1. Do Exercise 8.7.2 in Soare. [Here “limit point” has its usual topological meaning.]

2. Do Exercises 3.11 and 3.24 in *Slicing the Truth*.

3. Read Theorem 2.19.10 in Downey and Hirschfeldt, then do the following problem.

Let T be an infinite computable binary tree with no computable paths and let C_0, C_1, \ldots be noncomputable sets. Let $D = \bigoplus_i C'_i = \{\langle i, n \rangle : n \in C'_i\}$. Show that T has a path P such that $P \upharpoonright T C'_i$ for all i and $P' \leq_T D$. (Here $P \upharpoonright_T C_i$ means that $P \not\leq_T C_i$ and $C_i \not\leq_T P$.) [The only significant new aspect is making sure that P avoids the lower cone below each C_i in addition to avoiding the upper cone above each C_i. The fact that T has no computable paths is of course crucial here.]