The Reverse Mathematics of Noether’s Decomposition Lemma

Chris Conidis

College of Staten Island

March 15, 2021
Definition

A *computable ring* is a computable subset $A \subseteq \mathbb{N}$ equipped with two computable binary operations $+$ and \cdot on A, together with elements $0, 1 \in A$ such that $R = (A, 0, 1, +, \cdot)$ is a ring.
A *computable ring* is a computable subset $A \subseteq \mathbb{N}$ equipped with two computable binary operations $+$ and \cdot on A, together with elements $0, 1 \in A$ such that $R = (A, 0, 1, +, \cdot)$ is a ring.

All rings will be *countable* and *commutative*, unless we say otherwise.
Primary Decomposition Lemma

If R is Noetherian, then R contains only finitely many minimal prime ideals.
Noether’s Primary Decomposition Lemma

Primary Decomposition Lemma

If \(R \) is Noetherian, then \(R \) contains only finitely many minimal prime ideals.

Primary Decomposition Lemma

If \(R \) contains infinitely many minimal prime ideals, then \(R \) is not Noetherian, i.e. \(R \) contains an infinite strictly ascending chain of ideals

\[
I_0 \subset I_1 \subset I_2 \subset \cdots \subset I_n \subset \cdots \subset R, \quad n \in \mathbb{N}.
\]
Assume that R contains infinitely many distinct minimal primes.
Assume that \(R \) contains infinitely many distinct minimal primes. Need to construct an infinite strictly ascending chain

\[
I_0 \subset I_1 \subset I_2 \subset \cdots I_n \subset \cdots \subset R.
\]
Assume that R contains infinitely many distinct minimal primes. Need to construct an infinite strictly ascending chain

$$I_0 \subset I_1 \subset I_2 \subset \cdots \subset I_n \subset \cdots \subset R.$$

Let $I_0 = \langle 0 \rangle_R \subset R$. Since R contains infinitely many minimal primes, $\langle 0 \rangle_R \subset R$ is not a prime ideal. Therefore there exist $a_1, b_1 \in R$ such that $a_1, b_1 \notin I_0$ but $a_1 b_1 = 0 \in I_0$. Now, either a_1 or b_1 is contained in infinitely many minimal primes; add it to I_0 to get $I_1 \supset I_0$.

Chris Conidis
Assume that R contains infinitely many distinct minimal primes. Need to construct an infinite strictly ascending chain

$$I_0 \subset I_1 \subset I_2 \subset \cdots I_n \subset \cdots \subset R.$$

Let $I_0 = \langle 0 \rangle_R \subset R$. Since R contains infinitely many minimal primes, $\langle 0 \rangle_R \subset R$ is not a prime ideal. Therefore there exist $a_1, b_1 \in R$ such that $a_1, b_1 \notin I_0$ but $a_1 b_1 = 0 \in I_0$. Now, either a_1 or b_1 is contained in infinitely many minimal primes; add it to I_0 to get $I_1 \supset I_0$. Repeat with the invariant that

$$I_k = \langle c_1, c_2, \cdots, c_k \rangle_R \subset R, \ k \in \mathbb{N},$$

is contained in infinitely many minimal primes, and therefore is not prime itself. Uses \emptyset''.

Chris Conidis

The Reverse Mathematics of Noether’s Decomposition Lemma
Reverse Mathematics

The “Big Five:”

- RCA_0: Recursive Comprehension Axiom
- WKL_0: Weak König’s Lemma
- ACA_0: Arithmetic Comprehension Axiom
- ATR_0: Arithmetic Transfinite Recursion
- $\Pi^1_1-\text{CA}_0$: Π^1_1–Comprehension Axiom
The “Big Five:"

- RCA_0 : Recursive Comprehension Axiom
- WKL_0 : Weak König’s Lemma
- ACA_0 : Arithmetic Comprehension Axiom
- ATR_0 : Arithmetic Transfinite Recursion
- $\Pi^1_1-\text{CA}_0$: Π^1_1–Comprehension Axiom

- ADS : Ascending-Descending Chain Principle
The “Big Five:”

- RCA\(_0\) : Recursive Comprehension Axiom
- WKL\(_0\) : Weak König’s Lemma
- ACA\(_0\) : Arithmetic Comprehension Axiom
- ATR\(_0\) : Arithmetic Transfinite Recursion
- \(\Pi^1_1\)-CA\(_0\) : \(\Pi^1_1\)-Comprehension Axiom

- ADS : Ascending-Descending Chain Principle
- 2 – MLR : Existence of 2-Random sets
Reverse Mathematics

The “Big Five:”

- RCA₀ : Recursive Comprehension Axiom
- WKL₀ : Weak König’s Lemma
- ACA₀ : Arithmetic Comprehension Axiom
- ATR₀ : Arithmetic Transfinite Recursion
- \(\Pi^1_1 - CA_0 \) : \(\Pi^1_1 \) – Comprehension Axiom

- ADS : Ascending-Descending Chain Principle
- 2 – MLR : Existence of 2-Random sets
- COH : Cohesive set principle

Chris Conidis
Reverse Mathematics

The “Big Five:”

- RCA$_0$: Recursive Comprehension Axiom
- WKL$_0$: Weak König’s Lemma
- ACA$_0$: Arithmetic Comprehension Axiom
- ATR$_0$: Arithmetic Transfinite Recursion
- Π^1_1–CA$_0$: Π^1_1–Comprehension Axiom

- ADS: Ascending-Descending Chain Principle
- 2 – MLR: Existence of 2-Random sets
- COH: Cohesive set principle
- AMT: Atomic Model Theorem
The Tree Antichain Theorem

Definition

Let $T \subseteq 2^{<\mathbb{N}}$ be a tree. We say that T is completely branching if for all $\sigma \in T$, $\sigma^+ = \{\sigma_0, \sigma_1\} \subset 2^{<\mathbb{N}}$, either

$$\sigma^+ \subset T \quad \text{or} \quad \sigma^+ \cap T = \emptyset.$$
The Tree Antichain Theorem

Definition

Let $T \subseteq 2^{\mathbb{N}}$ be a tree. We say that T is completely branching if for all $\sigma \in T$, $\sigma^+ = \{\sigma0, \sigma1\} \subset 2^{\mathbb{N}}$, either

$\sigma^+ \subset T$ or $\sigma^+ \cap T = \emptyset$.

TAC (Tree Antichain Theorem)

Every infinite completely branching computably enumerable tree $T \subseteq 2^{\mathbb{N}}$ contains an infinite antichain.
The Tree Antichain Theorem

Definition

Let $T \subseteq 2^{\mathbb{N}}$ be a tree. We say that T is completely branching if for all $\sigma \in T$, $\sigma^+ = \{\sigma_0, \sigma_1\} \subseteq 2^{\mathbb{N}}$, either

$$\sigma^+ \subseteq T \quad \text{or} \quad \sigma^+ \cap T = \emptyset.$$

TAC (Tree Antichain Theorem)

Every infinite completely branching computably enumerable tree $T \subseteq 2^{\mathbb{N}}$ contains an infinite antichain.

TAC (Tree Antichain Theorem–Equivalent Version)

Every infinite tree $T \subseteq 2^{\mathbb{N}}$ with no terminal nodes and infinitely many splittings has an infinite antichain.
Two Paths to TAC

Fact (RCA₀)

TAC follows from each of 2-MLR and ADS (individually).

Fact (RCA₀)

TAC is restricted \(\Pi^1_2 \).

Fact (RCA₀)

TAC does not follow from WKL

Corollary

TAC is not equivalent to any other “known” subsystem of Second-Order Arithmetic.
Definition

Let R be a ring with multiplicative identity 1_R.

- We say that ideals $I, J \subseteq R$ are coprime whenever $I + J = R$, i.e. $1_R \in I + J$.

Theorem A

If R has infinitely many coprime minimal primes, then R is not Noetherian.

Theorem B

If R has infinitely many uniformly coprime minimal primes, then R is not Noetherian.
Primary Decomposition for Restricted Classes of Rings

Definition

Let R be a ring with multiplicative identity 1_R.

- We say that ideals $I, J \subseteq R$ are **coprime** whenever $I + J = R$, i.e. $1_R \in I + J$.

- We say that ideals $I, J \subseteq R$ are **uniformly coprime** if for all $x \in I \cap J$ there exist $y \in I$, $z \in J$, and $a, b \in R$ such that $x = yz$ and $ay + bz = 1_R$.

Theorem A

If R has infinitely many coprime minimal primes, then R is not Noetherian.

Theorem B

If R has infinitely many uniformly coprime minimal primes, then R is not Noetherian.

The Reverse Mathematics of Noether’s Decomposition Lemma
Definition

Let R be a ring with multiplicative identity 1_R.

- We say that ideals $I, J \subseteq R$ are coprime whenever $I + J = R$, i.e. $1_R \in I + J$.

- We say that ideals $I, J \subseteq R$ are uniformly coprime if for all $x \in I \cap J$ there exist $y \in I$, $z \in J$, and $a, b \in R$ such that $x = yz$ and $ay + bz = 1_R$.

Theorem A

If R has infinitely many coprime minimal primes, then R is not Noetherian.

Theorem B

If R has infinitely many uniformly coprime minimal primes, then R is not Noetherian.
Definition

Let R be a ring with multiplicative identity 1_R.

- We say that ideals $I, J \subseteq R$ are coprime whenever $I + J = R$, i.e. $1_R \in I + J$.
- We say that ideals $I, J \subseteq R$ are uniformly coprime if for all $x \in I \cap J$ there exist $y \in I$, $z \in J$, and $a, b \in R$ such that $x = yz$ and $ay + bz = 1_R$.

Theorem A

If R has infinitely many coprime minimal primes, then R is not Noetherian.

Theorem B

If R has infinitely many uniformly coprime minimal primes, then R is not Noetherian.
Algebraic Characterizations of TAC

Theorem (RCA_0 + BΣ_2)

Theorem B is equivalent to TAC.
Algebraic Characterizations of TAC

Theorem (RCA$_0 + B\Sigma_2$)

Theorem B is equivalent to TAC.

Conjecture (RCA$_0 + B\Sigma_2$)

Theorem A is equivalent to TAC.
Given R with infinitely many minimal primes, construct $T = T_R \subseteq 2^{<\mathbb{N}}$ such that:

- every $\sigma \in T$ corresponds to some (zero-divisor) $x_\sigma \in R$;
Given R with infinitely many minimal primes, construct $T = T_R \subseteq 2^{\mathbb{N}}$ such that:

- every $\sigma \in T$ corresponds to some (zero-divisor) $x_\sigma \in R$;
- $\prod_{\sigma \in S} x_\sigma = 0_R$ whenever S covers $2^\mathbb{N}$;
Given R with infinitely many minimal primes, construct $T = T_R \subseteq 2^{\mathbb{N}}$ such that:

1. every $\sigma \in T$ corresponds to some (zero-divisor) $x_\sigma \in R$;
2. $\prod_{\sigma \in S} x_\sigma = 0_R$ whenever S covers $2^{\mathbb{N}}$;
3. paths in T correspond to annihilator ideals;
Given R with infinitely many minimal primes, construct $T = T_R \subseteq 2^{<\mathbb{N}}$ such that:

- every $\sigma \in T$ corresponds to some (zero-divisor) $x_\sigma \in R$;
- $\prod_{\sigma \in S} x_\sigma = 0_R$ whenever S covers $2^{\mathbb{N}}$;
- paths in T correspond to annihilator ideals;
- maximal paths correspond to maximal annihilator (hence minimal prime) ideals.
Given R with infinitely many minimal primes, construct $T = T_R \subseteq 2^{\mathbb{N}}$ such that:

- every $\sigma \in T$ corresponds to some (zero-divisor) $x_\sigma \in R$;
- $\prod_{\sigma \in S} x_\sigma = 0_R$ whenever S covers $2^\mathbb{N}$;
- paths in T correspond to annihilator ideals;
- maximal paths correspond to maximal annihilator (hence minimal prime) ideals.
TAC implies Theorem B

Given \(R \) with infinitely many minimal primes, construct \(T = T_R \subseteq 2^{\mathbb{N}} \) such that:

- every \(\sigma \in T \) corresponds to some (zero-divisor) \(x_\sigma \in R \);
- \(\prod_{\sigma \in S} x_\sigma = 0_R \) whenever \(S \) covers \(2^\mathbb{N} \);
- paths in \(T \) correspond to annihilator ideals;
- maximal paths correspond to maximal annihilator (hence minimal prime) ideals.

If \(\{\alpha_i : i \in \mathbb{N}\} \) is an infinite \(T \)—antichain, and

\[
I_N = \text{Ann}(\prod_{i=1}^{N} x_{\alpha_i}),
\]

then

\[
l_0 \subset l_1 \subset l_2 \cdots \subset l_N \subset \cdots.
\]
Given infinite Σ^0_1 completely branching $T \subseteq 2^{<\mathbb{N}}$. Construct R via:

- R is a quotient of $\mathbb{Q}[X_\sigma : \sigma \in T]$ such that
Theorem B implies TAC

Given infinite Σ^0_1 completely branching $T \subseteq 2^{<\mathbb{N}}$. Construct R via:

- R is a quotient of $\mathbb{Q}[X_\sigma : \sigma \in T]$ such that
 - $X_\emptyset = 0 \in R$,

Theorem B implies TAC

Given infinite Σ^0_1 completely branching $T \subseteq 2^{<\mathbb{N}}$.

Construct R via:

- R is a quotient of $\mathbb{Q}[X_\sigma : \sigma \in T]$ such that
 - $X_\emptyset = 0 \in R$,
 - $X_{\sigma_0}X_{\sigma_1} = X_\sigma$, and
 - inverses for all polynomials such that the intersection of the partial $2^{<\mathbb{N}}$ coverings yielded by the monomials is empty.

R is a PIR; every ideal $I \subset R$ is generated by a monomial.

Given an infinite strictly ascending R−chain, one can effectively find a principle generator for each ideal in the chain and use $B\Sigma^2$ along with the sequence of exponents of these generators to build an infinite antichain of T in the context.
Given infinite Σ_1^0 completely branching $T \subseteq 2^{\mathbb{N}}$.

Construct R via:

- R is a quotient of $\mathbb{Q}[X_\sigma : \sigma \in T]$ such that
 - $X_\emptyset = 0 \in R$,
 - $X_{\sigma_0}X_{\sigma_1} = X_\sigma$, and
 - inverses for all polynomials such that the intersection of the partial $2^{\mathbb{N}}$-coverings yielded by the monomials is empty.
Given infinite Σ^0_1 completely branching $T \subseteq 2^{<\mathbb{N}}$. Construct R via:

- R is a quotient of $\mathbb{Q}[X_\sigma : \sigma \in T]$ such that
 - $X_\emptyset = 0 \in R$,
 - $X_{\sigma_0}X_{\sigma_1} = X_\sigma$, and
 - inverses for all polynomials such that the intersection of the partial–$2^{\mathbb{N}}$–coverings yielded by the monomials is empty.

- R is a PIR; every ideal $I \subseteq R$ is generated by a monomial.
Theorem B implies TAC

Given infinite Σ^0_1 completely branching $T \subseteq 2^{<\mathbb{N}}$. Construct R via:

- R is a quotient of $\mathbb{Q}[X_\sigma : \sigma \in T]$ such that
 - $X_\emptyset = 0 \in R$,
 - $X_{\sigma_0}X_{\sigma_1} = X_\sigma$, and
 - inverses for all polynomials such that the intersection of the partial $2^{\mathbb{N}}$-coverings yielded by the monomials is empty.

- R is a PIR; every ideal $I \subset R$ is generated by a monomial.

- Given an infinite strictly ascending R-chain, one can effectively find a principle generator for each ideal in the chain and use $B\Sigma_2$ along with the sequence of exponents of these generators to build an infinite antichain of T in the context.
Over RCA$_0$ we have that TAC \rightarrow Theorem B.
Over RCA_0 we have that $\text{TAC} \rightarrow \text{Theorem B}$. The converse follows from $\text{RCA}_0 + \text{B}\Sigma_2$.

Definition (RCA_0)

For each $n \in \mathbb{N}$, let $n^{-\text{TAC}}$ be the principle that says “for every infinite tree $T \subseteq 2^{<\mathbb{N}}$ with infinitely many splittings, there is a (path-)nonincreasing $f_T: T \rightarrow \mathbb{N}$ such that:

- $f_\emptyset = n$;
- there exist infinitely many $\sigma \in T$ and $i_\sigma \in \{0, 1\}$ such that:

 $f(\sigma) > f(\sigma i_\sigma)$.
First-Order Considerations

Over RCA$_0$ we have that TAC \rightarrow Theorem B. The converse follows from RCA$_0 + B\Sigma_2$.

Definition (RCA$_0$)

For each $n \in \mathbb{N}$, let n–TAC be the principle that says “for every infinite tree $T \subseteq 2^{<\mathbb{N}}$ with infinitely many splittings, there is a (path-)nonincreasing $f_T : T \rightarrow \mathbb{N}$ such that:

- $f_T(\emptyset) = n$;
- there exist infinitely many $\sigma \in T$ and $i_{\sigma} \in \{0, 1\}$ such that:
 \[f_T(\sigma) > f_T(\sigma_{i_{\sigma}}). \]
First-Order Considerations

Over RCA$_0$ we have that TAC \rightarrow Theorem B. The converse follows from RCA$_0$+Σ_2.

Definition (RCA$_0$)

For each $n \in \mathbb{N}$, let n–TAC be the principle that says “for every infinite tree $T \subseteq 2^{<\mathbb{N}}$ with infinitely many splittings, there is a (path-)nonincreasing $f_T : T \rightarrow \mathbb{N}$ such that:

- $f(\emptyset) = n$;
- there exist infinitely many $\sigma \in T$ and $i_\sigma \in \{0, 1\}$ such that:
 \[
 f(\sigma) > f(\sigma i_\sigma).
 \]
Over RCA₀ we have that TAC \rightarrow Theorem B. The converse follows from RCA₀+$B\Sigma_2$.

Definition (RCA₀)

For each $n \in \mathbb{N}$, let n–TAC be the principle that says “for every infinite tree $T \subseteq 2^{<\mathbb{N}}$ with infinitely many splittings, there is a (path-)nonincreasing $f_T : T \rightarrow \mathbb{N}$ such that:

- $f(\emptyset) = n$;
- there exist infinitely many $\sigma \in T$ and $i_\sigma \in \{0, 1\}$ such that:
 \[
 f(\sigma) > f(\sigma i_\sigma).
 \]

TAC is equivalent to 1-TAC.
Over RCA\(_0\) we have that TAC \rightarrow Theorem B.
The converse follows from RCA\(_0\)+B\(\Sigma_2\).

Definition (RCA\(_0\))

For each $n \in \mathbb{N}$, let n–TAC be the principle that says “for every infinite tree $T \subseteq 2^{<\mathbb{N}}$ with infinitely many splittings, there is a (path-)nonincreasing $f_T : T \rightarrow \mathbb{N}$ such that:

- $f(\emptyset) = n$;
- there exist infinitely many $\sigma \in T$ and $i_\sigma \in \{0, 1\}$ such that:

$$f(\sigma) > f(\sigma i_\sigma).$$

TAC is equivalent to 1-TAC. Let WTAC be n–TAC without the n.
Over RCA$_0$ we have that TAC \rightarrow Theorem B. The converse follows from RCA$_0 + \text{B}\Sigma_2$.

Definition (RCA$_0$)

For each $n \in \mathbb{N}$, let n–TAC be the principle that says “for every infinite tree $T \subseteq 2^{<\mathbb{N}}$ with infinitely many splittings, there is a (path-)nonincreasing $f_T : T \rightarrow \mathbb{N}$ such that:

- $f(\emptyset) = n$;
- there exist infinitely many $\sigma \in T$ and $i_\sigma \in \{0, 1\}$ such that:

$$f(\sigma) > f(\sigma i_\sigma).$$

TAC is equivalent to 1-TAC. Let WTAC be n–TAC without the n.

TAC \rightarrow Theorem B \rightarrow WTAC, over RCA$_0$.
Over RCA_0 we have that $\text{TAC} \rightarrow \text{Theorem B}$. The converse follows from $\text{RCA}_0 + \text{B}\Sigma_2$.

Definition (RCA_0)

For each $n \in \mathbb{N}$, let $n-\text{TAC}$ be the principle that says “for every infinite tree $T \subseteq 2^{<\mathbb{N}}$ with infinitely many splittings, there is a (path-)nonincreasing $f_T : T \rightarrow \mathbb{N}$ such that:

- $f(\emptyset) = n$;
- there exist infinitely many $\sigma \in T$ and $i_\sigma \in \{0, 1\}$ such that:

 $$f(\sigma) > f(\sigma i_\sigma).$$

TAC is equivalent to $1-\text{TAC}$. Let WTAC be $n-\text{TAC}$ without the n.

$\text{TAC} \rightarrow \text{Theorem B} \rightarrow \text{WTAC}$, over RCA_0.

$\text{TAC} \leftrightarrow \text{Theorem A/B} \leftrightarrow \text{WTAC}$, over $\text{RCA}_0 + \text{B}\Sigma$.
Over RCA\(_0\) we have that TAC \(\rightarrow\) Theorem B. The converse follows from RCA\(_0\)+B\(\Sigma_2\).

Definition (RCA\(_0\))

For each \(n \in \mathbb{N}\), let \(n-\text{TAC}\) be the principle that says “for every infinite tree \(T \subseteq 2^{<\mathbb{N}}\) with infinitely many splittings, there is a (path-)nonincreasing \(f_T : T \rightarrow \mathbb{N}\) such that:

- \(f(\emptyset) = n\);
- there exist infinitely many \(\sigma \in T\) and \(i_\sigma \in \{0, 1\}\) such that:

\[
 f(\sigma) > f(\sigma i_\sigma).
\]

TAC is equivalent to 1-TAC. Let WTAC be \(n-\text{TAC}\) without the \(n\).

\[
 \text{TAC} \rightarrow \text{Theorem B} \rightarrow \text{WTAC, over RCA}_0.
\]

\[
 \text{TAC} \leftrightarrow \text{Theorem A/B} \leftrightarrow \text{WTAC, over RCA}_0 + B\Sigma.
\]

Q: What is the first order part of \(n-\text{TAC}, \text{WTAC}\)?
Consequences of the Hilbert Basis Theorem:
The Krull Intersection Theorem

Theorem (Krull Intersection Theorem; KIT)

If R is an integral domain, $I \subset R$ an ideal, then

$$\bigcap_{n \in \mathbb{N}} I^n = 0_R.$$

Theorem (RCA$_0$, Conidis (2021))

KIT implies WKL$_0$.

Chris Conidis
The Primary Decomposition Lemma

We need to use infinite combinatorial structures (graphs) that are more general than trees and include (undirected) cycles.
The Primary Decomposition Lemma

We need to use infinite combinatorial structures (graphs) that are more general than trees and include (undirected) cycles.

Theorem

The Primary Decomposition Lemma follows from $CAC + WKL_0$.
The Primary Decomposition Lemma

We need to use infinite combinatorial structures (graphs) that are more general than trees and include (undirected) cycles.

Theorem

*The Primary Decomposition Lemma follows from $CAC + WKL_0$.***

Lemma (RCA_0)

- *If R is Noetherian, then the nilradical $N \subset R$ exists and $N^n = 0_R$, for some $n \in \mathbb{N}$.***
We need to use infinite combinatorial structures (graphs) that are more general than trees and include (undirected) cycles.

Theorem

The Primary Decomposition Lemma follows from CAC + WKL$_0$.

Lemma (RCA$_0$)

- *If R is Noetherian, then the nilradical $N \subset R$ exists and $N^n = 0_R$, for some $n \in \mathbb{N}$.*
- *PDL implies KIT (and thus WKL$_0$).*
The Primary Decomposition Lemma

We need to use infinite combinatorial structures (graphs) that are more general than trees and include (undirected) cycles.

Theorem

*The Primary Decomposition Lemma follows from CAC\vdashWKL0.***

Lemma (RCA$_0$)

- *If R is Noetherian, then the nilradical $N \subset R$ exists and $N^n = 0_R$, for some $n \in \mathbb{N}$.***
- *PDL implies KIT (and thus WKL0).***

Chris Conidis

The Reverse Mathematics of Noether’s Decomposition Lemma
The Primary Decomposition Lemma

We need to use infinite combinatorial structures (graphs) that are more general than trees and include (undirected) cycles.

Theorem

The Primary Decomposition Lemma follows from CAC + WKL₀.

Lemma (RCA₀)

- If \(R \) is Noetherian, then the nilradical \(N \subset R \) exists and \(N^n = 0_R \), for some \(n \in \mathbb{N} \).
- \(PDL \) implies \(KIT \) (and thus \(WKL₀ \)).

Conjecture (RCA₀)

The Primary Decomposition Lemma implies:

- \(KIT \); *(Milne’s Lecture Notes; online)*
- \(WKL₀ \);
- \(TAC + WKL₀ \).*
Thank You!