1. Show that the $<$ relation is not definable in $\mathcal{N}_S = (\mathbb{N}; 0, S)$. (Use the fact that the theory of \mathcal{N}_S admits elimination of quantifiers.)

2. Show that if T is a consistent, ω-complete theory (as defined in the previous assignment) in the language of \mathcal{N} and $A_E \subseteq T$, then $T = \text{Th} \mathcal{N}$. [Here $\mathcal{N} = (\mathbb{N}; 0, S, <, +, \cdot, E)$].

3. Show that the theory of the natural numbers has 2^{\aleph_0} many nonisomorphic countable models. [Hint: For each set of primes A, construct a model containing an element whose prime divisors are exactly the elements of A.]