1. Show that a theory is computably enumerable iff it is axiomatizable. [Hint: Any formula φ is equivalent to $\varphi \land \varphi \land \cdots \land \varphi$.]

2. A theory T in a language that includes 0 and S is ω-complete if for any formula $\varphi(x)$, if $\varphi(S^n0) \in T$ for every $n \in \mathbb{N}$, then $\forall x \varphi(x) \in T$. (Here the notation S^n0 means S applied to 0 n many times.) Let L be a language whose symbols include the constant symbol 0, the unary function symbol S, and the ternary relation symbol H. Let T be a theory in this language such that $T \vdash H(S^e0, S^x0, S^t0)$ iff the eth Turing machine on input x runs for exactly t many steps and then halts. Suppose that T is axiomatizable and ω-complete. Show that T is not complete.

3. Working in a language with equality, countably many unary relation symbols R_0, R_1, \ldots, and no function or constant symbols, let Γ consist of the following axioms:

$$\exists x (R_i x \land \forall y (R_i y \rightarrow y = x)) \quad \text{for each } i \in \omega$$

and

$$\forall x (R_i x \rightarrow \neg R_j x) \quad \text{for each } i, j \in \omega \text{ such that } i \neq j.$$

Let $T = Cn(\Gamma)$. Prove that T admits elimination of quantifiers.

4. Let \mathcal{A} be the directed graph consisting of exactly one n-cycle for each $n > 1$ (with all of the cycles disjoint, and no other vertices or edges than the ones in these cycles). Let T be the theory of \mathcal{A}.

 a. Show that T does not admit elimination of quantifiers.

 b. Show that T is axiomatizable but not finitely axiomatizable. [You may use the following fact (Theorem 26H in Chapter 2 of Enderton): If $Cn \Sigma$ is finitely axiomatizable then there is a finite $\Sigma_0 \subseteq \Sigma$ such that $Cn \Sigma_0 = Cn \Sigma$.]