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Part I: Background
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Weak and Vague Convergence of Measures

M(R): the space of finite Borel measures on R

Let {µn}n∈N be a sequence in M(R).

lim
n→∞

∫
R
f dµn =

∫
R
f dµ

Weak Convergence: f : R→ R is a
bounded continuous function
Hello there.

Vague Convergence: f : R→ R is
a continuous function with
compact support
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Computable Analysis

I A computable metric space is a triple (X , d ,S) with the following
properties:

I (X , d) is a complete separable metric space

I S = {si : i ∈ N} is a countable dense subset of X

I d(si , sj) is computable uniformly in i , j

I Examples:

I (R, | · |,Q)

I (2ω, dC , SC ) where dC (X ,Y ) = 2−min{n:X (n) 6=Y (n)} and
SC = {σ0ω : σ ∈ 2<ω}

I Throughout the talk, we will focus on X = R.
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Computable Analysis

I A (Cauchy) name of x ∈ R is a computable sequence of rationals
{qn}n∈N so that |qn − qn+1| < 2−n.

I A function f :⊆ R→ R is computable if there is a Turing functional
that sends a name of x ∈ dom f to a name of f (x).

I A (compact-open) name of a function f ∈ C (R) is an enumeration ρf
of the set {NI ,J : f ∈ NI ,J}, where
I I ⊆ R is a compact interval;
I J ⊆ R is an open interval;
I NI ,J = {f ∈ C(R) : f (I ) ⊆ J}.

I A function F :⊆ C (R)→ R is computable if there is a Turing
functional that sends a name of f ∈ domF to a name of F (f ).
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Computable Analysis

{Ii}i∈N: effective enumeration of rational open intervals of R

I An open U ⊆ R is Σ0
1 if {i ∈ N : Ii ⊆ U} is c.e.; denote by Σ0

1(R)

I A closed C ⊆ R is Π0
1 if {i ∈ N : Ii ∩ C = ∅} is c.e.; denote by Π0

1(R)

{We}e∈N: effective enumeration of c.e. sets

I Index e of U ∈ Σ0
1(R): We = {i ∈ N : Ii ⊆ U}

I Index e of C ∈ Π0
1(R): We = {i ∈ N : Ii ∩ C = ∅}
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Computable Analysis

For a compact subset K of R:

I A (minimal cover) name of K is an enumeration of all minimal finite
open covers of K .

I K is computably compact if it has a computable name.

I An index of K is an index of a name of K .
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Computable Measure Theory

I A measure µ ∈M(R) is computable if µ(R) is computable and µ(U)
is left-c.e. uniformly from (an index of) U ∈ Σ0

1(R).

I A sequence {µn}n∈N in M(R) is uniformly computable if µn is a
computable measure uniformly in n.

I A set A ⊆ R is µ-almost decidable if there is a pair U,V ∈ Σ0
1(R)

(called a µ-almost decidable pair) such that U ∩ V = ∅,
µ(U ∪ V ) = µ(R), U ∪ V = R, and U ⊆ A ⊆ R \ V .

I Define an index e of a µ-almost decidable A ⊆ R to be an index of its
µ-almost decidable pair.
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Computable Measure Theory

Prokhorov metric ρ on M(R): ρ(µ, ν) := the infimum over all ε > 0 so
that µ(A) ≤ ν(B(A, ε)) + ε and ν(A) ≤ µ(B(A, ε)) + ε for all A ∈ B(R),
where

I B(R) is the Borel σ-algebra of R;

I B(A, ε) =
⋃

a∈A B(a, ε);

I B(a, ε) is the open ball of radius ε around a.

Work by M. Hoyrup and C. Rojas (2009) gives us the following:

I (M(R), ρ,D) is a computable metric space, where D denotes the
space of finite rational linear combinations of Dirac measures on R.

I µ ∈M(R) is computable if and only if Iµ : f 7→
∫
R fdµ is computable

on computable f ∈ C (R), uniformly from (a name of) f .
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Part II: Effective Weak Convergence of Measures on R
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Definitions

I Let {µn}n∈N be a sequence in M(R).

Definition.

{µn}n∈N effectively weakly converges to µ ∈ M(R) if for ev-
ery bounded computable function f :⊆ R → R, limn

∫
R f dµn =∫

R f dµ and it is possible to compute an index of a modulus of con-
vergence for {

∫
R f dµn}n∈N from an index of f and a bound B ∈ N

on |f |.
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Definitions

Definition.

{µn}n∈N uniformly effectively weakly converges to µ ∈ M(R) if it
weakly converges to µ and there is a uniform procedure that com-
putes for any bounded continuous function f : R → R a modulus
of convergence for {

∫
R f dµn}n∈N from a name of f and a bound

B ∈ N on |f |.
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Definitions

Example (1)
Fix a, b ∈ Q, E ∈ B(R), a uniformly computable sequence {qn}n∈N in Q
that decreases to 0. The sequence µn(E ) = λ(E ∩ [a− qn, b + qn])
effectively weakly converges to µ(E ) = λ(E ∩ [a, b]), where λ is Lebesgue
measure on B(R).

Example (2)
For a uniformly computable sequence {rn}n∈N in Q that converges to
some computable r ∈ R, the sequence of Dirac measures {δrn}n∈N
effectively weakly converges to δr .
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Properties

Proposition. (McNicholl, R. 2021+)

If {µn}n∈N is uniformly computable and effectively weakly con-
verges to µ, then µ is a computable measure.

Nonexample
Let {qn}n∈N be a uniformly computable increasing sequence in Q that
converges to an incomputable left-c.e. α ∈ R. For E ∈ B(R) and λ
Lebesgue measure on B(R), the sequence {µn}n∈N defined by
µn(E ) = λ(E ∩ [0, qn]) weakly converges to µ(E ) = λ(E ∩ [0, α]), but
fails to effectively weakly converge since µ(R) = λ([0, α]) = α is not
computable.



15/29

Properties

Proposition. (McNicholl, R. 2021+)

If {µn}n∈N is uniformly computable and effectively weakly con-
verges to µ, then µ is a computable measure.

Nonexample
Let {qn}n∈N be a uniformly computable increasing sequence in Q that
converges to an incomputable left-c.e. α ∈ R. For E ∈ B(R) and λ
Lebesgue measure on B(R), the sequence {µn}n∈N defined by
µn(E ) = λ(E ∩ [0, qn]) weakly converges to µ(E ) = λ(E ∩ [0, α]), but
fails to effectively weakly converge since µ(R) = λ([0, α]) = α is not
computable.



16/29

Properties

Theorem. (McNicholl, R. 2021+)

Suppose {µn}n∈N is uniformly computable. The following are
equivalent:

(1) {µn}n∈N is effectively weakly convergent;

(2) {µn}n∈N is uniformly effectively weakly convergent.
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Effective Portmanteau Theorem

Portmanteau Theorem (Alexandroff 1941)

For a sequence {µn}n∈N in M(R), the following are equivalent.

(1) {µn}n∈N weakly converges to µ

(2) For every uniformly continuous f ∈ Cb(R),
lim

n→∞

∫
R fdµn =

∫
R fdµ.

(3) For every closed C ⊆ R, lim sup
n→∞

µn(C ) ≤ µ(C ).

(4) For every open U ⊆ R, lim inf
n→∞

µn(U) ≥ µ(U).

(5) For every µ-continuity A ⊆ R, lim
n→∞

µn(A) = µ(A).
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Effective Portmanteau Theorem

To help us formulate an effective version of the aforementioned theorem,
we need the following definition.

Definition.

Suppose {an}n∈N is a sequence of reals, and let g :⊆ Q→ N.

1. We say g witnesses that lim infn an is not smaller than a if
dom(g) is the left Dedekind cut of a and if r < an whenever
r ∈ dom(g) and n ≥ g(r).

2. We say g witnesses that lim supn an is not larger than a if
dom(g) is the right Dedekind cut of a and if r > an whenever
r ∈ dom(g) and n ≥ g(r).
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Effective Portmanteau Theorem

Theorem. (McNicholl, R. 2021+)

For a uniformly computable sequence {µn}n∈N in M(R), the fol-
lowing are equivalent.

(1) {µn}n∈N effectively weakly converges to µ

(2) From e,B ∈ N so that e indexes a uniformly continuous
f ∈ Cb(R) with |f | ≤ B, it is possible to compute a modulus
of convergence of {

∫
R f dµn}n∈N with limit

∫
R f dµ.

(3) µ is computable, and from an index of C ∈ Π0
1(R) it is

possible to compute an index of a witness that lim supn µn(C )
is not larger than µ(C ).

(4) µ is computable, and from an index of U ∈ Σ0
1(R) it is

possible to compute an index of a witness that lim infn µn(U)
is not smaller than µ(U).

(5) µ is computable, and for every µ-almost decidable A,
limn µn(A) = µ(A) and an index of a modulus of convergence
of {µn(A)}n∈N can be computed from an index of A.
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Effective Convergence in the Prokhorov Metric

I We say {µn}n∈N converges effectively in the Prokhorov metric ρ to µ
if there is a computable function ε : N→ N such that n ≥ ε(N)
implies ρ(µn, µ) < 2−N for all n,N.

I Note: ρ metrizes the topology of weak convergence of measures on
M(X ) for a separable metric space X .

I The following result is a consequence of the Effective Portmanteau
Theorem.
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Part III: Effective Vague Convergence of Measures on R
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Definitions

I Let {µn}n∈N be a sequence in M(R).

Definition.

{µn}n∈N effectively vaguely converges to µ ∈ M(R) if for ev-
ery compactly-supported computable function f :⊆ R → R,
limn

∫
R f dµn =

∫
R f dµ and it is possible to compute an index

of a modulus of convergence for {
∫
R f dµn}n∈N from an index of f

and an index of supp f .
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Definitions

Definition.

{µn}n∈N uniformly effectively vaguely converges to µ ∈M(R) if it
vaguely converges to µ and there is a uniform procedure that com-
putes for any compactly-supported continuous function f : R→ R
a modulus of convergence for {

∫
R f dµn}n∈N from a name of f and

a name of supp f .
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Properties

In contrast to effective weak convergence:

Proposition. (R. 2021+)

There is a uniformly computable sequence in M(R) that effec-
tively vaguely converges but such that the limit measure µ has the
property that µ(R) is an incomputable real.

Sketch.
Let A ⊂ N be an incomputable c.e. set, and let {ai}n∈N be an effective
enumeration of A. The sequence µn =

∑n
i=0 2−(ai+1)δi for each n ∈ N

effectively vaguely converges to the measure µ =
∑∞

i=0 2−(ai+1)δi .
Note that µ(R) =

∑∞
i=0 2−(ai+1) is incomputable since it is the limit of a

Specker sequence.



24/29

Properties

In contrast to effective weak convergence:

Proposition. (R. 2021+)

There is a uniformly computable sequence in M(R) that effec-
tively vaguely converges but such that the limit measure µ has the
property that µ(R) is an incomputable real.

Sketch.
Let A ⊂ N be an incomputable c.e. set, and let {ai}n∈N be an effective
enumeration of A. The sequence µn =

∑n
i=0 2−(ai+1)δi for each n ∈ N

effectively vaguely converges to the measure µ =
∑∞

i=0 2−(ai+1)δi .
Note that µ(R) =

∑∞
i=0 2−(ai+1) is incomputable since it is the limit of a

Specker sequence.



24/29

Properties

In contrast to effective weak convergence:

Proposition. (R. 2021+)

There is a uniformly computable sequence in M(R) that effec-
tively vaguely converges but such that the limit measure µ has the
property that µ(R) is an incomputable real.

Sketch.
Let A ⊂ N be an incomputable c.e. set, and let {ai}n∈N be an effective
enumeration of A. The sequence µn =

∑n
i=0 2−(ai+1)δi for each n ∈ N

effectively vaguely converges to the measure µ =
∑∞

i=0 2−(ai+1)δi .
Note that µ(R) =

∑∞
i=0 2−(ai+1) is incomputable since it is the limit of a

Specker sequence.



25/29

Properties

Proposition. (R. 2021+)

If {µn}n∈N is a uniformly computable sequence that effectively
vaguely converges to µ and µ(R) is computable, then µ is com-
putable.

Theorem. (R. 2021+)

Suppose {µn}n∈N is uniformly computable. The following are
equivalent:

(1) {µn}n∈N is effectively vaguely convergent;

(2) {µn}n∈N is uniformly effectively vaguely convergent.
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Connections with Effective Weak Convergence

Theorem. (R. 2021+)

Suppose {µn}n∈N is uniformly computable. Suppose further that
there is a computable modulus of convergence for {µn(R)}n∈N.
The following are equivalent:

(1) {µn}n∈N is effectively vaguely convergent;

(2) {µn}n∈N is effectively weakly convergent.

Corollary.

Suppose {µn}n∈N is a uniformly computable sequence of probability
measures. The following are equivalent:

(1) {µn}n∈N is effectively vaguely convergent;

(2) {µn}n∈N is effectively weakly convergent.
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