下 イヨト イヨト 二日

- Uri Andrews, Peter Gerdes, and Joseph S. Miller. "The degrees of bi-hyperhyperimmune sets". en. In: Annals of Pure and Applied Logic 165.3 (Mar. 2014), pp. 803-811. ISSN: 0168-0072. DOI: 10.1016/j.apal.2013.10.004. URL: https://www. sciencedirect.com/science/article/pii/S0168007213001528 (visited on 10/15/2021).
- [2] Carl G Jockusch and Richard A Shore. "PSEUDO JUMP OPERATORS. I: THE R. E. CASE". en. In: *Transactions of the American Mathematical Society* 275.2 (Feb. 1983), p. 11. DOI: 10/fdstv2.