Effective convergence notions for measures on the real line

Diego A. Rojas

Joint work with Timothy McNicholl

Iowa State University

October 25, 2021 Midwest Computability Seminar

Outline

- I. Background
 - Weak and Vague Convergence of Measures
 - Computable Analysis
 - Computable Measure Theory
- II. Effective Weak Convergence of Measures on ${\mathbb R}$
 - Definitions
 - Properties
 - Effective Portmanteau Theorem
 - ► Effective Convergence in the Prokhorov Metric
- III. Effective Vague Convergence of Measures on $\mathbb R$
 - Definitions
 - Properties
 - ► Connections with Effective Weak Convergence

Part I: Background

$\mathcal{M}(\mathbb{R})$: the space of finite Borel measures on \mathbb{R}

Let $\{\mu_n\}_{n\in\mathbb{N}}$ be a sequence in $\mathcal{M}(\mathbb{R})$

$$\lim_{n\to\infty}\int_{\mathbb{R}}f\,d\mu_n=\int_{\mathbb{R}}f\,d\mu$$

Weak Convergence: $f: \mathbb{R} \to \mathbb{R}$ is a bounded continuous function

 $\mathcal{M}(\mathbb{R})$: the space of finite Borel measures on \mathbb{R}

Let $\{\mu_n\}_{n\in\mathbb{N}}$ be a sequence in $\mathcal{M}(\mathbb{R})$.

$$\lim_{n\to\infty}\int_{\mathbb{R}}f\,d\mu_n=\int_{\mathbb{R}}f\,d\mu$$

Weak Convergence: $f: \mathbb{R} \to \mathbb{R}$ is a bounded continuous function

 $\mathcal{M}(\mathbb{R})$: the space of finite Borel measures on \mathbb{R}

Let $\{\mu_n\}_{n\in\mathbb{N}}$ be a sequence in $\mathcal{M}(\mathbb{R})$.

$$\lim_{n\to\infty}\int_{\mathbb{R}}fd\mu_n=\int_{\mathbb{R}}fd\mu$$

Weak Convergence: $f: \mathbb{R} \to \mathbb{R}$ is a bounded continuous function

 $\mathcal{M}(\mathbb{R})$: the space of finite Borel measures on \mathbb{R}

Let $\{\mu_n\}_{n\in\mathbb{N}}$ be a sequence in $\mathcal{M}(\mathbb{R})$.

$$\lim_{n\to\infty}\int_{\mathbb{R}}fd\mu_n=\int_{\mathbb{R}}fd\mu$$

Weak Convergence: $f: \mathbb{R} \to \mathbb{R}$ is a bounded continuous function

 $\mathcal{M}(\mathbb{R})$: the space of finite Borel measures on \mathbb{R}

Let $\{\mu_n\}_{n\in\mathbb{N}}$ be a sequence in $\mathcal{M}(\mathbb{R})$.

$$\lim_{n\to\infty}\int_{\mathbb{R}}fd\mu_n=\int_{\mathbb{R}}fd\mu$$

Weak Convergence: $f: \mathbb{R} \to \mathbb{R}$ is a bounded continuous function

- A computable metric space is a triple (X, d, S) with the following properties:
 - ightharpoonup (X, d) is a complete separable metric space
 - ▶ $S = \{s_i : i \in \mathbb{N}\}$ is a countable dense subset of X
 - $ightharpoonup d(s_i, s_j)$ is computable uniformly in i, j
- ► Examples:
 - ightharpoons $(\mathbb{R}, |\cdot|, \mathbb{Q})$
 - $(2^{\omega}, d_C, S_C) \text{ where } d_C(X, Y) = 2^{-\min\{n:X(n)\neq Y(n)\}} \text{ and } S_C = \{\sigma 0^{\omega}: \sigma \in 2^{<\omega}\}$
- ▶ Throughout the talk, we will focus on $X = \mathbb{R}$.

- A computable metric space is a triple (X, d, S) with the following properties:
 - \triangleright (X, d) is a complete separable metric space
 - ▶ $S = \{s_i : i \in \mathbb{N}\}$ is a countable dense subset of X
 - $ightharpoonup d(s_i, s_j)$ is computable uniformly in i, j
- ► Examples:
 - $ightharpoonup (\mathbb{R}, |\cdot|, \mathbb{Q})$
 - $(2^{\omega}, d_C, S_C)$ where $d_C(X, Y) = 2^{-\min\{n:X(n) \neq Y(n)\}}$ and $S_C = \{\sigma 0^{\omega} : \sigma \in 2^{<\omega}\}$
- ▶ Throughout the talk, we will focus on $X = \mathbb{R}$.

- A computable metric space is a triple (X, d, S) with the following properties:
 - \triangleright (X, d) is a complete separable metric space
 - ▶ $S = \{s_i : i \in \mathbb{N}\}$ is a countable dense subset of X
 - $ightharpoonup d(s_i, s_j)$ is computable uniformly in i, j
- ► Examples:
 - $ightharpoonup (\mathbb{R}, |\cdot|, \mathbb{Q})$
 - $(2^{\omega}, d_C, S_C)$ where $d_C(X, Y) = 2^{-\min\{n:X(n) \neq Y(n)\}}$ and $S_C = \{\sigma 0^{\omega} : \sigma \in 2^{<\omega}\}$
- ▶ Throughout the talk, we will focus on $X = \mathbb{R}$.

- ▶ A (Cauchy) name of $x \in \mathbb{R}$ is a computable sequence of rationals $\{q_n\}_{n\in\mathbb{N}}$ so that $|q_n-q_{n+1}|<2^{-n}$.
- ▶ A function $f : \subseteq \mathbb{R} \to \mathbb{R}$ is *computable* if there is a Turing functional that sends a name of $x \in \text{dom } f$ to a name of f(x).
- ▶ A (compact-open) name of a function $f \in C(\mathbb{R})$ is an enumeration ρ_f of the set $\{N_{I,J} : f \in N_{I,J}\}$, where
 - $I \subseteq \mathbb{R}$ is a compact interval;
 - $ightharpoonup J \subseteq \mathbb{R}$ is an open interval;
- ▶ A function $F : \subseteq C(\mathbb{R}) \to \mathbb{R}$ is *computable* if there is a Turing functional that sends a name of $f \in \text{dom } F$ to a name of F(f)

- ▶ A (Cauchy) name of $x \in \mathbb{R}$ is a computable sequence of rationals $\{q_n\}_{n\in\mathbb{N}}$ so that $|q_n-q_{n+1}|<2^{-n}$.
- ▶ A function $f : \subseteq \mathbb{R} \to \mathbb{R}$ is *computable* if there is a Turing functional that sends a name of $x \in \text{dom } f$ to a name of f(x).
- ▶ A (compact-open) name of a function $f \in C(\mathbb{R})$ is an enumeration ρ_f of the set $\{N_{I,J} : f \in N_{I,J}\}$, where
 - $I \subseteq \mathbb{R}$ is a compact interval;
 - $ightharpoonup J \subseteq \mathbb{R}$ is an open interval;
 - $N_{I,J} = \{ f \in C(\mathbb{R}) : f(I) \subseteq J \}.$
- ▶ A function $F : \subseteq C(\mathbb{R}) \to \mathbb{R}$ is *computable* if there is a Turing functional that sends a name of $f \in \text{dom } F$ to a name of F(f)

- ▶ A (Cauchy) name of $x \in \mathbb{R}$ is a computable sequence of rationals $\{q_n\}_{n\in\mathbb{N}}$ so that $|q_n-q_{n+1}|<2^{-n}$.
- ▶ A function $f : \subseteq \mathbb{R} \to \mathbb{R}$ is *computable* if there is a Turing functional that sends a name of $x \in \text{dom } f$ to a name of f(x).
- ▶ A (compact-open) name of a function $f \in C(\mathbb{R})$ is an enumeration ρ_f of the set $\{N_{I,J} : f \in N_{I,J}\}$, where
 - ▶ $I \subseteq \mathbb{R}$ is a compact interval;
 - ▶ $J \subseteq \mathbb{R}$ is an open interval;
 - $N_{I,J} = \{ f \in C(\mathbb{R}) : f(I) \subseteq J \}.$
- ▶ A function $F :\subseteq C(\mathbb{R}) \to \mathbb{R}$ is *computable* if there is a Turing functional that sends a name of $f \in \text{dom } F$ to a name of F(f)

- ▶ A (Cauchy) name of $x \in \mathbb{R}$ is a computable sequence of rationals $\{q_n\}_{n\in\mathbb{N}}$ so that $|q_n-q_{n+1}|<2^{-n}$.
- ▶ A function $f : \subseteq \mathbb{R} \to \mathbb{R}$ is *computable* if there is a Turing functional that sends a name of $x \in \text{dom } f$ to a name of f(x).
- ▶ A (compact-open) name of a function $f \in C(\mathbb{R})$ is an enumeration ρ_f of the set $\{N_{I,J} : f \in N_{I,J}\}$, where
 - ▶ $I \subseteq \mathbb{R}$ is a compact interval;
 - ▶ $J \subseteq \mathbb{R}$ is an open interval;
 - $N_{I,J} = \{ f \in C(\mathbb{R}) : f(I) \subseteq J \}.$
- ▶ A function $F :\subseteq C(\mathbb{R}) \to \mathbb{R}$ is *computable* if there is a Turing functional that sends a name of $f \in \text{dom } F$ to a name of F(f).

$\{I_i\}_{i\in\mathbb{N}}$: effective enumeration of rational open intervals of $\mathbb R$

- ▶ An open $U \subseteq \mathbb{R}$ is Σ^0_1 if $\{i \in \mathbb{N} : I_i \subseteq U\}$ is c.e.; denote by $\Sigma^0_1(\mathbb{R})$
- ▶ A closed $C \subseteq \mathbb{R}$ is Π_1^0 if $\{i \in \mathbb{N} : I_i \cap C = \emptyset\}$ is c.e.; denote by $\Pi_1^0(\mathbb{R})$
- $\{W_e\}_{e\in\mathbb{N}}$: effective enumeration of c.e. sets
- ▶ Index e of $U \in \Sigma_1^0(\mathbb{R})$: $W_e = \{i \in \mathbb{N} : I_i \subseteq U\}$
- ▶ Index e of $C \in \Pi_1^0(\mathbb{R})$: $W_e = \{i \in \mathbb{N} : I_i \cap C = \emptyset\}$

 $\{I_i\}_{i\in\mathbb{N}}$: effective enumeration of rational open intervals of $\mathbb R$

- ▶ An open $U \subseteq \mathbb{R}$ is Σ^0_1 if $\{i \in \mathbb{N} : I_i \subseteq U\}$ is c.e.; denote by $\Sigma^0_1(\mathbb{R})$
- ▶ A closed $C \subseteq \mathbb{R}$ is Π_1^0 if $\{i \in \mathbb{N} : I_i \cap C = \emptyset\}$ is c.e.; denote by $\Pi_1^0(\mathbb{R})$

 $\{W_e\}_{e\in\mathbb{N}}$: effective enumeration of c.e. sets

- ▶ Index e of $U \in \Sigma_1^0(\mathbb{R})$: $W_e = \{i \in \mathbb{N} : I_i \subseteq U\}$
- ▶ Index e of $C \in \Pi_1^0(\mathbb{R})$: $W_e = \{i \in \mathbb{N} : I_i \cap C = \emptyset\}$

 $\{I_i\}_{i\in\mathbb{N}}$: effective enumeration of rational open intervals of $\mathbb R$

- ▶ An open $U \subseteq \mathbb{R}$ is Σ^0_1 if $\{i \in \mathbb{N} : I_i \subseteq U\}$ is c.e.; denote by $\Sigma^0_1(\mathbb{R})$
- ▶ A closed $C \subseteq \mathbb{R}$ is Π_1^0 if $\{i \in \mathbb{N} : I_i \cap C = \emptyset\}$ is c.e.; denote by $\Pi_1^0(\mathbb{R})$

 $\{W_e\}_{e\in\mathbb{N}}$: effective enumeration of c.e. sets

- ▶ Index e of $U \in \Sigma_1^0(\mathbb{R})$: $W_e = \{i \in \mathbb{N} : I_i \subseteq U\}$
- ▶ Index e of $C \in \Pi_1^0(\mathbb{R})$: $W_e = \{i \in \mathbb{N} : I_i \cap C = \emptyset\}$

- $\{I_i\}_{i\in\mathbb{N}}$: effective enumeration of rational open intervals of \mathbb{R}
- ▶ An open $U \subseteq \mathbb{R}$ is Σ^0_1 if $\{i \in \mathbb{N} : I_i \subseteq U\}$ is c.e.; denote by $\Sigma^0_1(\mathbb{R})$
- ▶ A closed $C \subseteq \mathbb{R}$ is Π_1^0 if $\{i \in \mathbb{N} : I_i \cap C = \emptyset\}$ is c.e.; denote by $\Pi_1^0(\mathbb{R})$
- $\{W_e\}_{e\in\mathbb{N}}$: effective enumeration of c.e. sets
- ▶ Index e of $U \in \Sigma_1^0(\mathbb{R})$: $W_e = \{i \in \mathbb{N} : I_i \subseteq U\}$
- ▶ Index e of $C \in \Pi_1^0(\mathbb{R})$: $W_e = \{i \in \mathbb{N} : I_i \cap C = \emptyset\}$

 $\{I_i\}_{i\in\mathbb{N}}$: effective enumeration of rational open intervals of \mathbb{R}

- ▶ An open $U \subseteq \mathbb{R}$ is Σ^0_1 if $\{i \in \mathbb{N} : I_i \subseteq U\}$ is c.e.; denote by $\Sigma^0_1(\mathbb{R})$
- ▶ A closed $C \subseteq \mathbb{R}$ is Π_1^0 if $\{i \in \mathbb{N} : I_i \cap C = \emptyset\}$ is c.e.; denote by $\Pi_1^0(\mathbb{R})$

 $\{W_e\}_{e\in\mathbb{N}}$: effective enumeration of c.e. sets

- ▶ Index e of $U \in \Sigma_1^0(\mathbb{R})$: $W_e = \{i \in \mathbb{N} : I_i \subseteq U\}$
- ▶ Index e of $C \in \Pi_1^0(\mathbb{R})$: $W_e = \{i \in \mathbb{N} : I_i \cap C = \emptyset\}$

 $\{I_i\}_{i\in\mathbb{N}}$: effective enumeration of rational open intervals of \mathbb{R}

- ▶ An open $U \subseteq \mathbb{R}$ is Σ^0_1 if $\{i \in \mathbb{N} : I_i \subseteq U\}$ is c.e.; denote by $\Sigma^0_1(\mathbb{R})$
- ▶ A closed $C \subseteq \mathbb{R}$ is Π_1^0 if $\{i \in \mathbb{N} : I_i \cap C = \emptyset\}$ is c.e.; denote by $\Pi_1^0(\mathbb{R})$

 $\{W_e\}_{e\in\mathbb{N}}$: effective enumeration of c.e. sets

- ▶ Index e of $U \in \Sigma_1^0(\mathbb{R})$: $W_e = \{i \in \mathbb{N} : I_i \subseteq U\}$
- ▶ Index e of $C \in \Pi_1^0(\mathbb{R})$: $W_e = \{i \in \mathbb{N} : I_i \cap C = \emptyset\}$

- ▶ A (minimal cover) name of K is an enumeration of all minimal finite open covers of K.
- K is computably compact if it has a computable name.
- ightharpoonup An index of K is an index of a name of K.

- ightharpoonup A (minimal cover) name of K is an enumeration of all minimal finite open covers of K.
- K is computably compact if it has a computable name.
- ightharpoonup An index of K is an index of a name of K.

- ▶ A (minimal cover) name of K is an enumeration of all minimal finite open covers of K.
- ► *K* is *computably compact* if it has a computable name.
- ightharpoonup An index of K is an index of a name of K.

- ▶ A (minimal cover) name of K is an enumeration of all minimal finite open covers of K.
- ► *K* is *computably compact* if it has a computable name.
- \blacktriangleright An index of K is an index of a name of K.

- ▶ A measure $\mu \in \mathcal{M}(\mathbb{R})$ is *computable* if $\mu(\mathbb{R})$ is computable and $\mu(U)$ is left-c.e. uniformly from (an index of) $U \in \Sigma_1^0(\mathbb{R})$.
- ▶ A sequence $\{\mu_n\}_{n\in\mathbb{N}}$ in $\mathcal{M}(\mathbb{R})$ is uniformly computable if μ_n is a computable measure uniformly in n.
- ▶ A set $A \subseteq \mathbb{R}$ is μ -almost decidable if there is a pair $U, V \in \Sigma_1^0(\mathbb{R})$ (called a μ -almost decidable pair) such that $U \cap V = \emptyset$, $\mu(U \cup V) = \mu(\mathbb{R})$, $\overline{U \cup V} = \mathbb{R}$, and $U \subseteq A \subseteq \mathbb{R} \setminus V$.
- ▶ Define an index e of a μ -almost decidable $A \subseteq \mathbb{R}$ to be an index of its μ -almost decidable pair.

- ▶ A measure $\mu \in \mathcal{M}(\mathbb{R})$ is *computable* if $\mu(\mathbb{R})$ is computable and $\mu(U)$ is left-c.e. uniformly from (an index of) $U \in \Sigma_1^0(\mathbb{R})$.
- ▶ A sequence $\{\mu_n\}_{n\in\mathbb{N}}$ in $\mathcal{M}(\mathbb{R})$ is *uniformly computable* if μ_n is a computable measure uniformly in n.
- ▶ A set $A \subseteq \mathbb{R}$ is μ -almost decidable if there is a pair $U, V \in \Sigma_1^0(\mathbb{R})$ (called a μ -almost decidable pair) such that $U \cap V = \emptyset$, $\mu(U \cup V) = \mu(\mathbb{R})$, $\overline{U \cup V} = \mathbb{R}$, and $U \subseteq A \subseteq \mathbb{R} \setminus V$.
- ▶ Define an index e of a μ -almost decidable $A \subseteq \mathbb{R}$ to be an index of its μ -almost decidable pair.

- A measure $\mu \in \mathcal{M}(\mathbb{R})$ is *computable* if $\mu(\mathbb{R})$ is computable and $\mu(U)$ is left-c.e. uniformly from (an index of) $U \in \Sigma_1^0(\mathbb{R})$.
- ▶ A sequence $\{\mu_n\}_{n\in\mathbb{N}}$ in $\mathcal{M}(\mathbb{R})$ is *uniformly computable* if μ_n is a computable measure uniformly in n.
- ▶ A set $A \subseteq \mathbb{R}$ is μ -almost decidable if there is a pair $U, V \in \Sigma_1^0(\mathbb{R})$ (called a μ -almost decidable pair) such that $U \cap V = \emptyset$, $\mu(U \cup V) = \mu(\mathbb{R})$, $\overline{U \cup V} = \mathbb{R}$, and $U \subseteq A \subseteq \mathbb{R} \setminus V$.
- ▶ Define an index e of a μ -almost decidable $A \subseteq \mathbb{R}$ to be an index of its μ -almost decidable pair.

- ▶ A measure $\mu \in \mathcal{M}(\mathbb{R})$ is *computable* if $\mu(\mathbb{R})$ is computable and $\mu(U)$ is left-c.e. uniformly from (an index of) $U \in \Sigma_1^0(\mathbb{R})$.
- ▶ A sequence $\{\mu_n\}_{n\in\mathbb{N}}$ in $\mathcal{M}(\mathbb{R})$ is *uniformly computable* if μ_n is a computable measure uniformly in n.
- ▶ A set $A \subseteq \mathbb{R}$ is μ -almost decidable if there is a pair $U, V \in \Sigma_1^0(\mathbb{R})$ (called a μ -almost decidable pair) such that $U \cap V = \emptyset$, $\mu(U \cup V) = \mu(\mathbb{R})$, $\overline{U \cup V} = \mathbb{R}$, and $U \subseteq A \subseteq \mathbb{R} \setminus V$.
- ▶ Define an index e of a μ -almost decidable $A \subseteq \mathbb{R}$ to be an index of its μ -almost decidable pair.

Prokhorov metric ρ on $\mathcal{M}(\mathbb{R})$: $\rho(\mu,\nu) :=$ the infimum over all $\epsilon > 0$ so that $\mu(A) \leq \nu(B(A,\epsilon)) + \epsilon$ and $\nu(A) \leq \mu(B(A,\epsilon)) + \epsilon$ for all $A \in \mathcal{B}(\mathbb{R})$, where

- ▶ $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra of \mathbb{R} ;
- ▶ $B(A, \epsilon) = \bigcup_{a \in A} B(a, \epsilon);$
- ▶ $B(a, \epsilon)$ is the open ball of radius ϵ around a.

- \blacktriangleright $(\mathcal{M}(\mathbb{R}), \rho, \mathcal{D})$ is a computable metric space, where \mathcal{D} denotes the space of finite rational linear combinations of Dirac measures on \mathbb{R} .
- ▶ $\mu \in \mathcal{M}(\mathbb{R})$ is computable if and only if $I_{\mu}: f \mapsto \int_{\mathbb{R}} f d\mu$ is computable on computable $f \in C(\mathbb{R})$, uniformly from (a name of) f.

Prokhorov metric ρ on $\mathcal{M}(\mathbb{R})$: $\rho(\mu,\nu) :=$ the infimum over all $\epsilon > 0$ so that $\mu(A) \leq \nu(B(A,\epsilon)) + \epsilon$ and $\nu(A) \leq \mu(B(A,\epsilon)) + \epsilon$ for all $A \in \mathcal{B}(\mathbb{R})$, where

- ▶ $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra of \mathbb{R} ;
- ▶ $B(A, \epsilon) = \bigcup_{a \in A} B(a, \epsilon);$
- ▶ $B(a, \epsilon)$ is the open ball of radius ϵ around a.

- \blacktriangleright $(\mathcal{M}(\mathbb{R}), \rho, \mathcal{D})$ is a computable metric space, where \mathcal{D} denotes the space of finite rational linear combinations of Dirac measures on \mathbb{R} .
- ▶ $\mu \in \mathcal{M}(\mathbb{R})$ is computable if and only if $I_{\mu}: f \mapsto \int_{\mathbb{R}} f d\mu$ is computable on computable $f \in C(\mathbb{R})$, uniformly from (a name of) f.

Prokhorov metric ρ on $\mathcal{M}(\mathbb{R})$: $\rho(\mu, \nu) :=$ the infimum over all $\epsilon > 0$ so that $\mu(A) \leq \nu(B(A, \epsilon)) + \epsilon$ and $\nu(A) \leq \mu(B(A, \epsilon)) + \epsilon$ for all $A \in \mathcal{B}(\mathbb{R})$, where

- ▶ $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra of \mathbb{R} ;
- ▶ $B(A, \epsilon) = \bigcup_{a \in A} B(a, \epsilon)$;
- ▶ $B(a, \epsilon)$ is the open ball of radius ϵ around a.

- $(\mathcal{M}(\mathbb{R}), \rho, \mathcal{D})$ is a computable metric space, where \mathcal{D} denotes the space of finite rational linear combinations of Dirac measures on \mathbb{R} .
- ▶ $\mu \in \mathcal{M}(\mathbb{R})$ is computable if and only if $I_{\mu} : f \mapsto \int_{\mathbb{R}} f d\mu$ is computable on computable $f \in C(\mathbb{R})$, uniformly from (a name of) f.

Prokhorov metric ρ on $\mathcal{M}(\mathbb{R})$: $\rho(\mu,\nu) :=$ the infimum over all $\epsilon > 0$ so that $\mu(A) \leq \nu(B(A,\epsilon)) + \epsilon$ and $\nu(A) \leq \mu(B(A,\epsilon)) + \epsilon$ for all $A \in \mathcal{B}(\mathbb{R})$, where

- ▶ $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra of \mathbb{R} ;
- ▶ $B(A, \epsilon) = \bigcup_{a \in A} B(a, \epsilon)$;
- ▶ $B(a, \epsilon)$ is the open ball of radius ϵ around a.

- \blacktriangleright $(\mathcal{M}(\mathbb{R}), \rho, \mathcal{D})$ is a computable metric space, where \mathcal{D} denotes the space of finite rational linear combinations of Dirac measures on \mathbb{R} .
- ▶ $\mu \in \mathcal{M}(\mathbb{R})$ is computable if and only if $I_{\mu}: f \mapsto \int_{\mathbb{R}} f d\mu$ is computable on computable $f \in C(\mathbb{R})$, uniformly from (a name of) f.

Part II: Effective Weak Convergence of Measures on ${\mathbb R}$

Definitions

▶ Let $\{\mu_n\}_{n\in\mathbb{N}}$ be a sequence in $\mathcal{M}(\mathbb{R})$.

Definition.

 $\{\mu_n\}_{n\in\mathbb{N}}$ effectively weakly converges to $\mu\in\mathcal{M}(\mathbb{R})$ if for every bounded computable function $f:\subseteq\mathbb{R}\to\mathbb{R}$, $\lim_n\int_{\mathbb{R}}f\,d\mu_n=\int_{\mathbb{R}}f\,d\mu$ and it is possible to compute an index of a modulus of convergence for $\{\int_{\mathbb{R}}f\,d\mu_n\}_{n\in\mathbb{N}}$ from an index of f and a bound $B\in\mathbb{N}$ on |f|.

Definitions

▶ Let $\{\mu_n\}_{n\in\mathbb{N}}$ be a sequence in $\mathcal{M}(\mathbb{R})$.

Definition.

 $\{\mu_n\}_{n\in\mathbb{N}}$ effectively weakly converges to $\mu\in\mathcal{M}(\mathbb{R})$ if for every bounded computable function $f:\subseteq\mathbb{R}\to\mathbb{R}$, $\lim_n\int_{\mathbb{R}}f\,d\mu_n=\int_{\mathbb{R}}f\,d\mu$ and it is possible to compute an index of a modulus of convergence for $\{\int_{\mathbb{R}}f\,d\mu_n\}_{n\in\mathbb{N}}$ from an index of f and a bound f on f on f.

Definition.

 $\{\mu_n\}_{n\in\mathbb{N}}$ uniformly effectively weakly converges to $\mu\in\mathcal{M}(\mathbb{R})$ if it weakly converges to μ and there is a uniform procedure that computes for any bounded continuous function $f:\mathbb{R}\to\mathbb{R}$ a modulus of convergence for $\{\int_{\mathbb{R}}fd\mu_n\}_{n\in\mathbb{N}}$ from a name of f and a bound $B\in\mathbb{N}$ on |f|.

Example (1)

Fix $a,b\in\mathbb{Q}$, $E\in\mathcal{B}(\mathbb{R})$, a uniformly computable sequence $\{q_n\}_{n\in\mathbb{N}}$ in \mathbb{Q} that decreases to 0. The sequence $\mu_n(E)=\lambda(E\cap[a-q_n,b+q_n])$ effectively weakly converges to $\mu(E)=\lambda(E\cap[a,b])$, where λ is Lebesgue measure on $\mathcal{B}(\mathbb{R})$.

Example (2)

For a uniformly computable sequence $\{r_n\}_{n\in\mathbb{N}}$ in \mathbb{Q} that converges to some computable $r\in\mathbb{R}$, the sequence of Dirac measures $\{\delta_{r_n}\}_{n\in\mathbb{N}}$ effectively weakly converges to δ_r .

Example (1)

Fix $a,b\in\mathbb{Q},\ E\in\mathcal{B}(\mathbb{R}),\ a$ uniformly computable sequence $\{q_n\}_{n\in\mathbb{N}}$ in \mathbb{Q} that decreases to 0. The sequence $\mu_n(E)=\lambda(E\cap[a-q_n,b+q_n])$ effectively weakly converges to $\mu(E)=\lambda(E\cap[a,b]),$ where λ is Lebesgue measure on $\mathcal{B}(\mathbb{R}).$

Example (2)

For a uniformly computable sequence $\{r_n\}_{n\in\mathbb{N}}$ in \mathbb{Q} that converges to some computable $r\in\mathbb{R}$, the sequence of Dirac measures $\{\delta_{r_n}\}_{n\in\mathbb{N}}$ effectively weakly converges to δ_r .

Proposition. (McNicholl, R. 2021+)

If $\{\mu_n\}_{n\in\mathbb{N}}$ is uniformly computable and effectively weakly converges to μ , then μ is a computable measure.

Nonexample

Let $\{q_n\}_{n\in\mathbb{N}}$ be a uniformly computable increasing sequence in \mathbb{Q} that converges to an incomputable left-c.e. $\alpha\in\mathbb{R}$. For $E\in\mathcal{B}(\mathbb{R})$ and λ Lebesgue measure on $\mathcal{B}(\mathbb{R})$, the sequence $\{\mu_n\}_{n\in\mathbb{N}}$ defined by $\mu_n(E)=\lambda(E\cap[0,q_n])$ weakly converges to $\mu(E)=\lambda(E\cap[0,\alpha])$, but fails to effectively weakly converge since $\mu(\mathbb{R})=\lambda([0,\alpha])=\alpha$ is not computable.

Proposition. (McNicholl, R. 2021+)

If $\{\mu_n\}_{n\in\mathbb{N}}$ is uniformly computable and effectively weakly converges to μ , then μ is a computable measure.

Nonexample

Let $\{q_n\}_{n\in\mathbb{N}}$ be a uniformly computable increasing sequence in \mathbb{Q} that converges to an incomputable left-c.e. $\alpha\in\mathbb{R}$. For $E\in\mathcal{B}(\mathbb{R})$ and λ Lebesgue measure on $\mathcal{B}(\mathbb{R})$, the sequence $\{\mu_n\}_{n\in\mathbb{N}}$ defined by $\mu_n(E)=\lambda(E\cap[0,q_n])$ weakly converges to $\mu(E)=\lambda(E\cap[0,\alpha])$, but fails to effectively weakly converge since $\mu(\mathbb{R})=\lambda([0,\alpha])=\alpha$ is not computable.

Theorem. (McNicholl, R. 2021+)

Suppose $\{\mu_n\}_{n\in\mathbb{N}}$ is uniformly computable. The following are equivalent:

- (1) $\{\mu_n\}_{n\in\mathbb{N}}$ is effectively weakly convergent;
- (2) $\{\mu_n\}_{n\in\mathbb{N}}$ is uniformly effectively weakly convergent.

Portmanteau Theorem (Alexandroff 1941)

- (1) $\{\mu_n\}_{n\in\mathbb{N}}$ weakly converges to μ
- (2) For every uniformly continuous $f \in C_b(\mathbb{R})$, $\lim_{n \to \infty} \int_{\mathbb{R}} f d\mu_n = \int_{\mathbb{R}} f d\mu$.
- (3) For every closed $C \subseteq \mathbb{R}$, $\limsup_{n \to \infty} \mu_n(C) \le \mu(C)$.
- (4) For every open $U\subseteq \mathbb{R}$, $\liminf_{n\to\infty}\mu_n(U)\geq \mu(U)$.
- (5) For every μ -continuity $A \subseteq \mathbb{R}$, $\lim_{n \to \infty} \mu_n(A) = \mu(A)$.

To help us formulate an effective version of the aforementioned theorem, we need the following definition.

Definition

Suppose $\{a_n\}_{n\in\mathbb{N}}$ is a sequence of reals, and let $g:\subseteq\mathbb{Q}\to\mathbb{N}$.

- 1. We say g witnesses that $\liminf_n a_n$ is not smaller than a if dom(g) is the left Dedekind cut of a and if $r < a_n$ whenever $r \in dom(g)$ and $n \ge g(r)$.
- 2. We say g witnesses that $\limsup_n a_n$ is not larger than a if dom(g) is the right Dedekind cut of a and if $r > a_n$ whenever $r \in dom(g)$ and $n \ge g(r)$.

To help us formulate an effective version of the aforementioned theorem, we need the following definition.

Definition.

Suppose $\{a_n\}_{n\in\mathbb{N}}$ is a sequence of reals, and let $g:\subseteq\mathbb{Q}\to\mathbb{N}$.

- 1. We say g witnesses that $\liminf_n a_n$ is not smaller than a if dom(g) is the left Dedekind cut of a and if $r < a_n$ whenever $r \in dom(g)$ and $n \ge g(r)$.
- 2. We say g witnesses that $\limsup_n a_n$ is not larger than a if dom(g) is the right Dedekind cut of a and if $r > a_n$ whenever $r \in dom(g)$ and $n \ge g(r)$.

Theorem. (McNicholl, R. 2021+)

- (1) $\{\mu_n\}_{n\in\mathbb{N}}$ effectively weakly converges to μ
- (2) From $e, B \in \mathbb{N}$ so that e indexes a uniformly continuous $f \in C_b(\mathbb{R})$ with $|f| \leq B$, it is possible to compute a modulus of convergence of $\{\int_{\mathbb{R}} f d\mu_n\}_{n \in \mathbb{N}}$ with limit $\int_{\mathbb{R}} f d\mu$.
- (3) μ is computable, and from an index of $C \in \Pi_1^0(\mathbb{R})$ it is possible to compute an index of a witness that $\limsup_n \mu_n(C)$ is not larger than $\mu(C)$.
- (4) μ is computable, and from an index of $U \in \Sigma_1^0(\mathbb{R})$ it is possible to compute an index of a witness that $\liminf_n \mu_n(U)$ is not smaller than $\mu(U)$.
- (5) μ is computable, and for every μ -almost decidable A, $\lim_n \mu_n(A) = \mu(A)$ and an index of a modulus of convergence of $\{\mu_n(A)\}_{n\in\mathbb{N}}$ can be computed from an index of A.

- ▶ We say $\{\mu_n\}_{n\in\mathbb{N}}$ converges effectively in the Prokhorov metric ρ to μ if there is a computable function $\epsilon: \mathbb{N} \to \mathbb{N}$ such that $n \ge \epsilon(N)$ implies $\rho(\mu_n, \mu) < 2^{-N}$ for all n, N.
- Note: ρ metrizes the topology of weak convergence of measures on $\mathcal{M}(X)$ for a separable metric space X.
- ► The following result is a consequence of the Effective Portmanteau Theorem.

Theorem. (R. 2021+)

- (1) $\{\mu_n\}_{n\in\mathbb{N}}$ effectively weakly converges to μ
- (2) $\{\mu_n\}_{n\in\mathbb{N}}$ converges effectively in ρ to μ

- ▶ We say $\{\mu_n\}_{n\in\mathbb{N}}$ converges effectively in the Prokhorov metric ρ to μ if there is a computable function $\epsilon: \mathbb{N} \to \mathbb{N}$ such that $n \ge \epsilon(N)$ implies $\rho(\mu_n, \mu) < 2^{-N}$ for all n, N.
- Note: ρ metrizes the topology of weak convergence of measures on $\mathcal{M}(X)$ for a separable metric space X.
- ► The following result is a consequence of the Effective Portmanteau Theorem.

Theorem. (R. 2021+)

- (1) $\{\mu_n\}_{n\in\mathbb{N}}$ effectively weakly converges to μ
- (2) $\{\mu_n\}_{n\in\mathbb{N}}$ converges effectively in ρ to μ

- ▶ We say $\{\mu_n\}_{n\in\mathbb{N}}$ converges effectively in the Prokhorov metric ρ to μ if there is a computable function $\epsilon: \mathbb{N} \to \mathbb{N}$ such that $n \ge \epsilon(N)$ implies $\rho(\mu_n, \mu) < 2^{-N}$ for all n, N.
- Note: ρ metrizes the topology of weak convergence of measures on $\mathcal{M}(X)$ for a separable metric space X.
- ► The following result is a consequence of the Effective Portmanteau Theorem.

Theorem. (R. 2021+)

- (1) $\{\mu_n\}_{n\in\mathbb{N}}$ effectively weakly converges to μ
- (2) $\{\mu_n\}_{n\in\mathbb{N}}$ converges effectively in ρ to μ

- ▶ We say $\{\mu_n\}_{n\in\mathbb{N}}$ converges effectively in the Prokhorov metric ρ to μ if there is a computable function $\epsilon: \mathbb{N} \to \mathbb{N}$ such that $n \ge \epsilon(N)$ implies $\rho(\mu_n, \mu) < 2^{-N}$ for all n, N.
- Note: ρ metrizes the topology of weak convergence of measures on $\mathcal{M}(X)$ for a separable metric space X.
- ► The following result is a consequence of the Effective Portmanteau Theorem.

Theorem. (R. 2021+)

- (1) $\{\mu_n\}_{n\in\mathbb{N}}$ effectively weakly converges to μ
- (2) $\{\mu_n\}_{n\in\mathbb{N}}$ converges effectively in ρ to μ

Part III: Effective Vague Convergence of Measures on ${\mathbb R}$

▶ Let $\{\mu_n\}_{n\in\mathbb{N}}$ be a sequence in $\mathcal{M}(\mathbb{R})$.

Definition.

 $\{\mu_n\}_{n\in\mathbb{N}}$ effectively vaguely converges to $\mu\in\mathcal{M}(\mathbb{R})$ if for every compactly-supported computable function $f:\subseteq\mathbb{R}\to\mathbb{R}$, $\lim_n\int_{\mathbb{R}}fd\mu_n=\int_{\mathbb{R}}fd\mu$ and it is possible to compute an index of a modulus of convergence for $\{\int_{\mathbb{R}}fd\mu_n\}_{n\in\mathbb{N}}$ from an index of f and an index of supp f.

▶ Let $\{\mu_n\}_{n\in\mathbb{N}}$ be a sequence in $\mathcal{M}(\mathbb{R})$.

Definition.

 $\{\mu_n\}_{n\in\mathbb{N}}$ effectively vaguely converges to $\mu\in\mathcal{M}(\mathbb{R})$ if for every compactly-supported computable function $f:\subseteq\mathbb{R}\to\mathbb{R}$, $\lim_n\int_{\mathbb{R}}fd\mu_n=\int_{\mathbb{R}}fd\mu$ and it is possible to compute an index of a modulus of convergence for $\{\int_{\mathbb{R}}fd\mu_n\}_{n\in\mathbb{N}}$ from an index of f and an index of supp f.

Definition.

 $\{\mu_n\}_{n\in\mathbb{N}}$ uniformly effectively vaguely converges to $\mu\in\mathcal{M}(\mathbb{R})$ if it vaguely converges to μ and there is a uniform procedure that computes for any compactly-supported continuous function $f:\mathbb{R}\to\mathbb{R}$ a modulus of convergence for $\{\int_{\mathbb{R}} f \, d\mu_n\}_{n\in\mathbb{N}}$ from a name of f and a name of supp f.

In contrast to effective weak convergence:

Proposition. (R. 2021+)

There is a uniformly computable sequence in $\mathcal{M}(\mathbb{R})$ that effectively vaguely converges but such that the limit measure μ has the property that $\mu(\mathbb{R})$ is an incomputable real.

Sketch

Let $A\subset\mathbb{N}$ be an incomputable c.e. set, and let $\{a_i\}_{n\in\mathbb{N}}$ be an effective enumeration of A. The sequence $\mu_n=\sum_{i=0}^n 2^{-(a_i+1)}\delta_i$ for each $n\in\mathbb{N}$ effectively vaguely converges to the measure $\mu=\sum_{i=0}^\infty 2^{-(a_i+1)}\delta_i$. Note that $\mu(\mathbb{R})=\sum_{i=0}^\infty 2^{-(a_i+1)}$ is incomputable since it is the limit of a Specker sequence.

In contrast to effective weak convergence:

Proposition. (R. 2021+)

There is a uniformly computable sequence in $\mathcal{M}(\mathbb{R})$ that effectively vaguely converges but such that the limit measure μ has the property that $\mu(\mathbb{R})$ is an incomputable real.

Sketch

Let $A \subset \mathbb{N}$ be an incomputable c.e. set, and let $\{a_i\}_{n \in \mathbb{N}}$ be an effective enumeration of A. The sequence $\mu_n = \sum_{i=0}^n 2^{-(a_i+1)} \delta_i$ for each $n \in \mathbb{N}$ effectively vaguely converges to the measure $\mu = \sum_{i=0}^\infty 2^{-(a_i+1)} \delta_i$. Note that $\mu(\mathbb{R}) = \sum_{i=0}^\infty 2^{-(a_i+1)}$ is incomputable since it is the limit of $i \in \mathbb{N}$ Specker sequence.

In contrast to effective weak convergence:

Proposition. (R. 2021+)

There is a uniformly computable sequence in $\mathcal{M}(\mathbb{R})$ that effectively vaguely converges but such that the limit measure μ has the property that $\mu(\mathbb{R})$ is an incomputable real.

Sketch.

Let $A\subset\mathbb{N}$ be an incomputable c.e. set, and let $\{a_i\}_{n\in\mathbb{N}}$ be an effective enumeration of A. The sequence $\mu_n=\sum_{i=0}^n 2^{-(a_i+1)}\delta_i$ for each $n\in\mathbb{N}$ effectively vaguely converges to the measure $\mu=\sum_{i=0}^\infty 2^{-(a_i+1)}\delta_i$. Note that $\mu(\mathbb{R})=\sum_{i=0}^\infty 2^{-(a_i+1)}$ is incomputable since it is the limit of a Specker sequence.

Proposition. (R. 2021+)

If $\{\mu_n\}_{n\in\mathbb{N}}$ is a uniformly computable sequence that effectively vaguely converges to μ and $\mu(\mathbb{R})$ is computable, then μ is computable.

Theorem. (R. 2021+)

Suppose $\{\mu_n\}_{n\in\mathbb{N}}$ is uniformly computable. The following are equivalent:

- (1) $\{\mu_n\}_{n\in\mathbb{N}}$ is effectively vaguely convergent.
- (2) $\{\mu_n\}_{n\in\mathbb{N}}$ is uniformly effectively vaguely convergent.

Proposition. (R. 2021+)

If $\{\mu_n\}_{n\in\mathbb{N}}$ is a uniformly computable sequence that effectively vaguely converges to μ and $\mu(\mathbb{R})$ is computable, then μ is computable.

Theorem. (R. 2021+)

Suppose $\{\mu_n\}_{n\in\mathbb{N}}$ is uniformly computable. The following are equivalent:

- (1) $\{\mu_n\}_{n\in\mathbb{N}}$ is effectively vaguely convergent;
- (2) $\{\mu_n\}_{n\in\mathbb{N}}$ is uniformly effectively vaguely convergent.

Connections with Effective Weak Convergence

Theorem. (R. 2021+)

Suppose $\{\mu_n\}_{n\in\mathbb{N}}$ is uniformly computable. Suppose further that there is a computable modulus of convergence for $\{\mu_n(\mathbb{R})\}_{n\in\mathbb{N}}$. The following are equivalent:

- (1) $\{\mu_n\}_{n\in\mathbb{N}}$ is effectively vaguely convergent;
- (2) $\{\mu_n\}_{n\in\mathbb{N}}$ is effectively weakly convergent.

Corollary.

Suppose $\{\mu_n\}_{n\in\mathbb{N}}$ is a uniformly computable sequence of probability measures. The following are equivalent:

- (1) $\{\mu_n\}_{n\in\mathbb{N}}$ is effectively vaguely convergent.
- (2) $\{\mu_n\}_{n\in\mathbb{N}}$ is effectively weakly convergent.

Connections with Effective Weak Convergence

Theorem. (R. 2021+)

Suppose $\{\mu_n\}_{n\in\mathbb{N}}$ is uniformly computable. Suppose further that there is a computable modulus of convergence for $\{\mu_n(\mathbb{R})\}_{n\in\mathbb{N}}$. The following are equivalent:

- (1) $\{\mu_n\}_{n\in\mathbb{N}}$ is effectively vaguely convergent;
- (2) $\{\mu_n\}_{n\in\mathbb{N}}$ is effectively weakly convergent.

Corollary.

Suppose $\{\mu_n\}_{n\in\mathbb{N}}$ is a uniformly computable sequence of probability measures. The following are equivalent:

- (1) $\{\mu_n\}_{n\in\mathbb{N}}$ is effectively vaguely convergent;
- (2) $\{\mu_n\}_{n\in\mathbb{N}}$ is effectively weakly convergent.

References I

- Alexandroff, A. "Additive set-functions in abstract spaces". In: *Matematicheskii Sbornik* 9.52 (3 1941), pp. 563–628.
- Bogachev, V. Weak convergence of measures. Vol. 234. Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2018.
- Gács, P. "Uniform test of algorithmic randomness over a general space". In: *Theoretical Computer Science* 341.1 (2005), pp. 91–137.
- Hoyrup, M. and C. Rojas. "Computability of probability measures and Martin-Löf randomness over metric spaces". In: *Information and Computation* 207 (2009), pp. 830–847.
- Kallianpur, G. "The Topology of Weak Convergence of Probability Measures". In: *Journal of Mathematics and Mechanics* 10 (6 1961), pp. 947–969.
- McNicholl, T. and D. Rojas. "Effective notions of weak convergence of measures on the real line". In: arxiv.org/abs/2106.00086 (2021).

References II

- Mori, T., Y. Tsujii, and M. Yasugi. "Computability of Probability Distributions and Distribution Functions". In: 6th International Conference on Computability and Complexity in Analysis (CCA'09).
- Prokhorov, Y. "Convergence of random processes and limit theorems in probability theory". In: *Theory of Probability and Its Applications* 1 (2 1956), pp. 157–214.
- Rute, J. "Computable randomness and betting for computable probability spaces". In: *Mathematical Logic Quarterly* 62.4-5 (2016), pp. 335–366.
- Schröder, M. "Admissible representations for probability measures". In: *Mathematical Logic Quarterly* 53.4-5 (2007), pp. 431–445.
- Weihrauch, K. Computable Analysis: An Introduction. Springer-Verlag, 2000.

Thank you!