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Abstract

We show that the elementary theory of the structure of the Solovay degrees
of computably enumerable reals is undecidable.

1 Introduction

In this paper we work in Cantor space 2ω, with basic clopen sets [σ] = {σα :
α ∈ 2ω} having Lebesgue measure µ([σ]) = 2−|σ|. While this space is not
homeomorphic to the real interval (0, 1), it is measure-theoretically isomorphic
to it. We will identify a set A with its characteristic function χA, and hence
with the real 0.χA. We write ‘[s]’ after expressions to indicate that everything
in the expression is taken with its value at stage s of the given construction.

We assume the basics of the theory of effective randomness, in particular the
definitions of prefix-free Turing machine and prefix-free Kolmogorov complexity,
which we denote by K. For definitions of these and related concepts, see for
instance [6, 7, 11, 14].

Our basic objects of study will be the computably enumerable reals (which
have also been called left computable and left-c.e.). The computably enumerable
reals are those reals α such that the left cut L(α) = {q ∈ Q : q 6 α} forms
a c.e. set of rationals. Equivalently, c.e. reals are those that are the limits
of computable increasing sequences of rationals. These reals should not be
confused with the computable reals, which are those that are the limits of a
computable sequence of rationals for which the modulus of convergence is also a
computable function. Nor should they be confused with the strongly c.e. reals,
which are those that are of the form 0.χA for some c.e. set A. Computably
enumerable reals arise naturally as the measures of the domains of prefix-free
Turing machines in the same way that in classical computability theory c.e. sets
arise as the halting sets of Turing machines.
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A classic example of a c.e. real that is not strongly c.e. is Chaitin’s halting
probability [5]:

Ω =
∑
U(σ)↓

2−|σ|,

where U is a universal prefix-free machine. This real is famously 1-random, in
the sense that there is a constant c such that for all n,

K(Ω � n) > n− c,

where Ω � n denotes the first n bits of Ω. As is well-known, this initial segment
definition coincides with Martin-Löf’s definition [15] of randomness as avoiding
all “effectively presented” statistical tests.

The context of the current paper is a program to try to understand the
relative initial segment complexity of (c.e.) reals as articulated in the papers
[6, 8, 9, 10]. For instance, the above definition of Ω seems to depend upon the

choice of the relevant universal machine U . Perhaps for a different machine Û ,
the real ΩÛ would behave rather differently than ΩU .

The situation is akin to that for “the” halting set ∅′ = {e : ϕe(e) ↓}, where
ϕe is the eth partial computable function. Here we might well argue that the
definition actually depends on the choice of universal machine enumerating the
partial computable functions. Of course, by Myhill’s Theorem (see [17]), we
know that all versions of the halting problem are creative sets, and are all the
same up to computable permutations of the natural numbers.

The first person to address this situation for Ω was Solovay [18, 19], who
introduced an analytic version of m-reducibility appropriate for c.e. reals.

Definition 1 (Solovay [18, 19]). Let α and β be reals. We say β dominates α,
or, alternatively, that α is Solovay reducible to β, and write α 6S β, if there
exist a partial computable function ϕ and a constant c such that for all rational
q < β, we have ϕ(q)↓ and

α− ϕ(q) 6 c(β − q).

If A, B ⊆ N, then A 6S B if and only if 0.χA 6S 0.χB .

Note that Solovay reducibility implies Turing reducibility. (See e.g. [8] for a
proof.)

One reason that Solovay was interested in this reducibility is that if α 6S β
then there is a constant c such that for all n,

K(β � n) > K(α � n)− c.

(See e.g. [9] for a proof.) This fact makes Solovay reducibility a possible measure
of relative randomness. Solovay defined a class of c.e. reals, the Ω-like c.e. reals,
as being those that dominate Ω. Clearly, all Ω-like reals are 1-random. In the
wonderful unpublished notes [18], Solovay proved a number of very interesting
results about the initial segment complexity of Ω-like reals. He remarked: “It
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seems strange that we are able to prove so much about the behavior of Ω-like
reals when, a priori, the definition of Ω is thoroughly model dependent. . . ”.
Solovay’s notes have not been published, save for a fragment in Solovay [19],
but most of the material will appear in the forthcoming monograph of Downey
and Hirschfeldt [7].

Solovay’s intuition has been more recently confirmed by two groups of au-
thors. First, Calude, Khoussainov, Hertling and Wang [4] used Kraft’s inequal-
ity to show that if a c.e. real is Ω-like then it is the halting probability of some
universal prefix-free machine. Thus it is a version of Ω. Second, Kučera and
Slaman [13] proved that if a c.e. real is 1-random then it is Ω-like.

Thus we have the following very remarkable consequence. Fundamental work
of Chaitin and Levin (see e.g. [11]) has shown that for all n there are strings
σ of length n such that K(σ) = n + K(n) + O(1). Thus it is possible for the
Kolmogorov complexity of Ω to oscillate upwards above n + log n, and indeed
we can show that infinitely often we have K(Ω � n) > n + log n. On the other
hand, the complexity of a 1-random real can oscillate down towards n infinitely
often. The Kučera-Slaman Theorem shows that all 1-random c.e. reals have the
same initial segment behavior, and all oscillate downwards and upwards at the
same ns. Thus the situation for halting probabilities is in this respect similar
to that for versions of the halting set.

This paper is part of the effort to understand the structure of the c.e. reals
under Solovay reducibility. Note that for c.e. reals α and β, since there exist
increasing computable functions of rationals α[s] and β[s] such that lims α[s] = α
and lims β[s] = β, we have α 6S β if and only if there exist a computable
function ϕ and a constant c such that for all s,

α− α[ϕ(s)] < c · (β − β[s]).

(This characterization was first given in [3]; see also [9] for a proof.) Since we
deal exclusively with c.e. reals in what follows, we generally use this equivalent
characterization without explicit comment. One easy consequence of it that we
will use below is that if for all s,

α[s+ 1]− α[s] 6 β[s+ 1]− β[s],

then α 6S β. Another useful variation is given in the following lemma.

Lemma 1.1. Let α[s] and β[s] be increasing sequences of rationals such that
lims α[s] = α and lims β[s] = β. Then α 6S β if and only if there exist a
computable function ϕ, a constant c, and a nonincreasing computable function
ψ : N→ Q such that lims ψ(s) = 0 and for all s,

α− α[ϕ(s)] < c · (β − β[s]) + ψ(s).

Proof. The “only if” direction follows from the previous characterization of
Solovay reducibility. For the “if” direction, suppose that the displayed inequality
holds for all s. Given s, find a t > s such that c · (β[t]− β[s]) > ψ(t), which is
possible since ψ goes to 0. Define θ(s) = ϕ(t). Then

α−α[θ(s)] < c·(β−β[t])+ψ(t) = c·(β−β[s])−c·(β[t]−β[s])+ψ(t) < c·(β−β[s]).
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So α 6S β by the previous characterization of Solovay reducibility.

We call the equivalence classes of c.e. reals induced by the Solovay reducibil-
ity pre-ordering c.e. Solovay degrees. We denote the degree of α by [α]S. Thus
[α]S = {β : β ≡S α}. The first paper to study this structure in detail was
Downey, Hirschfeldt, and Nies [9], where it was shown that the Solovay degrees
of c.e. reals form a dense distributive upper-semilattice, with join induced by
ordinary arithmetical addition, that is, [α]S ∨ [β]S = [α + β]S (though some of
these facts were previously known). It was also shown in [9] that while every
nonrandom degree splits over all lesser ones, remarkably, [Ω]S is qualitatively
different in that if α and β are c.e. reals and α + β ≡S Ω, then at least one of
α or β is 1-random. (According to Kučera, the latter result had been proved
earlier by Demuth.)

The goal of this paper is to add to our global understanding of the structure
of the c.e. Solovay degrees. We prove that the structure of the c.e. Solovay
degrees has an undecidable first order theory. The proof is, of course, a priority
argument, in this case one employing a 0′′′ tree of strategies.

Of relevance to this paper is another measure of relative randomness.

Definition 2 (Downey, Hirschfeldt, and LaForte [8]). Let A, B ⊆ N. We say
A is strongly weak-truth-table reducible (sw-reducible) to B, and write A 6sw B,
if there exist a computable functional Γ and a constant c such that A = ΓB and
γ(x) 6 x+ c for all x, where γ is the use function of Γ, which is independent of
B. If α and β are reals with α = 0.χA and β = 0.χB , then α 6sw β if and only
if A 6sw B.

Again it is relatively easy to show that if A 6sw B then K(B � n) > K(A �
n) − O(1). For c.e. reals in general, sw-reducibility and Solovay reducibility
are incomparable measures, but for strongly c.e. reals they coincide. For these
results and others concerning the spectrum of measures of relative randomness
see Downey, Hirschfeldt, and LaForte [8], the survey articles Downey [6] and
Downey, Hirschfeldt, Nies, and Terwijn [11], or the forthcoming monograph
Downey and Hirschfeldt [7].

Most of our notation is standard, and follows that of Soare [17]. In particular,
we write ’[s]’ after any expression to denote its value at stage s. A c.e. real can
be identified with the characteristic function of a nearly c.e. set, that is, a set B
with an approximation B[s] such that for all s and x, if B(x)[s + 1] < B(x)[s]
then there exists some y < x such that B(y)[s] < B(y)[s+ 1]. In order to avoid
possible confusion between c.e. sets and c.e. reals, in the following sections, we
will talk only about c.e. sets and nearly c.e. sets. Given either c.e. or nearly c.e.
sets Y and Z, we generally write Y + Z and Y − Z for the ordinary arithmetic
sum and difference of the c.e. reals 0.χY and 0.χZ . This convention will never
cause any confusion below, and simplifies our notation somewhat.

We show that the theory of the structure of the c.e. Solovay degrees is un-
decidable using the method of Nies [16], involving the notions of effectively
dense boolean algebras and hereditarily undecidable theories. Suppose we have
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a structure (N,4,∨,∧) such that 4 is a Σ0
k pre-ordering and ∨ and ∧ are to-

tal computable binary functions, and let ≈ be the equivalence relation modulo
which 4 becomes a partial order. (In other words, m ≈ n if and only if m 4 n
and n 4 m.) If the quotient structure B = (N,4,∨,∧)/ ≈ is a boolean algebra,
then we call B a Σ0

k boolean algebra. (We also abuse terminology and call B a Σ0
k

boolean algebra if it is isomorphic to a Σ0
k boolean algebra.) A boolean algebra

B with least element 0 is effectively dense if there is a computable function F
such that 0 ≺ F (x) ≺ x for all x 6= 0 in the domain of B.

A theory T in a first-order language L is hereditarily undecidable if every set
X ⊆ T containing the valid L-sentences is undecidable. This notion is useful
to us because of the following transfer principle (see e.g. [1, 2]): if A is an
L1-structure with a hereditarily undecidable theory, and A can be interpreted
with parameters in an L2-structure B, then the theory of B is hereditarily
undecidable.

A Solovay degree b is complemented below a Solovay degree a if there is a
Solovay degree c such that b∧c = a and b∨c = [0]S. In Nies [16] it is shown that
the lattices of Σ0

k ideals of effectively dense Σ0
k boolean algebras have hereditarily

undecidable theories. (Actually, Theorem 2.1 of [16] is proved only for the Σ0
1

case, but it is clear how to relativize the proof for k > 1. See, for example, Nies
and Downey [12, Theorem 2.1] for the case k = 2.) We use this result to show
that the structure of the c.e. Solovay degrees is undecidable by finding a c.e.
Solovay degree a such that the collection of c.e. Solovay degrees complemented
below a (with join and meet) forms an effectively dense Σ0

3 boolean algebra B(a)
for which the lattice of Σ0

3 ideals is definable in B(a).

2 The structure B(a)

We produce the Solovay degree a mentioned above using two technical lemmas,
Theorems 1 and 2 below, involving the following notion:

Definition 3. A c.e. set A ⊂ N is weakly sparse via f if

1. f : N→ N is a strictly increasing, computable function,

2. A ⊆
{
f(k) : k ∈ N

}
, and

3. f(k) + k + 1 < f(k + 1) for all k.

This notion is a significant weakening of the notion of super-sparseness used
in various results characterizing polynomial-time degrees of computable sets. A
simple example of a weakly sparse set is the set of positive squares

{
n2 : n >

0
}

. In fact, for our main lemma, Theorem 2 below, we will choose a to be the
Solovay degree of a subset of this set.

Let We denote the eth c.e. set, and let BtC = A denote the fact that B and
C are disjoint and their union is A. For a c.e. set A, let B(A) be the boolean
algebra of c.e. subsets of A that have c.e. complements included in A, that is,{
We : ∃j (Wj tWe = A)

}
, with union and intersection. If A is weakly sparse,
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we can prove the following exact pair theorem characterizing the ideals of B(A)
that are closed downward under sw-reducibility (or equivalently, since we are
dealing with c.e. sets, Solovay reducibility).

Theorem 1. Let A be weakly sparse. Let J be a Σ0
3 ideal of B(A) that is closed

downward under sw-reducibility. Then there exist c.e. sets X and Y such that
We ∈ J if and only if We 6sw X, Y .

We prove this result in Section 3 below.
We can then produce a weakly sparse set A with certain useful properties.

For sets B1 and B2, we write B1 ∧B2 ≡S 0 to denote the fact that the infimum
of [B1]S and [B2]S exists and is [0]S.

Theorem 2. There exists a c.e., non-computable, weakly sparse set A such that

1. for all c.e. splittings A1 t A2 = A, the infimum of the Turing degrees of A1

and A2 is 0; and

2. for all nearly c.e. sets B1 and B2 such that B1 +B2 ≡S A and B1∧B2 ≡S 0,
there exist c.e. sets A1 and A2 with A1 t A2 = A, such that B1 ≡S A1 and
B2 ≡S A2.

We prove this result in Section 4 below. From now on, fix a set A as in Theorem
2 and let a = [A]S.

We will show that for all B,C ∈ B(A), we have [B]S ∧ [C]S = [B ∩ C]S and
[B]S ∨ [C]S = [B ∪ C]S. Together with Theorem 2, this fact implies that the
collection of c.e. Solovay degrees complemented below a (with join and meet)
forms a boolean algebra B(a), which is equal to

{
[B]S : B ∈ B(A)

}
. We

will also show that this boolean algebra is Σ0
3 and effectively dense. Thus the

theory of the lattice I(a) of Σ0
3 ideals of B(a) is hereditarily undecidable. Since

Theorem 1 will imply that there is an interpretation of the theory of I(a) in
the theory of the Solovay degrees below a, this will show that the theory of the
Solovay degrees of c.e. reals is undecidable, by the transfer principle mentioned
in the introduction.

We now prove a series of lemmas showing that the set of c.e. splittings
of A together with the relation of Solovay reducibility and the operations of
intersection and union can be used to construct a Σ0

3 boolean algebra. First we
show that this algebra can be presented in a c.e. way, and that the density of
the structure for sw-reducibility is effective. Since sw-reducibility is equivalent
to Solovay reducibility on c.e. sets, this result will serve our purposes. Recall
that the ordinary arithmetic sum gives the join in the Solovay degrees of c.e.
reals.

Lemma 2.1. There exist a computable enumeration
{
Ae : e ∈ N

}
of c.e. sets

and computable functions f , g, and h such that the following hold.

(a) For each i and j such that WitWj = A, there exists an e such that Wi = Ae.

(b) For each e, there exists a k such that Ae tAk = A.
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(c) For all i and j, we have Ai ∪Aj = Af(i,j) and Ai ∩Aj = Ag(i,j).

(d) For all e, if Ae is noncomputable, then ∅ <sw Ah(e) <sw Ae, and hence
∅ <S Ah(e) <S Ae.

Proof. We first note that the collection of sets that are halves of c.e. splittings
of A can be enumerated by the following procedure. Let 〈We, Ve〉 be an enu-
meration of all pairs of c.e. subsets of A. For each e, define a sequence of
e-expansionary stages se0 < se1, . . . recursively by letting se0 = 0 and letting sek+1

be the least stage s > sek such that ∀t 6 s (We∩Ve = ∅) and A[sek] ⊆ (We∪Ve)[s].
Note that this sequence of stages could be finite. Let Be =

⋃
kWe[s

e
k]. Then{

Be : e ∈ N
}

is an indexing of all the c.e. sets that can be used to split A.
This collection is closed under union and intersection, and under c.e. splittings.

We construct the sequence
{
Ae : e ∈ N

}
from

{
Be : e ∈ N

}
by first

constructing a natural computable enumeration of all closed terms of the first-
order language L = {∧,∨, hD}∪

{
be : e ∈ N

}
, where ∧ and ∨ are two-place

function symbols, hD is a one-place function symbol, and each be is a constant
symbol. Let

{
te : e ∈ N

}
be this sequence. The construction familiar from

the Sacks splitting theorem (see [17]) is uniform in the enumeration of the set
being split, so that given any noncomputable c.e. set B, we can uniformly find
a c.e. set BD ⊂ B that is half of a splitting of B and such that ∅ <T BD <T B.
Since + is the join in the sw-degrees of c.e. sets and BD is half of a c.e. splitting
of B, it follows that BD 6sw B. Combining this fact with the fact that sw-
reducibility implies Turing reducibility, we see that ∅ <sw BD <sw B. Also,
the operations of union and intersection are of course similarly uniform for c.e.
sets. So we can define Ae to be the c.e. set with the obvious interpretation given
by te, interpreting the symbol ∧ as ∩, the symbol ∨ as ∪, the symbol hD as
the operation of taking the first member of the splitting given by the uniform
version of the Sacks splitting theorem, and each symbol be as Be. (Note that
we can apply the construction in the proof of the uniform version of the Sacks
splitting theorem even if B is computable, to obtain some c.e. set; in this case,
we do not care what properties this set has, only that it exists, so that hD is
total.) For example, if te = hD((b2 ∧ b1) ∨ b3), then Ae is the first half of the
Sacks splitting of (B2 ∩ B1) ∪ B3. Clearly the sequence

{
Ae : e ∈ N

}
is as

required, since we can effectively find the indices of ti ∨ tj , of ti ∧ tj , and of
hD(ti) from i and j, giving us the required functions f , g, and h.

Fix an enumeration
{
Ae : e ∈ N

}
as in the lemma.

As indicated in the introduction, we simplify notation by writing X for
both a c.e. set and the real 0.χX , which means we often write ‘−’ for both set
complementation and ordinary arithmetic subtraction. When the sets involved
in the expression B − C are c.e. and not merely nearly c.e., and C ⊆ B, these
two operations amount to the same thing, so no confusion should result. For a
subset B of A, we write B for the complement of B in A, that is, A−B. Notice
that Ae is a c.e. subset of A for every e. We now show that intersections and
unions give infima and suprema, respectively, for the Solovay degrees of the sets
Ae.
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Lemma 2.2. For all i, j ∈ N, we have Ai ∪Aj ≡S Ai +Aj.

Proof. First note that if n enters Ai ∪ Aj at stage s + 1, then it contributes
exactly 2−n to the value of (Ai ∪Aj)[s+ 1]− (Ai ∪Aj)[s], thought of as a real,
and contributes at least 2−n to the value of (Ai+Aj)[s+1]− (Ai+Aj)[s]. Thus

(Ai ∪Aj)[s+ 1]− (Ai ∪Aj)[s] 6 (Ai +Aj)[s+ 1]− (Ai +Aj)[s]

for all s. It follows that Ai ∪Aj 6S Ai +Aj .
Showing that Ai + Aj 6S Ai ∪ Aj is a little more involved. We can assume

the usual convention that, at each stage, exactly one number enters one of Ai or
Aj . (Clearly we can assume without loss of generality that Ai ∪Aj is infinite.)
Given s ∈ N, let f(s) be the least stage t at which for every z ∈ (Ai ∪ Aj)[s],
we have z ∈ (Ai ∩Aj)[t], or z ∈ (Ai ∩Aj)[t], or z ∈ (Ai ∩Aj)[t]. Note that f is
a computable function. Suppose t > f(s) and (Ai +Aj)[t+ 1]− (Ai +Aj)[t] =
2−k(t). Then either k(t) ∈ Ai[t + 1] − Ai[t] or k(t) ∈ Aj [t + 1] − Aj [t]. So
k(t) /∈ (Ai ∪Aj)[s] by our choice of f(s). Each k that enters Ai ∪Aj at some t
after stage f(s) can contribute at most 2 · 2−k = 2−k+1 to the value Ai + Aj ,
since it can enter Ai at most once and Aj at most once. Thus

Ai +Aj − (Ai +Aj)[f(s)] =

∞∑
j=f(s)+1

2−k(j)

6
∑

k∈Ai∪Aj−(Ai∪Aj)[s]

2 · 2−k

= 2 · (Ai ∪Aj − (Ai ∪Aj)[s]).

It follows that Ai +Aj 6S Ai ∪Aj .

Since Ai ∪Aj = Ai ∩ Aj , and, by Theorem 2, every Solovay degree in B(a)
contains a c.e. set that is half of a splitting of A, the previous lemma shows that
B(a) is closed under suprema. We now show that infima also exist in B(a). One
direction is almost immediate.

Lemma 2.3. For all i, k ∈ N, we have Ai ∩Ak 6S Ak.

Proof. At stage s, we search for the least t > s such that Ak[s] ⊂ Ai[t]∪Ai[t], and
set f(s) = t. If k ∈ Ai∩Ak− (Ai∩Ak)[f(s)], then k /∈ Ak[s], so k ∈ Ak−Ak[s].
Hence Ai∩Ak−(Ai∩Ak)[f(s)] 6 Ak−Ak[s] for all s, and so Ai∩Ak 6S Ak.

For the other direction, we first prove a useful lemma.

Lemma 2.4. For all i, k ∈ N, we have Ai 6S Ak if and only if Ai ∩ Ak is
computable.

Proof. First, suppose Ai 6S Ak. By Lemma 2.3, Ai∩Ak 6S Ak and Ai∩Ak 6S

Ai 6S Ak. By Theorem 2, the infimum of Ak and Ak in the Turing degrees is
0, so Ai ∩Ak is computable.

Now, suppose that Ai∩Ak is computable. Then Ai∩Ak 6S Ak. By Lemma
2.3, also Ai ∩ Ak 6S Ak. Since Ai = (Ai ∩ Ak) + (Ai ∩ Ak), it follows that
Ai 6S Ak.
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Lemma 2.5. For all i, j, k ∈ N, if Aj 6S Ai and Aj 6S Ak, then Aj 6S Ai∩Ak.

Proof. By Lemma 2.4, Aj ∩ Ai and Aj ∩ Ak are both computable. But then
Aj ∩Ai ∩Ak is computable. Since Ai ∩Ak = Al for some l, Lemma 2.4 implies
that Aj 6S Ai ∩Ak.

The relation of Solovay reducibility on c.e. reals is certainly Σ0
3, since X 6S Y

if and only if

∃e, c∀s, t∃u (ϕe(s)[u]↓ ∧ (Xt −X[ϕe(s)]) < c · (Yt − Y [s])).

Thus, we have shown that B(a) is an effectively dense Σ0
3 boolean algebra. We

can now easily prove our main result.

Theorem 3. The structure of the Solovay degrees of c.e. reals is undecidable.

Proof. By Theorem 2 and the lemmas above, we can represent B(a) by
{

[Ae]S :

e ∈ N
}

, with the operations of union and intersection on these sets giving
joins and meets on their Solovay degrees. (Hence B(a) actually is a boolean
algebra.) Furthermore, this algebra is Σ0

3, as explained above, and is effectively
dense, by Lemma 2.1.(d), since 6sw and 6S coincide on c.e. sets. Let I(a) be
the lattice of Σ0

3 ideals of B(a). By Theorem 1, there is a (two-dimensional)
interpretation of the theory of I(a) in the theory of the Solovay degrees below
a, since the sets involved can all be taken to be c.e., so that Solovay reducibility
and sw-reducibility coincide on them. Since the theory of I(a) is hereditarily
undecidable, this fact implies that the theory of the structure of the Solovay
degrees of c.e. reals is undecidable, by the transfer principle mentioned in the
introduction.

3 The proof of Theorem 1

In this section we prove the first of our two main technical lemmas:

Theorem 1. Let A be weakly sparse. Let J be a Σ0
3 ideal of B(A) that is closed

downward under sw-reducibility. Then there exist c.e. sets X and Y such that
We ∈ J if and only if We 6sw X, Y .

Proof. To simplify the construction, we will consider all c.e. sets to be subsets of
A. This convention just amounts to abusing standard notation by indexing only
the c.e. subsets of A: in other words, We means for us what would ordinarily
be written We ∩A. Let J =

{
We : ∃p ∀sR(e, p, s)

}
, where R is a Σ0

1 relation.
When W and V are c.e. sets, the sw-degree of the union of W and V is not

in general the degree of the join of their sw-degrees, even if such a join exists.
(Joins in the sw-degrees of c.e. reals do not always exist; see [8].) Fortunately,
it is easy to see that for elements W and V of B(A), we have W,V 6sw W ∪ V ,
which is all that will be required in the construction below.

Lemma 3.1. Let A be a c.e. set. If W and V are elements of B(A) =
{
We :

∃j (Wj tWe = A)
}

, then W, V 6sw W ∪ V .
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Proof. The proof is almost immediate, since the complements of V and W in
A, and hence in W ∪ V , are c.e. sets. Given n ∈ N, let g(n) be the least stage s
at which for every z ∈ (W ∪ V ) � n, one of the following holds: z ∈ (W ∩ V )[s],
or z ∈ (W ∩ V )[s], or z ∈ (W ∩ V )[s]. Clearly W � n = W � n[g(n)] and
V � n = V � n[g(n)].

Let V〈e,p〉 =
⋃{

We[s] : ∀ t < sR(e, p, s)
}

. To ensure that X and Y bound
the ideal J , we will satisfy two sequences of positive requirements:

PXe,p : ∃n∀x > n (x ∈ V〈e,p〉 if and only if x+ 〈e, p〉 ∈ X)

and
PYe,p : ∃n∀x > n (x ∈ V〈e,p〉 if and only if x+ 〈e, p〉 ∈ Y ).

These requirements clearly imply that

We ∈ J =⇒We 6sw X

and
We ∈ J =⇒We 6sw Y,

since if We ∈ J , then there exists a p with ∀sR(e, p, s), so that We = V〈e,p〉 6sw

X,Y .
To ensure exactness of the pair X,Y , we satisfy the sequence of negative

requirements

Ne : ΦXe = ΦYe = h total =⇒ h 6sw

⋃
〈j,p〉<e

V〈j,p〉,

where 〈Φe : e ∈ N〉 is a sequence consisting of all partial sw-reductions (i.e., all
partial computable functionals such that, for any oracle, the use function is
bounded by x + O(1)). Note that we list our sw-reductions so that their use
functions are independent of the oracle; we can assume that the use function of
Φe is exactly n + c for some c. These requirements suffice because they imply
that if a set W is sw-reducible to both X and Y , then W is also sw-reducible
to a union of elements of J (since every V〈j,p〉 is either equal to Wj , in which
case Wj ∈ J , or is finite), and hence W ∈ J . (The fact that we can use Φe
twice in the statement of Ne, rather than having one requirement for each pair
of reductions, follows by the usual Posner trick; see [17].)

Our construction will be similar to that of a minimal pair of Turing degrees
(see [17]). The coding involved in our positive requirements of course prevents
us from building an actual minimal pair, but we will see that it is compatible
with our negative requirements. Some care will need to be taken because the
positive requirements are infinitary.

We employ a tree of strategies. There are two possible outcomes for a strat-
egy α working for a negative requirement Ne, depending on whether or not the
partial functions ΦXe and ΦYe produce the same total function. The infinitary
outcome will be coded by 0 and the finitary one by 1. If ΦXe and ΦYe do pro-
duce the same total function, then the restraint involved in ensuring that this
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function is computable from
⋃
〈j,p〉<e V〈j,p〉 will tend to infinity in the limit, but

this restraint will be imposed only on positive strategies to the right of α_0 on
the tree of strategies. The idea is that the action of positive strategies above α
can be accounted for by the

⋃
〈j,p〉<e V〈j,p〉 term in the statement of Ne, while

positive strategies at or below α_0 will not be able to destroy both ΦXe and ΦYe
computations between successive expansionary stages (that is, stages at which
the length of agreement between ΦXe and ΦYe increases), as usual in variations
of the minimal pair construction. (Of course, if α is on the true path, the action
of strategies to the left of α will be finite.)

Thus positive requirements will inflict only finite injury, so our tree is not
really needed for them. We put their strategies there anyway for the sake of
uniformity.

Construction:
To control our construction, we use the tree of strategies 2<ω, assigning require-
ment Ne to each node of length 3e, requirement PXe,p to each node of length

3〈e, p〉+ 1, and requirement PYe,p to each node of length 3〈e, p〉+ 2; and associ-
ating to each α ∈ 2<ω of length 3e a restraint function rα[s]. We use the usual
priority ordering for nodes on the tree: β 6 α if and only if either β ⊆ α or
(β ∩ α)_0 ⊆ β. If the latter case holds but the former does not (i.e., if β is to
the left of α), we also write β <L α.

At each stage s, there will be an approximation to the true path g[s] ∈ 2<ω

of length s, defined in the usual way. A stage s is an α-stage if either α ⊆ g[s]
or s = 0. As usual, we say that α is initialized whenever g[s] is to the left of α.

Let f be a function witnessing the fact that A is weakly sparse. We say that
a pair consisting of a node α = 3〈e, p〉+ 1 and a number x requires attention at
stage s if

1. s is an α-stage,

2. x /∈ X[s],

3. x ∈ Ve,p[s],

4. x = f(n) for some n > 〈e, p〉, and

5. x+ 〈e, p〉 > max
{
rβ [s] : β_0 <L α

}
.

We also have the analogous definition for α = 3〈e, p〉 + 2, with the obvious
changes.

Of all pairs requiring attention at stage s, let α and x be the one that has
required it for the longest time, breaking ties by choosing the shortest α and
then the least x. We say that α, x receives attention at this stage. (If there is
no such pair, then no number enters X or Y at this stage.) If α has requirement
PXe,p assigned to it, then put x+ 〈e, p〉 into X[s+ 1]. If α has requirement PY〈e,p〉
assigned to it, then put x + 〈e, p〉 into Y [s + 1]. In either case, the outcome of
α does not matter, so we arbitrarily let it be 0.
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Now suppose a node β has requirement Ne attached to it and s is a β-stage.
Let ϕe be the use function of Φe. For Z = X or Y , a computation ΦZe (y) is
β-correct at stage s if for every 〈j, p〉 < e, if s− is the previous β-stage and
x+ 〈j, p〉 < ϕe(y), then x+ 〈j, p〉 ∈ Z[s] if and only if x+ 〈j, p〉 ∈ Z[s−]. Let

lβ [s] = max
{
y : ∀x < y (ΦXe (x)[s]↓= ΦYe (x)[s]↓ β-correctly)

}
.

Let rβ [s] = max
{
ϕe(x) : x < lβ [s]

}
. (For every t between s and the next

β-stage, if any, we define rβ [t] = rβ [s].) The stage s is β-expansionary if lβ [t] <
lβ [s] for every β-stage t < s. If s is β-expansionary, then α has outcome 0 at
stage s; otherwise it has outcome 1 at stage s.

Verification:
Let g = lim infs g[s] be the true path of the construction.

First, we verify that the positive requirements are satisfied. Let α = g �
3e + 1. If β_0 <L α corresponds to a negative requirement, then β_0 is not
on the true path, and hence there are only finitely many β-expansionary stages,
which implies that rβ [s] comes to a limit. So max

{
rβ [s] : β_0 <L α

}
comes

to a limit r. Suppose that x = f(n) for some n > 〈e, p〉, and x+ 〈e, p〉 > r.
Since there are infinitely many α-stages, if x ∈ V〈e,p〉, then the pair α, x

eventually requires attention, and thus it eventually receives attention, so that
x + 〈e, p〉 ∈ X. Next, suppose x + 〈e, p〉 ∈ X. Then it must be the case that
x+ 〈e, p〉 = y+ 〈e′, p′〉 for some y, e′, and p′ such that y ∈ V〈e′,p′〉 and y = f(m)
for some m > 〈e′, p′〉 (because every number put into X during the construction
is of this form). We show that y = x. If y > x, then since f is increasing,
m > n > 〈e, p〉 > 〈e′, p′〉. By the fact that f is a sparseness function, however,
we then have y = f(m) > f(n) + n + 1 > f(n) + 〈e, p〉 = x + 〈e, p〉, which
contradicts the assumption that y + 〈e′, p′〉 = x + 〈e, p〉. Similarly, if y < x,
we have the analogous contradiction with the roles of x and y reversed. Hence
x = y and so e′ = e and p′ = p. Thus x ∈ V〈e,p〉.

The same argument works for α = g � 3e + 2, with the obvious changes.
Thus the positive requirements are satisfied.

Now suppose that ΦXe = ΦYe , with use function ϕe(x) = x+c. Let α = g � 3e
and let s be a stage such that α 6 g[t] for every t > s. Given n, let sn > s be the
least α-expansionary stage such that for every 〈a, p〉 < e, we have V〈a,p〉[sn] �
(n+c) = V〈a,p〉 � (n+c), and for everym 6 n, we have ΦXe (m)[sn]↓= ΦYe (m)[s]↓.
By Lemma 3.1, the function n 7→ sn can be computed from

⋃
〈a,p〉<e V〈a,p〉 via

a procedure with use n + O(1). We claim that for every α-expansionary stage
t > sn, we have ΦXe (n)[t] = ΦXe (n)[sn].

The proof is by induction. Suppose that t > sn is an α-expansionary stage
such that ΦXe (n)[t] = ΦXe (n)[sn]. By the definition of α-expansionary, we also
have ΦXe (n)[t] = ΦYe (n)[t]. Let t+ > t be the next α-expansionary stage after
t. Let us consider what numbers can be enumerated into X or Y between
stages t and t+. No node β <L α can act, since t > s, and the nodes β ⊆ α
never enumerate any numbers into either X or Y below ϕe(n), since t > sn. The
nodes β ⊇ α_1 must respect rβ [t], so they do not enumerate any numbers below
ϕe(n). As for the nodes β ⊇ α_0, at most one such node can act in this interval
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(since only one such node can act at stage t, and none can act until the next α-
expansionary stage, namely t+). This node may enumerate a number into X or
into Y , but not both. Thus we see that in the interval between t and t+, either
no number enters X below ϕe(n), or no number enters Y below ϕe(n). Since
ΦXe (n)[t+] = ΦYe (n)[t+], it follows that ΦXe (n)[t+] = ΦXe (n)[t] = ΦXe (n)[sn].

Thus, for every α-expansionary stage t > sn, we have ΦXe (n)[t] = ΦXe (n)[sn],
and hence ΦXe (n) = ΦXe (n)[sn]. So ΦXe is sw-computable from

⋃
〈a,p〉<e V〈a,p〉.

4 The proof of Theorem 2

In this section we establish our main technical result:

Theorem 2. There exists a c.e., non-computable, weakly sparse set A such that

1. for all c.e. splittings A1 t A2 = A, the infimum of the Turing degrees of A1

and A2 is 0; and

2. for all nearly c.e. sets B1 and B2 such that B1 +B2 ≡S A and B1∧B2 ≡S 0,
there exist c.e. sets A1 and A2 with A1 t A2 = A, such that B1 ≡S A1 and
B2 ≡S A2.

Proof. We make A weakly sparse by choosing all numbers enumerated into A
to be from

{
n2 : n > 0

}
. We must satisfy three types of requirements. The

simplest are the requirements for noncomputability: for each e ∈ N,

Pe : A 6= We.

To ensure that condition 1 on all c.e. splittings of A holds, we satisfy

Ne : (Ue t Ve = A and ΦUee = ΦVee = h total) =⇒ h 6T ∅,

where 〈Ue, Ve,Φe〉 is an enumeration of all triples consisting of pairs of c.e. sets
together with a partial computable functional.

The most complex requirements are those involving condition 2 on A. Say
that X 6S Y via c, ϕ if X − X[ϕ(s)] < c · (Y − Y [s]) for all s. Letting
〈Be, Ce, ϕe, ψe〉 enumerate all pairs of nearly c.e. sets together with all pairs
of partial computable functions, we must satisfy for each c ∈ Q and e ∈ N the
requirement

R〈e,c〉 : (Be + Ce 6S A via c, ψe and A 6S Be + Ce via c, ϕe) =⇒(
∃ c.e. Qe (Qe 6S Be, Ce ∧ ∀i (Qe 6= Wi)) ∨

∃ c.e. B̂e, Ĉe (B̂e t Ĉe = A ∧ B̂e ≡S Be ∧ Ĉe ≡S Ce)
)
.

The strategies for the first two classes of requirements are straightforward
and familiar ones from the study of c.e. Turing degrees. For the requirements Pe,
we pick some large x ∈

{
n2 : n > 0

}
and wait for a stage s so that x ∈ We[s],
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at which point we add x to A[s+ 1]. This action ensures that the complement
of A is not equal to We.

For the requirements Ne, we use a slightly modified version of the strat-
egy familiar from the standard construction of a minimal pair of c.e. degrees.
To avoid introducing some essentially irrelevant details involved in checking
whether Ue t Ve splits A, we actually work with U∗e = Ue ∩A ∩ (Ue ↘ Ve) and
V ∗e = Ve ∩ A ∩ (Ve ↘ Ue). (Recall that if X and Y are c.e. sets, then X ↘ Y
denotes the set of numbers enumerated into X before being enumerated into
Y .) In what follows, we omit the ∗, just writing Ue and Ve for the restricted
versions of these sets. Define the length of agreement for Ne at stage s by

le[s] = max
{
x : ∀y < x (ΦUee (y)[s]↓= ΦVee (y)[s]↓)

}
.

At each stage s we define a restraint r[s] preventing lower-priority strategies
from enumerating numbers into A. (In the full construction, this restraint func-
tion will be implicit in the way P-strategies choose their witnesses, so there will
be no need to define it explicitly.) We recursively define a set of expansionary
stages, with 0 being the first such, and let r[0] = 0. At each stage s+1 > 0, let s−

be the previous expansionary stage. If A[s−+ 1] * (Ue tVe)[s] or there is some
t 6 s such that le[t] > le[s + 1], then r[s + 1] = max

{
ϕUee (y)[s−], ϕVee (y)[s−] :

y < le[s
−]
}

. Otherwise, we declare s+1 to be expansionary and let r[s+1] = 0.
Since we intend to allow at most one number n to enter A below the restraint

between expansionary stages, this procedure will ensure the satisfaction of the
requirement, in much the same way as in the proof of Theorem 1: the restraint
will not be allowed to drop again until n has entered either Ue or Ve, and both
computations’ values have been restored as signaled by the increase in the length
of agreement.

4.1 Strategies for the splitting requirements

The description of our strategy for satisfying a requirement

R : (B + C 6S A via c, ψ and A 6S B + C via c, ϕ) =⇒(
∃ c.e. Q (Q 6S B,C ∧ ∀i (Q 6= Wi)) ∨

∃ c.e. B̂, Ĉ (B̂ t Ĉ = A ∧ B̂ ≡S B ∧ Ĉ ≡S C)
)

is much more involved.
Notice that we can assume that ϕ and ψ are strictly increasing functions,

ϕ(s) > s and ψ(s) > s for all s, and c > 1. The strategy for satisfying R involves
first approximating whether or not the condition

B + C 6S A via c, ψ ∧ A 6S B + C via c, ϕ

holds, by means of a length-of-correctness function that looks for the most recent
stage below which the Solovay reductions appear to be correct. Let
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l[s] = µt
(
(B + C)[s]− (B + C)[ψ(t)] > c · (A[s]−A[t])∨

A[s]−A[ϕ(t)] > c · ((B + C)[s]− (B + C)[t])
)
.

We can assume that s > l[s] for all s. Notice that if the above condition does
hold, then lims l[s] =∞. (We will prove this fact formally as part of the proof
of Lemma 4.6 below.)

As usual, we will call stages at which l[s] appears to be approaching infinity
as a limit expansionary stages. At such stages, we will attempt to construct
a noncomputable c.e. set Q 6S B,C while satisfying the infinite sequence of
subrequirements

Sj : Q 6= Wj .

(In the full construction, the jth subrequirement of R〈e,c〉 will be called S〈e,c,j〉.)
We will arrange things so that the failure to satisfy any one of these subrequire-
ments will allow us to construct c.e. sets B̂ and Ĉ such that

B̂ t Ĉ = A ∧ B̂ ≡S B ∧ Ĉ ≡S C,

thus satisfying the full requirement R.
We will choose a sequence of witnesses targeted for Q ∩Wj , and restrain

the set A so that we can exercise control over the approximations to B and C
by using ψ. After each witness enters Wj , we will drop all restraint on A for
exactly one stage, so that the positive requirements Pk will have a chance to be
satisfied. After the length-of-correctness function rises enough for us to monitor
what has occurred because of the dropping of the restraint, we will examine the
effect on B and C. At this point we will either enumerate our witness into Q
and satisfy the subrequirement, or, if this is impossible, split the total change
in A since the witness was chosen between B̂ and Ĉ in a way that records the
changes in B and C, respectively.

As an aid to understanding, we will describe the procedure for this strategy
in detail and prove that it works, before giving the full construction for A in
section 4.2 below. The strategy is complicated by the fact that we must divide
the interval on which the permission is being sought into four pieces as more
and more information about A, B, and C is provided by ϕ and ψ.

At each stage s at which the length of correctness increases, we will choose a
witness x that we hope to enumerate intoQ∩Wj , and at the same time restrainA
(thought of as a real) on 2−x. Then we will wait for an expansionary stage s0 >
ψ(s) > s such that x ∈ Wj . Let s1 > s0 be the least subsequent expansionary
stage such that l[s1] > ϕ(s0). At stage s1 we drop the restraint on A, and then
immediately reimpose this restraint at stage s1+1. Finally, we end this attempt
at permission by letting s2 > s1 + 1 be the least subsequent expansionary stage
such that l[s2] > ψ(s1 + 1). This stage is the one at which we hope to have
finally gained permission to enumerate x into Q. If B[s2]−B[s0] > 2−x−1 and
C[s2]−C[s0] > 2−x−1, then we can put x into Q, and the subrequirement Sj is
thus permanently satisfied. Otherwise there are two possibilities:

1. If C[s2] − C[s0] < 2−x−1, then we let B̂[s2] − B̂[s] = A[s2] − A[ϕ(s0)] and

Ĉ[s2]− Ĉ[s] = A[ϕ(s0)]−A[s].
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2. If B[s2] − B[s0] < 2−x−1 (and C[s2] − C[s0] > 2−x−1), then we let Ĉ[s2] −
Ĉ[s] = A[s2]−A[ϕ(s0)] and B̂[s2]− B̂[s] = A[ϕ(s0)]−A[s].

In either case, we choose a new witness x′ greater any number yet mentioned in
the construction, restrain A on 2−x

′
, and repeat the entire cycle again, starting

at s2.
The point of this procedure is that we put the amount by which A changed

during the stage at which it was unrestrained into the hatted set associated to
the set that changed significantly, and the controlled part of A into the hatted
version of the set that did not change enough to allow the enumeration of x
into Q. If we are never able to enumerate a witness into Q, this procedure will
give rise to an infinite sequence of pairs of stages at which we make the right
decisions about which part of A to put into the hatted versions of each set.

We sum up the important facts about this sequence in the following defini-
tion. Call a computable sequence s2(−1) < s0(0) < s1(j) < s2(0) < s0(1) < · · ·
good for R if there exists a computable sequence x(0) < x(1) < · · · and c.e. sets

B̂ and Ĉ such that for every j > 0,

(1) s0(j), s1(j), and s2(j) are expansionary stages;

(2) s0(j) > l[s0(j)] > ψ(s2(j − 1));

(3) s1(j) > l[s1(j)] > ϕ(s0(j));

(4) s2(j) > l[s2(j)] > ψ(s1(j) + 1);

(5) A[s2(j)]−A[s1(j) + 1] < 2−x(j);

(6) A[s1(j)]−A[s2(j − 1)] < 2−x(j);

(7) C[s2(j)] − C[s0(j)] < 2−x(j)−1 if and only if B̂[s2(j)] − B̂[s2(j − 1)] =

A[s2(j)]−A[ϕ(s0(j))] and Ĉ[s2(j)]−Ĉ[s2(j−1)] = A[ϕ(s0(j))]−A[s2(j−1)];
and

(8) B[s2(j)]−B[s0(j)] < 2−x(j)−1 and C[s2(j)]−C[s0(j)] > 2−x(j)−1 if and only

if Ĉ[s2(j)]−Ĉ[s2(j−1)] = A[s2(j)]−A[ϕ(s0(j))] and B̂[s2(j)]−B̂[s2(j−1)] =
A[ϕ(s0(j))]−A[s2(j − 1)].

As we will show in Lemma 4.7 below, our strategy will give rise to a good
sequence if we infinitely often ask for and fail to receive permission to enumerate
into Q∩Wj . For now, we show that the existence of such a sequence is enough
to satisfy R.

Lemma 4.1. If there is a sequence that is good for R, then there is a c.e.
splitting A = B̂ t Ĉ such that B ≡S B̂ and C ≡S Ĉ.

Proof. Let s2(−1) < s0(0) < s1(j) < s2(0) < s0(1) < · · · be a good sequence,

and let x(j), B̂, and Ĉ be as in the definition of a good sequence. We can

assume A[s2(−1)] − A[0] ⊂ B̂ without loss of generality, so A = B̂ t Ĉ. We
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show B ≡S B̂. The proof that C ≡S Ĉ is very similar. We will justify the
nontrivial steps in our calculations by citing properties (1)–(8) in the definition
of good sequence, as well as two auxiliary properties that we now derive from
them.

Note that s1(k − 1) + 1 < ψ(s1(k − 1) + 1) < s2(k − 1) < ψ(s2(k − 1)) (the
second inequality following by (4)), so (2) implies that

(2′) l[s0(k)] > s1(k − 1) + 1.

Similarly, s1(k− 1) + 1 < s0(k) < s1(k) + 1 < ψ(s1(k) + 1), so (4) implies that

(4′) l[s2(k)] > s0(k) > s1(k − 1) + 1.

We call a number j such that C[s2(j)] − C[s0(j)] < 2−x(j)−1 a j of type 1 ;
a j such that B[s2(j)]−B[s0(j)] < 2−x(j)−1 and C[s2(j)]−C[s0(j)] > 2−x(j)−1

is a j of type 2.
We first show that B̂ 6S B. Given s, let j be such that s0(j) > s and let

δ(s) = s2(j). Then

B̂ − B̂[δ(s)] =

∞∑
k=j+1

B̂[s2(k)]− B̂[s2(k − 1)]

=
∑

k type 1
k>j

A[s2(k)]−A[ϕ(s0(k))]+

∑
k type 2
k>j

A[ϕ(s0(k))]−A[s2(k − 1)] by (7) and (8)

6
∑

k type 1
k>j

A[s2(k)]−A[ϕ(s0(k))] +
∑
k>j

2−x(k) by (3) and (6)

6
∑

k type 1
k>j

A[s2(k)]−A[ϕ(s0(k))] + 2−x(j)

6
∑

k type 1
k>j

c((B + C)[s2(k)]− (B + C)[s0(k)]) + 2−x(j) by (4′)

=
∑

k type 1
k>j

c(B[s2(k)]−B[s0(k)])+

∑
k type 1
k>j

c(C[s2(k)]− C[s0(k)]) + 2−x(j)

6
∑

k type 1
k>j

c(B[s2(k)]−B[s0(k)])+

∑
k type 1
k>j

c2−x(k)−1 + 2−x(j) by (7)
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<
∑

k type 1
k>j

c(B[s2(k)]−B[s0(k)]) + (c+ 1)2−x(j)

6
∑

k type 1
k>j

c(B[s0(k + 1)]−B[s0(k)]) + (c+ 1)2−x(j)

6 c(B −B[s0(j)]) + (c+ 1)2−x(j)

6 c(B −B[s]) + (c+ 1)2−x(j).

Thus, by Lemma 1.1, B̂ 6S B.
We now show that B 6S B̂. Given s, let j be such that s2(j − 1) > s and

let ξ(s) = s2(j). Then

B −B[ξ(s)] =

∞∑
k=j+1

B[s2(k)]−B[s2(k − 1)]

6
∞∑

k=j+1

B[s2(k)]−B[ψ(s1(k − 1) + 1)] by (4)

6
∑

k type 1
k>j

B[s2(k)]−B[ψ(s1(k − 1) + 1)]+

∑
k type 2
k>j

B[s2(k)]−B[ψ(s1(k − 1) + 1)]

6
∑

k type 1
k>j

B[s2(k)]−B[ψ(s1(k − 1) + 1)]+

∑
k type 2
k>j

B[s2(k)]−B[s0(k)]+

∑
k type 2
k>j

B[s0(k)]−B[ψ(s1(k − 1) + 1)]

6
∑

k type 1
k>j

B[s2(k)]−B[ψ(s1(k − 1) + 1)] +

∞∑
k=j+1

2−x(k)−1+

∑
k type 2
k>j

B[s0(k)]−B[ψ(s1(k − 1) + 1)] by (8)

6
∑

k type 1
k>j

B[s2(k)]−B[ψ(s1(k − 1) + 1)] + 2−(x(j)−1)+

∑
k type 2
k>j

c(A[s0(k)]−A[s1(k − 1) + 1]) by (2′)
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6
∑

k type 1
k>j

B[s2(k)]−B[ψ(s1(k − 1) + 1)] + 2−x(j)+1+

∑
k type 2
k>j

c(A[s0(k)]−A[s2(k − 1)]+

A[s2(k − 1)]−A[s1(k − 1) + 1])

6
∑

k type 1
k>j

B[s2(k)]−B[ψ(s1(k − 1) + 1)] + c2−x(j)+2+

∞∑
k=j+1

c(2−x(k) + 2−x(k−1)) by (5) and (6)

6
∑

k type 1
k>j

B[s2(k)]−B[ψ(s1(k − 1) + 1)] + 2−x(j)+1+

c(2−x(j) + 2−x(j)+1)

=
∑

k type 1
k>j

B[s2(k)]−B[ψ(s1(k − 1) + 1)] + (3c+ 2)2−x(j)

6
∑

k type 1
k>j

c(A[s2(k)]−A[s1(k − 1) + 1]) + (3c+ 2)2−x(j) by (4′)

6
∑

k type 1
k>j

c(A[s2(k)]−A[s1(k)] +A[s1(k)]−A[s2(k − 1)]

+A[s2(k − 1)]−A[s1(k − 1) + 1]) + (3c+ 2)2−x(j)

6
∑

k type 1
k>j

c(A[s2(k)]−A[s1(k)] + 2−x(k) + 2−x(k−1))+

(3c+ 2)2−x(j) by (5) and (6)

6
∑

k type 1
k>j

c(A[s2(k)]−A[s1(k)]) + c(2−x(j) + 2−x(j)+1)+

(3c+ 2)2−x(j)

6
∑

k type 1
k>j

c(A[s2(k)]−A[s1(k)]) + (6c+ 2)2−x(j)

6
∑

k type 1
k>j

c(A[s2(k)]−A[ϕ(s0(k))]) + (6c+ 2)2−x(j) by (3)

=
∑

k type 1
k>j

c(B̂[s2(k)]− B̂[s2(k − 1)]) + (6c+ 2)2−x(j) by (7)
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= c(B̂ − B̂[s2(j − 1)]) + (6c+ 2)2−x(j)

6 c(B̂ − B̂[s]) + (6c+ 2)2−x(j)

Thus, by Lemma 1.1, B 6S B̂.

4.2 Details of the construction

Coordinating the activities of all our strategies, particularly the ones for satisfy-
ing R-requirements, is naturally done using the 0′′′-priority method of Lachlan,
implemented via the tree of strategies T = 2<ω. For the P-strategies ensuring
noncomputability of A, there is really no need to assign outcomes on T , since
their actions are finitary, but we place these strategies on T anyway for the
sake of uniformity. We wish to arrange our requirements on T so that for every
infinite path f , the following hold.

1. Each Pe, each Ne, and each R〈e,c〉 is assigned to some node in f .

2. If R〈e,c〉 is assigned to α and α_0 is on f (0 being the infinitary outcome of
R〈e,c〉, which indicates that there are infinitely many expansionary stages),
then each S〈e,c,i〉 is assigned to some node in f unless some S〈e,c,i〉 is
assigned to α and α_0 is in f (0 being the outcome of S〈e,c,i〉 indicating
that it succeeds in satisfying R〈e,c〉), in which case no requirement S〈e,c,j〉
is assigned to any proper extension of α.

Formally, requirements are assigned to strategies in the tree by using a list
function L from 2<ω × ω to the set of all requirements. Each node σ ∈ T will
have requirement L(σ, 0) assigned to it. If σ has a requirement Pe assigned
to it, we say σ has type P. If σ has a requirement Ne assigned to it, we say
σ has type N. If σ has a requirement R〈e,c〉 assigned to it, we say σ has type
R. If σ has a subrequirement S〈e,c,i〉 assigned to it we say σ has type S. In
this case, if τ ⊂ σ is the longest node included in σ with requirement R〈e,c〉
assigned to it, we say σ works for τ . We define L(σ, k) recursively on |σ|. Let
λ denote the empty sequence. Let L(λ, 3e) = Pe, let L(λ, 3e+ 1) = Ne, and let
L(λ, 3〈e, c〉+2) = R〈e,c〉. Suppose σ 6= λ, and let σ0 = σ � (|σ|−1). If σ0 has type
P or N, or σ0 has type R and σ = σ0

_1, then for all k, let L(σ, k) = L(σ0, k+1).
If σ0 has type R and σ = σ0

_0, then let L(σ, 2k) = L(σ0, k + 1), and let
L(σ, 2〈c, i〉 + 1) = S〈e,c,i〉. Finally, suppose σ0 works for a strategy τ ⊂ σ0. If
σ = σ0

_1, let L(σ, k) = L(σ0, k + 1). Otherwise, σ = σ0
_0. In this case,

τ ’s requirement is satisfied at σ, so we remove all of τ ’s subrequirements below
σ_0. Let nσ

_0(0) = 1, and let nσ
_0(k+ 1) be the least n > nσ

_0(k) such that
∀j (L(σ, n) 6= L(τ, 2j + 1)). Then, for all k, let L(σ_0, k) = L(σ, nσ

_0(k)).
It is not hard to check that this assignment satisfies the conditions listed

above, but we will do a formal verification of its relevant properties in Lemma
4.3 below.

A node is initialized by undefining all parameters and functionals assigned to
it. At each stage s we define an approximation g[s] to the true path g consisting
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of a sequence of nodes accessible at stage s. All nodes to the right of g[s] are
initialized at stage s. If α ⊆ g[s], we say s is an α-stage.

Action for a node of type P

Suppose α has requirement Pe assigned to it and s + 1 is an α-stage. If
(We ∩A)[s] 6= ∅, then do nothing for α and let α_0 be accessible at stage s+ 1.

Otherwise, act as follows. If xα is currently undefined, let xα be the least
element of

{
n2 : n ∈ N

}
greater than any number yet mentioned in the

construction, initialize all β ⊃ α, immediately end stage s + 1, and go on to
stage s+ 2.

If xα is defined and xα /∈ We[s], then do nothing for α and let α_0 be
accessible at stage s+ 1.

If xα is defined and xα ∈ (We − A)[s], then enumerate xα into A, initialize
all β ⊃ α, immediately end stage s+ 1, and go on to stage s+ 2.

Action for a node of type N

Suppose α has requirement Ne assigned to it. Recall that

le[s] = max
{
x : ∀y < x (ΦUee (y)[s]↓= ΦVee (y)[s]↓)

}
.

We use le to define a sequence of α-expansionary stages by recursion, and to
describe the action of α at α-stages.

Let s + 1 be an α-stage. If α has been initialized since the last α-stage,
declare stage s+ 1 to be α-expansionary, and let α_0 = g[s], but immediately
end stage s+ 1 and go on to stage s+ 2. Otherwise, let s− be the last previous
α_0-stage, and s0 be the stage at which α was last initialized. There are two
possibilities. If A[s− + 1] * (Ue t Ve) or there exists some α-stage t + 1 with
s0 6 t+ 1 6 s− such that le[t] > le[s], then let α_1 be accessible at stage s+ 1.
Otherwise, declare s to be α-expansionary and let α_0 be accessible at stage
s+ 1.

Action for a node of type R

Suppose α has requirement R〈e,c〉 assigned to it. Our length-of-correctness
function lα[s] looks for the most recent stage below which the relevant Solovay
reductions appear to be correct. That is, let

lα[s] = µt
(
(Be + Ce)[s]− (Be + Ce)[ψe(t)] > c · (A[s]−A[t])∨

A[s]−A[ϕe(t)] > c · ((Be + Ce)[s]− (Be + Ce)[t])
)
.

If s + 1 is an α-stage, then we say that stage s is α-expansionary if for all
α-stages t+ 1 6 s since α was last initialized, lα[t] < lα[s].

If s is not α-expansionary, then let α_1 be accessible at stage s + 1. If s
is α-expansionary and there is no link set with top α, let α_0 be accessible
at stage s + 1. Any link set with top α will have an associated target value.
Suppose s is α-expansionary and there is a link set with top α and target value
k. If lα[s] > max{ψe(k), ϕe(k)}, then let the β ⊃ α at the bottom of the link
act and remove the link; otherwise, let α_1 be accessible at stage s+ 1.
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Action for a node of type S

Suppose α has requirement S〈e,c,i〉 assigned to it, and works for a node β ⊂ α
(with R〈e,c〉 assigned to β). Let s+ 1 be an α-stage. Let s− be the last previous
α-stage, or the stage at which α was last initialized. The task of α is to make
a series of attempts to satisfy Qβ 6= Wi. If s+ 1 is the first α-stage since α was
last initialized, let xα(0) be the least number greater than any yet mentioned
in the construction, and let sα2 (−1) = s. In this case, let α_1 be accessible at
stage s+ 1.

Otherwise, there are several cases.

Case 1: There exists a j such that xα(j) is defined and xα(j) has not yet been
involved in an attack. If xα(j) /∈ Wi[s] or lβ [s] 6 ψ(s2(j − 1)), take no
action for α, and let α_1 be accessible at stage s+ 1. Otherwise, declare
xα(j) to be involved in an attack, set a link of type s0 with target value
s + 1 to β, and let sα0 (j) = s. Immediately end stage s + 1 and go on to
stage s+ 2.

Case 2: There exists a j such that xα(j) is involved in an attack, and α has
been reached by traveling a link of type s0 with top β. Set a link of type
s1 with target value s + 1 to β, let sα1 (j) = s, and let α_0 be accessible
at stage s+ 1.

Case 3: There exists a j such that xα(j) is involved in an attack, and α has
been reached by traveling a link of type s1 with top β. There are three
possibilities:

(a) If Be[s] − Be[s−] > 2−x
α(j)−1 and Ce[s] − Ce[s−] > 2−x

α(j)−1, then
let xα(j) ∈ Qβ [s+ 1] and declare xα(j) to have succeeded. Let α_1
be accessible at stage s+ 1.

(b) If Ce[s]− Ce[s−] < 2−x
α(j)−1, then let

B̂αe [s+ 1] = B̂αe [sα2 (j − 1)] + (A[s+ 1]−A[ϕe(s
α
0 (j))]),

and let

Ĉαe [s+ 1] = Ĉαe [sα2 (j − 1)] + (ϕe(A[sα0 (j))]−A[sα2 (j − 1)]).

(c) If Be[s] − Be[s−] < 2−x
α(j)−1 and Ce[s] − Ce[s−] > 2−x

α(j)−1, then
let

Ĉαe [s+ 1] = Ĉαe [sα2 (j − 1)] + (A[s+ 1]−A[ϕe(s
α
0 (j))]),

let

B̂αe [s+ 1] = B̂αe [sα2 (j − 1)] + (A[ϕe(s
α
0 (j))]−A[sα2 (j − 1)]).

If either (b) or (c) holds, declare xα(j) to have failed, define sα2 (j) = s,
and let xα(j + 1) be the least number greater than any yet mentioned in
the construction. In this case, immediately end stage s + 1 and go on to
stage s+ 2.
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4.3 Verification

Define the orderings 6 and <L on T as in the proof of Theorem 1. Define the
true path g of the construction as the leftmost path of nodes that are included
in g[s] infinitely often. In other words, α ⊂ g if and only if ∃t∀s > t (α 6 g[s])
and ∀t∃s > t (α ⊂ g[s]).

We show that every requirement is satisfied by the actions of some node on
the true path. It follows from a straightforward induction that the true path
is infinite, since an examination of the actions taken for each node show that
if α ⊂ g and α ⊂ g[s], then there exists some t > s such that some proper
extension of α is included in g[t]. It may not be so obvious that each node
included in g is accessible (that is, gets an opportunity to act) infinitely often,
because of the linking procedure, so we begin by proving that this is the case.
We then show that the requirements are properly distributed along T .

Lemma 4.2. If σ ⊂ g, then there exist infinitely many stages s at which σ is
accessible.

Proof. Suppose τ ⊂ g is accessible infinitely often. If τ is of type P, N, or
S, then τ can never be the top of a link, so either τ_0 or τ_1 is accessible
infinitely often. Now suppose τ is of type R. If there are only finitely many τ -
expansionary stages, then τ_1 is accessible infinitely often. Otherwise, τ_0 ⊂
g[s] at infinitely many stages s. Suppose a link with top τ is set by some node
σ ⊇ τ_0 at stage t during an attack involving xσ(j). Then the only nodes
extending τ_0 that can act until after the link is removed at stage sσ1 (j)+1 are
nodes extending σ_0. But none of these can possibly work for a subrequirement
of τ , since no such subrequirement is in the range of the function L(σ, ·). Hence,
no link with top τ can be set be set again until τ_0 is accessible again after
stage sσ2 (j), which will happen after the next τ -expansionary stage.

Lemma 4.3. For all n > 1 and all σ, if f is an infinite path with σ ⊂ f , then
either there exists a τ with σ ⊆ τ ⊂ f and L(σ, n) = L(τ, 0); or L(σ, n) is a
subrequirement introduced by some σ0 ⊂ σ, and there exists ρ_0 ⊂ f such that
ρ is a strategy working for σ0.

Proof. The proof is by induction. Note that L(σ, 1) = L(σ_0, 0) = L(σ_1, 0).
Suppose τ ⊃ σ has L(σ, n) = L(τ, 0). Then if L(σ, n+1) is never removed at any
extension of σ compatible with τ , there exists some k such that L(σ, n + 1) =
L(τ, k). For all positive j < k, the value of L(τ, j) must be a requirement of
type S, since only this kind of requirement is newly introduced along any path.
If τ is not of type S, or if τ_1 ⊂ f , then L(σ, n + 1) = L(f � (|τ | + k), 0);
otherwise, L(σ, n+ 1) = L(f � (|τ |+ 2k), 0).

By Lemmas 4.2 and 4.3, every requirement in the range of the original list
L(λ, ·) is assigned to some node on the true path that is accessible infinitely
often. This fact makes it relatively simple to show that the requirements of
types P and N are satisfied. Notice that nodes on the true path are initialized
only finitely often.
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Lemma 4.4. Suppose α ⊂ g, and α has requirement Pe assigned to it. Then
A 6= We.

Proof. Choose s0 least such that for all t > s0, the node α is not initialized at
t and α 6 g[t]. Let t + 1 > s be any α-stage such that (We ∩ A)[t] = ∅. Then
x = xα is defined at stage t + 1 and is never undefined thereafter. If x /∈ We,
then x ∈ We − A, since Pe never puts x into A, and no other positive strategy
ever has x as a witness. Otherwise, if t+ + 1 > t is the least α-stage such that
x ∈We[t

+], then x ∈ (We ∩A)[t+ + 1]. In either case A 6= We.

Lemma 4.5. Suppose α ⊂ g has requirement Ne assigned to it and UetVe = A.
If ΦUee = ΦVee is total, then ΦUee is computable.

Proof. The hypotheses imply that there are infinitely many α-expansionary
stages. Choose s0 least such that for all t > s0, the node α is not initial-
ized at t and α 6 g[t]. Given x, let s > s0 be an α-expansionary stage such
that ΦUee (x)[s]↓= ΦVee (x)[s]↓. Let s+ be the next α-expansionary stage after s.
If no β ⊃ α_0 set any link with top γ ⊂ α at stage s+ 1, or if some β ⊃ α_0
set a link of type s1 with top γ ⊂ α at stage s+ 1, then only nodes β such that
α_0 <L β can have acted at any stage t with s < t 6 s+. Hence only one node
extending α_0 can have enumerated any number into A at any stage t with
s < t 6 s+. On the other hand, if some β ⊃ α_0 set a link of type s0 with top
γ ⊂ α at stage s + 1, then no node can have enumerated any element into A
at stage s+ 1. Also, at most one node extending α_0 can have enumerated an
element into A at any stage t with s < t 6 s+, namely, at the stage at which
the link was removed. So, in this case as well, only one node extending α_0 can
have enumerated any number into A at any stage t with s < t 6 s+. Since s++1
is α-expansionary, and all nodes to the right of α_0 have witnesses greater than
min{ϕUee (x)[s], ϕVee (x)[s]}, it follows that ΦUee (x)[s+] = ΦUee (x)[s], since at least
one side of the computation ΦUee (x)[s]↓= ΦVee (x)[s]↓ has been preserved. Thus,
ΦUee (x) has the same value at every α-expansionary stage after s, and hence the
function ΦUee is computable.

Finally, we show in the following two lemmas that the requirements of type
R are satisfied.

Lemma 4.6. Suppose β ⊂ g has requirement R〈e,c〉 assigned to it, Be+Ce 6S A
via c, ψe, and A 6S Be + Ce via c, ϕe. Then Qβ 6S Be and Qβ 6S Ce.

Proof. We show that Qβ 6S Be, the proof for Ce being analogous.
First we claim that lims l

β [s] = ∞. Suppose not, so that there is a t such
that lβ [s] = t for infinitely many s. Then there are either infinitely many s such
that

(Be + Ce)[s]− (Be + Ce)[ψe(t)] > c · (A[s]−A[t])

or infinitely many s such that

A[s]−A[ϕe(t)] > c · ((Be + Ce)[s]− (Be + Ce)[t]).
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Suppose that the former case holds (the other case being analogous). Then

(Be + Ce)− (Be + Ce)[ψe(t)] = lims (Be + Ce)[s]− (Be + Ce)[ψe(t)]

> lims c · (A[s]−A[t])

= c · (A−A[t]),

contradicting the hypothesis that Be +Ce 6S A via c, ψe. Thus lims l
β [s] =∞,

and hence there are infinitely many β-expansionary stages.
If there are only finitely many stages at which some number is enumerated

into Qβ , then we are done. Otherwise, given s, let s+ be the next β-stage after s.
Let y be the first number enumerated into Qβ after stage s+. This enumeration
must happen at an β-stage ξ(t) + 1 at which the action of β is dictated by Case
3(a) on page 22. Thus Be[ξ(t)]− Be[s+] > 2−y−1. Furthermore, every number
enumerated into Qβ after stage ξ(t) + 1 is bigger than y, so

Qβ −Qβ [ξ(t)] 6 2−y+1 < 5 · (Be[ξ(t)]−Be[s+]) 6 5 · (Be −Be[s]).

Thus Qβ 6S B via ξ, 5.

Lemma 4.7. Suppose α ⊂ g is assigned the subrequirement S〈e,c,i〉 and β ⊂ α
is assigned the corresponding requirement R〈e,c〉. Then

(a) either Qβ 6= Wi or α_0 ⊂ g; and

(b) if α_0 ⊂ g, then there exists a good sequence for R〈e,c〉.

Proof. Let s be a stage such that for all t > s, the node α is not initialized at t
and α 6 g[t]. If Qβ = Wi, then Qβ = Wi, so there exists an infinite computable
sequence of failures xα(0), xα(1), . . . at stages after s, which gives rise to a
computable sequence of stages sα2 (−1) < sα0 (0) < s1(0) < sα2 (0) < sα0 (1) < · · ·
as defined in the description of the action of S〈e,c,i〉. We will show that this
sequence is good for R〈e,c〉. For convenience, we repeat here the eight conditions
that we need to verify:

(1) sα0 (j), sα1 (j), and sα2 (j) are expansionary stages;

(2) sα0 (j) > lβ [sα0 (j)] > ψe(s
α
2 (j − 1));

(3) sα1 (j) > lβ [sα1 (j)] > ϕe(s
α
0 (j));

(4) sα2 (j) > lβ [sα2 (j)] > ψe(s
α
1 (j) + 1);

(5) A[sα2 (j)]−A[sα1 (j) + 1] < 2−x
α(j);

(6) A[sα1 (j)]−A[sα2 (j − 1)] < 2−x
α(j);

(7) Ce[s
α
2 (j)]−Ce[sα0 (j)] < 2−x

α(j)−1 if and only if B̂αe [sα2 (j)]− B̂αe [sα2 (j−1)] =

A[sα2 (j)] − A[ϕe(s
α
0 (j))] and Ĉαe [s2(j)] − Ĉαe [sα2 (j − 1)] = A[ϕe(s

α
0 (j))] −

A[sα2 (j − 1)]; and
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(8) Be[s
α
2 (j)] − B[sα0 (j)] < 2−x

α(j)−1 and Ce[s
α
2 (j)] − Ce[s

α
0 (j)] > 2−x

α(j)−1

if and only if Ĉαe [sα2 (j)] − Ĉαe [sα2 (j − 1)] = A[sα2 (j)] − A[ϕ(sα0 (j))] and

B̂αe [sα2 (j)]− B̂αe [sα2 (j − 1)] = A[ϕe(s
α
0 (j))]−A[sα2 (j − 1)].

Condition (1) is met by definition. Each sα0 (j) is chosen (in Case 1 of the
description of the action of S〈e,c,i〉) so that condition (2) is met. By Case 2 of
the description of the action of S〈e,c,i〉, for each j, the node α is reached at stage
sα1 (j) + 1 by traveling a link of type s0 with top β. This link was set at stage
sα0 (j) + 1, and hence has target value sα0 (j) + 1. Thus, by the description of
the action of R〈e,c〉, condition (3) is met. Similarly, for each j, the node α is
reached at stage sα2 (j) + 1 by traveling a link of type s1 with top β and target
value sα1 (j) + 1, so condition (4) is met.

Since α_0 ⊂ g[s1(j)] for every j, we have α_0 ⊂ g. Once xα(j) is defined,
which happens at stage sα2 (j−1), nodes to the right of α_0 can enumerate only
elements greater than xα(j) into A, and nodes extending α_0 are accessible
only at stages at which links of type s1 are set, which are exactly the stages of
the form s1(j) + 1 for some j. (Nodes to the left of α_0 have stopped acting by
the choice of s.) Thus the only stage after sα2 (j − 1) at which a number greater
than or equal to xα(j) can be enumerated into A is s1(j)+1, which implies that
conditions (5) and (6) are met.

Finally, the definitions of B̂αe and Ĉαe in Cases 3(b)and 3(c) of the description
of the action of S〈e,c,i〉 show that conditions (7) and (8) are met.

Fix a requirement R〈e,c〉 and let β be a node on the true path that is as-
signed to this requirement. If there exists a good sequence for R〈e,c〉, then the
requirement is satisfied, by Lemma 4.1. Otherwise, by Lemma 4.7, no node α
on the true path working for β can have outcome 0 on the true path. Since only
this outcome can remove the requirements in L(β, ·) from the true path, every
subrequirement S〈e,c,i〉 is assigned to some node on the true path, by Lemma
4.3. But then Qβ is noncomputable by Lemma 4.7, so by Lemma 4.6, R〈e,c〉 is
satisfied.

Hence every R-requirement is satisfied. Lemmas 4.4 and 4.5 show that the
same is true of every P-requirement and every N-requirement. Thus Theorem
2 holds.

Our result is another in the series of results showing the undecidability of the
theories of the structures associated with virtually every nontrivial reducibility.
We conjecture that the degree of the theory here is as high as possible: namely
that of true arithmetic, but so far we have no way of interpreting the natural
numbers into the structure.

A related question is whether or not structures associated more directly with
prefix-free complexity have undecidable theories. Given a fixed universal prefix-
free oracle machine M and two strings σ and τ , the prefix-free complexity of σ
relative to τ , K(σ | τ), is the length of the shortest µ such that Mτ (µ) = σ. Say
α 6rK β if and only if there is a constant c such that for all n, K(α � n | β � n) 6
c. It is not hard to see that α 6rK β if and only if there are a computable function
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f and a constant k such for all n there exists j 6 k for which f(α � n, j) = β � n.
It turns out that if α 6S β or if α 6sw β, then α 6rK β, although the reverse
is not necessarily true. Similarly, rK-reducibility implies Turing reducibility,
although the reverse does not hold. Thus this relation provides an intermediate
reducibility between the Solovay and Turing reducibilities. It seems natural to
conjecture that the theory of the associated degree structure on the c.e. reals is
also undecidable.

Another relation even more closely related to the relative randomness of one
real to another is the measure 6K , where α 6K β if and only if there exists a
c such that for all n, K(α � n) 6 K(β � n)+c. Although this relation is merely
a measure of complexity, not a true reducibility, we again conjecture that the
associated degree structure on the c.e. reals has an undecidable theory.
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