The following problem uses the ideas in the proof of Lindström’s Theorem. For reference, the relevant section of Ebbinghaus, Flum, and Thomas is on the course website.

Let ψ be a first-order sentence such that $\text{Mod}(\psi)$ is closed under substructures. (I.e., if $\mathcal{A} \models \psi$ and \mathcal{B} is a substructure of \mathcal{A}, then $\mathcal{B} \models \psi$.) Show that ψ is logically equivalent to a universal sentence. [It is easy to see that the converse is also true.]

Hint: We can assume that the language of ψ is finite and relational. First define a notion of “m-embeddability” of a structure \mathcal{B} in another structure \mathcal{A}, akin to the notion of m-isomorphism used in the proof of Lindström’s Theorem. Then show that for each m and \mathcal{A}, this notion can be captured by a universal formula $\theta^m_{\mathcal{A}}$. (I.e., \mathcal{B} is m-embeddable in \mathcal{A} iff $\mathcal{B} \models \theta^m_{\mathcal{A}}$.) Next, show that there is a universal first order formula expressing the disjunction of $\theta^m_{\mathcal{A}}$ over all models \mathcal{A} of ψ. Assuming that ψ is not logically equivalent to a universal sentence, proceed as in the proof of Lindström’s Theorem to find \mathcal{A} and \mathcal{B} such that $\mathcal{A} \models \psi$ and $\mathcal{B} \models \neg \psi$, but \mathcal{B} is embeddable in \mathcal{A}.