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The study of additional relations on computable structures began with the work
of Ash and Nerode [2]. The concept of degree spectra of relations was later in-
troduced by Harizanov [17]. In this dissertation, several new examples of possible
degree spectra of relations on computable structures are given. In particular, it is
shown that, for every c.e. degree a, the set {0, a} can be realized as the degree
spectrum of an intrinsically c.e. relation on a structure of computable dimension
two, thus answering a question of Goncharov and Khoussainov [15]. Some exten-
sions of this result are given, and the methods used in proving it are employed to
construct a computably categorical structure whose expansion by a single constant
has computable dimension ω. Degree spectra of relations on computable models of
particular algebraic theories are also investigated. For example, it is shown that,
for every n > 0, there is a computable integral domain with a subring whose degree
spectrum consists of exactly n c.e. degrees, including 0. In contrast to this result,
it is shown, for instance, that the degree spectrum of a computable relation on a
computable linear ordering is either a singleton or infinite. In both cases, sufficient
criteria for similar results to hold of a given class of structures are provided.
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Chapter 1

Introduction

There has been increasing interest over the last few decades in the study of the
effective content of Mathematics. One field whose effective content has been the
subject of a large body of work, dating back at least to the early 1960’s, is model
theory. (A valuable reference is the handbook [7]. In particular, the introduction
and the articles by Ershov and Goncharov and by Harizanov give useful overviews,
while the articles by Ash and by Goncharov cover material related to the topic of
this dissertation.)

Several different notions of effectiveness of model-theoretic structures have been
investigated. This dissertation is concerned with computable structures, that is,
structures with computable domains whose constants, functions, and relations are
uniformly computable.

In model theory, we identify isomorphic structures. From the point of view of
computable model theory, however, two isomorphic structures might be very differ-
ent. For example, it is not hard to build two isomorphic computable groups, only
one of which has a computable center. We do not wish to say that these two presen-
tations are the same. Thus, for our purposes, studying structures up to isomorphism
is not enough. Instead, we study structures up to computable isomorphism. This
leads naturally to the idea of a computable presentation of a structure, which is,
roughly speaking, a computable copy of this structure. (Formal definitions of this
and other concepts will be given below.)

One way in which we may attempt to understand the differences between non-
computably isomorphic computable presentations of a structure M is to compare
(from a computability-theoretic point of view) the images in these presentations of
a particular relation on the domain ofM. (Of course, this is only interesting if this
relation is not the interpretation in M of a relation in the language of M.) The
study of additional relations on computable structures began with the work of Ash
and Nerode [2] and has been continued in a large number of papers. (References
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can be found in the aforementioned articles in [7].)
One approach to the study of relations on computable structures, which began

with the work of Harizanov [17], is to look at the collection of (Turing) degrees
of the images of a relation in different computable presentations of a structure,
which is known as the degree spectrum of the relation. This dissertation is mainly
concerned with the question of which sets of degrees can be realized as degree
spectra of relations on computable structures, both in the general case and with
certain restrictions imposed on the relation or the structure. The latter case will
bring us to the intersection of computable model theory and computable algebra.

In the remaining parts of this introductory chapter, we first give the fundamental
definitions and notations that will be used throughout the rest of this dissertation,
and then summarize the results contained therein.

1.1 Basic Definitions and Notation

For basic notions of computability theory and model theory, the reader is referred
to [31] and [22], respectively. By degree, we will mean Turing degree unless otherwise
specified. In order to avoid confusion with our symbol for or, we will denote the
join of degrees a and b by ag b.

Whenever we mention a computably enumerable (c.e.) set X, we assume we
have fixed some computable enumeration of X and let X[s] denote the part of X
enumerated after s + 1 many steps. Similarly, if we mention a ∆0

2 set Y then we
assume we have fixed some computable approximation of Y and let Y [s] denote the
result of performing s+ 1 many steps of this approximation.

For any set X, let X � m = X ∩ {0, . . . ,m − 1}. For any function f , let f � m
be the function obtained by restricting dom(f) to dom(f) � m.

The eth Turing functional with oracle X is denoted by Φe(X), and its value
at x by Φe(X;x). Let Φe(X)[s] be the evaluation of Φe(X[s]) at stage s and let
Φe(X, x)[s] be the value of this evaluation at x. The use functions of Φe(X;x) and
Φe(X;x)[s] are denoted by ϕe(X;x) and ϕe(X;x)[s], respectively.

Fix a one-to-one function from ω × ω onto ω and let 〈a, b〉 denote the image
under this function of the ordered pair consisting of a ∈ ω and b ∈ ω. We will write
〈a, b, c〉 instead of 〈a, 〈b, c〉〉, and similarly for longer sequences of natural numbers.
For x ∈ ω and i = 0, 1, πi(x) will denote the ith coordinate of the ordered pair coded
by x. That is, if x = 〈a, b〉 then π0(x) = a and π1(x) = b.

If ~x = (x0, . . . , xm) and ~y = (y0, . . . , yn) are sequences then ~x(i) = xi and ~xa~y is
the sequence (x0, . . . , xm, y0, . . . , yn). We will write ~xaz instead of ~xa(z), where (z)
is the sequence consisting of the single element z.
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One of the central notions of computable model theory is that of a computable
structure. We will always assume that we are working with computable languages.

1.1.1 Definition. A structure A is computable if both its domain |A| and the
atomic diagram of 〈A, a〉a∈|A| are computable.

If, in addition, the n-quantifier diagram of 〈A, a〉a∈|A| is computable then A is
n-decidable, while if the full first-order diagram of 〈A, a〉a∈|A| is computable then A
is decidable.

It will be more convenient to treat equality in computable structures as actual
equality rather than as a relation. This is not an important distinction, however,
since every computable structure is computably isomorphic to some computable
structure B such that if a 6= b ∈ |B| then B � a 6= b.

In Chapters 3 and 4, we will have to consider partial computable directed graphs,
which we define as follows.

1.1.2 Definition. A partial computable directed graph G consists of two 0, 1-valued
partial computable functions Φ and Ψ, the former unary and the latter binary, such
that if Φ(x)[s] ↓= Φ(y)[s] ↓= 1 then Ψ(x, y)[s] ↓. The graph G (resp. G[s]) is the
graph whose domain has characteristic function Φ (Φ[s]) and whose edge relation
has characteristic function Ψ (Ψ[s]).

As we have discussed above, the following definition is a natural one to make in
the context of computable model theory.

1.1.3 Definition. An isomorphism from a structureM to a computable structure
is called a computable presentation of M. (We often abuse terminology and refer
to the image of a computable presentation as a computable presentation.)

If M has a computable presentation then it is computably presentable.

An important notion in computable model theory is the number of computable
presentations of a computably presentable structure.

1.1.4 Definition. The computable dimension of a computably presentable struc-
tureM is the number of computable presentations ofM up to computable isomor-
phism.

A structure of computable dimension 1 is said to be computably categorical.

We will also have occasion to consider structures that, while not computably
categorical, have relatively simple isomorphisms between their various computable
presentations.

1.1.5 Definition. A computably presentable structure is ∆0
2-categorical if any two

of its presentations are isomorphic via a ∆0
2 map.
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In Chapter 3, we will also consider c.e. presentations. We will take the more gen-
eral of two possible definitions of c.e. structure, in which equality is c.e. rather than
computable. It will be clear that the results involving c.e. structures in Chapter 3
also hold for the less general definition.

1.1.6 Definition. A structure A is c.e. if its domain |A| is computable and the
atomic diagram of 〈A, a〉a∈|A| is c.e..

An isomorphism from a structure M to a c.e. structure is called a c.e. presen-
tation of M. (As in the computable case, we often refer to the image of a c.e.
presentation as a c.e. presentation.)

If M has a c.e. presentation then it is c.e. presentable.
The c.e. dimension of a c.e. presentable structure M is the number of c.e.

presentations of M up to computable isomorphism.

It is convenient to assume that the domain of a c.e. structure is computable
rather than c.e., but this makes no real difference, since any structure with c.e.
domain is computably isomorphic to a structure with computable domain.

As we have mentioned above, the study of additional relations on computable
structures began with the work of Ash and Nerode [2], who were concerned with
relations that maintain some degree of effectiveness in different computable presen-
tations of a structure.

1.1.7 Definition. Let U be a relation on the domain of a computable structure A
and let C be a class of relations. U is intrinsically C on A if the image of U in any
computable presentation of A is in C.

In [2], conditions that guarantee that a relation is intrinsically computable or
intrinsically c.e. were given. More recent work has led to a number of other condi-
tions guaranteeing that a relation is intrinsically C for various classes C (see [3], for
example).

Invariant relations will often be important in this dissertation.

1.1.8 Definition. A relation U on a structure M is invariant if, for every auto-
morphism f :M∼=M, f(U) = U .

The following definition, which, as mentioned above, is the main topic of study
of this dissertation, is due to Harizanov [17].

1.1.9 Definition. Let U be a relation on the domain of a computable structure A.
The degree spectrum of U on A, DgSpA(U), is the set of degrees of the images of U
in all computable presentations of A.

It is also interesting to consider degree spectra of relations with respect to other
reducibilities.
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1.1.10 Definition. Let r be a reducibility, such as many-one reducibility (m-re-
ducibility) or truth-table reducibility. Let U be a relation on the domain of a
computable structure A. The r-degree spectrum of U on A, DgSpr

A(U), is the set
of r-degrees of the images of U in all computable presentations of A.

1.2 Summary of Results

In Chapter 2, we give some examples of sets of degrees that can be realized as
degree spectra of relations on computable structures. We show, for instance, that
for every c.e. degree a and every computable ordinal α, the set of α-c.e. degrees less
than or equal to a can be realized as the degree spectrum of an intrinsically α-c.e.
relation on a computable structure. (For a definition of α-c.e. sets and degrees, see
Section 2.3.)

In Chapter 3, we consider finite degree spectra of relations. These were first
studied by Harizanov [19], who showed that there exists a ∆0

2 degree a such that
{0, a} can be realized as the degree spectrum of a relation on a computable structure
of computable dimension 2. Khoussainov and Shore and Goncharov [24],[15] later
improved this result by showing the existence of a c.e. degree a such that {0, a}
can be realized as the degree spectrum of an intrinsically computable relation on a
computable structure of computable dimension 2.

In Section 3.2, we show that, in fact, for every c.e. degree a, {0, a} can be realized
as the degree spectrum of an intrinsically c.e. relation on a computable structure.
In Section 3.3, we show that this result remains true if we also require that the
structure in question have computable dimension 2. This last result, which answers
a question of Goncharov and Khoussainov [15], has been independently obtained by
Khoussainov and Shore [23].

There are at least two natural directions in which these results can be extended.
In Section 3.4, we show that, for every uniformly c.e. collection of sets S, the set of
degrees of elements of S can be realized as the degree spectrum of an intrinsically
computable relation on a computable structure. Then, in Section 3.5, we show that
if α ∈ ω ∪ {ω} then, for every α-c.e. degree a, {0, a} can be realized as the degree
spectrum of an intrinsically α-c.e. relation on a computable structure. As we will
see, all of these results also hold for m-degree spectra of relations, and hence for
r-degree spectra of relations for any reducibility r weaker than m-reducibility.

The methods of Chapter 3 can be used to answer a question about what can
happen to the computable dimension of a computably categorical structure when
it is expanded by finitely many constants. Cholak, Goncharov, Khoussainov, and
Shore [4] showed that if k > 0 then there exists a computably categorical structure
A and an a ∈ |A| such that 〈A, a〉 has computable dimension k. This left open the
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question of whether there exists a computably categorical structure whose expansion
by some finite set of constants has computable dimension ω. In Chapter 4, which
reports on joint work with Bakhadyr Khoussainov and Richard Shore, we answer
this question in the affirmative.

The structures built in Chapters 3 and 4 are all directed graphs. It is interesting
to ask for which well-known algebraic theories do the results of those chapters remain
true if we also require that the structures in question be models of the given theory.
We address this question in Chapter 5, in which we give a sufficient condition for
the results of Chapters 3 and 4 (as well as other related results) to remain true if we
also require that the structures in question be models of a given theory, and apply it
to the cases of undirected graphs, integral domains, and commutative semigroups.

Chapter 6 contains results that are in contrast to those of Chapter 5, namely,
conditions that guarantee that the degree spectrum of a relation is either a singleton
or infinite. These conditions are used to show, for example, that a computable
relation on a computable linear ordering is either intrinsically computable or has
infinite degree spectrum.



Chapter 2

Examples of Degree Spectra of
Relations

2.1 Introduction

In this chapter, we give a few examples of sets of degrees that can be realized as
degree spectra of relations. Before we proceed, we make three brief observations.

The first one is rather simple: For any class of relations C, if U is an intrinsically
C k-ary relation on a computable structure A then V = (|A|)k − U is intrinsically
co-C and DgSpA(V ) = DgSpA(U).

Now let U and V be k-ary relations on the domains of computable graphs A =
〈|A| , E〉 and B = 〈|B| , F 〉, respectively. Let C = 〈|C| , R,Q〉 be the computable
structure in the language with one binary and one unary relation defined by

|C| = {2x | x ∈ |A|} ∪ {2x+ 1 | x ∈ |B|},

R = {(2x, 2y) | E(x, y)} ∪ {(2x+ 1, 2y + 1) | F (x, y)},

and
Q = {2x | x ∈ |A|}.

Let

W = {(2x0, . . . , 2xk−1) | (x0, . . . , xk−1) ∈ U}∪
{(2x0 + 1, . . . , 2xk−1 + 1) | (x0, . . . , xk−1) ∈ V }.

It is easy to check that

DgSpC(W ) = {c | ∃a,b(a ∈ DgSpA(U) ∧ b ∈ DgSpB(V ) ∧ c = ag b)}.

7
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Furthermore, if A and B are ∆0
2-categorical then so is C, and, for any class of

relations C closed under m-equivalence and finite disjoint unions, if U and V are
intrinsically C then so is W .

It is not hard to modify this construction to handle the case in which U and
V do not necessarily have the same arity and A and B are arbitrary computable
structures, and hence establish the following result.

2.1.1 Proposition. Let A and B be sets of degrees and let C = {c | ∃a,b(a ∈
A ∧ b ∈ B ∧ c = a g b)}. Let C be a class of relations closed under m-equivalence
and finite disjoint unions. If both A and B can be realized as degree spectra of
(intrinsically C) relations on the domains of (∆0

2-categorical) computable structures
then so can C.

Our final observation is about degree spectra of relations with respect to different
reducibilities. Let r and s be reducibilities such that r is stronger than s, and let U
be a relation on a computable structure A. Then DgSps

A(U) is equal to the set of
s-degrees that contain at least one r-degree in DgSpr

A(U). Thus, for example, when
we construct in the next section a relation U on a computable structure A such that
DgSpm

A(U) consists of all Σ0
n m-degrees (other than the m-degrees of ∅ and ω), it

will be the case that, for any reducibility r weaker than m-reducibility, DgSpr
A(U)

consists of all Σ0
n r-degrees.

2.2 Σ0
n, Π0

n, and ∆0
n Degrees

Let C0 be the directed graph consisting of a single node and no edges and let C1

be the directed graph consisting of two nodes x and y with an edge from x to y.
Consider the directed graph G = 〈|G| , E〉 that is the disjoint union of infinitely
many copies of each of C0 and C1. Let U be the unary relation on the domain of G
that holds of x if and only if there is a y such that E(x, y). Since U is defined by
an existential formula in the language of directed graphs, U is intrinsically c.e.. We
claim that DgSpG(U) consists of all c.e. degrees. (In fact, DgSpm

G (U) consists of all
c.e. m-degrees other than the m-degrees of ∅ and ω.)

Indeed, let A be an infinite and coinfinite c.e. set and let a0, a1, . . . be a com-
putable enumeration of A. Define a directed graph G with edge relation F as
follows. Let |G| = ω and, for x, y ∈ ω, let F (x, y) hold if and only if, for some
k ∈ ω, x = 2ak and y = 2k + 1. It is easy to check that G is a computable
presentation of G. Furthermore, UG(x)⇔ x = 2a ∧ a ∈ A, and hence UG ≡m A.

By modifying this example, it is possible to realize, for any n ∈ ω, all n-c.e.
degrees as the degree spectrum of an intrinsically n-c.e. relation on a computable
structure. We will not do this here, since we will show in the next section that, for
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any c.e. degree a and any computable ordinal α, we can realize the α-c.e. degrees
below a as the degree spectrum of an intrinsically α-c.e. relation on a computable
structure. Instead, we will explore another natural generalization of the above
example, given in the following theorem.

2.2.1 Theorem. Let n > 0. There exists an intrinsically Σ0
n relation U on a

computably presentable structureM such that DgSpM(U) consists of all Σ0
n degrees.

Proof. The structureM will be a directed graph; more specifically, it will be a tree.
We begin by defining trees Nk and Pk, k 6 n. When we say that a copy of a tree T
is attached to a node r, we mean that there is a node s such that there is an edge
from r to s and s together with its successors form a copy of T .

1. N0 consists of a single node. P0 = ∅.

2. N1 consists of a single node. P1 consists of a root node to which are attached
infinitely many copies of N0.

3. Nk+2 consists of a root node to which are attached infinitely many copies
of Pk+1. Pk+1 consists of a root node to which are attached infinitely many
copies of each of Nk+1 and Pk+1.

(See Figure 2.1.)
Now let M = 〈|M| , E〉 be the tree consisting of a root node x and infinitely

many disjoint copies of each of Nn and Pn attached to x. Let U be the set of nodes
of M of height 1 that are root nodes of copies of Pn.

We begin by showing that U is intrinsically Σ0
n.

2.2.2 Lemma. Let M be a computable presentation of M. For 0 < m 6 n, let Sm
be the set of nodes of height n + 1 −m in M that are root nodes of copies of Pm.
Then Sm is Σ0

m.

Proof. We proceed by induction. First notice that we can computably determine
the height of a node in M . Since S1 consists of all nodes x of height n such that
∃y(EM(x, y)), S1 is Σ0

1. Now let 1 < m 6 n and assume that the lemma holds for
m − 1. Since x ∈ Sm ⇔ ∃y(EM(x, y) ∧ y /∈ Sm−1), the assumption that Sm−1 is
Σ0
m−1 implies that Sm is Σ0

m.

Since, in the notation of the previous lemma, UM = Sn, we have the following
result.

2.2.3 Corollary. For any computable presentation M of M, UM is Σ0
n.

We now show that DgSpM(U) consists of all Σ0
n degrees.
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2.2.4 Lemma. Let R(x0, . . . , xn) be a computable relation on ωn+1 and let m 6 n.
If m is even then let Q = ∀; otherwise, let Q = ∃. There exist uniformly computable
structures TRam,am+1,...,an

=
〈∣∣TRam,am+1,...,an

∣∣ , ER
am,am+1,...,an

〉
, am, am+1, . . . , an ∈ ω,

such that if

∃xm−1∀xm−2∃xm−3∀xm−4 · · ·Qx0(R(x0, . . . , xm−1, am, . . . , an))

holds then TRam,am+1,...,an
is isomorphic to Pm, while otherwise TRam,am+1,...,an

is iso-

morphic to Nm, and in either case the root node of TRam,am+1,...,an
is 0.

Proof. We proceed by induction. Since R is computable, the lemma clearly holds
for m = 0. Assume the lemma holds for m − 1. If m is even then let Q = ∀ and
Q = ∃; otherwise, let Q = ∃ and Q = ∀. Fix a computable presentation 〈|P | , F 〉 of
Pm−1 with root node 0. Let R = ωn+1 −R. Given am, am+1, . . . , an ∈ ω, let∣∣TRam,am+1,...,an

∣∣ = {0} ∪ {〈1, a, k〉 | a ∈ ω, k ∈ |P |} ∪{
〈c, a, k〉 | c > 2, a ∈ ω, k ∈

∣∣∣TRa,am,am+1,...,an

∣∣∣}
and

ER
am,am+1,...,an

=
{

(0, 〈c, a, 0〉) | c > 1, a ∈ ω, 〈c, a, 0〉 ∈
∣∣TRam,am+1,...,an

∣∣}∪
{(〈1, a, k〉, 〈1, a, l〉) | a ∈ ω, F (k, l)}∪{

(〈c, a, k〉, 〈c, a, l〉) | c > 2, a ∈ ω, ER
a,am,am+1,...,an

(k, l)
}
.

By the induction hypothesis, there is a computable procedure to decide, given
x, am, am+1, . . . , an ∈ ω, whether x ∈

∣∣TRam,am+1,...,an

∣∣, as well as a computable proce-

dure to decide, given x, y, am, am+1, . . . , an ∈ ω, whether ER
am,am+1,...,an

(x, y).

Furthermore, TRam,am+1,...,an
contains infinitely many copies of Pm−1 attached to 0

(if m > 1), and it contains infinitely many copies of Nm−1 attached to 0 if and only
if it contains one copy of Nm−1 attached to 0 if and only if there exists an a ∈ ω
such TRa,am,am+1,...,an

is isomorphic to Nm−1 if and only if there exists an a ∈ ω such
that

¬∃xm−2∀xm−3∃xm−4∀xm−5 · · ·Qx0

(
R(x0, . . . , xm−1, am, . . . , an)

)
if and only if there exists an a ∈ ω such that

∀xm−2∃xm−3∀xm−4∃xm−5 · · ·Qx0(R(x0, . . . , xm−2, a, am, . . . , an))

if and only if

∃xm−1∀xm−2∃xm−3∀xm−4 · · ·Qx0(R(x0, . . . , xm−1, am, . . . , an)).
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2.2.5 Corollary. Let A be an infinite and coinfinite Σ0
n set. There exists a com-

putable presentation M of M such that UM ≡m A.

Proof. If n is even then let Q = ∀; otherwise, let Q = ∃. Let R be a computable
relation such that

∃xn−1∀xn−2∃xn−3∀xn−4 · · ·Qx0(R(x0, . . . , xn−1, x))⇔ x ∈ A.

Let TRx and ER
x , x ∈ ω, be as in Lemma 2.2.4 and define

|M | = {0} ∪
{
〈x, k〉+ 1 | x ∈ ω, k ∈

∣∣TRx ∣∣}
and

EM = {(0, 〈x, 0〉+ 1) | x ∈ ω} ∪
{

(〈x, k〉+ 1, 〈x, l〉+ 1) | x ∈ ω, ER
x (k, l)

}
.

Since the Tx are uniformly computable, M is computable, and since A is infinite
and coinfinite, there are infinitely many copies of each of Nn and Pn attached to 0
in M , and hence M is isomorphic toM. So M is a computable presentation ofM.

Furthermore, UM(y) if and only if y has height 1 and is the root node of a copy
of Pn if and only if y is the root node of a copy of some TRx such that

∃xn−1∀xn−2∃xn−3∀xn−4 · · ·Qx0(R(x0, . . . , xn−1, x))

if and only if, for some x ∈ ω, y = 〈x, 0〉+ 1 and x ∈ A.

The theorem follows from Corollaries 2.2.3 and 2.2.5. �

Remark. Notice that, in the above proof, we have in fact shown that DgSpm
M(U)

consists of all Σ0
n m-degrees other than the m-degrees of ∅ and ω.

By the first observation in the previous section, we can replace Σ0
n by Π0

n in the
statement of Theorem 2.2.1. The next result shows that we can also replace Σ0

n by
∆0
n.

2.2.6 Theorem. Let n > 0. There exists an intrinsically ∆0
n relation V on a

computably presentable structure N such that DgSpN (V ) consists of all ∆0
n degrees.

Proof. Let M and U be as in the proof of Theorem 2.2.1. Let M0 = 〈|M0| , E0〉
and M1 = 〈|M1| , E1〉 be copies of M. Let Ui be the copy of U in Mi. Let Si
be the set of all nodes of Mi of height 1 and let Ûi = Si − Ui. Note that Ui is
intrinsically Σ0

n and Ûi is intrinsically Π0
n. Let ai,0, ai,1, . . . be the elements of Ui and

let bi,0, bi,1, . . . be the elements of Ûi.
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Define N = 〈|N | , E, C0, C1〉 by

|N | = |M0| ∪ |M1| ∪ {c0, c1, . . .} ∪ {d0, d1, . . .},

E(x, y)⇔ (x, y ∈ |Mi| ∧ Ei(x, y)) ∨ (x = ck ∧ (y = a0,k ∨ y = b1,k))∨
(x = dk ∧ (y = b0,k ∨ y = a1,k)),

and
Ci(x)⇔ x ∈ |Mi| .

Let V = {c0, c1, . . .}.
Since V can be defined both as

{x ∈ |N | | ¬C0(x) ∧ ¬C1(x) ∧ ∃y ∈ U0(E(x, y))}

and as
{x ∈ |N | | ¬C0(x) ∧ ¬C1(x) ∧ ∀y(E(x, y)→ y ∈ Û1)},

V is intrinsically ∆0
n.

Given an infinite and coinfinite ∆0
n set A, we can use the construction in the proof

of Theorem 2.2.1 to build computable presentations M0 and M1 of M satisfying
the following conditions.

1. |M0| ∩ |M1| = ∅.

2. |M0| ∪ |M1| is coinfinite.

3. For some computable listing y0,0, y0,1, . . . of the nodes of M0 of height 1,
UM0(y0,k)⇔ k ∈ A.

4. For some computable listing y1,0, y1,1 . . . of the nodes of M1 of height 1,
UM1(y1,k)⇔ k /∈ A.

Now build a computable presentation N of N as follows. Let x0 < x1 < · · · be
the elements of ω − (|M0| ∪ |M1|). Let |N | = ω, let CN

i = |Mi|, and let EN be the
union of the edge relations of M0 and M1 and the set {(xk, yi,k) | i < 1, k ∈ ω}.

It is easy to check that N is in fact a computable presentation of N . Further-
more, if x /∈ {x0, x1, . . .} then ¬V N(x), while V N(xk) ⇔ UN

0 (y0,k) ⇔ k ∈ A, and
hence V N ≡m A.

It is worth noting that the results of this section stand in contrast to the following
theorem, proved independently by Ash, Cholak, and Knight [1] and Harizanov [20],
thus illustrating the potential differences between the general case, in which we
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are trying to realize certain sets of degrees as degree spectra of relations on com-
putable structures with no additional restrictions, and cases in which we impose
extra conditions on some aspect of this realization. (See Chapter 6 for more on this
theme.)

2.2.7 Theorem (Ash, Cholak, and Knight; Harizanov). Let U be a relation on
the domain of a computable structure A. Suppose that for each ∆0

3 set C there
is an isomorphism f from A to a computable structure B such that f 6T C and
C 6T f(U). Then for any set C there is an isomorphism f from A to a computable
model B such that f 6T C and C 6T f(U). In particular, DgSpA(U) contains every
degree.

2.3 Degrees Below a Given C.E. Degree

As mentioned above, it is not hard to modify the example given in the previous
section of an intrinsically c.e. relation on a computable structure whose degree
spectrum consists of all c.e. degrees to get, for each n > 0, an intrinsically n-c.e.
relation on a computable structure whose degree spectrum consists of all n-c.e.
degrees. A little more work can get us a similar result with α-c.e. in place of n-c.e.
for any computable ordinal α. (See Definition 2.3.9 for a definition of α-c.e. sets
and degrees.)

In this section, we show that, in fact, for any c.e. degree a and any computable
ordinal α, there is an intrinsically α-c.e. relation on a computable structure whose
degree spectrum consists of all α-c.e. degrees less than or equal to a. We begin with
a theorem that has a similar but simpler proof.

2.3.1 Theorem. Let a be a c.e. degree. There exists a relation U on the domain of
a computably presentable structure M such that DgSpM(U) consists of all degrees
less than or equal to a.

Proof. Let A be a c.e. set in a. Let σ0, σ1, . . . be a computable list of all finite binary
strings.

The structure M will be a directed graph. We begin by defining our basic
building blocks.

2.3.2 Definition. Let n ∈ ω. The directed graph [n] consists of n+ 3 many nodes
x0, x1, . . . , xn+2 with an edge from x0 to itself, an edge from xn+2 to x0 and an edge
from xi to xi+1 for each i 6 n+ 1. We call x0 the top of [n].

Figure 2.2 shows [2] as an example.
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•�� ��top // //• // //• // //• // //•hhhh

Figure 2.2: [2]

2.3.3 Definition. Let ~m = (m0,m1, . . . ,mk) ∈ ωk+1 and S ⊆ {0, 1, . . . , k}. The
directed graph [~m, S] consists of the following nodes and edges.

1. k+1 many nodes x0, x1, x2, . . . , xk with an edge from xi to xi+1 for each i < k.

2. For each i ∈ S, a copy of [2mi + 1] with xi as its top.

3. For each i ∈ {0, 1, . . . , k} − S, a copy of [2mi] with xi as its top.

We call x0 the principal node of [~m, S]. The height of [~m, S] is defined to be |~m|
and its length is defined to be max{|σm| | m ∈ ~m}.

Figure 2.3 shows [(1, 2, 3), {2}] as an example.

The idea behind Definition 2.3.3 is that the [~m, S] can be used to represent
computations in which we are computably approximating a ∆0

2 oracle, with the
strings σm, m ∈ ~m, representing initial segments of approximations of the oracle
and the elements of S representing stages at which the computation changes its
mind about its output at a particular input. Of course, we are only interested in
the case in which the oracle is A. This leads to the following definition.

2.3.4 Definition. We say that [~m, S], ~m = (m0,m1, . . . ,mk), S ⊆ {0, 1, . . . , k}, is
A-acceptable if it satisfies both of the following conditions.

1. A � |σmk | = σmk .

2. If i < k then σmi 6= A � |σmi | and, for every j < |σmi |, σmi(j) = 1⇒ A(j) = 1.

We define A[s]-acceptability analogously.

Note that, if we think of an A-acceptable [~m, S] as an approximation of some
computation relative to A in the manner described above then condition 2 in Def-
inition 2.3.4 makes sense because A is c.e.. This condition is important for two
reasons. As we will see, together with condition 1 it ensures that, given a copy of
an A-acceptable [~m, S] in some computable graph, we can A-computably determine
~m and S. Furthermore, it guarantees that if [~m, S] is A[s]-acceptable, ~n is a proper
initial segment of ~m, and T ⊆ {0, . . . , |~n| − 1}, then [~n, T ] is not A[t]-acceptable for
any t > s, and hence is not A-acceptable.

We now define M and U .
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2.3.5 Definition. LetM′ consist of the disjoint union of infinitely many copies of
each A-acceptable [~m, S], ~m ∈ ωk+1, S ⊆ {0, 1, . . . , k}, k ∈ ω. Let T be the set of
principal nodes of these copies.

Let M consist of M′ and one additional root node x, with an edge from x to
each element of T . We call the connected components ofM′ the components ofM.
For any computable presentation M of M, we call the image of x in M the root
node of M .

Let U be the set of all elements of T that are principal nodes of components of
M of the form [~m, S], |S| odd.

Let [~m, S] have length l. The following facts follow easily from the definitions.

1. For any s ∈ ω such that A[s] � l = A � l, [~m, S] is A-acceptable if and only if
it is A[s]-acceptable.

2. If [~m, S] is A[s]-acceptable, A[s + 1] � l 6= A[s] � l, and m is such that
σm = A[s+ 1] � l, then [~mam,S] is A[s+ 1]-acceptable.

3. For any m ∈ ω and T = S or T = S ∪ {|~m|}, [~m, S] can be extended to
[~mam,T ] by adding new nodes and edges.

We now need to show that U and M have the desired properties. We begin by
showing that every degree in DgSpM(U) is less than or equal to a.

2.3.6 Lemma. If M is a computable presentation of M then UM 6T A.

Proof. Let T be set of all nodes y of M such that there is an edge from y to itself.
Let y ∈ T . Then y is the top of a copy of [k] for some k ∈ ω. Let m be such that
k = 2m or k = 2m + 1. Define σ(y) = σm and c(y) = k − 2m. Note that T is
computable, and so are the maps taking y ∈ T to σ(y) and c(y).

To A-computably determine whether x ∈ UM , we can proceed as follows. First,
check whether there is an edge from the root node of M to x. If not then x /∈ UM .
Otherwise, x is the principal node of a copy of some [~m, S].
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By the definition of M, there is a unique list x0, . . . , xn of elements of T such
that x = x0, for all i < n there is an edge from xi to xi+1, and σ(xn) = A � |σ(xn)|.
Clearly, we can A-computably find x0, . . . , xn, and hence A-computably determine
c =

∑n
i=0 c(xi). By the definition of U , x ∈ UM if and only if c is odd.

Now, given a set B = Φe(A), we need to build a computable presentation M
of M such that UM ≡T B. (In fact, we will build M so that UM ≡m B.) We
take advantage of the fact that M contains infinitely many copies of each of its
components and proceed as follows. We first construct a computable presentation
N ofM such that UN is computable. We then add to this presentation A-acceptable
components Cn, n ∈ ω, such that the principal node of Cn is in UM if and only if
n ∈ B.

At each stage s + 1 in the construction of M , we will have approximations
Cn[s + 1] for each n such that Φe(A;n)[t] ↓ for some t 6 s. Each such Cn[s + 1]
will be a copy of some [~m, S] such that, for the last element m of ~m and the largest
t 6 s such that Φe(A;n)[t]↓, σm = A[t] � ϕe(A;n)[t] and |S| ≡ Φe(A;n)[t] mod 2.

Every time the computation Φe(A;n) changes, we change the approximation of
Cn to reflect this. Since Φe(A;n) is total, this will guarantee that Cn = limsCn[s]
is A-acceptable and is a copy of some [~m, S] such that |S| ≡ Φe(A;n) mod 2.

2.3.7 Lemma. There exists a computable presentation N of M such that UN is
computable.

Proof. We build N in stages. By the beginning of each stage s + 1, we will have
built components C0[s], . . . , Cks−1[s] for some ks ∈ ω, where each Ci[s] will be a
copy of some A[s]-acceptable

[
~mi[s], Si

]
. For each i, ~mi[s] will have a limit ~mi, and

thus Ci[s] will have a limit Ci.

stage 0. Choose 0 as the root node of N . Let k0 = 0.

stage s+ 1. We break the stage up into two phases.

1. Define ks+1, ~mi[s+ 1], and Si, ks 6 i < ks+1, so that the set
{[
~mi[s+ 1], Si

]
|

ks 6 i < ks+1

}
contains every A[s + 1]-acceptable [~m, S] whose height and

length are less than or equal to s. For each ks 6 i < ks+1, build a new copy
Ci[s+ 1] of

[
~mi[s+ 1], Si

]
using fresh large numbers and add an edge from 0

to the principal node of Ci[s+ 1].

2. For each Ci[s], i < ks, if Ci[s] is not A[s + 1]-acceptable then proceed as
follows. Let m be such that σm = A[s + 1] � l, where l is the length of Ci[s].
Let ~mi[s + 1] = ~mi[s]

am. Extend Ci[s] to a copy Ci[s + 1] of
[
~mi[s + 1], Si

]
using fresh large numbers. Note that, since Ci[s] is A[s]-acceptable but not
Ci[s+ 1]-acceptable, Ci[s+ 1] is A[s+ 1]-acceptable.
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On the other hand, if Ci[s] is A[s + 1]-acceptable then let ~mi[s + 1] = ~mi[s]
and Ci[s+ 1] = Ci[s].

Let i ∈ ω and let s be such that Ci[s] is defined. It is easy to check that, for any
t > s, Ci[t] is A[t] acceptable and has the same length as Ci[s]. Thus there exists a
t > s such that, for all u > t, Ci[u] = Ci[t], and hence Ci = limuCi[u] is well-defined
and A-acceptable. So every Ci is a copy of some component of M.

Now suppose that [~m, S] is A-acceptable and has length l and let s > l be such
that A[s + 1] � l = A � l. Then for every t > s there exists kt−1 6 i < kt such that
Ci[t] is a copy of [~m, S] and, by the choice of s, Ci = Ci[t]. Thus each component
of M has infinitely many copies in N . Together with the result of the previous
paragraph, this shows that N is a computable presentation of M.

To determine whether x ∈ UN , all we need to do is to look for a stage s in the
construction during which numbers greater than x are used. Then x ∈ UN if and
only if it is the principal node of some

[
~mi[s], Si

]
, i < ks, with |Si| odd.

2.3.8 Lemma. Let B 6T A. There is a computable presentation M = 〈|M | , E〉 of
M such that UM ≡m B.

Proof. Let e be such that Φe(A) = B. By Lemma 2.3.7, there is a computable
presentation N ofM such that UN is computable. We can assume that D = ω−|N |
is infinite.

We extend N to another computable presentation M ofM in stages. When we
make use of fresh numbers in the construction, we take them from D in order. We
adopt the conventions that n 6 s⇒ Φe(A;n)[s]↑ and A[s+1] � ϕe(A;n)[s] 6= A[s] �
ϕe(A;n)[s]⇒ Φe(A;n)[s+ 1]↑.

At the beginning of stage s+ 1, we have copies Cn[s] of graphs
[
~mn[s], Sn[s]

]
for

each n < s such that Φe(A;n)[t] ↓ for some t < s. For each n 6 s, we proceed as
follows.

If Φe(A;n)[s] ↓ and Φe(A;n)[t] ↑ for all t < s then let m be such that σm =
A[s] � ϕe(A;n)[s] and let ~mn[s+ 1] = (m). If Φe(A;n)[s] = 0 then let Sn[s+ 1] = ∅;
otherwise, let Sn[s+ 1] = {0}. Let Cn[s+ 1] be a new copy of

[
~mn[s+ 1], Sn[s+ 1]

]
,

formed using fresh numbers in D, and add an edge from the root node of N to the
principal node of Cn[s+ 1].

If Cn[s] is defined, Φe(A;n)[s] ↓, and Φe(A;n)[s − 1] ↑, then let m be such that
σm = A[s] � ϕe(A;n)[s] and let ~mn[s+ 1] = ~mn[s]am. If Φe(A;n)[s] ≡ |Sn[s]| mod 2
then let Sn[s+ 1] = Sn[s]; otherwise, let Sn[s+ 1] = Sn[s]∪{|~mn[s]|}. Extend Cn[s]
to a copy Cn[s+ 1] of

[
~mn[s+ 1], Sn[s+ 1]

]
, using fresh numbers in D.

If neither of the previous two cases holds then let ~mn[s+ 1] = ~mn[s], Sn[s+ 1] =
Sn[s], and Cn[s+ 1] = Cn[s].
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It is easy to check that M is a computable presentation of M. In particular,
the following facts hold.

1. Whenever Cn[s] changes, it is only to reflect the fact that a number has entered
A below the use of the computation Φe(A;n).

2. Cn[s] will necessarily change to reflect the last change in this use.

Thus each Cn[s] comes to a limit Cn, and it is then a copy of an A-acceptable
[~mn, Sn]. Let xn be the principal node of Cn.

We wish to show that UM ≡m B. By our choice of N , UM∩|N | is computable, so
it suffices to show that n ∈ B ⇔ xn ∈ UM , that is, that ∀n ∈ ω(B(n) ≡ |Sn| mod 2).

Fix n and let s be the least number such that Φe(A;n)[t] ↓= Φe(A;n) for all
t > s. By the minimality of s, Φe(A;n)[s − 1] ↑, and hence one of the first two
cases in the description of the stage s + 1 action of the construction of M holds
for n, so that B(n) = Φe(A;n) = Φe(A;n)[s] ≡ |Sn[s+ 1]| mod 2. Furthermore,
neither of these cases ever holds after stage s + 1, so that Sn = Sn[s + 1]. Thus
B(n) ≡ |Sn| mod 2.

The theorem follows from Lemmas 2.3.6 and 2.3.8. �

Remark. It is easy to give an example of a relation on a computable structure
whose degree spectrum contains all degrees, and for any degree a, it is equally easy
to give an example of a relation on a computable structure whose degree spectrum
is {a}. Thus, realizing all degrees above a given (not necessarily c.e.) degree as the
degree spectrum of a relation on a computable structure is an easy application of
Proposition 2.1.1.

Similarly, combining Theorem 2.3.1 with Proposition 2.1.1, we see that if a < b
are degrees and b is c.e. then there exists a relation U on the domain of a computably
presentable structureM such that DgSpM(U) consists of all degrees in the interval
[a,b].

In general, the various examples of possible degree spectra of relations given in
this dissertation can often be combined to yield further examples by using Propo-
sition 2.1.1, and we will make no explicit mention of this fact below.

We now show how to modify the proof of Theorem 2.3.1 in order to realize all
the α-c.e. degrees below a given c.e. degree as the degree spectrum of a relation on
a computable structure.

The definition of α-c.e. sets and degrees depends on the choice of ordinal notation
system; see [6] for details. When we talk about α-c.e. sets and degrees, where α is a
computable ordinal, we assume that we have fixed a univalent, computably related
ordinal notation system with a notation for α (and hence for all ordinals less than
α) and let pβq denote the unique notation for β 6 α in this system.
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It is slightly cumbersome to give a definition of α-c.e. sets that works for both
α < ω (where we want to agree with the definition of n-c.e. sets, n ∈ ω, given by
the difference hierarchy) and α > ω. The following (slightly nonstandard) defini-
tion works well for our purposes, and is easily seen to be equivalent to standard
definitions of n-c.e. and α-c.e. sets and degrees (as in [6]).

2.3.9 Definition. Let α be a computable ordinal and assume we have fixed a
univalent, computably related ordinal notation system with a notation for α. Let
pβq denote the unique notation for β 6 α in this system.

A set A is α-c.e. if there exists a partial computable binary function Ψ satisfying
the following conditions for all x ∈ ω. (We will say that Ψ witnesses the fact that
A is α-c.e..)

1. Ψ(pαq, x)↓= 0.

2. If α > ω then there exists a β < α such that Ψ(pβq, x)↓.

3. For the least β 6 α such that Ψ(pβq, x)↓, Ψ(pβq, x) = A(x).

A degree is α-c.e. if it contains an α-c.e. set.

2.3.10 Theorem. Let α be a computable ordinal and let a be a c.e. degree. There
exists an intrinsically α-c.e. relation U on the domain of a computably presentable
structure M such that DgSpM(U) consists of all α-c.e. degrees less than or equal
to a.

Proof. This proof is similar to that of Theorem 2.3.1; we give the necessary changes.
Unless otherwise noted, we use the same notation and conventions as in that proof.

Let A be a c.e. set in a. In the proof of Theorem 2.3.1, we had graphs [~m, S]
that could be used to represent computations in which we computably approximate
the oracle A. In this proof, we also want to be able to represent the nonincreasing
sequences of ordinals less than or equal to α that can be associated to computable
approximations of α-c.e. sets. This leads to the following definitions.

2.3.11 Definition. Let ~m = (m0,m1, . . . ,mk) ∈ ωk+1, let S ⊆ {0, 1, . . . , k}, and
let ~γ = (γ0, γ1, . . . , γk) ∈ (α + 1)k+1 be nonincreasing. The directed graph [~m, S,~γ]
consists of the following nodes and edges.

1. k+1 many nodes x0, x1, x2, . . . , xk with an edge from xi to xi+1 for each i < k.

2. For each i ∈ S, a copy of [〈mi, pγiq, 1〉] with xi as its top.

3. For each i ∈ {0, 1, . . . , k} − S, a copy of [〈mi, pγiq, 0〉] with xi as its top.
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As before, we call x0 the principal node of [~m, S,~γ]. The height of [~m, S,~γ] is defined
to be |~m|, its length is defined to be max{|σm| | m ∈ ~m}, and its range is defined
to be max{pγiq | i 6 k}.

2.3.12 Definition. Let ~m = (m0,m1, . . . ,mk) ∈ ωk+1, let S ⊆ {0, 1, . . . , k}, and
let ~γ = (γ0, γ1, . . . , γk) ∈ (α + 1)k+1 be nonincreasing. We say that [~m, S,~γ] is
A-acceptable if it satisfies all of the following conditions.

1. A � |σmk | = σmk .

2. For i < k, σmi 6= A � |σmi | and, for every j < |σmi |, σmi(j) = 1⇒ A(j) = 1.

3. For i > 0, if i ∈ S then γi 6= γi−1.

4. If α > ω or 0 ∈ S then γ0 < α.

We define A[s]-acceptability analogously.

We define M and U much as before.

2.3.13 Definition. Let M′ consist of the disjoint union of infinitely many copies
of each A-acceptable [~m, S,~γ], where, for some k ∈ ω, ~m ∈ ωk+1, S ⊆ {0, 1, . . . , k},
and ~γ = (γ0, γ1, . . . , γk) ∈ (α+ 1)k+1 is nonincreasing. Let T be the set of principal
nodes of these copies.

Let M consist of M′ and one additional root node x, with an edge from x to
each element of T .

Let U be the set of all elements of T that are principal nodes of connected
components of M′ of the form [~m, S,~γ], |S| odd.

The following lemma has essentially the same proof as Lemma 2.3.6.

2.3.14 Lemma. If M is a computable presentation of M then UM 6T A.

We also need to check that U is intrinsically α-c.e..

2.3.15 Lemma. If M is a computable presentation of M then UM is α-c.e..

Proof. Let S be the set of all nodes y of M such that there is an edge from the root
node of M to y. Let T be set of all nodes y of M such that there is an edge from
y to itself. Let y ∈ T . Then y is the top of a copy of [k] for some k ∈ ω. Let m,
β 6 α, and i 6 1 be such that k = 〈m, pβq, i〉. Define σ(y) = σm, β(y) = β, and
c(y) = i. Note that T is computable, and so are the maps taking y ∈ T to σ(y),
β(y), and c(y).

Define the partial computable binary function Ψ as follows.
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stage 0. For all x ∈ ω, Ψ(pαq, x) = 0. If x /∈ S then Ψ(pβq, x) = 0 for all β < α. If
x ∈ S then Ψ(pβ(x)q, x) = c(x).

stage s + 1. For all x ∈ S, proceed as follows. Let x0, . . . , xn be the longest chain
of elements of T � s ∪ {x} such that x = x0 and for all i < n there is an edge from
xi to xi+1. Let c = |{i < n | c(xi) 6= c(xi+1)}|. If Ψ(pβ(xn)q, x) has not yet been
defined then Ψ(pβ(xn)q, x) = c.

It is not hard to check that Ψ witnesses that UM is α-c.e. in the sense of Defi-
nition 2.3.9.

2.3.16 Lemma. There exists a computable presentation N of M such that UN is
computable.

Proof. We build N in stages in much the same way as before.

stage 0. Choose 0 as the root node of N . Let k0 = 0.

stage s+ 1. We break the stage up into two phases.

1. Define ks+1, ~mi[s + 1], Si, and ~γi[s + 1], ks 6 i < ks+1, so that the set{[
~mi[s + 1], Si, ~γi[s + 1]

]
| ks 6 i < ks+1

}
contains every A[s + 1]-acceptable

[~m, S,~γ] of height, length, and range less than or equal to s. For each ks 6
i < ks+1, build a new copy Ci[s+1] of

[
~mi[s+1], Si, ~γi[s+1]

]
using fresh large

numbers and add an edge from 0 to the principal node of Ci[s+ 1].

2. For each Ci[s], i < ks, if Ci[s] is not A[s+1]-acceptable then proceed as follows.
Let m be such that σm = A[s+ 1] � l, where l is the length of Ci[s]. Let k be
the height of Ci[s]. Let ~mi[s + 1] = ~mi[s]

am and ~γi[s + 1] = ~γi[s]
a~γi(k − 1).

Extend Ci[s] to a copy Ci[s + 1] of
[
~mi[s + 1], Si, ~γi[s + 1]

]
using fresh large

numbers.

On the other hand, if Ci[s] is A[s + 1]-acceptable then let ~mi[s + 1] = ~mi[s],
~γi[s+ 1] = ~γi[s], and Ci[s+ 1] = Ci[s].

It is easy to check, as before, that, for every i ∈ ω, Ci = limsCi[s] is well-defined
and A-acceptable. So every Ci is a copy of some component ofM. Moreover, by the
same argument as in the proof of Lemma 2.3.7, each component ofM has infinitely
many copies in N . Thus N is a computable presentation of M.

As before, to determine whether x ∈ UN , all we need to do is to look for a
stage s in the construction during which numbers greater than x are used. Then
x ∈ UN if and only if it is the principal node of some

[
~mi[s], Si, ~γi[s]

]
, i < ks, with

|Si| odd.
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2.3.17 Lemma. Let B 6T A be α-c.e.. There exists a computable presentation
M = 〈|M | , E〉 of M such that UM ≡m B.

Proof. This proof is much the same as the proof of Lemma 2.3.8; we give the
necessary changes.

Let Ψ be a partial computable binary function witnessing the fact that B is
α-c.e.. It is not hard to see that there exists an e ∈ ω with the following properties.

1. Φe(A) = B.

2. If Φe(A;n)[s]↓ then, for the least β 6 α such that Ψ(pβq, n)[s]↓, Φe(A;n)[s] =
Ψ(pβq, n).

3. For the least number s such that Φe(A;n)[s]↓, if either α > ω or Φe(A;n)[s] =
1 then Ψ(pβq, n)[s]↓ for some β < α.

By Lemma 2.3.16, there is a computable presentation N of M such that UN is
computable. We can assume that D = ω − |N | is infinite.

We extend N to another computable presentation M ofM in stages. When we
make use of fresh numbers in the construction, we take them from D in order.

At the beginning of stage s+1, we have copies Cn[s] of graphs
[
~mn[s], Sn[s], ~γn[s]

]
for each n < s such that Φe(A;n)[t] ↓ for some t < s. For each n 6 s, we proceed
as follows.

If Φe(A;n)[s] ↓ and Φe(A;n)[t] ↑ for all t < s then let m be such that σm =
A[s] � ϕe(A;n)[s] and let ~mn[s+ 1] = (m). If Φe(A;n)[s] = 0 then let Sn[s+ 1] = ∅;
otherwise, let Sn[s+1] = {0}. Let β 6 α be the least ordinal such that Ψ(pβq, n)[s]↓
and let ~γn[s+1] = (β). Let Cn[s+1] be a new copy of

[
~mn[s+1], Sn[s+1], ~γn[s+1]

]
,

formed using fresh numbers in D, and add an edge from the root node of N to the
principal node of Cn[s+ 1].

If Cn[s] is defined, Φe(A;n)[s] ↓, and Φe(A;n)[s − 1] ↑, then let m be such that
σm = A[s] � ϕe(A;n)[s] and let ~mn[s+ 1] = ~mn[s]am. If Φe(A;n)[s] ≡ |Sn[s]| mod 2
then let Sn[s+ 1] = Sn[s]; otherwise, let Sn[s+ 1] = Sn[s]∪{|~mn[s]|}. Let β 6 α be
the least ordinal such that Ψ(pβq, n)[s]↓ and let ~γn[s+ 1] = ~γn[s]aβ. Extend Cn[s]
to a copy Cn[s+ 1] of

[
~mn[s+ 1], Sn[s+ 1], ~γn[s+ 1]

]
, using fresh numbers in D.

If neither of the previous two cases holds then let ~mn[s+ 1] = ~mn[s], Sn[s+ 1] =
Sn[s], ~γn[s+ 1] = ~γn[s], and Cn[s+ 1] = Cn[s].

It is easy to check that M is a computable presentation of M, and the proof
that UM ≡m B is the same as before.

The theorem follows from Lemmas 2.3.14, 2.3.15 and 2.3.17. �
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Suppose that we add to Definition 2.3.4 the condition that |σm0| = |σm1| =
· · · = |σmk | and define M and U as in Definition 2.3.5. Then, given a computable
presentation M of M, the use of the A-computable procedure given in the proof
of Lemma 2.3.6 for determining whether x ∈ UM is a computable function of x,
and hence UM 6wtt A. Furthermore, Lemma 2.3.7 can be proved as before, as
can Lemma 2.3.8 for B 6wtt A. (In the proof, we need to pick e so that there is
a computable bound f on the use of Φe(A) and then adopt the convention that
ϕe(A;n)[s] = f(n) for all n, s ∈ ω.) Similar changes can be made to the proof of
Theorem 2.3.10. Thus we have the following result.

2.3.18 Theorem. Let a be a c.e. wtt-degree. There exists a relation U on the
domain of a computably presentable structure M such that DgSpwtt

M (U) consists of
all wtt-degrees less than or equal to a.

Let n ∈ ω. There exists an intrinsically n-c.e. relation U on the domain of
a computably presentable structure M such that DgSpwtt

M (U) consists of all n-c.e.
wtt-degrees less than or equal to a.

Remark. The reason we restrict ourselves to n-c.e. wtt-degrees, n ∈ ω, in the second
part of the Theorem 2.3.18 is that every wtt-degree less than or equal to a c.e. wtt-
degree is ω-c.e..

2.4 Easy Finite Degree Spectra

As we will see in Chapter 3, realizing sets of degrees of finite cardinality greater than
1 as degree spectra of relations on computable structures normally requires fairly
complicated constructions. It is possible, however, to obtain finite degree spectra
of relations as easy corollaries to two results, one in computable model theory, and
the other in classical computability theory.

First of all, for any n > 1, the existence of a relation with a two-element degree
spectrum that includes 0 follows from the existence of a rigid structure of com-
putable dimension 2, which was shown by Goncharov [10]. (This has been noted by
Harizanov (see [18]).)

Indeed, suppose that A is such a computable structure, assume without loss of
generality that |A| = ω, and let R be the binary relation that holds of x, y ∈ |A| if
and only if y = x + 1. Clearly, if B is a computable structure and f : A ∼= B then
deg(f(R)) = deg(f). So the fact that A is rigid and has computable dimension
2 implies that DgSpA(R) = {0, a} for some nonzero degree a. It should be noted
that, by a result of Goncharov [12] (see Chapter 6), a cannot be ∆0

2.
It is also easy to give an example of an intrinsically d.c.e. relation on a ∆0

2-
categorical structure with a two-element degree spectrum, but one that does not
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include 0. As we have seen in the previous section, there exists an intrinsically d.c.e.
unary relation U on the domain of a computable directed graph A whose degree
spectrum is the set of d.c.e. degrees.

Now let d be a maximal incomplete d.c.e. degree, as constructed in [5]. (That
is, d 6= 0′ is d.c.e. and there are no d.c.e. degrees in (d,0′).) It is easy to define a
d.c.e. relation V on the domain of a computably categorical directed graph B whose
degree spectrum is the singleton {d}.

By Proposition 2.1.1, there exists an intrinsically d.c.e. relation W on the domain
of a ∆0

2-categorical computable structure C whose degree spectrum is

{c | ∃a,b(a ∈ DgSpA(U) ∧ b ∈ DgSpB(V ) ∧ c = ag b)} =

{c | d 6 c and c is d.c.e.} = {d,0′}.

It is not hard to see that W can be chosen to be invariant.
The fact that C is ∆0

2-categorical and W is invariant is interesting in light of the
results of Chapter 6, where it is shown that no finite set of degrees containing 0
can be the degree spectrum of an invariant relation on a ∆0

2-categorical computable
structure.



Chapter 3

Finite Degree Spectra of Relations

3.1 Introduction

The Ash-Nerode type conditions mentioned in Section 1.1 usually imply that the
degree spectrum of a relation is either a singleton or infinite. Indeed, for various
classes of degrees, conditions have been formulated that guarantee that the degree
spectrum of a relation consists of all the degrees in the given class (see [1], for ex-
ample). Motivated by these considerations, as well as by Goncharov’s examples [10]
of structures of finite computable dimension, Harizanov and Millar suggested the
study of relations with finite degree spectra.

Harizanov [19] was the first to give an example of an intrinsically ∆0
2 relation

with a two-element degree spectrum that includes 0.

3.1.1 Theorem (Harizanov). For some ∆0
2 but not c.e. degree a, there is a relation

U on the domain of a computable structure A of computable dimension 2 such that
DgSpA(U) = {0, a}.

Khoussainov and Shore and Goncharov [15],[24] showed the existence of an in-
trinsically c.e. relation with a two-element degree spectrum.

3.1.2 Theorem (Khoussainov and Shore, Goncharov). For some c.e. degree a,
there is an intrinsically c.e. relation U on the domain of a computable structure A
of computable dimension 2 such that DgSpA(U) = {0, a}.

This left open the question, asked explicitly in [15], of which (c.e.) degrees can
be the nonzero element of a two-element degree spectrum. In this chapter we show
that every c.e. degree belongs to some two-element degree spectrum whose other
element is 0. We begin by temporarily ignoring the issue of computable dimension
and establishing the following result.

26
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3.1.3 Theorem. Let a > 0 be a c.e. degree. There exists an intrinsically c.e.
relation U on the domain of a computable structure A such that DgSpA(U) = {0, a}.

The proof of this theorem, which will be given in Section 3.2, uses techniques
from [24], which in turn builds on work of Goncharov [9],[10] and Cholak, Gon-
charov, Khoussainov, and Shore [4].

In Section 3.3, we show how to modify the proof of Theorem 3.1.3 to obtain the
following result, which is also due independently to Khoussainov and Shore [23],
whose proof uses a complicated modification of their proof of Theorem 3.1.2.

3.1.4 Theorem. Let a > 0 be a c.e. degree. There exists an intrinsically c.e.
relation U on the domain of a computable structure A of computable dimension
2 such that DgSpA(U) = {0, a}. In addition, A can be picked so that every c.e.
presentation of A is computable, which implies that A has c.e. dimension 2.

In [24], Khoussainov and Shore also proved the following theorem.

3.1.5 Theorem (Khoussainov and Shore). For each computable poset P there exists
an intrinsically c.e. relation U on the domain of a computable structure A such that
〈DgSpA(U),6T〉 ∼= P. If P has a least element then we can pick U and A so that
0 ∈ DgSpA(U).

In Section 3.4, we show how to modify the proof of Theorem 3.1.3 to establish
the following extension of Theorem 3.1.5.

3.1.6 Theorem. Let {Ai}i∈ω be a uniformly c.e. (u.c.e.) collection of sets. There
exists an intrinsically c.e. relation U on the domain of a computable structure A
such that DgSpA(U) = {deg(Ai) | i ∈ ω}.

Another way in which we can extend Theorem 3.1.3 is by broadening our focus
from the c.e. degrees to larger classes of degrees. In Section 3.5, we establish the
following result.

3.1.7 Theorem. Let α ∈ ω ∪ {ω} and let b > 0 be an α-c.e. degree. There exists
an intrinsically α-c.e. relation V on the domain of a computable structure B of
computable dimension 2 such that DgSpB(V ) = {0,b}.

Remark. Since we will only be dealing with α 6 ω in this chapter, we will not need
to worry about the problems with the definition of α-c.e. mentioned in Section 2.3.
See Section 3.5 for details.

The structure B will be an extension of the structure A constructed in the proof
of Theorem 3.1.4 for an appropriate c.e. degree a.
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Remark. One interesting consequence of Theorem 3.1.7 is that there exists a minimal
degree b such that {0,b} is realized as the degree spectrum of a relation on a
computable structure.

Theorems 3.1.6 and 3.1.7 can be conflated to produce the following results,
which can be proved by combining the modifications to the proof of Theorem 3.1.3
presented in Sections 3.3, 3.4 and 3.5.

3.1.8 Theorem. Let α ∈ ω∪{ω} and let {Ai}i∈ω be a uniformly α-c.e. collection of
sets. There exists an intrinsically α-c.e. relation U on the domain of a computable
structure A such that DgSpA(U) = {deg(Ai) | i ∈ ω}.

3.1.9 Theorem. Let α ∈ ω ∪{ω} and let a0, . . . , an be α-c.e. degrees. There exists
an intrinsically α-c.e. relation U on the domain of a computable structure A of
computable dimension n+ 1 such that DgSpA(U) = {a0, . . . , an}.

It will be clear from their proofs that Theorems 3.1.3, 3.1.4, and 3.1.7 remain
true with degree replaced by m-degree and DgSpA(U) replaced by DgSpm

A(U). Thus,
for any reducibility r weaker than m-reducibility, both theorems remain true with
degree replaced by r-degree and DgSpA(U) replaced by DgSpr

A(U). The same holds
of Theorems 3.1.6 and 3.1.8 if we require that Ai 6= ∅ and Ai 6= ω for all i ∈ ω, and
of Theorem 3.1.9 if we require that the m-degrees of ∅ and ω are not on the list
a0, . . . , an.

3.2 Proof of Theorem 3.1.3

In this section we prove the following theorem.

3.1.3. Theorem. Let a > 0 be a c.e. degree. There exists an intrinsically c.e.
relation U on the domain of a computable structure A such that DgSpA(U) = {0, a}.

Proof. Let A be a c.e. set that is not computable and let a0, a1, . . . be a computable
enumeration of A. Let A[0] = ∅, A[s + 1] = {a0, . . . , as}. We wish to construct
computable structures A0 and A1 and unary relations U0 and U1 on the domains
of A0 and A1, respectively, so that the following properties hold.

(3.2.1) A0 ∼= A1 via an isomorphism that carries U0 to U1.

(3.2.2) U0 ≡m A and U1 is computable.

(3.2.3) If G ∼= A0 is a computable structure then the image of U0 in G is either
computable or m-equivalent to A.
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Our structures will be directed graphs. We begin by defining our basic building
blocks.

3.2.1 Definition. Let n ∈ ω. Recall from Section 2.3 that the directed graph [n]
consists of n+ 3 many nodes x0, x1, . . . , xn+2 with an edge from x0 to itself, an edge
from xn+2 to x1, and an edge from xi to xi+1 for each i 6 n+ 1. As before, we call
x0 the top of [n]. We call xn+2 the coding location of [n].

Let S ⊂ ω. The directed graph [S] consists of one copy of [s] for each s ∈ S,
with all the tops identified.

Figure 3.1 shows [2] and [{2, 3}] as examples.

•�� ��top // //• // //• // //• coding location// //•hhhh

•�� ��top // //

�� ��

• // //• // //• coding location// //•hhhh

• // //• // //• // //• coding location// //•jjjj

Figure 3.1: [2] and [{2, 3}]

Now let us consider how we could go about satisfying (3.2.1) and (3.2.2) above.
We build A0 and A1 in stages. We begin by letting A0

0 and A1
0 be computable

structures with co-infinite domains, each consisting of one copy of [k] for each k ∈ ω.
If at each stage s + 1 we enumerate the coding location of the copy of [3as] in A0

0

into U0 then we will have ensured that U0 ≡m A. However, we also wish to make
U1 computable while guaranteeing that A0 ∼= A1 via an isomorphism that carries
U0 to U1. To describe how we can do this, we need two more definitions.

3.2.2 Definition. Let G be a computable structure in the language of directed
graphs whose domain is co-infinite. G consists of the disjoint union of a number of
connected components, which from now on we will just call the components of G.

Suppose that G has components K and L isomorphic to [B] and [C], respectively,
where B,C ⊂ ω are finite. We define the operation K · L, which takes G to a new
computable structure extending G, as follows. Extend K to be a copy of [B ∪ C]
using numbers not in the domain of G. Leave every other component of G (including
L) unchanged.

We will also use the notation K ·L to denote the graph [B∪C]. It should always
be clear which meaning of K · L is being used.
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Given a finite sequence of operations, each of which can be applied to G, so that
no two operations in the sequence affect the same component of G, we can apply all
of the operations in the sequence simultaneously to G to get a structure extending
G. In this case we will say that we have applied the sequence of operations to G.

3.2.3 Definition. Let G be a computable structure in the language of directed
graphs whose domain is co-infinite and let X0, . . . , Xn be components of G such
that for each i 6 n, Xi is isomorphic to [Si] for some finite Si ⊂ ω. We define two
operations, each of which takes G to a new computable structure extending G.

• The L-operation L(X0, . . . , Xn) consists of applying the sequence of operations
X0 ·X1, X1 ·X2, . . . , Xn ·X0 to G.

• The R-operation R(X0, . . . , Xn) consists of applying the sequence of opera-
tions X0 ·Xn, X1 ·X0, . . . , Xn ·Xn−1 to G.

Note that if H is the structure obtained by applying L(X0, . . . , Xn) to G and H′
is the structure obtained by applying R(X0, . . . , Xn) to G then H ∼= H′.

We can now proceed as follows. At stage s+ 1, let X i
s, Y

i
s , and Zi

s be the copies
in Ais of [3as], [3as + 1], and [3as + 2], respectively. Perform L(Y 0

s , X
0
s , Z

0
s ) on A0

s to
get A0

s+1 and perform R(Y 1
s , X

1
s , Z

1
s ) on A1

s to get A1
s+1. (In order to ensure that A0

and A1 are computable, the new numbers added to their domains at this stage are
assumed to be greater than s.) Put the coding location of the old copy of [3as] in
A0
s+1 (that is, the copy that was already in A0

0) into U0 and put the coding location
of the new copy of [3as] in A1

s+1 into U1.
Figure 3.2 pictures what happens on either side of the construction. For each

i = 0, 1, the copy of [3as] whose coding location enters U i is underlined.
Now let A0 =

⋃
s∈ωA0

s and A1 =
⋃
s∈ωA1

s. It is easy to show, by induction
using the definition of the L- and R-operations, that for each s, A0

s
∼= A1

s via an
isomorphism that carries U0[s] to U1[s]. (Here U i[s] is the set of all numbers that
have entered U i by the end of stage s.) Furthermore, whenever a component of Ais
participates in an operation at stage s + 1, so does the isomorphic component of
A1−i
s . Since A0 and A1 have no infinite components, it follows that A0 ∼= A1 via an

isomorphism that carries U0 to U1.
Furthermore, it is still true that U0 ≡m A, since a number is in U0 if and only

if it is the coding location of the copy of [3a] in A0
0 for some a ∈ A. On the other

hand, any number put into U1 at a stage s + 1 is a new number, and is therefore
greater than s. Thus U1 is computable.

So we see that the above construction is enough to satisfy (3.2.1) and (3.2.2).
We now consider how to satisfy (3.2.3). Let us begin by attempting to satisfy this
property for a particular computable structure G. That is, we want to ensure that
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[3as + 1]

��

[3as]

��

[3as + 2]

��
[3as + 1] · [3as] [3as] · [3as + 2] [3as + 2] · [3as + 1]

[3as + 1]

��

[3as]

��

[3as + 2]

��
[3as + 1] · [3as + 2] [3as] · [3as + 1] [3as + 2] · [3as]

Figure 3.2: The basic coding strategy (top: A0 / bottom: A1)

if G ∼= A0 then the image of U0 in G is either computable or m-equivalent to A.
The way in which we do this is based on the following observation.

Let U be the image of U0 in G and let G[s] denote the stage s approximation to
G. Assume that for all s ∈ ω, A0

s, A1
s, and G[s] have no non-trivial automorphisms.

Suppose that at some stage s, A0
s has components X0

s , Y 0
s , Z0

s , and S0
s , A1

s

has isomorphic components X1
s , Y 1

s , Z1
s , and S1

s , respectively, and G[s] has iso-
morphic components Xs, Ys, Zs, and Ss, respectively. Now suppose we perform
L(Y 0

s , X
0
s , Z

0
s , S

0
s ) on A0

s to get A0
s+1 and perform R(Y 1

s , X
1
s , Z

1
s , S

1
s ) on A1

s to get
A1
s+1. Then A0

s+1 has components isomorphic to S0
s · Y 0

s , Y 0
s · X0

s , X0
s · Z0

s , and
Z0
s · S0

s , and these are the only components of A0
s+1 that contain copies of X0

s , Y 0
s ,

Z0
s , or S0

s . So if Xs, Ys, Zs, and Ss do not grow into isomorphic copies of the afore-
mentioned components of A0

s+1 then we can win immediately by not involving these
components in any further operations, thus guaranteeing that G � A0.

So if G ∼= A0 then there are only two possibilities. The first is that Ss grows into
a copy of Ss · Ys, Ys grows into a copy of Ys ·Xs, Xs grows into a copy of Xs · Zs,
and Zs grows into a copy of Zs · Ss. In this case we will say that G “goes to the
left”. The other possibility is that Ys grows into a copy of Ss · Ys, Ss grows into a
copy of Zs ·Ss, Zs grows into a copy of Xs ·Zs, and Xs grows into a copy of Ys ·Xs.
In this case we will say that G “goes to the right”.

Now, if the coding location of X0
s is put into U0 and the coding location of the

new copy of X1
s is put into U1 then the coding location of the copy of Xs that is

part of the component isomorphic to Xs · Zs is in U . In other words, if G goes to
the left then the coding location of Xs in G[s] is in U , while if G goes to the right
then the coding location of the copy of Xs in G −G[s] is in U . It is easy to conclude
from this that if G goes to the left at all but finitely many stages then U ≡m A,
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while if G goes to the right at all but finitely many stages then U is computable.
So it is enough to ensure that G either almost always goes to the left or almost

always goes to the right. This can be done by always using the same component of
G, which we will call the special component of G, as Ss.

That is, we first pick some component of G to be its special component. Say we
pick the one that extends the first copy of [0] to appear in G. (Let us assume that
0 /∈ A.) At stage 0, we define Ai0 as above and wait until a copy of [0] is enumerated
into G. We also define r0 to be 0. The value of rs will code whether G goes to the
left or to the right at stage s.

At stage s + 1, we let X i
s, Y

i
s , and Zi

s be the copies in Ais of [3as], [3as + 1],
and [3as + 2], respectively, and let Sis be the isomorphic copy in Ais of the special
component Ss of G[s]. We wait until copies of X i

s, Y
i
s , and Zi

s are enumerated into
G[s] and then perform the same operations as before. We then wait until copies
of Ss · Ys, Ys · Xs, Xs · Zs, and Zs · Ss are enumerated into G. Either the copy of
Ss · Ys or that of Zs · Ss will extend Ss. Whichever one it is now becomes Ss+1. If
Ss+1

∼= Ss · Ys then rs+1 = 0; otherwise rs+1 = 1.
The above construction ensures that if G ∼= A0 then the special component of G

is infinite. On the other hand, it is not hard to check that it also guarantees that
if G changes direction infinitely often (that is, if rs does not have a limit) then no
component of A0 is infinite, so that G � A0.

However, there are two problems with this construction. First of all, it is easy to
check that if G almost always goes to the left then no component of A1 is infinite,
while if G almost always goes to the right then no component of A0 is infinite. In
either case, (3.2.1) no longer holds.

We solve this by re-using components in operations. The idea is roughly as
follows. Instead of using four components in our operations, we use six. That is,
at stage s + 1, in addition to the components mentioned above, we pick two other
components B0

s and C0
s of A0

s and isomorphic components B1
s and C1

s of A1
s, perform

L(Y 0
s , X

0
s , Z

0
s , B

0
s , S

0
s , C

0
s ) on A0

s to get A0
s+1, and perform R(Y 1

s , X
1
s , Z

1
s , B

1
s , S

1
s , C

1
s )

on A1
s to get A1

s+1. (In order to accommodate the extra components, X i
s will be the

copy of [6as] in Ais. A similar change will be made for the other components.)
As long as G is going in the same direction, we designate every other stage as

an isomorphism recovery stage. At such a stage s + 1, if rs = 0 then we let C0
s be

the component of A0
s that extends B0

s−1 and let C1
s be the isomorphic component

of A1
s. On the other hand, if rs = 1 then we let B1

s be the component of A1
s that

extends C1
s−1 and let B0

s be the isomorphic component of A0
s. Whenever G changes

direction, we restart this isomorphism recovery process.
It is straightforward to check that this strategy guarantees that if rs has a limit

then the copies of the special component of G in A0 and A1 are isomorphic, while
still ensuring that if rs does not have a limit then no component of A0 or A1 is
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infinite. We will give an example below to illustrate isomorphism recovery.
Another problem that we must face in the full construction is that, in general,

we can not know in advance whether a given computable structure G is isomorphic
to A0. So it is not possible to wait at each stage until the appropriate components
are enumerated into G. To get around this, we introduce the notion of a recovery
stage.

At stage s + 1, where we would have waited for G to provide components Ys,
Xs, Zs, Bs, and Cs, we now simply do not involve copies of the special component
of G in our operations unless these components are provided. (That is, if these
components are not in G[s] then we perform L(Y 0

s , X
0
s , Z

0
s ) on A0

s to get A0
s+1 and

perform R(Y 1
s , X

1
s , Z

1
s ) on A1

s to get A1
s+1.) Furthermore, where we would have

waited for Ys, Xs, Zs, Bs, Ss, and Cs to grow into copies of Ys ·Xs, Xs ·Zs, Zs ·Bs,
Bs ·Ss, Ss ·Cs, and Cs · Ys, we now just declare that we are waiting for these copies
to appear in G.

A recovery stage is then a stage s+ 1 such that

1. G[s] contains copies of all the components for which we are currently waiting
and

2. for each j /∈ A[s] that is less than or equal to the number of recovery stages
before stage s + 1, G[s] contains components that can be used as Yt, Xt, Zt,
Bt, and Ct if at = j for some t > s.

(These conditions will be made more precise in the full construction, which will be
presented shortly.)

Now suppose that G ∼= A0. Say that G is active at a given stage if isomorphic
copies of its special component participate in the operations performed at that stage.
We want there to be infinitely many recovery stages. This will happen as long as
there is a bound on how often G can be active while waiting for recovery.

Let P be the set of all j ∈ ω that do not enter A before the jth recovery stage.
Let M be the set of all coding locations of copies of [6j], j ∈ P , in G and let N
be the set of all coding locations of copies of [6j], j /∈ P , in G. By the definition
of recovery stage, G will be active at each stage s + 1 such that as ∈ P . We make
it a rule that G is not active at any other stage. This clearly provides the desired
bound on the number of times G can be active while waiting for recovery.

Arguing as before, we conclude that if G almost always goes to the left then
U ∩M ≡m A, while if G almost always goes to the right then U ∩M is computable.
But P , N , and U ∩N are computable, since if we wait until the jth recovery stage
then we can tell whether j ∈ P , and if j /∈ P then j ∈ A. So if G almost always
goes to the left then U ≡m A, while if G almost always goes to the right then U is
computable. Thus (3.2.3) is satisfied for this G.
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We remark that the modification to the construction that we have just described
makes the definition of isomorphism recovery stage a little more complicated, in that
we will not want a stage to be an isomorphism recovery stage unless it is a first stage,
that is, the first stage at which G is active after a recovery stage. We will discuss
this further below.

Before proceeding, let us look at two examples. The first one illustrates what
happens when G recovers. Suppose that s < t < u < v are such that s+ 1 is a first
stage, rs+1 = 0, v + 1 is the next recovery stage after stage s + 1, and t + 1 and
u+ 1 are the only two stages between stages s+ 1 and v + 1 at which G is active.

Figure 3.3 pictures what happens on the A0 side of the construction. From now
on, we will use the notation Ri

s in place of Sis, since this is the notation that we
will adopt in the full construction. This change is made because Ri

w might not be
isomorphic to the special component of G[w] if w + 1 is not a recovery stage.

Y 0
s

��

X0
s

��

Z0
s

��

B0
s

��

R0
s

��

C0
s

��
Y 0
s ·X0

s X0
s · Z0

s Z0
s ·B0

s B0
s ·R0

s C0
s · Y 0

s

Y 0
t

��

X0
t

��

Z0
t

��

B0
t

��

R0
s · C0

s

��

C0
t

��
Y 0
t ·X0

t X0
t · Z0

t Z0
t ·B0

t B0
t ·R0

s · C0
s C0

t · Y 0
t

Y 0
u

��

X0
u

��

Z0
u

��

B0
u

��

R0
s · C0

s · C0
t

��

C0
u

��
Y 0
u ·X0

u X0
u · Z0

u Z0
u ·B0

u B0
u ·R0

s · C0
s · C0

t R0
s · C0

s · C0
t · C0

u C0
u · Y 0

u

Figure 3.3: Recovery

Note that, by the definition of recovery stage, the special component of G[s] is
isomorphic to R0

s and, for each w = s, t, u, G[s] has components Yw, Xw, Zw, Bw,
and Cw isomorphic to Y 0

w , X0
w, Z0

w, B0
w, and C0

w, respectively.
Since G recovers at stage v + 1, there are two possibilities. The first one is

that the special component of G[v] is isomorphic to one of B0
s · R0

s, B
0
t · R0

s · C0
s , or

B0
u ·R0

s · C0
s · C0

t . In this case, rv+1 = 1.



35

The second possibility is that the special component of G[v] is isomorphic to
R0
s · C0

s · C0
t · C0

u. In this case, the component of G[v] that extends Cu must be the
one isomorphic to C0

u · Y 0
u . From this it follow that the component of G[v] that

extends Yu must be the one isomorphic to Y 0
u ·X0

u. Proceeding in this fashion, we
see that for each w = s, t, u, the component of G[v] that extends Xw is the one
isomorphic to X0

w · Z0
w.

Notice that in the previous argument it is crucial that no component of A0

other than the one that extends R0
s participates in operations more than once in

the interval (s, v]. This is the reason for requiring that isomorphism recovery happen
only at first stages.

Our second example illustrates isomorphism recovery. Suppose that s < t < u <
v < w are such that s+1 and v+1 are first stages, t+1 and u+1 are the only stages
between s+1 and v+1 at which G is active, and w+1 is the first stage after stage v+1
at which G is active. Suppose further that rs+1 = rt+1 = ru+1 = rv+1 = rw+1 = 0.

Figure 3.4 pictures what happens on either side of the construction. The key
point to notice here is that if R0

t
∼= R1

t then R0
w extends R0

t , R
1
w extends R1

t , and
R0
w
∼= R1

w. This pattern would allow us to prove by induction that if rs has a limit
then each Ai has a unique infinite component Si and S0 ∼= S1.

In the full construction, we will of course need to satisfy (3.2.3) for every com-
putable directed graph. Let G0,G1, . . . be a standard enumeration of all partial
computable directed graphs. In our construction, we will define the concepts of
n-recovery stage, n-isomorphism recovery stage, and so forth.

We will be able to satisfy (3.2.3) for each Gn independently. We first need some
notation to allow us to distinguish the components that are used to satisfy (3.2.3)
for a particular Gn.

3.2.4 Definition. Let G be a directed graph. We denote by (G)n the subgraph of G
consisting of those components C of G that satisfy both of the following conditions.

1. C is not isomorphic to [x] for any x ∈ ω.

2. C contains either a copy of [6n + 3] or a copy of [6〈n, j〉 + l] for some j ∈ ω,
l ∈ {1, 2, 4, 5}.

The idea is that the components of (Ai)n are the ones used in the construction
to satisfy (3.2.3) for Gn, and that (Ais)n is the subgraph of Ais consisting of all such
components that have participated in operations before stage s+ 1.

We also need new L- and R-operations in order to involve components of (Ai)n
for different n’s in operations at the same stage.

3.2.5 Definition. Let G be a computable structure in the language of directed
graphs whose domain is co-infinite. Let K0, K1, . . . , Kn and L be components of
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Figure 3.4: Isomorphism recovery (top: A0 / bottom: A1)
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G isomorphic to [y0], [y1], . . . , [yn] and [x], respectively, where y0, y1, . . . , yn, x ∈ ω.
We define two operations, each of which takes G to a new computable structure
extending G.

• The operation (K0, K1, . . . , Kn) ·L consists of performing the following steps,
and otherwise leaving G unchanged. Create a new copy of [x] using numbers
not in the domain of G. For each i 6 n, add an edge from the top of this new
copy of [x] to the top of Ki.

• The operation L · (K0, K1, . . . , Kn) consists of performing the following steps,
and otherwise leaving G unchanged. For each i 6 n, create a new copy of [yi]
using numbers not in the domain of G. For each i 6 n, add an edge from the
top of L to the top of the new copy of [yi].

For example, suppose that L, K0, and K1 are copies of [2], [3], and [4], respec-
tively. Then the operation (K0, K1) · L consists of extending K0 ∪K1 to a copy of
the graph shown in Figure 3.5, while the operation L ·(K0, K1) consists of extending
L to a copy of that same graph.

•�� ��top // //

�� ��

����

• // //• // //• coding location// //•hhhh

•OOOOtop // //• // //• // //• // //• coding location// //•jjjj

•?? ??
top

// //• // //• // //• // //• // //• coding location// //•kkkk

Figure 3.5: The result of either of the operations ([3], [4]) · [2] or [2] · ([3], [4])

3.2.6 Definition. Let G be a computable structure in the language of directed
graphs whose domain is co-infinite. We say that a component C of G is a set
component if it is isomorphic to [T ] for some finite T ⊂ ω. If T is a singleton then
we say that C is a singleton component.

Let Y0, . . . , Yn, X, Z0, . . . , Zn, B0, . . . , Bn, S0, . . . , Sn, and C0, . . . , Cn be compo-
nents of G such that for each i 6 n, X, Yi, and Zi are singleton components and
Bi, Si, and Ci are set components. We define two operations, each of which takes
G to a new computable structure extending G.
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• The L-operation

L(Y0, . . . , Yn;X;Z0, . . . , Zn;B0, S0, C0; . . . ;Bn, Sn, Cn)

consists of applying the following sequence of operations to G.

(Y0, . . . , Yn) ·X, X · (Z0, . . . , Zn), Z0 ·B0, . . . , Zn ·Bn,

B0 · S0, . . . , Bn · Sn, S0 · C0, . . . , Sn · Cn, C0 · Y0, . . . , Cn · Yn

• The R-operation

R(Y0, . . . , Yn;X;Z0, . . . , Zn;B0, S0, C0; . . . ;Bn, Sn, Cn)

consists of applying the following sequence of operations to G.

Y0 · C0, . . . , Yn · Cn, C0 · S0, . . . , Cn · Sn, S0 ·B0, . . . , Sn ·Bn,

B0 · Z0, . . . , Bn · Zn, (Z0, . . . , Zn) ·X, X · (Y0, . . . , Yn)

Note that if H is the structure obtained by applying

L(Y0, . . . , Yn;X;Z0, . . . , Zn;B0, S0, C0; . . . ;Bn, Sn, Cn)

to G and H′ is the structure obtained by applying

R(Y0, . . . , Yn;X;Z0, . . . , Zn;B0, S0, C0; . . . ;Bn, Sn, Cn)

to G then H ∼= H′.

We now proceed with the construction of A0, A1, U0, and U1. For each i = 0, 1,
we first define a computable structure Ai0. At each stage s + 1, we perform an
operation on Ais to get Ais+1 ⊃ Ais and add an element of the domain of Ais+1 to
U i. We then let Ai =

⋃
s∈ωAis. In order to guarantee that Ai is computable, we

make it a convention that all numbers added to the domain of Ais at stage s+ 1 to
get Ais+1 are greater than s.

Let t > s. We say that a component L of Ait or Ai (resp. Gn[t] or Gn) extends a
component K of Ais (Gn[s]) if the domain of K is contained in the domain of L, and
that L properly extends K if this containment is proper. (Note that “L extends K”
means more than just that K can be embedded in L, though it of course implies
the latter.) If L extends K but not properly then we say that L is a component of
Ais (Gn[s]).

It will be the case that if K and L are distinct components of A0
s and K is not a

copy of [6k+1] or [6k+2] for any k ∈ ω then K and L are not extended by the same
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component of A0. Thus, since we are not interested in Gn unless it is isomorphic to
A0, we may assume without loss of generality that, for each n, s ∈ ω, there is an
embedding of Gn[s] into A0

s such that if K and L are distinct components of Gn[s]
and K is not a copy of [6k+ 1] or [6k+ 2] for any k ∈ ω then K and L are mapped
into distinct components of A0

s.
Suppose there is a least stage s such that Gn[s] has a component K isomorphic

to [6n+ 3] and let t > s. We call the component of Gn[t] (resp. Gn) that extends K
the special component of Gn[t] (Gn).

It will be easy to check as we go along that the following are properties of the
construction.

1. For each s ∈ ω, A0
s
∼= A1

s and no component of Ais is embeddable in another
component of Ais.

2. Let t < s. No component of Ait isomorphic to one of [6as] or [6〈n, as〉 + l],
l ∈ {1, 2, 4, 5}, n ∈ ω, participates in an operation at stage t+ 1.

stage 0. Let A0
0 and A1

0 be computable structures with co-infinite domains, each
consisting of one copy of [k] for each k ∈ ω. For each n ∈ ω, let rn,0 = 0.

stage s + 1. For each n < s + 1, say that s + 1 is an n-recovery stage if all of the
following conditions hold.

1. Gn[s] has a special component isomorphic to some component of A0
s.

2. (Gn[s])n ∼= (A0
s)n.

3. Let j /∈ A[s] be less than or equal to the number of n-recovery stages before
stage s + 1. There is a component of Gn[s] isomorphic to [6j] and for each
l ∈ {1, 2, 4, 5} there is a component of Gn[s] isomorphic to [6〈n, j〉+ l].

If s+ 1 is an n-recovery stage then, for i = 0, 1, let Sin,s be the component of Ais
that is isomorphic to the special component of Gn[s]. If s+ 1 is the first n-recovery
stage then let rn,s+1 = 0. Otherwise, proceed as follows. Let i = rn,s and let t+1 be
the last n-recovery stage before stage s+ 1. If Sin,s extends Sin,t then let rn,s+1 = i,
and otherwise let rn,s+1 = 1− i.

If s+ 1 is not an n-recovery stage then let rn,s+1 = rn,s.
Now let n0, n1, . . . , nm be all the numbers nj such that as is less than the number

of nj-recovery stages less than or equal to s+1. We say that each nj, j 6 m, is active
at stage s + 1. For i = 0, 1 and j 6 m, let X i

s, Y
i
nj ,s

, and Zi
nj ,s

be the components

of Ais isomorphic to [6as], [6〈nj, as〉+ 1], and [6〈nj, as〉+ 2], respectively.
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For each j 6 m, let tj + 1 6 s + 1 be the last nj-recovery stage. We say that
s+ 1 is an nj-first stage if it is the first stage after stage tj at which nj is active.

We say that s+ 1 is an nj-change stage if it is an nj-first stage and either tj + 1
was the first nj-recovery stage or rnj ,tj+1 6= rnj ,tj .

We say that s + 1 is an nj-isomorphism recovery stage if it is an nj-first stage
but not an nj-change stage and one of the following conditions holds.

1. The last nj-first stage before stage s+ 1 was an nj-change stage.

2. There has been at least one stage at which nj was active after the last nj-
isomorphism recovery stage and before stage s+ 1.

For each j 6 m we define components Bi
nj ,s

and Ci
nj ,s

, i = 0, 1. There are two
cases.

1. s+1 is an nj-isomorphism recovery stage. If the first condition in the definition
of nj-isomorphism recovery stage holds then let t+1 be the last nj-first stage,
and otherwise let t+1 be the first stage after the last nj-isomorphism recovery
stage at which nj was active. There are two subcases.

(a) If rnj ,s+1 = 0 then let C0
nj ,s

be the component of A0
s that extends B0

nj ,t

and let C1
nj ,s

be its isomorphic image in A1
s. For i = 0, 1, let Bi

nj ,s
be the

component of Ais isomorphic to [6〈nj, as〉+ 4].

(b) If rnj ,s+1 = 1 then let B1
nj ,s

be the component of A1
s that extends C1

nj ,t

and let B0
nj ,s

be its isomorphic image in A0
s. For i = 0, 1, let Ci

nj ,s
be the

component of Ais isomorphic to [6〈nj, as〉+ 5].

2. s + 1 is not an nj-isomorphism recovery stage. For i = 0, 1, let Bi
nj ,s

be the

component of Ais isomorphic to [6〈nj, as〉+ 4] and let Ci
nj ,s

be the component

of Ais isomorphic to [6〈nj, as〉+ 5].

For each j 6 m, proceed as follows. Let i = rnj ,s+1 and let t+ 1 6 s+ 1 be the
last nj-recovery stage. Let Ri

nj ,s
be the component of Ais that extends Sinj ,t and let

R1−i
nj ,s

be its isomorphic image in A1−i
s .

Now perform

L(Y 0
n0,s

, . . . , Y 0
nm,s;X

0
s ;Z0

n0,s
, . . . , Z0

nm,s;B
0
n0,s

, R0
n0,s

, C0
n0,s

;

B0
n1,s

, R0
n1,s

, C0
n1,s

; . . . ;B0
nm,s, R

0
nm,s, C

0
nm,s)

on A0
s to get A0

s+1 and perform

R(Y 1
n0,s

, . . . , Y 1
nm,s;X

1
s ;Z1

n0,s
, . . . , Z1

nm,s;B
1
n0,s

, R1
n0,s

, C1
n0,s

;

B1
n1,s

, R1
n1,s

, C1
n1,s

; . . . ;B1
nm,s, R

1
nm,s, C

1
nm,s)
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on A1
s to get A1

s+1. (If no n is active at stage s+ 1 then, for j = 0, 1, let Y j
s and Zj

s

be the components of Ajs isomorphic to [6〈0, as〉+ 1] and [6〈0, as〉+ 2], respectively.
Perform L(Y 0

s , X
0
s , Z

0
s ) on A0

s to get A0
s+1 and perform R(Y 1

s , X
1
s , Z

1
s ) on A1

s to get
A1
s+1.)

Put the coding location of the copy of [6as] in A0
0 into U0 and put the coding

location of the copy of [6as] in A1
s+1 −A1

s into U1.

This completes the construction. Let A0 =
⋃
s∈ωA0

s and A1 =
⋃
s∈ωA1

s. Since
for each s ∈ ω and i = 0, 1, all numbers in Ais+1−Ais are greater than s, A0 and A1

are computable. We now wish to argue that properties (3.2.1)–(3.2.3) are satisfied.
Theorem 3.1.3 will then follow immediately.

Property (3.2.2) is easy to establish, so we deal with it first.

3.2.7 Lemma. U0 ≡m A and U1 is computable.

Proof. The numbers in U0 are all coding locations of components of A0
0 of the form

[6j], j ∈ ω, and the coding location of the copy of [6j] in A0
0 is in U0 if and only

if j ∈ A. Since given any number we can computably determine whether it is a
coding location in A0

0 and if so, for what [k], this means that U0 ≡m A.
Any number put into U1 at a stage s + 1 is a new number, i.e., one not in the

domain of A1
s, and hence is greater than s. Thus U1 is computable.

In showing that (3.2.1) and (3.2.3) are satisfied, we will need a few facts about the
construction. The more obvious ones are given without proof, while the remaining
ones are broken down into easily checked properties of the construction. Figures 3.3
and 3.4 should be helpful here.

We say that a component of Ai participates in an operation at stage s + 1 if it
extends a component of Ais that participates in an operation at stage s+ 1.

3.2.8 Lemma. Let G ∼= A0 be computable. Given x in the domain of G, we can
computably determine if x is the coding location of a copy of some [k], k ∈ ω, and
if so, for what k. In particular, the set of coding locations of copies of [6j], j ∈ ω,
in G is computable.

3.2.9 Lemma. Let K and L be distinct components of Ais such that K is not a
copy of [6k + 1] or [6k + 2] for any k ∈ ω. K and L are not extended by the same
component of Ai.

Lemma 3.2.9 will be used without explicit mention several times below.

3.2.10 Lemma. A component of Ai is infinite if and only if it participates in
operations infinitely often.



42

3.2.11 Lemma. Let k, n ∈ ω. Any component of Ai containing a copy of [6k],
[6〈n, k〉 + 1], or [6〈n, k〉 + 2] can participate in an operation at most once. Any
component of Ai containing a copy of [6n + 3], [6〈n, k〉 + 4], or [6〈n, k〉 + 5] can
participate in operations only at stages at which n is active.

3.2.12 Lemma. Suppose that rn,s = i 6= rn,s+1. Of all the components of (Ai)n
that participate in operations at stages before stage s + 1, the only one that can
participate in an operation after stage s is the one that extends Sin,s.

Proof. Suppose that a component of (Ai)n participates in operations at stages t < u
and does not participate in an operation at any stage in (t, u), and let v be the last
n-first stage before stage u. It is not hard to check that it must then be the case
that t > v.

Now let t be the first stage after stage s at which n is active. Then t is an n-
change stage, and hence not an n-isomorphism recovery stage. It follows that, of all
the components of (Ai)n that participate in operations at stages before stage s+ 1,
the only one that participates in an operation at stage t is the one that extends
Sin,s. The lemma now follows by induction, using the fact mentioned in the previous
paragraph.

3.2.13 Lemma. For each s ∈ ω, A0
s
∼= A1

s and no component of Ais is embeddable
in another component of Ais. Furthermore, if a component of Ais participates in an
operation at stage s+ 1 then so does the (unique) isomorphic component of A1−i

s .

3.2.14 Lemma. Suppose that rn,s = i for all s > t and n is active at stages s0 + 1
and s1 + 1, where s1 > s0 > t. Then Ri

n,s1
extends Ri

n,s0
.

3.2.15 Lemma. Let s + 1 be an n-recovery stage that is not the first such stage.
Let t+ 1 be the last n-recovery stage before stage s+ 1. If rn,s = 0 6= rn,s+1 then S0

n,s

extends B0
n,u for some u ∈ [t, s). Similarly, if rn,s = 1 6= rn,s+1 then S1

n,s extends
C1
n,u for some u ∈ [t, s).

Proof. The two cases, i = 0 and i = 1, are similar. We do the case i = 0.
Since S0

n,s contains a copy of S0
n,t and rn,t+1 = rn,s = 0, either S0

n,s extends S0
n,t

or S0
n,s extends B0

n,u for some u such that t 6 u < s. But it cannot be the case that
S0
n,s extends S0

n,t, since that would imply that rn,s+1 = 0.

3.2.16 Lemma. Suppose that rn,t = 0 (resp. rn,t = 1) for all t > s0. Then no
component of (A0)n ((A1)n) can participate in an operation more than twice after
stage s0 unless it extends R0

n,t (R1
n,t) for some t > s0, while no component of (A1)n

((A0)n) can participate in an operation more than twice after stage s0 unless it
extends C1

n,t (B0
n,t) for some t > s0 such that t + 1 is an n-isomorphism recovery

stage.
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Proof. The two cases, i = 0 and i = 1, are similar. We do the case i = 0.
Suppose that component K of (A0)n participates in operations at stages s+1 <

t + 1 < u + 1, where s + 1 > s0, but not at any stage in (t + 1, u + 1). Then
either K extends R0

n,u or u + 1 is an n-isomorphism recovery stage and K extends
C0
n,u. We claim that the latter case cannot hold. Indeed, if K extends C0

n,u then K
extends B0

n,t. But since rn,t+1 = 0, B0
n,t is a singleton component. Thus K does not

participate in an operation at stage s+ 1, contrary to hypothesis.
Now suppose that component L of (A1)n participates in operations at stages

s+ 1 < t+ 1 < u+ 1, where s+ 1 > s0, but not at any stage in (t+ 1, u+ 1). Then
either L extends R1

n,t or t+1 is an n-isomorphism recovery stage and L extends C1
n,t.

But in the former case, u + 1 is an n-isomorphism recovery stage and L extends
C1
n,u.

3.2.17 Lemma. Suppose that s < t < v are such that s + 1 is an n-isomorphism
recovery stage, rn,u = rn,s+1 for all u > s, t+ 1 is the next stage after stage s+ 1 at
which n is active, and v+1 is the next n-isomorphism recovery stage after stage s+1.
For i = 0, 1, let Bi, Ri, and Ci be the components of Ait+1 that extend Bi

n,t, R
i
n,t,

and Ci
n,t, respectively, and let B̂i, R̂i, and Ĉi be the components of Aiv that extend

Bi, Ri, and Ci, respectively. If rn,s+1 = 0 then B̂0 ∼= B0 and R̂1 ∼= R1, while if

rn,s+1 = 1 then Ĉ1 ∼= C1 and R̂0 ∼= R0.

Proof. The two cases, i = 0 and i = 1, are similar. We do the case i = 0. It is
enough to show that the components of (A0)n and (A1)n that extend B0 and R1,
respectively, do not participate in operations at any stage in (t+ 1, v + 1).

Suppose that component K of (A0)n participates in operations at stages t + 1
and u + 1, where t < u < v. Since no stage in (t + 1, v + 1) is an n-isomorphism
recovery stage, K extends R0

n,u, which in turn extends R0
n,t. Thus K does not extend

B0.
Now suppose that component L of (A1)n participates in operations at stages t+1

and u + 1, where t < u < v. Again, no stage in (t + 1, v + 1) is an n-isomorphism
recovery stage, so L extends R1

n,u, which in turn extends C1
n,t. Thus L does not

extend R1.

3.2.18 Lemma. Let x be the coding location of a copy of [6as] in component K of
Ai. Either K contains a copy of [6〈n, as〉+1] for some n ∈ ω, in which case x /∈ U i,
or K contains a copy of [6〈n, as〉+ 2] for some n ∈ ω, in which case x ∈ U i.

We now wish to show that (3.2.1) holds. It follows from Lemmas 3.2.10, 3.2.13,
and 3.2.18 that it is enough to show that for each infinite component of Ai there
is an isomorphic component of A1−i. The first step in establishing this result is
characterizing the infinite components of Ai.
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3.2.19 Lemma. If rn,s does not have a limit then no component of (Ai)n is infinite.

Proof. Suppose that rn,s = 0 6= rn,s+1 and let t+1 be the last n-recovery stage before
stage s+1. By Lemma 3.2.12, of all the components of (A0)n that have participated
in operations at stages before stage s + 1, the only one that can participate in an
operation after stage s is the component L that extends S0

n,s. By Lemma 3.2.15,
L extends B0

n,u for some u ∈ [t, s). But the fact that rn,t+1 = 0 means that for
all u ∈ [t, s), B0

n,u is a singleton component, and hence did not participate in an
operation at any stage before stage t+ 1.

Thus, no component of (A0)n that participates in an operation before stage t+1
can do so again after stage s. A similar argument shows that if rn,s = 1 6= rn,s+1

and t+ 1 is the last n-recovery stage before stage s+ 1 then no component of (A1)n
that participates in an operation before stage t+ 1 can do so again after stage s.

The lemma now follows from Lemma 3.2.10.

Thus, the only components of Ai that can be infinite are those components that
are in (Ai)n for some n such that rn,s has a limit and n is active infinitely often.
So, by the comments preceding Lemma 3.2.19, to establish that (3.2.1) holds, it is
enough to show that if rn,s has a limit and n is active infinitely often then, for each
i = 0, 1, there is exactly one infinite component Sin of (Ai)n and S0

n
∼= S1

n. This is
what we do in the next few lemmas.

3.2.20 Lemma. There are infinitely many n-recovery stages if and only if n is
active infinitely often.

Proof. By definition, n is active at a stage s + 1 if and only if as is less than the
number of n-recovery stages less than or equal to s + 1. Thus, if there are finitely
many n-recovery stages then n cannot be active infinitely often.

For the other direction, suppose that there are infinitely many n-recovery stages
but only finitely many stages at which n is active. Let s be the last stage at which
n is active. Now given x ∈ ω, let t+ 1 be the first stage after stage s by which there
have been x + 1 many n-recovery stages. Then x ∈ A⇔ x ∈ A[t]. But this means
that A is computable, contrary to hypothesis.

3.2.21 Lemma. If n is active infinitely often and rn,s has a limit then there are
infinitely many n-isomorphism recovery stages.

Proof. If n is active infinitely often then, by Lemma 3.2.20, there are infinitely many
n-recovery stages, and thus infinitely many n-first stages. The fact that rn,s has a
limit implies that only finitely many of these can be n-change stages. The lemma
now follows directly from the definition of n-isomorphism recovery stage.
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3.2.22 Lemma. Suppose that n is active infinitely often and s and i are such
that rn,t = rn,s = i for all t > s. By Lemma 3.2.21, there are infinitely many
n-isomorphism recovery stages. Let s0 + 1 < s1 + 1 < · · · be the n-isomorphism
recovery stages after stage s. For each j ∈ ω, let tj + 1 be the next stage after stage
sj + 1 at which n is active. (Note that tj < sj+1 for all j ∈ ω.) For t > t0, let K l

t

be the component of Alt that extends Rl
n,t0

. Then K l
tj

= Rl
n,tj

for all j ∈ ω.

Proof. The two cases, i = 0 and i = 1, are similar. We do the case i = 0.
That K0

tj
= R0

n,tj
for all j ∈ ω follows from Lemma 3.2.14.

Now assume by induction that K1
tj

= R1
tj

. Let B be the component of A0
tj+1

that extends B0
n,tj

. By construction, B ∼= K1
tj+1. Since sj+1 +1 is an n-isomorphism

recovery stage, C0
sj+1

extends B. Thus, by Lemma 3.2.17, C0
sj+1

∼= B. By the

same lemma, K1
sj+1

∼= K1
tj+1. So C0

sj+1

∼= K1
sj+1

, and thus C1
sj+1

= K1
sj+1

. Let R

be the component of A0
sj+1+1 that extends R0

n,sj+1
. Then R ∼= K1

sj+1+1. But, by

Lemma 3.2.11, R0
n,tj+1

∼= R and K1
tj+1

∼= K1
sj+1+1. So K1

tj+1

∼= R0
n,tj+1

, and thus

K1
tj+1

= R1
n,tj+1

.

For the next two lemmas, we assume the hypotheses of Lemma 3.2.22 and adopt
its notation. Let Sln be the component of Al that extends Rl

n,s0
.

3.2.23 Lemma. Sln is the only infinite component of (Al)n.

Proof. This follows immediately from Lemmas 3.2.10, 3.2.16, and 3.2.22 and the
observation that, for all j ∈ ω, if i = 0 in the hypotheses of Lemma 3.2.22 then
R1
n,tj

extends C1
n,sj

, while if i = 1 then R0
n,tj

extends B0
n,sj

.

3.2.24 Lemma. S0
n
∼= S1

n.

Proof. Directly from Lemma 3.2.22, since, by definition, R0
n,tj
∼= R1

n,tj
for all j ∈ ω,

and Sin =
⋃
j∈ω R

i
n,tj

for i = 0, 1.

As we have argued above, Lemmas 3.2.23 and 3.2.24 suffice to establish that
(3.2.1) holds.

3.2.25 Lemma. A0 ∼= A1 via an isomorphism that carries U0 to U1.

We are left with showing that property (3.2.3) holds. This will break down into
three steps. Suppose that Gn ∼= A0 and let U be the image of U0 in Gn.

1. We show that rn,s reaches a limit rn.
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2. Let t be such that for all u > t, rn,u = rn. Let A′ be the set of all as such that
either s < t or the number of n-recovery stages less than or equal to s + 1 is
less than or equal to as. Let N be the set of all x ∈ Gn such that x is the
coding location of a copy of [6a], a ∈ A′. We show that A′, N , and U ∩N are
computable.

3. Let C be the set of coding locations of copies of graphs of the form [6j], j ∈ ω,
in Gn and let M = C −N . Note that M is computable. We show that

(a) if rn = 0 then an element x of M is in U if and only if, for some j ∈ A,
x is the coding location of the first copy of [6j] to appear in Gn, so that
U ∩M ≡m A, while

(b) if rn = 1 then an element x of M is in U if and only if, for some j ∈ ω, x
is the coding location of the second copy of [6j] to appear in Gn, so that
U ∩M is computable.

Since U = (U ∩N) ∪ (U ∩M), this is enough to establish that (3.2.3) holds.

3.2.26 Lemma. If Gn ∼= A0 then there are infinitely many n-recovery stages, and
hence the special component of Gn is infinite.

Proof. If Gn ∼= A0 then Gn has a special component. Now suppose that there are
only m many n-recovery stages. Let s0 be the last n-recovery stage. (If there
are no n-recovery stages then let s0 be the first stage at which Gn has a special
component.) By Lemma 3.2.20, there is a stage s1 > s0 such that n is not active
at any stage t > s1. If m = au for some u > s1 then let s = u + 1; otherwise, let
s = s1.

Consider the components of A0 that contain a copy of the special component of
Gn. By Lemma 3.2.11, each such component is finite. Thus, if the first condition in
the definition of n-recovery stage is not eventually satisfied after stage s then the
special component of Gn is not isomorphic to any component of A0.

Now consider (A0)n. Again by Lemma 3.2.11, (A0)n is finite. So if the second
condition in the definition of n-recovery stage is not eventually satisfied after stage s
then (Gn)n � (A0)n.

Finally, let j /∈ A[s], j 6 m, and l ∈ {1, 2, 4, 5} and consider the components
of A0 that contain a copy of [6〈n, j〉 + l]. By the choice of s, j /∈ A[s] ⇒ j /∈ A,
so there is only one such component and it is isomorphic to [6〈n, j〉+ l]. Similarly,
there is only one component that contains a copy of [6j] and it is isomorphic to [6j].

Thus, if the third condition in the definition of n-recovery stage is not eventually
satisfied after stage s then there is a component of A0 that is not isomorphic to any
component of Gn.
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In any case, Gn cannot be isomorphic to A0, contradicting the hypothesis of the
lemma. So there are infinitely many n-recovery stages.

Now, given any two n-recovery stages t + 1 < u + 1 such that there is a stage
in (t, u] at which n is active, the special component of Gn[u] properly extends the
special component of Gn[t] . But, by Lemma 3.2.20, n is active at infinitely many
stages. This establishes the second part of the lemma.

3.2.27 Lemma. If Gn ∼= A0 then rn = lims rn,s is well-defined.

Proof. This follows immediately from Lemmas 3.2.19 and 3.2.26.

3.2.28 Lemma. Suppose that Gn ∼= A0. Let U be the image of U0 under this
isomorphism. By Lemma 3.2.27, rn = lims rn,s is well-defined. Let t be such that
for all u > t, rn,u = rn. Let A′ be the set of all as such that either s < t or the
number of n-recovery stages less than or equal to s + 1 is less than or equal to as.
Let N be the set of all x ∈ Gn such that x is the coding location of a copy of [6a],
a ∈ A′. Then A′, N , and U ∩N are computable.

Proof. By Lemma 3.2.8, given x in the domain of Gn, we can computably determine
if x is the coding location of a copy of some [k], k ∈ ω, and if so, for what k.

By Lemma 3.2.26, there are infinitely many n-recovery stages, so the set of all
as such that the number of n-recovery stages less than or equal to s+ 1 is less than
or equal to as is computable. Thus A′ and N are computable.

Now, if x ∈ N then x is the coding location of a copy of [6as] for some s ∈ ω. Let
K be the component of Gn that contains x. By Lemma 3.2.18, K contains either a
copy of [6〈m, as〉 + 1] for some m ∈ ω or a copy of [6〈m, as〉 + 2] for some m ∈ ω,
but not both, and x ∈ U ∩N if and only if K contains a copy of [6〈m, as〉 + 2] for
some m ∈ ω. Thus U ∩N is computable.

3.2.29 Lemma. Suppose that s + 1 is an n-recovery stage, but not the first such
stage, and that rn,s+1 = rn,s = i. Let t + 1 be the last n-recovery stage before
stage s+ 1 and let s0 + 1 < s1 + 1 < · · · < sm + 1 be the stages in the interval (t, s]
at which n is active. For each k 6 m, let Yk, Xk, Zk, Bk, Rk and Ck be Y i

n,sk
, X i

sk
,

Zi
n,sk

, Bi
n,sk

, Ri
n,sk

, and Ci
n,sk

, respectively, and let Y ′k, X ′k, Z ′k, B′k, R
′
k and C ′k be

the components of Ais that extend Yk, Xk, Zk, Bk, Rk and Ck, respectively. Then
the following hold.

1. For every k 6 m, Yk, Xk, Zk, Bk, and Ck are components of Ait, and so is
R0. For every k, l 6 m, R′k = R′l.

2. There exists a component R̂0 of Gn[t] such that R̂0
∼= R0 and, for each k 6 m,

there exist components Ŷk, X̂k, Ẑk, B̂k, and Ĉk of Gn[t] such that Ŷk ∼= Yk,

X̂k
∼= Xk, Ẑk ∼= Zk, B̂k

∼= Bk, and Ĉk ∼= Ck.
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3. Let R̂′0 be the component of Gn[s] that extends R̂0 and, for each k 6 m, let

Ŷ ′k, X̂ ′k, Ẑ ′k, B̂′k, and Ĉ ′k be the components of Gn[s] that extend Ŷk, X̂k, Ẑk,

B̂k, and Ĉk, respectively. R̂′0
∼= R′0 and, for each k 6 m, Ŷ ′k

∼= Y ′k, X̂ ′k
∼= X ′k,

Ẑ ′k
∼= Z ′k, B̂

′
k
∼= B′k, and Ĉ ′k

∼= C ′k.

Proof. The first part of the lemma follows from the way Y i
n,sk

, X i
sk

, Zi
n,sk

, Bi
n,sk

,
Ri
n,sk

, and Ci
n,sk

are defined and Lemma 3.2.14. The second part of the lemma
follows from the definition of n-recovery stage. We prove the third part of the
lemma.

The two cases, i = 0 and i = 1, are similar. We do the case i = 0. Figure 3.3
might be helpful here.

By definition, R̂0 and R̂′0 are the special components of Gn[t] and Gn[s], respec-

tively. Thus, since rn,s+1 = rn,s = 0 and s+ 1 is an n-recovery stage, R̂′0
∼= R′0. We

now proceed by reverse induction, beginning with m.
It follows from the construction and the first part of the lemma that if K is

taken from among R̂′0, Ŷ ′k , X̂
′
k, Ẑ

′
k, B̂

′
k, and Ĉ ′k, k 6 m, and L 6= K is taken from

among R̂′0, Ŷ ′l , X̂
′
l , Ẑ

′
l , B̂

′
l, and Ĉ ′l , l 6 m, then K � L. Furthermore, if K is one of

Ŷ ′k , X̂
′
k, Ẑ

′
k, B̂

′
k, or Ĉ ′k, and L is a component of A0

s such that K ∼= L then L is one
of R′0, Y ′l , X

′
l , Z

′
l , B

′
l, or C ′l , l > k.

Thus, since we assume by induction that for all j > k, Ŷ ′j
∼= Y ′j , X̂

′
j
∼= X ′j,

Ẑ ′j
∼= Z ′j, B̂

′
j
∼= B′j, and Ĉ ′j

∼= C ′j, we may assume that if K is one of Ŷ ′k , X̂
′
k, Ẑ

′
k, B̂

′
k,

or Ĉ ′k and L is a component of A0
s such that K ∼= L then L is one of R′0, Y ′k , X

′
k,

Z ′k, B
′
k, or C ′k.

The only components among R′0, Y ′k , X
′
k, Z

′
k, B

′
k, or C ′k that contain copies of

Ĉk are R′0 and C ′k. Since R̂′0
∼= R′0, it must be the case that Ĉ ′k

∼= C ′k.
The only components among R′0, Y ′k , X

′
k, Z

′
k, B

′
k, or C ′k that contain copies of

Ŷk are C ′k and Y ′k . Since Ĉ ′k
∼= C ′k, it must be the case that Ŷ ′k

∼= Y ′k .
The only components among R′0, Y ′k , X

′
k, Z

′
k, B

′
k, or C ′k that contain copies of

X̂k are Y ′k and X ′k. Since Ŷ ′k
∼= Y ′k , it must be the case that X̂ ′k

∼= X ′k.
The only components among R′0, Y ′k , X

′
k, Z

′
k, B

′
k, or C ′k that contain copies of

Ẑk are X ′k and Z ′k. Since X̂ ′k
∼= X ′k, it must be the case that Ẑ ′k

∼= Z ′k.
The only components among R′0, Y ′k , X

′
k, Z

′
k, B

′
k, or C ′k that contain copies of

B̂k are Z ′k and B′k. Since Ẑ ′k
∼= Z ′k, it must be the case that B̂′k

∼= B′k.

3.2.30 Lemma. Suppose that s + 1 is an n-recovery stage such that rn,s+1 = rn,s.
Let t+ 1 be the last n-recovery stage before stage s+ 1 and let j ∈ A[s]−A[t] be less
than the number of n-recovery stages less than or equal to t + 1. By the definition
of n-recovery stage, there is a unique component K of Gn[t] isomorphic to [6j]. Let
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L be the component of Gn that extends K. Then L contains a copy of [6〈n, j〉 + 2]
if and only if rn,s+1 = 0.

Proof. Let i = rn,s+1. Let u be such that j = au. Since t + 1 6 u < s and j is
less than the number of n-recovery stages less than or equal to t+ 1, n is active at
stage u + 1. So, adopting the notation of Lemma 3.2.29, K = X̂k for some k. By
Lemma 3.2.11, L ∼= X̂ ′k. Thus, by Lemma 3.2.29, L ∼= X ′k. But X ′k is the component
of Ais that extends X i

u, so, by construction, X ′k contains a copy of [6〈n, j〉 + 2] if
and only if i = 0.

3.2.31 Lemma. Suppose that Gn ∼= A0. Let U be the image of U0 under this
isomorphism. Then either U is computable or U ≡m A.

Proof. Let N be as in Lemma 3.2.28. Let C be the set of coding locations of copies
of graphs of the form [6j], j ∈ ω, in Gn and let M = C − N . By Lemmas 3.2.8
and 3.2.28, C and N are computable, and hence so is M . By Lemma 3.2.28 and
the fact that U = (U ∩N)∪ (U ∩M), it is enough to show that either U ∩M ≡m A
or U ∩M is computable.

But, combining Lemmas 3.2.18 and 3.2.30, we conclude that

1. if rn = 0 then an element x of M is in U if and only if, for some j ∈ A, x is the
coding location of the first copy of [6j] to appear in Gn, so that U ∩M ≡m A,
while

2. if rn = 1 then an element x of M is in U if and only if, for some j ∈ ω, x is
the coding location of the second copy of [6j] to appear in Gn, so that U ∩M
is computable.

Theorem 3.1.3 follows from Lemmas 3.2.7, 3.2.25, and 3.2.31. �

3.3 Proof of Theorem 3.1.4

In this section we prove the following theorem.

3.1.4. Theorem. Let a > 0 be a c.e. degree. There exists an intrinsically c.e.
relation U on the domain of a computable structure A of computable dimension
2 such that DgSpA(U) = {0, a}. In addition, A can be picked so that every c.e.
presentation of A is computable, which implies that A has c.e. dimension 2.



50

Proof. Let A be a c.e. set that is not computable and let a0, a1, . . . be a computable
enumeration of A. Let A[0] = ∅, A[s + 1] = {a0, . . . , as}. We wish to construct
computable structures A0 and A1 and unary relations U0 and U1 on the domains
of A0 and A1, respectively, so that the following properties hold.

(3.3.1) A0 ∼= A1 via an isomorphism that carries U0 to U1.

(3.3.2) U0 ≡m A and U1 is computable.

(3.3.3) If G ∼= A0 is a computable structure then G is computably isomorphic to
either A0 or A1.

(3.3.4) A0 is rigid.

(3.3.5) Every c.e. presentation of A0 with computable equality relation is com-
putable.

The reason that (3.3.5) is enough to establish the last part of Theorem 3.1.4 is
that we can let A be the result of adding to A0 the binary relation Q that holds of x
and y if and only if x 6= y. Clearly, A shares all the relevant computable properties
of A0, and any c.e. presentation of A restricts to a c.e. presentation of A0 with
computable equality relation.

The construction in this section will be similar to the one in Section 3.2, as will
the proof that properties (3.3.1) and (3.3.2) hold. (The construction in Section 3.2
also satisfied (3.3.4), but we did not mention this fact in that section because it was
not needed to prove Theorem 3.1.3.) We will adopt the notation and conventions
of Section 3.2 unless otherwise specified.

We now discuss the basic idea for satisfying (3.3.3). The construction in Sec-
tion 3.2 was an injury-free one in which the satisfaction of (3.2.3) for a given Gn
was handled by a single strategy, which worked with the components of (Ai)n and
acted independently from strategies for the satisfaction of (3.2.3) for other Gm. The
trade-off was forgoing any control of (Gn)m for m 6= n.

In order to satisfy (3.3.3), we need to control more of Gn than just (Gn)n. In
order to illustrate how we do this, we consider the following sample situation. We
have two graphs G0 and G1. We proceed with a construction like that of Section 3.2,
except that, in order for G0 to recover at stage s + 1, we require not only that
G0[s] have the components that were necessary for 0-recovery in Section 3.2, but
also those that were necessary for 1-recovery, and we do not allow 1-recovery unless
there is 0-recovery, which means that 1 is not active unless 0 is active. We claim
that we will succeed in controlling (G0)1 in the same sense that we controlled (G0)0

in Section 3.2.
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An example should be helpful here. Suppose that s < t < u < v are such that
s + 1 is a first stage, v + 1 is the next recovery stage after stage s + 1, r0,s+1 =
r0,v+1 = 0, and t+ 1 and u+ 1 are the only two stages in the interval (s+ 1, v + 1)
at which 0 is active. Suppose further that 1 is also active at stages t+ 1 and u+ 1.
Notice that, since we do not allow 1 to be active unless 0 is active, t+ 1 and u+ 1
are the only two stages in the interval (s+ 1, v + 1) at which 1 is active.

Figures 3.6–3.8 picture what happens on the A0 side of the construction, de-
pending on whether r1,s+1 = 0 or r1,s+1 = 1.

We are assuming the definition of recovery stage is such that the special com-
ponent of G0[s] is isomorphic to R0

s, G0[s] has a component R1,s isomorphic to R0
1,s,

and, for each w = s, t, u and i = 0, 1, G0[s] has components Yi,w, Xw, Zi,w, Bi,w, and
Ci,w isomorphic to Y 0

i,w, X0
w, Z0

i,w, B0
i,w, and C0

i,w, respectively.
Since G0 recovers at stage v + 1 and r0,v+1 = 0, the special component of G0[v]

is isomorphic to R0
0,s · C0

0,s · C0
0,t · C0

0,u. So, arguing as in Section 3.2, we see that,
for each w = s, t, u, the components of G0[v] that extend Y0,w, Xw, Z0,w, B0,w, and
C0,w are isomorphic to the components of A0

v that extend Y 0
0,w, X0

w, Z0
0,w, B0

0,w, and
C0

0,w, respectively. In other words, all of (G0)0 goes in the same direction as (A0)0.
We wish to show that (G0)1 also goes in the same direction as (A0)1. Let R′1,s

be the component of G0[v] that extends R1,s and, for each w = s, t, u, let Y ′1,w, X ′w,
Z ′1,w, B′1,w, and C ′1,w be the components of G0[v] that extend Y1,w, Xw, Z1,w, B1,w,
and C1,w, respectively.

In the r1,s+1 = 0 case, we can argue as follows.
As we have mentioned above, for each w = s, t, u, X ′w

∼= X0
w · (Z0

0,w, Z
0
1,w),

which implies that Z ′1,w
∼= Z0

1,w · B0
1,w. This in turn implies that B′1,s

∼= B0
1,s · R0

1,s,
B′1,t
∼= B0

1,t ·R0
1,s · C0

1,s, and B′1,u
∼= B0

1,u ·R0
1,s · C0

1,s · C0
1,t.

So the only component ofA0
v left forR′1,s to be isomorphic to isR0

1,s·C0
1,s·C0

1,t·C0
1,u.

This implies that, for each w = s, t, u, C ′1,w
∼= C0

1,w · Y 0
1,w, which in turn implies that

Y ′1,w
∼= (Y 0

0,w, Y
0

1,w) ·X0
w.

Thus, in this case, we see that (G0)1 goes in the same direction as (A0)1.
In the r1,s+1 = 1 case, the argument that (G0)1 goes in the same direction as

(A0)1 is as follows. As before, for each w = s, t, u, X ′w
∼= X0

w · (Z0
0,w, Z

0
1,w), which

implies that Z ′1,w
∼= Z0

1,w ·B0
1,w.

This implies that B′1,u
∼= B0

1,u · B0
1,t · B0

1,s · R0
1,s, which implies that B′1,t

∼= B0
1,t ·

B0
1,s · R0

1,s · C0
1,u, which implies that B′1,s

∼= B0
1,s · R0

1,s · C0
1,t, which implies that

R′1,s
∼= R0

1,s · C0
1,s.

Now, for for each w = s, t, u, we have C ′1,w
∼= C0

1,w · Y 0
1,w, which implies that

Y ′1,w
∼= (Y 0

0,w, Y
0

1,w) ·X0
w.

Thus, in this case also, (G0)1 goes in the same direction as (A0)1.
In either case, we have the same kind of control over (G0)1 as over (G0)0. Now

assume that G0
∼= A0 and lims r0,s = 0. We claim that, if there are no other
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Figure 3.6: Recovery in a two-strategy scenario: (A0)0
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Figure 3.7: Recovery in a two-strategy scenario: (A0)1 in case r1,s+1 = 0
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Figure 3.8: Recovery in a two-strategy scenario: (A0)1 in case r1,s+1 = 1
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elements to the construction, so that, from some stage s on, all of G0 goes in the
same direction as A0, then the unique isomorphism f : A0 → G0 is computable.
Indeed, the following is an effective procedure for computing f(x) given x ∈ A0.
Find the least stage t > s such that x is contained in a component K of A0

t and
there is an isomorphism g from K to some component L of G0[t]. Such a stage must
exist by the definition of 0-recovery, and, since all of G0 goes in the same direction
as A0 from stage s on, f(x) = g(x).

Of course, the strategy for G0 that we have just described works at the expense
of the corresponding strategy for G1. Indeed, if G0 does not recover infinitely often
then G1 is not allowed to recover infinitely often, even though it might be the case
that G1

∼= A0.
We solve this problem in the standard way, by having multiple strategies for

satisfying (3.3.3) for a given Gn and organizing these in a tree. More specifically,
for each finite binary string σ, there will be a strategy for satisfying (3.3.3) for G|σ|.
The string σ represents a guess about which Gm, m < |σ|, recover infinitely often,
with σ(m) = 0 representing a guess that Gm recovers infinitely often and σ(m) = 1
representing a guess that it does not.

We will denote by (k) the component of Ai that extends the unique copy of [k] in
Ai0. By 〈Ai〉σ we will mean the union of the components of Ai that might potentially
be used by the strategy for satisfying (3.3.3) for G|σ| corresponding to σ. Once we
give the formal details of the construction, it will be clear which components these
are. As in Section 3.2, the notations (Ai)σ and (Gn)σ, n ∈ ω, will refer to the union
of those components that are actually used by the strategy corresponding to σ. By
〈Ai〉 we will mean the union of the components of Ai of the form (6k), k ∈ ω.
(These are the components that might not be in 〈Ai〉σ for any σ.)

We will not allow σ-recovery unless there is τ -recovery for all τ such that τa0 ⊆
σ. In this way, we will be able to control not only (G|σ|)σ, but also (G|σ|)τ for all τ
such that σa0 ⊆ τ .

Now fix σ on the true path of the construction (which will be defined, as usual, as
the leftmost path visited infinitely often) such that G|σ| ∼= A0. These conditions on σ
will imply that, for all τ ( σ, τ recovers infinitely often if and only if τa0 ⊆ σ. They
will also imply that σa0 is on the true path, so that σ recovers infinitely often, and
that lims rσ,s exists (where rσ,s will be defined analogously to rn,s). Let i = lims rσ,s
and let f be the unique isomorphism from Ai to G|σ|. By the comments in the
previous paragraph, we will be able to compute both f � 〈Ai〉σ and f �

⋃
τ⊇σa0〈Ai〉τ .

The argument is similar to that in the two-strategy scenario above.
Of course, this leaves the problem of uniformly computing f � 〈Ai〉τ for other

τ , as well as f � 〈Ai〉. The key observation here is that, for a union T of finite
components of Ai, if there exists a computable bound on the last stage (if any) at
which each component of T participates in an operation then f � T is computable.
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This is because if a component K of T does not participate in operations after
stage s then K is a component of Ais, and hence the unique embedding from K into
Gn can be found effectively.

Thus our strategy will be to break up the domain of Ai into finitely many c.e.
sets and show that the restriction of f to each of these sets is computable. Most of
the cases will be handled as indicated in the previous paragraph.

We begin by looking at 〈Ai〉. As in Section 3.2, we will have a computable
bound h(k) such that if (6k) has not participated in an operation by stage h(k)
then, whenever it does participate in an operation, σ is active. Let T0 be the
union of those components (6k) of 〈Ai〉 that do not participate in an operation by
stage h(k). Then f � T0 will be computable for the same reason as f � 〈Ai〉σ.
On the other hand, since no component of 〈Ai〉 will participate in operations more
than once, f � (〈Ai〉 − T0) will be computable because h(k) will be a computable
bound on the last stage at which a component (6k) of 〈Ai〉 − T0 participates in an
operation. Thus f � 〈Ai〉 will be computable.

Now let T1 be the union of all 〈Ai〉τ such that τ is to the left of σ. By the
definition of the true path, only finitely many components of T1 will ever participate
in operations, and those that do, will do so only finitely often. Thus there will exist
a computable bound on the last stage at which each component of T1 participates
in an operation, and hence f � T1 will be computable.

Let T2 be the union of all 〈Ai〉τ such that τa1 ⊆ σ. As in Section 3.2, the fact
that there are only finitely many τ -recovery stages will imply that only finitely many
components of T2 participate in operations, and those that do, do so only finitely
often. Thus there will exist a computable bound on the last stage at which each
component of T2 participates in an operation, and hence f � T2 will be computable.

Let T3 be the union of all 〈Ai〉τ such that τ is to the right of σa0. Every time
the construction moves to the left of τ , we will guarantee that a certain set of
components of 〈Ai〉τ will never again participate in an operation, in such a way
that if the construction moves to the left of τ infinitely often then every component
of 〈Ai〉τ will eventually be guaranteed never again to participate in an operation.
(We call this process initialization.) Since σa0 is on the true path, this will mean
that there exists a computable bound on the last stage at which each component of
T3 participates in an operation, and thus f � T3 will be computable.

We are left with the case of 〈Ai〉τ such that τa0 ⊆ σ. We will show, much as in
Section 3.2, that, for each such τ , if rτ,s has a limit then (Ai)τ has a unique infinite
component Siτ , while if rτ,s does not have a limit then all components of (Ai)τ are
finite. Let T4 be the union of the Siτ , τ

a0 ⊆ σ, rτ,s has a limit. Given a copy K of
[m] contained in a component C of T4 with top x, we will be able to find effectively
the unique copy L of [m] in the component of Gσ with top f(x), and f will extend
the unique isomorphism from K to L. Since T4 has only finitely many components,
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this will mean that f � T4 is computable.
Finally, let T5 be the union of all finite components of 〈Ai〉τ , τa0 ⊆ σ. Examining

the construction in Section 3.2, we see that, once a finite component K of (Ai)n
participates in an operation at a stage s, we can effectively find a stage t such that
K does not participate in an operation after stage t. Indeed, we can take t to be the
least n-isomorphism recovery stage such that, for some u < t, every component of
(Ai)n that participates in an operation at stage t has participated in an operation
in the interval [u, t) and K does not participate in an operation in the interval [u, t].

The analogous situation will hold in this section, but this will not be quite enough
to show that f � T5 is computable. We will also need an effective procedure that,
for each component K of T5, gives us a stage s such that if K has not participated
in an operation by stage s then it will not participate in an operation after stage s.
In order to do this, every time τ recovers, we will guarantee that a certain set
of components of 〈Ai〉τ that have not yet participated in an operation will never
participate in an operation, in such a way that if τ recovers infinitely often then every
singleton component of 〈Ai〉τ will eventually be guaranteed never to participate in
an operation. Thus f � T5 will be computable.

We now give the formal definitions that will be used below.
For the sake of satisfying (3.3.5), we need a new kind of building block, whose

use will be made clear shortly. (Basically, if G is a c.e. graph with computable
equality relation and K and L are different components of G[s], s ∈ ω, then it
cannot be the case that K and L are both extended by a component of the form
K · L in G. However, K and L might both be extended by the same component of
G if this component is of the form K · (L), for example, since the fact that there is
no edge from the top of K to the top of L in G[s] does not mean that the same is
true in G. We will avoid this possibility by only performing operations of the form
K · (L0, . . . , Lk) when K is of the form [n]+, n ∈ ω, as defined below.)

3.3.1 Definition. The directed graph [n]+ consists of the following nodes and edges.

1. A copy of [n] with top x.

2. For each i 6 n, i+1 many nodes xi,0, . . . , xi,i, with an edge from x to xi,0 and,
for each j < i, an edge from xi,j to xi,j+1. We call xi,i the i-attachment node
of [n]+.

Figure 3.9 shows [2]+ as an example.

We also need a new version of Definition 3.2.5.

3.3.2 Definition. Let G be a computable structure in the language of directed
graphs whose domain is co-infinite.
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Figure 3.9: [2]+

Let K0, K1, . . . , Kn and L be components of G isomorphic to [k0], [k1], . . . , [kn]
and [l]+, respectively, where k0, k1, . . . , kn, l ∈ ω and n 6 l. We define two opera-
tions, each of which takes G to a new computable structure extending G.

• The operation (K0, K1, . . . , Kn) · L consists of creating a new copy of [l]+,
using the top of Ki as the i-attachment node for i 6 n and numbers not in
the domain of G as the other nodes, and otherwise leaving G unchanged.

• The operation L · (K0, K1, . . . , Kn) consists of creating a new copy of [ki] for
each i 6 n, using the i-attachment node of L as the top and numbers not in
the domain of G as the other nodes, and otherwise leaving G unchanged.

We define the L- and R-operations as in Definition 3.2.6, except that we now
require that X be of the form [k]+, k ∈ ω.

Fix a computable one-to-one function from 2<ω onto ω−{0} and let pσq denote
the image under this function of the string σ.

3.3.3 Definition. Let G be a directed graph. We denote by (G)σ the subgraph of G
consisting of those components C of G that satisfy both of the following conditions.

1. C is not isomorphic to [x] or [x]+ for any x ∈ ω.

2. C contains a copy of [6〈pσq, j〉+3], j ∈ ω, or a copy of [6〈pσq, j, k〉+l], j, k ∈ ω,
l ∈ {1, 2, 4, 5}.

Define (G)⊇σ =
⋃
τ⊇σ(G)τ .

Let k be the number of times σ has been initialized (defined below) before
stage t. Suppose there is a least stage s 6 t such that G|σ|[s] has a component
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K isomorphic to [6〈pσq, k〉 + 3]. We call the component of G|σ|[t] that extends K
the σ-special component of G|σ|[t]. If σ is initialized only finitely often, say k many
times, and there is a least stage s such that G|σ|[s] has a component K isomorphic
to [6〈pσq, k〉 + 3] then we call the component of G|σ| that extends K the σ-special
component of G|σ|.

For σ, τ ∈ 26ω, σ 6L τ means that either σ ⊆ τ or there exists an n < |σ| , |τ |
such that σ(m) = τ(m) for all m < n, σ(n) = 0, and τ(n) = 1. If σ 6L τ and σ * τ
then we say that σ is to the left of τ and that τ is to the right of σ.

We now proceed with the construction of A0, A1, U0, and U1. As before, we
make it a convention that all numbers added to the domain of Ais at stage s + 1
to get Ais+1 are greater than s. It will be easy to check as we go along that the
following are properties of the construction.

1. For each s ∈ ω, A0
s
∼= A1

s and no component of Ais is embeddable in another
component of Ais.

2. Let t < s. No component of Ait isomorphic to one of [6as]
+ or [6〈j, as, k〉+ l],

j, k ∈ ω, l ∈ {1, 2, 4, 5}, participates in an operation at stage t+ 1.

stage 0. Let A0
0 and A1

0 be computable structures with co-infinite domains, each
consisting of one copy of [6k+ l] and one of [6k]+ for each k ∈ ω and 0 < l < 6. For
each σ ∈ 2<ω, let rσ,0 = 0.

stage s+ 1. For σ ∈ 2<ω, let recov(σ, s) be the number of σ-recovery stages before
stage s + 1, let init(σ, s) be the number of times σ has been initialized before
stage s+ 1, and let c(σ, s) = max(recov(σ, s), init(σ, s)).

Define the string σ[s + 1] ∈ 2[0,s] by recursion as follows, beginning with n = 0.
Let σ = σ[s + 1] � n. Say that s + 1 is a σ-recovery stage if all of the following
conditions hold.

1. Every τ such that τa0 ⊆ σ has recovered at least |σ|+ 1 many times.

2. Gn[s] has a σ-special component isomorphic to some component of A0
s.

3. If τ ⊇ σa0 has not yet recovered since the last time it was initialized and |τ | 6
recov(σ, s) then Gn[s] has a component isomorphic to [6〈pτq, init(τ, s)〉+ 3].

4. (Gn[s])σ ∼= (A0
s)σ.

5. (Gn[s])⊇σa0
∼= (A0

s)⊇σa0.
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6. Let τ be such that either τ = σ or both τ ⊇ σa0 and |τ | 6 recov(σ, s). Let
j /∈ A[s] be less than or equal to recov(τ, s). There is a component of Gn[s]
isomorphic to [6j]+ and, for each l ∈ {1, 2, 4, 5}, there is a component of Gn[s]
isomorphic to [6〈pτq, j, c(τ, s)〉+ l].

If s+1 is a σ-recovery stage then let σ[s+1](n) = 0. Otherwise, let σ[s+1](n) = 1.
For each σ such that s+ 1 is a σ-recovery stage, proceed as follows. For i = 0, 1,

let Siσ,s be the component of Ais that is isomorphic to the σ-special component of
G|σ|[s]. If s+ 1 is either the first σ-recovery stage ever or the first σ-recovery stage
since the last time σ was initialized then let rσ,s+1 = 0. Otherwise, proceed as
follows. Let i = rσ,s and let t+ 1 be the last σ-recovery stage before stage s+ 1. If
Siσ,s extends Siσ,t then let rσ,s+1 = i, and otherwise let rσ,s+1 = 1− i.

For each σ ∈ 2<ω such that s+ 1 is not a σ-recovery stage, let rσ,s+1 = rσ,s.
Declare each σ to the right of σ[s + 1] to have been initialized. For each σ 6L

σ[s + 1], if there has been a σ-recovery stage since the last time σ was initialized,
as > |σ|, and as is less than the number of σ-recovery stages less than or equal to
s+ 1 then say that σ is active at stage s+ 1.

For i = 0, 1, let X i
s be the component of Ais isomorphic to [6as]

+.
Let σ0, . . . , σm be all the strings that are active at stage s+1. For i = 0, 1 and j 6

m, let Y i
σj ,s

and Zi
σj ,s

be the components of Ais isomorphic to [6〈pσjq, as, c(σj, s)〉+1]
and [6〈pσjq, as, c(σj, s)〉+ 2], respectively.

For each j 6 m, let tj + 1 6 s + 1 be the last σj-recovery stage. We say that
s+ 1 is a σj-first stage if it is the first stage after stage tj at which σj is active.

We say that s + 1 is a σj-change stage if it is a σj-first stage and one of the
following holds: tj + 1 was the first σj-recovery stage ever, tj + 1 was the first
σj-recovery stage since the last time σj was initialized, or rσj ,tj+1 6= rσj ,tj .

We say that s+ 1 is a σj-isomorphism recovery stage if it is a σj-first stage but
not a σj-change stage and one of the following conditions holds.

1. The last σj-first stage before stage s+ 1 was a σj-change stage.

2. There has been at least one stage at which σj was active after the last σj-
isomorphism recovery stage and before stage s+ 1.

For each j 6 m we define components Bi
σj ,s

and Ci
σj ,s

, i = 0, 1. There are two
cases.

1. s+1 is a σj-isomorphism recovery stage. If the first condition in the definition
of σj-isomorphism recovery stage holds then let t+ 1 be the last σj-first stage,
and otherwise let t+1 be the first stage after the last σj-isomorphism recovery
stage at which σj was active. There are two subcases.
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(a) If rσj ,s+1 = 0 then let C0
σj ,s

be the component of A0
s that extends B0

σj ,t

and let C1
σj ,s

be its isomorphic image in A1
s. For i = 0, 1, let Bi

σj ,s
be the

component of Ais isomorphic to [6〈σj, as, c(σj, s)〉+ 4].

(b) If rσj ,s+1 = 1 then let B1
σj ,s

be the component of A1
s that extends C1

σj ,t

and let B0
σj ,s

be its isomorphic image in A0
s. For i = 0, 1, let Ci

σj ,s
be the

component of Ais isomorphic to [6〈σj, as, c(σj, s)〉+ 5].

2. s + 1 is not a σj-isomorphism recovery stage. For i = 0, 1, let Bi
σj ,s

be the

component of Ais isomorphic to [6〈σj, as, c(σj, s)〉 + 4] and let Ci
σj ,s

be the

component of Ais isomorphic to [6〈σj, as, c(σj, s)〉+ 5].

For each j 6 m, proceed as follows. Let i = rσj ,s+1 and let t+ 1 6 s+ 1 be the
last σj-recovery stage. Let Ri

σj ,s
be the component of Ais that extends Siσj ,t and let

R1−i
σj ,s

be its isomorphic image in A1−i
s .

Now perform

L(Y 0
σ0,s

, . . . , Y 0
σm,s;X

0
s ;Z0

σ0,s
, . . . , Z0

σm,s;B
0
σ0,s

, R0
σ0,s

, C0
σ0,s

;

B0
σ1,s

, R0
σ1,s

, C0
σ1,s

; . . . ;B0
σm,s, R

0
σm,s, C

0
σm,s)

on A0
s to get A0

s+1 and perform

R(Y 1
σ0,s

, . . . , Y 1
σm,s;X

1
s ;Z1

σ0,s
, . . . , Z1

σm,s;B
1
σ0,s

, R1
σ0,s

, C1
σ0,s

;

B1
σ1,s

, R1
σ1,s

, C1
σ1,s

; . . . ;B1
σm,s, R

1
σm,s, C

1
σm,s)

on A1
s to get A1

s+1. (If no σ is active at stage s + 1 then, for j = 0, 1, let
Y j
s , Zj

s , B
j
s , R

j
s, and Cj

s be the components of Ajs isomorphic to [6〈0, as, s〉 + 1],
[6〈0, as, s〉+2], [6〈0, as, s〉+4], [6〈0, s〉+3], and [6〈0, as, s〉+5], respectively. Perform
L(Y 0

s ;X0
s ;Z0

s ;B0
s ;R

0
s;C

0
s ) on A0

s to get A0
s+1 and perform R(Y 1

s ;X1
s ;Z1

s ;B1
s ;R

1
s;C

1
s )

on A1
s to get A1

s+1.)
Put the coding location of the copy of [6as] in A0

0 into U0 and put the coding
location of the copy of [6as] in A1

s+1 −A1
s into U1.

This completes the construction. Let A0 =
⋃
s∈ωA0

s and A1 =
⋃
s∈ωA1

s. Since,
for each s ∈ ω and i = 0, 1, all numbers in Ais+1−Ais are greater than s, A0 and A1

are computable. We now wish to argue that properties (3.3.1)–(3.3.5) are satisfied.
Theorem 3.1.4 will then follow immediately.

Define the true path TP of the construction to be the leftmost path of 2ω such
that there are infinitely many stages s with σ[s] ∈ TP .

The following lemma, which shows that (3.3.2) holds, has the same proof as
Lemma 3.2.7.
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3.3.4 Lemma. U0 ≡m A and U1 is computable.

Property (3.3.5) is also easy to establish.

3.3.5 Lemma. Let G be a c.e. presentation of A0 with computable equality relation.
Then G is computable.

Proof. Let S = {6k | k ∈ ω}. Let x0, x1 ∈ G. Wait until a stage s in the enumeration
of G such that, for each i = 0, 1, xi is in a copy of either [ni] for some ni /∈ S or
[ni]

+ for some ni ∈ S. It is easy to check from the definition of A0 that, for each
i = 0, 1, there is an edge from xi to x1−i if and only if there already is such an edge
at stage s.

Lemmas 3.2.8–3.2.10 and 3.2.13 still hold, as do the following versions of Lem-
mas 3.2.11, 3.2.12, and 3.2.14–3.2.18. In all cases, the reasoning is basically the
same as before.

3.3.6 Lemma. Let k, j ∈ ω and σ ∈ 2<ω. Any component of Ai containing a
copy of [6k] or [6〈pσq, j, k〉 + l], l ∈ {1, 2}, can participate in an operation at most
once. Any component of Ai containing a copy of [6〈pσq, j〉 + 3] or [6〈pσq, j, k〉 + l],
l ∈ {1, 2, 4, 5}, can participate in operations only at stages at which σ is active.

3.3.7 Lemma. Suppose that rσ,s = i 6= rσ,s+1. Of all the components of (Ai)σ that
participate in operations at stages before stage s+1, the only one that can participate
in an operation after stage s is the one that extends Siσ,s.

3.3.8 Lemma. Suppose that rσ,s = i for all s > t, σ is not initialized at any stage
after stage t, and σ is active at stages s0 + 1 and s1 + 1, where s1 > s0 > t. Then
Ri
σ,s1

extends Ri
σ,s0

.

3.3.9 Lemma. Let u be a stage after which σ is never initialized. Let s + 1 > u
be a σ-recovery stage that is not the first such stage after stage u. Let t + 1 be the
last σ-recovery stage before stage s + 1. If rσ,s = 0 6= rσ,s+1 then S0

σ,s extends B0
σ,v

for some v ∈ [t, s). Similarly, if rσ,s = 1 6= rσ,s+1 then S1
σ,s extends C1

σ,v for some
v ∈ [t, s).

3.3.10 Lemma. Suppose that rσ,t = 0 (resp. rσ,t = 1) for all t > s0. Then no
component of (A0)σ ((A1)σ) can participate in an operation more than twice after
stage s0 unless it extends R0

σ,t (R1
σ,t) for some t > s0, while no component of (A1)σ

((A0)σ) can participate in an operation more than twice after stage s0 unless it
extends C1

σ,t (B0
σ,t) for some t > s0 such that t + 1 is a σ-isomorphism recovery

stage.
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3.3.11 Lemma. Let s0 be a stage after which σ is never initialized. Suppose that
s0 6 s < t < v are such that s + 1 is a σ-isomorphism recovery stage, rσ,u = rσ,s+1

for all u > s, t+ 1 is the next stage after stage s+ 1 at which σ is active, and v+ 1
is the next σ-isomorphism recovery stage after stage s+ 1. For i = 0, 1, let Bi, Ri,
and Ci be the components of Ait+1 that extend Bi

σ,t, R
i
σ,t, and Ci

σ,t, respectively, and

let B̂i, R̂i, and Ĉi be the components of Aiv that extend Bi, Ri, and Ci, respectively.

If rσ,s+1 = 0 then B̂0 ∼= B0 and R̂1 ∼= R1, while if rσ,s+1 = 1 then Ĉ1 ∼= C1 and

R̂0 ∼= R0.

3.3.12 Lemma. Let x be the coding location of a copy of [6as] in component K of
Ai. Either K contains a copy of [6〈n, as, k〉 + 1] for some n, k ∈ ω, in which case
x /∈ U i, or K contains a copy of [6〈n, as, k〉 + 2] for some n, k ∈ ω, in which case
x ∈ U i.

The following lemmas will also be useful.

3.3.13 Lemma. If σ is to the left of TP then (Ai)⊇σ is finite.

3.3.14 Lemma. If σ is initialized at stage s+ 1 then no components of (Ai)σ that
participate in operations at stages before stage s+ 1 can participate in an operation
after stage s.

Proof. It is easy to check that if a component of (Ai)σ participates in operations at
stages s < t and not at any stage in the interval (s, t) then there are no σ-change
stages in (s, t).

Now let t be the first stage after stage s at which σ is active. (If there are
no such stages then we are done.) Then t is a σ-change stage, and hence not a
σ-isomorphism recovery stage. It is easy to check that, together with the fact that
σ is initialized at stage s+1, this implies that none of the components of (Ai)σ that
participate in operations at stages before stage s+1 can participate in an operation
at stage t. The lemma now follows from the remark in the previous paragraph.

3.3.15 Lemma. If σ is to the right of TP then (Ai)σ has no infinite components.

We now wish to show that (3.3.1) holds. In the course of doing so, we will
also be able to show that (3.3.4) holds. It follows from Lemmas 3.2.10, 3.2.13, and
3.3.12 that, to show that (3.3.1) holds, it is enough to show that for each infinite
component of Ai there is an isomorphic component of A1−i. As before, the first
step in establishing this result is characterizing the infinite components of Ai. By
Lemmas 3.3.13 and 3.3.15, if σ is not on TP then no component of (Ai)σ is infinite,
so we can restrict our attention to the components of (Ai)σ, σ ∈ TP .

The following lemma has the same proof as Lemma 3.2.19, with Lemmas 3.3.7
and 3.3.9 in place of Lemmas 3.2.12 and 3.2.15, respectively.
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3.3.16 Lemma. Let σ ∈ TP . If rσ,s does not have a limit then no component of
(Ai)σ is infinite.

Thus, the only components of Ai that can be infinite are those components that
are in (Ai)σ for some σ ∈ TP such that rσ,s has a limit and σ is active infinitely
often. So, by the comments preceding Lemma 3.3.16, to establish that (3.3.1) holds,
it is enough to show that if σ ∈ TP , rσ,s has a limit, and σ is active infinitely often,
then, for each i = 0, 1, there is exactly one infinite component Siσ of (Ai)σ and
S0
σ
∼= S1

σ. As we will argue below, this will also be enough to show that (3.3.4)
holds.

3.3.17 Lemma. Let σ ∈ TP . There are infinitely many σ-recovery stages if and
only if σ is active infinitely often.

Proof. By definition, σ is not active at a stage s+1 unless as is less than the number
of σ-recovery stages less than or equal to s + 1. Thus, if there are finitely many
σ-recovery stages then σ cannot be active infinitely often.

For the other direction, suppose that there are infinitely many σ-recovery stages
but only finitely many stages at which σ is active. Let s be a stage after which σ is
never active or initialized and such that there has been a σ-recovery stage since the
last time σ was initialized. Now, given x > |σ|, let t+1 be the first stage after stage
s by which there have been x+ 1 many σ-recovery stages. Then x ∈ A⇔ x ∈ A[t].
But this means that A is computable, contrary to hypothesis.

3.3.18 Lemma. If σ ∈ TP is active infinitely often and rσ,s has a limit then there
are infinitely many σ-isomorphism recovery stages.

Proof. If σ is active infinitely often then, by Lemma 3.3.17, there are infinitely many
σ-recovery stages, and thus infinitely many σ-first stages. The fact that rσ,s has a
limit and that σ is initialized only finitely often implies that only finitely many of
these can be σ-change stages. The lemma now follows directly from the definition
of σ-isomorphism recovery stage.

The next lemma has the same proof as Lemma 3.2.22, with Lemmas 3.3.6, 3.3.8,
and 3.3.11 in place of Lemmas 3.2.11, 3.2.14, and 3.2.17.

3.3.19 Lemma. Suppose that σ ∈ TP is active infinitely often and s and i are
such that σ is not initialized after stage s and rσ,t = rσ,s = i for all t > s. By
Lemma 3.3.18, there are infinitely many σ-isomorphism recovery stages. Let s0+1 <
s1 + 1 < · · · be the σ-isomorphism recovery stages after stage s. For each j ∈ ω, let
tj + 1 be the next stage after stage sj + 1 at which σ is active. (Note that tj < sj+1

for all j ∈ ω.) For t > t0, let K l
t be the component of Alt that extends Rl

σ,t0
. Then

K l
tj

= Rl
σ,tj

for all j ∈ ω.
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Now assume the hypotheses of Lemma 3.3.19 and adopt its notation. Let Slσ be
the component of Al that extends Rl

σ,s0
.

3.3.20 Lemma. Slσ is the only infinite component of (Al)σ.

Proof. This follows immediately from Lemmas 3.2.10, 3.3.10, and 3.3.19 and the
observation that, for all j ∈ ω, if i = 0 in the hypotheses of Lemma 3.3.19 then
R1
σ,tj

extends C1
σ,sj

, while if i = 1 then R0
σ,tj

extends B0
σ,sj

.

3.3.21 Lemma. S0
σ
∼= S1

σ.

Proof. Directly from Lemma 3.3.19, since, by definition, R0
σ,tj
∼= R1

σ,tj
for all j ∈ ω,

and Siσ =
⋃
j∈ω R

i
σ,tj

for i = 0, 1.

As we have argued above, Lemmas 3.3.20 and 3.3.21 suffice to establish that
(3.3.1) holds.

3.3.22 Lemma. A0 ∼= A1 via an isomorphism that carries U0 to U1.

We are now also in a position to show that (3.3.4) holds.

3.3.23 Lemma. A0 is rigid.

Proof. It is easy to check that every component of A0 is rigid. Thus it is enough
to show that no two components of A0 are isomorphic. By Lemma 3.2.13, for each
s ∈ ω, no component of A0

s is embeddable in another component of A0
s, which

implies that no two finite components of A0 are isomorphic. Since the only infinite
components of A0 are the S0

σ defined above and S0
σ contains a copy of [6〈pτq, k〉+ 3]

for some k ∈ ω if and only if τ = σ, it is also the case that no two infinite components
of A0 are isomorphic.

We are left with showing that property (3.3.3) is satisfied. This is where this
proof differs significantly from that in Section 3.2. We begin by showing that if
σ ∈ TP and G|σ| ∼= A0 then lims rσ,s is well-defined.

3.3.24 Lemma. If σ ∈ TP and G|σ| ∼= A0 then there are infinitely many σ-recovery
stages, and hence the σ-special component of G|σ| is infinite.

Proof. If σ ∈ TP and G|σ| ∼= A0 then G|σ| has a σ-special component. Now assume
for a contradiction that there are only m many σ-recovery stages. Let s0 be the
last σ-recovery stage. (If there are no σ-recovery stages then let s0 = 0.) By
Lemma 3.3.17, there is a stage s1 > s0 such that σ is not active at any stage t > s1.
By the definition of TP , there is a stage s2 > s1 satisfying the following conditions:
every τ such that τa0 ⊆ σ has recovered at least |σ| + 1 many times by stage s2,
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G|σ|[s2] has a σ-special component, and σ is not initialized at any stage greater than
or equal to s2. If m = au for some u > s2 then let s = u+ 1; otherwise, let s = s2.

By the definition of s, the first condition in the definition of σ-recovery stage is
met at every stage greater than or equal to s.

Consider the components ofA0 that contain a copy of the σ-special component of
G|σ|. By Lemma 3.3.6, each such component is finite. Thus, if the second condition
in the definition of σ-recovery stage is not eventually satisfied after stage s then the
σ-special component of G|σ| is not isomorphic to any component of A0.

Since we are assuming that σa0 is to the left of TP , there is a stage t > s after
which no τ such that τ ⊇ σa0 is initialized. Any such τ that has not recovered since
the last time it was initialized never again recovers, and hence there is a component
of A0 isomorphic to [6〈pτq, init(τ, t)〉+ 3]. Since there are only finitely many τ such
that |τ | 6 recov(σ, s), if the third condition in the definition of σ-recovery stage is
not eventually satisfied after stage s then G|σ| � A0.

Now consider (A0)σ. Again by Lemma 3.3.6, (A0)σ is finite. So if the fourth
condition in the definition of σ-recovery stage is not eventually satisfied after stage s
then (G|σ|)σ � (A0)σ.

Since we are assuming that there are only finitely many σ-recovery stages,
σa1 ∈ TP . Thus, by Lemma 3.3.13, (A0

s)⊇σa0 is finite. So if the fifth condition
in the definition of σ-recovery stage is not eventually satisfied after stage s then
(G|σ|)⊇σa0 � (A0)⊇σa0.

Finally, let τ be such that either τ = σ or both τ ⊇ σa0 and |τ | 6 recov(σ, s).
Let j /∈ A[s] be less than or equal to recov(τ, s). Clearly, c(τ, t) reaches a limit c(τ).
By the choice of s, j /∈ A[s]⇒ j /∈ A. So, for each l ∈ {1, 2, 4, 5}, there is a unique
component of A0 that contains a copy of [6〈pτq, j, c(τ)〉 + l], and it is isomorphic
to [6〈pτq, j, c(τ)〉 + l]. Similarly, there is a unique component of A0 that contains
a copy of [6j]+, and it is isomorphic to [6j]+. Thus, if the last condition in the
definition of σ-recovery stage is not eventually satisfied after stage s then there is a
component of A0 that is not isomorphic to any component of G|σ|.

In any case, G|σ| cannot be isomorphic to A0, contrary to hypothesis. So there
are infinitely many σ-recovery stages.

Now let v be a stage after which σ is never initialized. Given any two σ-recovery
stages v < t+ 1 < u+ 1 such that there is a stage in (t, u] at which σ is active, the
σ-special component of G|σ|[u] properly extends the σ-special component of G|σ|[t].
But, by Lemma 3.3.17, σ is active at infinitely many stages. This establishes the
second part of the lemma.

3.3.25 Lemma. If σ ∈ TP and G|σ| ∼= A0 then lims rσ,s is well-defined.

Proof. This follows immediately from Lemmas 3.3.16 and 3.3.24.
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Now fix σ ∈ TP such that G|σ| ∼= A0. Let n = |σ|. By Lemma 3.3.25, r =
lims rσ,s is well-defined. We wish to show that Gn is computably isomorphic to Ar.
The two cases, r = 0 and r = 1, are essentially the same. We will assume that
r = 0.

Let f : A0 ∼= Gn. Since A0 is rigid, f is the unique isomorphism from A0 to Gn,
so we need to show that f is computable.

As outlined at the beginning of this section, our strategy will be to break up the
domain of A0 into a finite number of c.e. sets and show that the restriction of f to
each of these sets is computable. (If P is c.e. then we say that f � P is computable
if there exists a partial computable function Φ such that x ∈ P ⇒ Φ(x) ↓= f(x).)
We will need the following definition.

3.3.26 Definition. Let k, s ∈ ω. We denote by (k) and (k)s the components of A0

and A0
s, respectively, that extend the unique copy of [k] in A0

0.
For D ⊆ ω, let PD =

⋃
k∈D(k).

Note that, for any k, s ∈ ω, (k)s is finite. Note also that, since every component
of A0 extends some component of A0

0,
⋃
k∈ω(k) = A0; similarly,

⋃
k∈ω(k)s = A0

s. It
is not the case that k 6= l ⇒ (k) 6= (l), but, as we will see, this will not matter for
our purposes.

The following result justifies our approach.

3.3.27 Lemma. Let D0, . . . , Dm be computable subsets of ω such that
⋃m
i=0 Di = ω.

If for each i 6 m, f � PDi is computable, then f is computable.

Proof. Since D0, . . . , Dm are computable, PD0 , . . . , PDm are c.e.. Since
⋃m
i=0 Di = ω,⋃m

i=0 PDi = A0. Thus, to compute f(x) for some x ∈ A0, all we need to do is wait
until x is enumerated into some PDi and then compute (f � PDi)(x).

We will partition ω into the pairwise disjoint computable sets D0, . . . , D6 shown
in Table 3.1. (The corresponding PDi will not be pairwise disjoint, but this does not
matter, since it was not required to prove Lemma 3.3.27.) We will then show that,
for each i 6 6, f � PDi is computable, which will enable us to apply Lemma 3.3.27
to conclude that f is computable. The following two lemmas provide a useful tool
for our task.

3.3.28 Lemma. Let k ∈ ω and suppose there is a stage s such that, for each t > s,
(k)t does not participate in an operation at stage t+ 1. Then (k) ∼= (k)s.

Proof. Clearly, if (k)t does not participate in an operation at stage t + 1 then
(k)t+1

∼= (k)t. So, by induction, (k)t ∼= (k)s+1 for all t > s. Since (k) =
⋃
t∈ω(k)t,

the lemma follows.
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Table 3.1: D0, . . . , D6

D0

{
6〈0, k〉+ 3, 6〈0, j, k〉+ l | j, k ∈ ω, l ∈ {1, 2, 4, 5}

}
D1

{
6〈pτq, k〉+ 3, 6〈pτq, j, k〉+ l | τ to the left of σ or τa1 ⊆ σ,

j, k ∈ ω, l ∈ {1, 2, 4, 5}
}

D2

{
6〈pτq, k〉+ 3, 6〈pτq, j, k〉+ l | τ to the right of σa0,

j, k ∈ ω, l ∈ {1, 2, 4, 5}
}

D3

{
m ∈ ω | (m) is the unique infinite component of some (A0)τ , τ

a0 ⊆ σ
}

D4

{
6〈pτq, j〉+ 3, 6〈pτq, j, k〉+ l | τa0 ⊆ σ, j, k ∈ ω, l ∈ {1, 2, 4, 5}

}
−D3

D5

{
6k | k < n

}
∪
{

6as | as > recov(σ, s+ 1) or s is less than
the first σ-recovery stage after the last time σ is initialized

}
D6

{
6〈pτq, j〉+3, 6〈pτq, j, k〉+ l | τ = σ or σa0 ⊆ τ, j, k ∈ ω, l ∈ {1, 2, 4, 5}

}
∪{

6k | k ∈ ω
}
−D5

3.3.29 Lemma. Let D ⊆ ω and h : D → ω be computable. Suppose that, for each
k ∈ D and t > h(k), (k)t does not participate in an operation at stage t + 1. Then
f � PD is computable.

Proof. Let x ∈ PD and let k ∈ D be such that x ∈ (k). By Lemma 3.3.28, (k)h(k)
∼=

(k), so (k) is finite. Since no component of A0 is embeddable in another component
of A0, there is a unique finite set T ⊂ Gn such that there is an isomorphism gx :
(k) ∼= T . Clearly, gx can be extended to an isomorphism from A0 to Gn. By
the uniqueness of f , f(x) = gx(x). It is easy to see that gx can be computably
determined given x ∈ PD. Thus f � PD is computable.

3.3.30 Lemma. Let D0 consist of all numbers of the form 6〈0, k〉+3 or 6〈0, j, k〉+l,
j, k ∈ ω, l ∈ {1, 2, 4, 5}. Then f � PD0 is computable.

Proof. Let m be of the form 6〈0, k〉 + 3 or 6〈0, j, k〉 + l, j, k ∈ ω, l ∈ {1, 2, 4, 5}.
Recall that, for all τ ∈ 2<ω, pτq 6= 0. Thus, the only time (m) can participate in
an operation is at stage k + 1. (This happens if no element of 2<ω is active at
stage k+ 1.) So if we define h(m) = k+ 1 then the hypotheses of Lemma 3.3.29 are
satisfied.

3.3.31 Lemma. There exists a stage s such that if τ is either to the left of σ or
such that τa1 ⊆ σ then τ is not active after stage s.

Proof. Let τ ∈ 2<ω. By definition, τ is not active at a stage t unless as is less than
the number of τ -recovery stages less than or equal to t. Thus, τ cannot be active
more often than it recovers.
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Let T be the set of all τ which are either to the left of σ or such that τa1 ⊆ σ.
Since σ ∈ TP , only finitely many elements of T ever recover, and the ones that
do recover, do so only finitely often. The lemma now follows by the remark in the
previous paragraph.

3.3.32 Lemma. Let D1 be the set of all numbers of the form 6〈pτq, k〉 + 3 or
6〈pτq, j, k〉+ l, τ to the left of σ or τa1 ⊆ σ, j, k ∈ ω, l ∈ {1, 2, 4, 5}. Then f � PD1

is computable.

Proof. Let s be as in Lemma 3.3.31. By Lemma 3.3.6, for each m ∈ D1 and t > s,
(m)t does not participate in an operation at stage t + 1. So if we let h(m) = s for
all m ∈ D1 then the hypotheses of Lemma 3.3.29 are satisfied.

3.3.33 Lemma. Let τ be to the right of σa0. Let m be of the form 6〈pτq, k〉+ 3 or
6〈pτq, j, k〉+ l, l ∈ {1, 2, 4, 5}. Let s+ 1 be the stage at which τ is initialized for the
(k + 1)st time. Then (m) does not participate in an operation after stage s.

Proof. If a singleton component of A0
t of the form [6〈pτq, p〉+ 3], participates in an

operation at a stage t+ 1 > s then p = init(τ, t) > k + 1. If a singleton component
of A0

t of the form [6〈pτq, j, p〉 + l], l ∈ {1, 2, 4, 5}, participates in an operation at a
stage t + 1 > s then p = c(τ, t) > init(τ, t) > k + 1. So if (m) does not participate
in an operation before stage s+ 1 then it does not participate in an operation after
stage s.

On the other hand, if (m) participates in an operation before stage s + 1 then
the fact that it does not participate in an operation after stage s follows from
Lemma 3.3.14.

3.3.34 Lemma. Let D2 be the set of all numbers of the form 6〈pτq, k〉 + 3 or
6〈pτq, j, k〉 + l, τ to the right of σa0, j, k ∈ ω, l ∈ {1, 2, 4, 5}. Then f � PD2 is
computable.

Proof. If m ∈ D2 is of the form 6〈pτq, k〉 + 3 or 6〈pτq, j, k〉 + l then define h(m) to
be the first stage by which τ has been initialized k + 1 many times (which exists,
since σa0 ∈ TP ). Then, by Lemma 3.3.33, the hypotheses of Lemma 3.3.29 are
satisfied.

If τa0 ⊆ σ and rτ,s has a limit then, by Lemma 3.3.20, (A0)τ has a unique
infinite component. On the other hand, if τa0 ⊆ σ and rτ,s does not have a limit
then, by Lemma 3.3.16, all components of (A0)τ are finite. Let D3 be the set of all
m ∈ ω such that (m) is the unique infinite component of some τa0 ⊆ σ such that
rτ,s has a limit. Note that D3 is finite.

3.3.35 Lemma. f � PD3 is computable.
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Proof. Let T = {x0, . . . , xm} be the tops of the components of PD3 . Given x ∈
PD3 − T , find the unique k such that x is in a copy K of [k]. The top of K is xi for
some i 6 m. Let L be the unique copy of [k] in Gn with top f(xi) and let gx be the
unique isomorphism form K to L. Then f(x) = gx(x). It is easy to see that gx can
be computably determined given x ∈ PD3 − T . Since T is finite, this implies that
f � PD3 is computable.

The following lemma is easy to check from the construction.

3.3.36 Lemma. Let s ∈ ω. If all the components of (A0
t )τ that participate in

an operation at a τ -isomorphism recovery stage t + 1 > s have participated in an
operation in the interval (s, t] then no component of (A0

t )τ that participates in an
operation in the interval (0, s] but not in the interval (s, t+ 1] can participate in an
operation after stage t.

3.3.37 Lemma. Let D4 be the set of all numbers not in D3 that are of the form
6〈pτq, j〉 + 3 or 6〈pτq, j, k〉 + l, τa0 ⊆ σ, j, k ∈ ω, l ∈ {1, 2, 4, 5}. Then f � PD4 is
computable.

Proof. Let m ∈ D4. If m is of the form 6〈pτq, j, k〉 + l, l ∈ {1, 2, 4, 5}, then let
s be the first stage by which τ has recovered k + 1 many times. If (m) has not
participated in an operation before stage s then, by the same reasoning as in the
proof of Lemma 3.3.33, it does not participate in an operation after stage s. In this
case, let h(m) = s.

Now suppose that m is of the form 6〈pτq, j〉 + 3. Let init(τ) = lims init(τ, s).
If j < init(τ) then let s be the least stage by which τ has been initialized k + 1
many times. Arguing as in the proof of Lemma 3.3.33, we see that (m) does not
participate in an operation after stage s. In this case, let h(m) = s. If j > init(τ)
then (m) never participates in an operation. In this case, let h(m) = 0.

If h(m) has not yet been defined then (m) participates in an operation at least
once. However, since (m) is finite, (m) participates in operations only finitely often.
So there exist stages s < t + 1 such that t + 1 is a τ -isomorphism recovery stage,
all the components of (A0

t )τ that participate in an operation at stage t + 1 have
participated in an operation in the interval (s, t], and (m) does not participate
in an operation in the interval (s, t + 1]. Then, by Lemma 3.3.36, (m) does not
participate in an operation after stage t. In this case, let h(m) = t.

Now the hypotheses of Lemma 3.3.29 are satisfied.

3.3.38 Lemma. Let D′5 be the set of all numbers of the form 6k, k < n. Let D′′5 be
set of all numbers of the form 6as such that as > recov(σ, s+1) or s is less than the
first σ-recovery stage after the last time σ is initialized. Let D5 = D′5 ∪D′′5 . Then
f � PD5 is computable.
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Proof. By Lemma 3.3.6, there is a stage t such that no (6k), k < n, participates in
an operation after stage t. For k < n, let h(6k) = t.

For 6as ∈ D′′5 , let h(6as) = s + 1. Again by Lemma 3.3.6, (6as) does not
participate in an operation after stage h(6as).

Since D′5 is finite, h is computable, and hence the hypotheses of Lemma 3.3.29
are satisfied.

Let D′6 be the set of all numbers of the form 6〈pτq, j〉+ 3 or 6〈pτq, j, k〉+ l, τ = σ
or σa0 ⊆ τ , j, k ∈ ω, l ∈ {1, 2, 4, 5}. Let D′′6 be the set of all numbers of the form
6k that are not in D5. Let D6 = D′6 ∪D′′6 . In order to show that f is computable,
we are left with showing that f � PD6 is computable. Roughly, the idea is to show
that, once rσ,s has reached its final value, Gn and A0 always go in the same direction
at stages at which components of PD6 participate in operations. The argument is
similar to that in the proof of Lemma 3.2.29, but we now need to worry about the
τ ⊇ σa0 case as well as the τ = σ case.

3.3.39 Lemma. Let τ be such that τ = σ or σa0 ⊆ τ . Let u be a stage after which
σ is never initialized and such that, for all s > u, rσ,s = 0. Let s + 1 > u be a
σ-recovery stage, but not the first such stage after stage u. Let t + 1 be the last
σ-recovery stage before stage s + 1 and let s0 + 1 < s1 + 1 < · · · < sm + 1 be the
stages in the interval (t, s] at which τ is active. For each k 6 m, let Yk, Xk, Zk,
Bk, Rk and Ck be Y 0

τ,sk
, X0

sk
, Z0

τ,sk
, B0

τ,sk
, R0

τ,sk
, and C0

τ,sk
, respectively, and let Y ′k,

X ′k, Z ′k, B′k, R
′
k and C ′k be the components of A0

s that extend Yk, Xk, Zk, Bk, Rk

and Ck, respectively. Then the following hold.

1. For every k 6 m, Yk, Xk, Zk, Bk, and Ck are components of A0
t , and so is

R0. If rτ,t+1 = 0 then, for every k, l 6 m, R′k = R′l. If rτ,t+1 = 1 then, for
every 0 < k 6 m, R′k = B′k−1.

2. There exists a component R̂0 of Gn[t] such that R̂0
∼= R0 and, for each k 6 m,

there exist components Ŷk, X̂k, Ẑk, B̂k, and Ĉk of Gn[t] such that Ŷk ∼= Yk,

X̂k
∼= Xk, Ẑk ∼= Zk, B̂k

∼= Bk, and Ĉk ∼= Ck.

3. Let R̂′0 be the component of Gn[s] that extends R̂0 and, for each k 6 m, let

Ŷ ′k, X̂ ′k, Ẑ ′k, B̂′k, and Ĉ ′k be the components of Gn[s] that extend Ŷk, X̂k, Ẑk,

B̂k, and Ĉk, respectively. R̂′0
∼= R′0 and, for each k 6 m, Ŷ ′k

∼= Y ′k, X̂ ′k
∼= X ′k,

Ẑ ′k
∼= Z ′k, B̂′k

∼= B′k, and Ĉ ′k
∼= C ′k.

Proof. There are no τ -recovery stages in the interval (t+ 1, s], which implies that if
τ is initialized in the interval (t, s] then this initialization happens after stage sm+1.
So the first part of the lemma follows from the way Y 0

τ,sk
, X0

sk
, Z0

τ,sk
, B0

τ,sk
, R0

τ,sk
,
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and C0
τ,sk

are defined. The second part of the lemma follows from the definition of
σ-recovery stage. We prove the third part of the lemma.

In the τ = σ case, the proof is the same as the proof of the third part of
Lemma 3.2.29. We handle the τ ⊇ σa0 case. There are two subcases.

First suppose that rτ,t+1 = 0.
Let k 6 m. Since σ is active whenever τ is active, it follows from the τ = σ case

that X̂ ′k
∼= X ′k.

The only components of A0
s that contain copies of Ẑk are X ′k and Z ′k. Since

X̂ ′k
∼= X ′k, it must be the case that Ẑ ′k

∼= Z ′k.

The only components of A0
s that contain copies of B̂k are Z ′k and B′k. Since

Ẑ ′k
∼= Z ′k, it must be the case that B̂′k

∼= B′k.

The only components of A0
s that contain copies of R̂0 are R′0 and B′0, . . . , B

′
m.

We have shown that, for every k 6 m, B̂′k
∼= B′k. Thus it must be the case that

R̂′0
∼= R′0.
We now proceed by reverse induction, beginning with m. Let k 6 m. Assume

by induction that, for all j > k, Ŷ ′j
∼= Y ′j , X̂

′
j
∼= X ′j, Ẑ

′
j
∼= Z ′j, B̂

′
j
∼= B′j, and Ĉ ′j

∼= C ′j.

As in the τ = σ case, we may assume that if K is one of Ŷ ′k , X̂
′
k, Ẑ

′
k, B̂

′
k, or Ĉ ′k and

L is a component of A0
s such that K ∼= L then L is one of R′0, Y ′k , X

′
k, Z

′
k, B

′
k, or

C ′k.

We have already seen that X̂ ′k
∼= X ′k, Ẑ

′
k
∼= Z ′k, B̂

′
k
∼= B′k, and R̂′0

∼= R′0.
The only components among R′0, Y ′k , X

′
k, Z

′
k, B

′
k, or C ′k that contain copies of

Ĉk are R′0 and C ′k. Since R̂′0
∼= R′0, it must be the case that Ĉ ′k

∼= C ′k.
The only components among R′0, Y ′k , X

′
k, Z

′
k, B

′
k, or C ′k that contain copies of

Ŷk are C ′k and Y ′k . Since Ĉ ′k
∼= C ′k, it must be the case that Ŷ ′k

∼= Y ′k .
Now suppose that rτ,t+1 = 1.

As before, it follows from the τ = σ case that X̂ ′k
∼= X ′k for all k 6 m.

We first proceed by reverse induction, beginning with m, to show that Ẑ ′k
∼= Z ′k,

B̂′k
∼= B′k, and R̂′0

∼= R′0. Let k 6 m. We may assume by induction that, for all

k < j 6 m, B̂′j
∼= B′j.

The only components of A0
s that contain copies of Ẑk are X ′k and Z ′k. Since

X̂ ′k
∼= X ′k, it must be the case that Ẑ ′k

∼= Z ′k.

The only components of A0
s that contain copies of B̂k are Z ′k, and B′j, k 6 j 6 m.

Since Ẑ ′k
∼= Z ′k and, for all k < j 6 m, B̂′j

∼= B′j, it must be the case that B̂′k
∼= B′k.

The only components of A0
s that contain copies of R̂0 are R′0 and B′0, . . . , B

′
m.

We have shown that, for every k 6 m, B̂′k
∼= B′k. Thus it must be the case that

R̂′0
∼= R′0.

Now let 0 < k 6 m. The only components of A0
s that contain copies of Ĉk are
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B′k−1 and C ′k. Since B̂′k−1
∼= B′k−1, it must be the case that Ĉ ′k

∼= C ′k.

The only components of A0
s that contain copies of Ĉ0 are R′0 and C ′0. Since

R̂′0
∼= R′0, it must be the case that Ĉ ′0

∼= C ′0.

Let k 6 m. The only components of A0
s that contain copies of Ŷk are C ′k and

Y ′k . Since Ĉ ′k
∼= C ′k, it must be the case that Ŷ ′k

∼= Y ′k .

The following lemma can be easily checked.

3.3.40 Lemma. Let m ∈ ω be of the form 6〈pτq, j〉+ 3 or 6〈pτq, j, k〉+ l, τ = σ or
σa0 ⊆ τ , j, k ∈ ω, l ∈ {1, 2, 4, 5}. If (m)s participates in an operation at stage s+ 1
then it is one of Y 0

τ,s, Z
0
τ,s, B

0
τ,s, R

0
τ,s, or C0

τ,s.
Let m ∈ D′′6 . If (m)s participates in an operation at stage s + 1 then it is X0

s

and σ is active at stage s+ 1.

3.3.41 Lemma. Let u be a stage after which σ is never initialized and such that,
for all s > u, rσ,s = 0. Let s+ 1 > u be a σ-recovery stage and let t+ 1 be the next
σ-recovery stage after stage s + 1. Let m ∈ D6. Suppose there exists a component
L of Gn[s] that is isomorphic to (m)s. Then the component L′ of Gn[t] that extends
L is isomorphic to (m)t.

Proof. If (m) does not participate in an operation in the interval (s, t] then (m)t ∼=
(m)s. Since L′ ⊇ L, (m)t is not embeddable in another component of A0

t , and, by
convention (see pages 38–39), Gn[t] is embeddable in A0

t , this means that L′ ∼= (m)t.
Otherwise, the lemma follows from Lemmas 3.3.39 and 3.3.40.

3.3.42 Lemma. Let u be a stage after which σ is never initialized and such that,
for all s > u, rσ,s = 0. Let x ∈ PD6. There exists a σ-recovery stage s + 1 > u
such that x is contained in (k)s for some k ∈ D6 and there exists an isomorphic
component L of Gn[s]. For any such s, if we let g be the unique isomorphism from
(k)s to L then f(x) = g(x).

Proof. If x is contained in a finite component of A0 then the existence of s follows
from the fact that Gn ∼= A0. Otherwise, there are t > s > u such that s + 1 is
a σ-recovery stage, there are no σ-recovery stages in the interval (s + 1, t + 1], x
is contained in (k)t, k ∈ D6, and (k)t is involved in an operation at stage t + 1.
Now it follows from Lemma 3.3.39 that x is contained in (k)s and there exists an
isomorphic component L of Gn[s].

Let s + 1 = s0 + 1 < s1 + 1 < · · · be the σ-recovery stages greater than or
equal to s+ 1. Let Li be the component of Gn[si] that extends L and let L′ be the
component of Gn that extends L. Using Lemma 3.3.41 and induction, we see that,
for each i > 0, there exists a unique isomorphism gi : (k)si

∼= Li. Note that g0 = g.
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Clearly, if j > i then gj extends gi. Thus the limit g′ of the gi is well-defined and is
an isomorphism from (k) to L′. By the uniqueness of f , f(x) = g′(x) = g(x).

3.3.43 Lemma. f � PD6 is computable.

Proof. Let u be a stage after which σ is never initialized and such that, for all s > u,
rσ,s = 0. Given x ∈ PD6 , find the least σ-recovery stage s + 1 > u such that x is
contained in a component (m)s, m ∈ D6, of A0

s and there exists a component L
of Gn[s] isomorphic to (m)s. Such a stage exists by Lemma 3.3.42. Let gx be the
unique isomorphism from (m)s to L. Again by Lemma 3.3.42, f(x) = gx(x). Since
gx can be computably determined given x ∈ PD6 , f � PD6 is computable.

By Lemmas 3.3.30, 3.3.32, 3.3.34, 3.3.35, 3.3.37, 3.3.38, and 3.3.43, f � PDi is
computable for each i 6 6. As can be easily checked by referring to Table 3.1,
D0, . . . , D6 are computable and

⋃6
i=0 Di = ω. Thus, by Lemma 3.3.27, we have the

following result.

3.3.44 Lemma. The unique isomorphism f : A0 ∼= Gn is computable.

Theorem 3.1.4 follows from Lemmas 3.3.4, 3.3.5, 3.3.22, 3.3.23, and 3.3.44. �

3.4 Proof of Theorem 3.1.6

In this section we prove the following theorem.

3.1.6. Theorem. Let {Ai}i∈ω be a uniformly c.e. (u.c.e.) collection of sets. There
exists an intrinsically c.e. relation U on the domain of a computable structure A
such that DgSpA(U) = {deg(Ai) | i ∈ ω}.

Proof. Let {Ai}i∈ω be a u.c.e. collection of sets. Let A =
⊕

i∈ω Ai = {〈i, x〉 |
x ∈ Ai} and let a0, a1, . . . be a computable enumeration of A. Let A[0] = ∅,
A[s+ 1] = {a0, . . . , as}.

We wish to construct computable structures Ai, i ∈ ω, and for each such struc-
ture a corresponding unary relation U i on the domain of Ai, so that for all i, j ∈ ω,
the following properties hold.

(3.4.1) Ai ∼= Aj via an isomorphism that carries U i to U j.

(3.4.2) U i ≡m Ai.

(3.4.3) If G ∼= A0 is a computable structure then the image of U0 in G is m-
equivalent to Ak for some k ∈ ω.
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The construction will be similar to the one in Section 3.2, as will the proof that
the above properties hold. In this section, we restrict ourselves to pointing out the
necessary changes.

We assume without loss of generality that, for all i ∈ ω, Ai 6= ∅ and Ai 6= ω. We
also assume that A is not computable. (If A is computable then {deg(Ai) | i ∈ ω} =
{0}, and it is obvious that there exists a relation on the domain of a computable
structure with degree spectrum {0}.)

The basic idea is the following. Suppose that at stage s + 1 we perform an
L-operation involving copies of [6as] and appropriate special components on Aπ0(as)

s

and perform the corresponding R-operation on each Ajs, j 6= π0(as), and that we

then put the coding location of the old copy of [6as] in Aπ0(as)
s into Uπ0(as) and, for

each j 6= π0(as), we put the coding location of the new copy of [6as] in Ajs into U j.
Then the coding location x of a copy of [6〈i, k〉], k ∈ ω, in Ai is in U i if and only if
x ∈ Ai0 and k ∈ Ai. On the other hand, the coding location of a copy of [6〈j, k〉],
k ∈ ω, j 6= i, is in U i if and only if it is not in Ai0. Thus (3.4.2) is satisfied.

However, there is a problem in defining the isomorphism recovery mechanism
used to satisfy (3.4.1), due to the fact that both L- and R-operations are applied
to a given Ai during the construction. We deal with this by separating the stages
at which elements enter the U i from the stages at which isomorphism recovery can
happen, reserving the even stages for the former purpose and the odd ones for the
latter.

We now give the full description of the construction of the Ai and U i.

stage 0. Let each Ai0, i ∈ ω, be a computable structure with co-infinite domain,
consisting of one copy of [k] for each k ∈ ω. For each n ∈ ω, let rn,0 = 0.

stage 2s+ 1. For each n < s+ 1, say that 2s+ 1 is an n-recovery stage if all of the
following conditions hold.

1. Gn[2s] has a special component isomorphic to some component of A0
2s. (Here

“special component” has the same meaning as in the previous section.)

2. (Gn[2s])n ∼= (A0
2s)n.

3. Let j /∈ A[s] be less than or equal to the number of n-recovery stages before
stage 2s + 1. There is a component of Gn[2s] isomorphic to [6j], for each
l ∈ {1, 2} there is a component of Gn[2s] isomorphic to [6〈n, j〉 + l], and for
each l ∈ {10, 11} there is a component of Gn[2s] isomorphic to [12〈n, j〉+ l].

4. Let c be the number of n-recovery stages before stage 2s+1. For each l ∈ {4, 5}
there is a component of Gn[2s] isomorphic to [12〈n, c〉+ l].
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If 2s + 1 is an n-recovery stage then, for i ∈ ω, let Sin,2s be the component of
Ai2s that is isomorphic to the special component of Gn[2s]. If 2s + 1 is the first
n-recovery stage then let rn,2s+1 = 0. Otherwise, proceed as follows. Let i = rn,2s
and let 2t+ 1 be the last n-recovery stage before stage 2s+ 1. If Sin,2s extends Sin,2t
then let rn,2s+1 = i. Otherwise, let c be the number of n-change stages (defined
below) before stage 2s+ 1 and let rn,2s+1 = π0(c).

If 2s+ 1 is not an n-recovery stage then let rn,2s+1 = rn,2s.
We say that 2s + 1 is an n-change stage if it is the first n-recovery stage or

rn,2s+1 6= rn,2s. We say that 2s + 1 is an n-isomorphism recovery stage if it is an
n-recovery stage but not an n-change stage and one of the following conditions
holds.

1. The last n-recovery stage before stage 2s+ 1 was an n-change stage.

2. There has been at least one stage at which n was active after the last n-iso-
morphism recovery stage and before stage 2s+ 1.

Let n0, n1, . . . , nm be all the numbers nk such that 2s+1 is an nk-recovery stage.
We say that each nk, k 6 m, is active at stage 2s+ 1. For each k 6 m, proceed as
follows. Let i = rnk,2s+1 and let 2t + 1 6 2s + 1 be the last nk-recovery stage. Let
Ri
nk,2s

be the component of Ai2s that extends Sink,2t and, for each j 6= i, let Rj
nk,2s

be

the isomorphic image of Ri
nk,2s

in Aj2s. Let ck be the number of nk-recovery stages
before stage 2s+ 1.

For each k 6 m, we define components Bj
nk,2s

and Cj
nk,2s

, j ∈ ω. There are two
cases.

1. 2s + 1 is an nk-isomorphism recovery stage. If the first condition in the def-
inition of nk-isomorphism recovery stage holds then let t + 1 be the last
nk-recovery stage, and otherwise let t + 1 be the first stage after the last
nk-isomorphism recovery stage at which nk was active. Let Ci

nk,2s
be the

component of Ai2s that extends Bi
nk,t

and, for j 6= i, let Cj
nk,2s

be the isomor-

phic image of Ci
nk,2s

in Aj2s. For j ∈ ω, let Bj
nk,2s

be the component of Aj2s
isomorphic to [12〈nk, ck〉+ 4].

2. 2s+1 is not an nk-isomorphism recovery stage. For j ∈ ω, let Bj
nk,2s

and Cj
nk,2s

be the components of Aj2s isomorphic to [12〈nk, ck〉 + 4] and [12〈nk, ck〉 + 5],
respectively.

For each i ∈ ω, we define operations Oi
0, . . . ,O

i
m as follows. If i = rnk,2s+1 then

let Oi
k = L(Bi

nk,2s
, Ri

nk,2s
, Ci

nk,2s
). Otherwise, let Oi

k = R(Bi
nk,2s

, Ri
nk,2s

, Ci
nk,2s

).
For each i ∈ ω, perform the sequence of operations Oi

0, . . . ,O
i
m on Ai2s to get

Ai2s+1.
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stage 2s+ 2. For each n ∈ ω, let rn,2s+2 = rn,2s+1.
Let l = π0(as). Let n0, n1, . . . , nm be all the numbers nj such that as is less

than the number of nj-recovery stages before stage 2s + 2. We say that each nj,
j 6 m, is active at stage 2s+ 2. For i ∈ ω and j 6 m, let X i

2s+1, Y i
nj ,2s+1, Zi

nj ,2s+1,

Bi
nj ,2s+1, and Ci

nj ,2s+1 be the components of Ai2s+1 isomorphic to [6as], [6〈nj, as〉+1],
[6〈nj, as〉+ 2], [12〈nj, as〉+ 10], and [12〈nj, as〉+ 11], respectively.

For each k 6 m, proceed as follows. Let i = rnk,2s+2 and let 2t + 1 be the last
nk-recovery stage before stage 2s+ 2. Let Ri

nk,2s+1 be the component of Ai2s+1 that

extends Sink,2t and, for each j 6= i, let Rj
nk,2s+1 be the isomorphic image of Ri

nk,2s+1

in Aj2s+1.
Now perform

L(Y l
n0,2s+1, . . . , Y

l
nm,2s+1;X l

2s+1;Z l
n0,2s+1, . . . , Z

l
nm,2s+1;Bl

n0,2s+1, R
l
n0,2s+1, C

l
n0,2s+1;

Bl
n1,2s+1, R

l
n1,2s+1, C

l
n1,2s+1; . . . ;Bl

nm,2s+1, R
l
nm,2s+1, C

l
nm,2s+1)

on Al2s+1 to get Al2s+2 and, for each j 6= l, perform

R(Y j
n0,2s+1, . . . , Y

j
nm,2s+1;Xj

2s+1;Zj
n0,2s+1, . . . , Z

j
nm,2s+1;Bj

n0,2s+1, R
j
n0,2s+1, C

j
n0,2s+1;

Bj
n1,2s+1, R

j
n1,2s+1, C

j
n1,2s+1; . . . ;Bj

nm,2s+1, R
j
nm,2s+1, C

j
nm,2s+1)

on Aj2s+1 to get Aj2s+2. (If no n is active at stage 2s+2 then, for each i ∈ ω, let Y i
2s+1

and Zi
2s+1 be the components of Ai2s+1 isomorphic to [6〈0, as〉+ 1] and [6〈0, as〉+ 2],

respectively. Perform L(Y l
2s+1, X

l
2s+1, Z

l
2s+1) on Al2s+1 to get Al2s+2 and, for each

j 6= l, perform R(Y j
2s+1, X

j
2s+1, Z

j
2s+1) on Aj2s+1 to get Aj2s+2.)

Put the coding location of the copy of [6as] in Al0 into U l and, for each j 6= l,
put the coding location of the copy of [6as] in Aj2s+2 −A

j
2s+1 into U j.

This completes the construction. For each i ∈ ω, let Ai =
⋃
s∈ωAis. As previ-

ously remarked, the proof that (3.4.1)–(3.4.3) are satisfied is similar to what we did
in Section 3.2. We begin by showing that (3.4.2) is satisfied.

3.4.1 Lemma. For each i ∈ ω, U i ≡m Ai.

Proof. If k is the coding location of a copy of [6〈i, x〉] in Ai then k ∈ U i if and only
if k ∈ Ai0 and x ∈ Ai. On the other hand, if k is the coding location of a copy of
[6〈j, x〉] in Ai for some x ∈ ω, j 6= i, and k enters U i at stage s+ 1 then k is a new
number at that stage, and hence is greater than s.

Lemmas 3.2.8, 3.2.9, 3.2.10, 3.2.11, 3.2.12, 3.2.14, and 3.2.18 still hold, as do
the following versions of Lemmas 3.2.13, 3.2.15, 3.2.16, and 3.2.17. In all cases, the
reasoning is basically the same as in Section 3.2.
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3.4.2 Lemma. Let i, j, s ∈ ω. Ais ∼= Ajs and no component of Ais is embeddable
in another component of Ais. Furthermore, if a component of Ais participates in an
operation at stage s+ 1 then so does the (unique) isomorphic component of Ajs.

3.4.3 Lemma. Let 2s+1 be an n-recovery stage that is not the first such stage. Let
2t+ 1 be the last n-recovery stage before stage 2s+ 1 and suppose that rn,2t+1 = i 6=
rn,2s+1. Then for some u ∈ [t, s), Sin,2s extends one of Bi

n,2u, Bi
n,2u+1, or Ci

n,2u+1.

3.4.4 Lemma. Suppose that rn,t = i for all t > s. Then no component of (Ai)n can
participate in an operation more than twice after stage s unless it extends Ri

n,t for
some t > s, while for j 6= i, no component of (Aj)n can participate in an operation
more than twice after stage s unless it extends Ci

n,t for some t > s such that t + 1
is an n-isomorphism recovery stage.

3.4.5 Lemma. Suppose that s < t < v are such that s + 1 is an n-isomorphism
recovery stage, rn,u = rn,s+1 for all u > s, t + 1 is the next stage after stage s + 1
at which n is active, and v + 1 is the next n-isomorphism recovery stage after
stage s + 1. For j ∈ ω, let Bj and Rj be the components of Ajt+1 that extend Bj

n,t

and Rj
n,t, respectively, and let B̂j and R̂j be the components of Ajv that extend Bj

and Rj, respectively. Then B̂i ∼= Bi and, for j 6= i, R̂j ∼= Rj.

We now wish to show that that (3.4.3) is satisfied. Lemma 3.2.20 still holds,
and hence so does Lemma 3.2.26. In both cases the proofs are essentially the same
as in Section 3.2. Using Lemma 3.4.3 in place of Lemma 3.2.15, we can prove
Lemma 3.2.19 in much the same way as before. (Notice that the way we define
rn,2s+1 guarantees that if rn,s does not have a limit then for each i ∈ ω there are
infinitely many stages s such that rn,s = i.) Now Lemma 3.2.27 follows, as before,
from Lemmas 3.2.19 and 3.2.26.

Lemmas 3.2.28 and 3.2.29 still hold, with essentially the same proofs as in Sec-
tion 3.2, provided that, in the latter lemma, we make the obvious changes arising
from the fact that if n is active at stage 2s + 1 then the components Bi

n,2s, R
i
n,2s,

and Ci
n,2s are defined but the components Y i

n,2s, X
i
2s, and Zi

n,2s are not.
Now the following lemma can be proved in much the same way as Lemma 3.2.30.

3.4.6 Lemma. Suppose that 2s+ 1 is an n-recovery stage such that rn,2s+1 = rn,2s.
Let 2t + 1 be the last n-recovery stage before stage 2s + 1 and let j ∈ A[s] − A[t]
be less than the number of n-recovery stages less than or equal to 2t + 1. By the
definition of n-recovery stage, there is a unique component K of Gn[2t] isomorphic
to [6j]. Let L be the component of Gn that extends K. Then L contains a copy of
[6〈n, j〉+ 2] if and only if rn,2s+1 = π0(j).

The previous lemma allows us to establish that (3.4.3) is satisfied.
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3.4.7 Lemma. Suppose that Gn ∼= A0. Let U be the image of U0 under this iso-
morphism. Then U ≡m Ai for some i ∈ ω.

Proof. Let N and M be as in the proof of Lemma 3.2.31. By Lemma 3.2.28, it is
enough to show that U ∩M ≡m Ai for some i ∈ ω. By Lemma 3.2.27, rn,s has a
limit i. Let M0 be the set of elements of M that are coding locations of copies of
graphs of the form [6n], π0(n) = i, and let M1 = M −M0. Note that M0 and M1

are computable.
Now, combining Lemmas 3.2.18 and 3.4.6, we see that

1. an element x of M0 is in U if and only if, for some j ∈ Ai, x is the coding
location of the first copy of [6〈i, j〉] to appear in Gn, while

2. an element x of M1 is in U if and only if, for some k ∈ ω, x is the coding
location of the second copy of [6k] to appear in Gn.

So U ∩M0 ≡m Ai and U ∩M1 is computable, and thus U ∩M ≡m Ai.

We are left with showing that (3.4.1) is satisfied. Lemma 3.2.21 still holds, with
basically the same proof as before. Lemma 3.2.22 still holds, but the proof needs to
be slightly modified, so we restate the lemma and give the new proof.

3.4.8 Lemma. Suppose that n is active infinitely often and s and i are such that
rn,t = rn,s = i for all t > s. By Lemma 3.2.21, there are infinitely many n-
isomorphism recovery stages. Let s0 + 1 < s1 + 1 < · · · be the n-isomorphism
recovery stages after stage s. For each j ∈ ω, let tj + 1 be the next stage after stage
sj + 1 at which n is active. (Note that tj < sj+1 for all j ∈ ω.) For t > t0, let K l

t

be the component of Alt that extends Rl
n,t0

. Then K l
tj

= Rl
n,tj

for all j ∈ ω.

Proof. That Ki
sj

= Ri
n,sj

for all j ∈ ω follows from Lemma 3.2.14.

Now let l 6= i and assume by induction that K l
tj

= Rl
tj

. Let B be the component

of Aitj+1 that extends Bi
n,tj

. By construction, B ∼= K l
tj+1. Since sj+1 + 1 is an

n-isomorphism recovery stage, Ci
sj+1

extends B. Thus, by Lemma 3.4.5, Ci
sj+1

∼= B.

By the same lemma, K l
sj+1

∼= K l
tj+1. So Ci

sj+1

∼= K l
sj+1

, and thus C l
sj+1

= K l
sj+1

.

Let R be the component of Aisj+1+1 that extends Ri
n,sj+1

. Then R ∼= K l
sj+1+1. But,

by Lemma 3.2.11, Ri
n,tj+1

∼= R and K l
tj+1

∼= K l
sj+1+1. So K l

tj+1

∼= Ri
n,tj+1

, and thus

K l
tj+1

= Rl
n,tj+1

.

If we assume the hypotheses of Lemma 3.4.8 and let Sln be the component of
Al that extends Rl

n,s0
then we can prove Lemma 3.2.23 in the same way as before,

using Lemma 3.4.4 in place of Lemma 3.2.16. Furthermore, the following version of
Lemma 3.2.24 follows directly from Lemma 3.4.8.
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3.4.9 Lemma. Assume the hypotheses of Lemma 3.4.8 and let Sln be the component
of Al that extends Rl

n,s0
. Then Skn

∼= Sln for all k, l ∈ ω.

Reasoning as in Section 3.2 (using Lemma 3.4.2 in place of Lemma 3.2.13), we
see that Lemmas 3.2.23 and 3.4.9 suffice to establish that (3.4.1) is satisfied.

3.4.10 Lemma. For each i, j ∈ ω, Ai ∼= Aj via an isomorphism that carries U i to
U j.

Theorem 3.1.6 follows from Lemmas 3.4.1, 3.4.7, and 3.4.10. �

3.5 Proof of Theorem 3.1.7

In this section we prove the following theorem.

3.1.7. Theorem. Let α ∈ ω ∪ {ω} and let b > 0 be an α-c.e. degree. There
exists an intrinsically α-c.e. relation V on the domain of a computable structure B
of computable dimension 2 such that DgSpB(V ) = {0,b}.

Proof. Let α ∈ ω ∪ {ω} and let B be an α-c.e. set that is not computable. It is
well-known (see [6]) that there exist a computable sequence b0, b1, . . . ∈ ω and a
function f such that

1. either α < ω and f(x) = α for all x ∈ ω or α = ω and f is computable,

2. |{s | bs = x}| 6 f(x) for all x ∈ ω, and

3. x ∈ B ⇔ |{s | bs = x}| ≡ 1 mod 2.

We wish to construct computable structures B0 and B1 and unary relations V 0

and V 1 on the domains of B0 and B1, respectively, so that the following properties
hold.

(3.5.1) B0 ∼= B1 via an isomorphism that carries V 0 to V 1.

(3.5.2) V 0 ≡m B and V 1 is computable.

(3.5.3) If G ∼= B0 is a computable structure then G is computably isomorphic to
either B0 or B1.

(3.5.4) B0 is rigid.
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For each s ∈ ω, let cs = |{t < s | bt = bs}| and let as = 〈bs, cs〉. Let A =
{a0, a1, . . .}. A is clearly c.e. but not computable, so we can follow the construction
in Section 3.3 to obtain computable structures A0 and A1 and relations U0 and U1

on the domains of A0 and A1, respectively, satisfying properties (3.3.1)–(3.3.4). (We
assume that the construction has been carried out in such a way that the domains
of A0 and A1 are co-infinite.)

Now, for i = 0, 1, proceed as follows. Add an element, which we will call the
identifying node of Bi to the domain of Ai and add an edge from this node to each
node of Ai. For each j ∈ ω and each sequence of components L0, L1, . . . , Lf(j)−1

such that each Lk contains a copy of [6〈j, k〉], add an element x (which will be said
to be a j-coding node) to the domain of Ai and, for each k < f(j), add an edge
from x to the coding location of the copy of [6〈j, k〉] in Lk. The resulting graph is
Bi.

Clearly, each Bi is a computable graph, and the following lemma can be easily
checked, using the fact that A0 is rigid.

3.5.1 Lemma. B0 is rigid.

We now define a relation V i on the domain of Bi. Let Ki be the set of coding
nodes in Bi. Let j ∈ ω and let x be a j-coding node in Bi. By construction, there
exist components L0, . . . , Lf(j)−1 of Ai such that, for each k < f(j), Lk contains a
copy of [6〈j, k〉] whose coding location yk is attached to x. Let ci(x) be the least
k < f(j) such that yk /∈ U i, if such a k exists, and let ci(x) = f(j) otherwise. Now
let V i = {x ∈ Ki | ci(x) is odd}.

3.5.2 Lemma. B0 ∼= B1 via an isomorphism that carries V 0 to V 1.

Proof. By (3.2.1), A0 ∼= A1 via an isomorphism that carries U0 to U1. It is straight-
forward to extend this isomorphism to an isomorphism h : B0 ∼= B1. The fact that
h(U0) = (U1) implies that if x ∈ K0 then c0(x) = c1(h(x)). Thus h(V 0) = V 1.

3.5.3 Lemma. V1 is computable and V0 ≡m B.

Proof. Since U1 is computable, there is a computable procedure for determining
c(x) given x ∈ K0, and thus V1 is computable.

Let x ∈ K0. By construction, there exist components L0, . . . , Lf(j)−1 of A0

such that, for each k < f(j), Lk contains a copy of [6〈j, k〉] whose coding location
yk is attached to x. Let d(x) be the least k such that, for all m > k, ym is the
coding location of the copy of [6〈j,m〉] in A0

0, if such a k exists, and let d(x) = f(j)
otherwise. Note that there is a computable procedure for determining d(x) given
x ∈ K0.
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If d(x) > 0 then clearly 〈j, d(x)−1〉 ∈ A. But this means that, in fact, 〈j, k〉 ∈ A
for all k < d(x). It follows that we can computably determine whether yk ∈ U0 for
k < d(x). So S = {x ∈ K0 | c(x) < d(x)}, T = K0−S, and V 0∩S are computable.

Now let x ∈ T be a j-coding node and let y0, . . . , yf(j)−1 be as above. By
the definition of T , y0, . . . , yd(x)−1 ∈ U0, so 〈j, k〉 ∈ A for all k < d(x). But, by
the definition of d(x), for each k > d(x), yk ∈ U0 if and only if 〈j, k〉 ∈ A. So
c(x) = |{k | 〈j, k〉 ∈ A}| = |{t | bt = j}|. Thus x ∈ V 0 if and only if j ∈ B, and
hence V 0 ∩ T ≡m B. Since V 0 = (V 0 ∩ S) ∪ (V 0 ∩ T ), it follows that V 0 ≡m B.

3.5.4 Lemma. If G ∼= B0 is a computable structure then G is computably isomorphic
to either B0 or B1.

Proof. Let z be the image of the identifying node of B0 in G. Let G ′ be the com-
putable subgraph of G consisting of all elements y of G such that there is an edge
from z to y. By the definition of B0, G ′ is isomorphic to A0. Thus, by the results of
Section 3.3, for some i = 0, 1 there exists a computable isomorphism h : Ai ∼= G ′.

To extend this isomorphism to a computable isomorphism ĥ : Bi ∼= G, we first
define ĥ � Ai ≡ h. Now let x ∈ Bi −Ai. Then x is a j-coding node for some j ∈ ω,
and we can computably determine the f(j) many coding locations y0, . . . , yf(j)−1

attached to x. There is a unique w ∈ G − G ′ attached to h(y0), . . . , h(yf(j)−1).

Define ĥ(x) = w. It is now easy to check that ĥ is a computable isomorphism from
Bi to G.

Theorem 3.1.7 follows from Lemmas 3.5.1, 3.5.2, 3.5.3, and 3.5.4. �



Chapter 4

Expansions of Computably
Categorical Structures

4.1 Introduction

In classical model theory, it follows from the Ryll-Nardzweski Theorem that a count-
ably categorical structure remains countably categorical when expanded by finitely
many constants. It is natural to ask whether the same is true in the analogous situa-
tion in computable model theory. That is, does every computably categorical struc-
ture remain computably categorical when expanded by finitely many constants?

Millar [28] showed that, with a relatively small additional amount of decidability,
computable categoricity is preserved under expansion by finitely many constants.

4.1.1 Theorem (Millar). If A is computably categorical and 1-decidable then any
expansion of A by finitely many constants remains computably categorical.

However, preservation of categoricity does not hold in general, as was shown by
Cholak, Goncharov, Khoussainov, and Shore [4].

4.1.2 Theorem (Cholak, Goncharov, Khoussainov, and Shore). If k > 0 then
there exists a computably categorical structure A and an a ∈ |A| such that 〈A, a〉
has computable dimension k.

This raises the following question, left open in [4], as well as in [24], where an
easier proof of Theorem 4.1.2 is given: Does there exist a computably categorical
structure whose expansion by some set of finitely many constants has computable
dimension ω? In this chapter, which reports on joint work with Bakhadyr Khous-
sainov and Richard Shore, we apply the methods of Chapter 3 to give the following
positive answer to this question.
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4.1.3 Theorem. There exists a computably categorical structure A and an a ∈ |A|
such that 〈A, a〉 has computable dimension ω.

4.2 Proof of Theorem 4.1.3

We will build a computable structure A and a computable set {ai}i∈Z of elements
of |A| so that the following properties hold.

(4.2.1) For every i ∈ Z, 〈A, ai〉 ∼= 〈A, a0〉.

(4.2.2) For every i 6= j ∈ Z, 〈A, ai〉 is not computably isomorphic to 〈A, aj〉.

(4.2.3) If G is a computable structure, g ∈ |G|, and 〈G, g〉 ∼= 〈A, a0〉, then 〈G, g〉
is computably isomorphic to 〈A, ai〉 for some i ∈ Z.

The ideas used in this proof borrow heavily from those of Chapter 3, and we
will assume familiarity with the methods and definitions in that chapter.

The structure A will be a leveled graph, in the sense of the following definition.

4.2.1 Definition. The backbone graph is the directed graph, shown in Figure 4.1,
consisting of the following nodes and edges.

1. A root node x.

2. For each i ∈ Z, an i-master node xi, with an edge from x to xi.

3. For each i ∈ Z, an edge from xi to xi+1.

We will say that a directed graph G is leveled if |G| can be split into two disjoint
sets H and I so that the following conditions are satisfied. Here a cycle is a copy
of [k] for some k ∈ ω, where [k] is as in Definition 3.2.1.

1. G � H is isomorphic to the backbone graph.

2. G � I consists of cycles and edges between the tops of some of these cycles.

3. The only edges in G between elements of H and elements of I are edges from
i-master nodes, i ∈ Z, to tops of cycles.

4. Let i 6= j ∈ Z. If there is an edge from the i-master node of G � H to an
element y of I then there is no edge from the j-master node of G � H to y.
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We call the connected components of G � I the components of G. Let C be a
cycle in G � I and let i ∈ Z. If there is a node from the i-master node to the top
of C then we say that C has level i. Let K be a component of G, in the above
sense. If all the cycles in K have the same level i then we say that K has level i,
and define level(K) = i. If none of the cycles in K have levels then we say that K
has no level. If there are two cycles in K with different levels then we say that K
has multiple levels.

For i ∈ Z, Gi will denote the subgraph of G consisting of all level-i components
of G. We denote by G∗ the subgraph of G consisting of those components of G that
either have no level or have multiple levels.

Let n, r ∈ ω. Suppose that G is such that every component M of G∗ that has
multiple levels consists of a cycle K with no level whose top is connected to the tops
of infinitely many cycles L0, L1, . . . such that, for each i ∈ ω, Li has a level g(i). For

each component M of G∗ as above, let M̂ be the graph obtained by restricting the
domain of M to the union of |K| and |Li| for every i ∈ ω such that |g(i)− r| 6 n.

We denote by (G∗)n,r the union of all M̂ such that M is a component of G∗. In case
r = 0, we write simply (G∗)n.

...

• 2-master node

OOOO

• 1-master node

OOOO

root node •

GG GG

CC CC

99 99

// //

$$ $$

�� ��

�� ��

• 0-master node

OOOO

• −1-master node

OOOO

• −2-master node

OOOO

...

OOOO

Figure 4.1: The backbone graph

The components of A∗ that have multiple levels will be of the form given in the
previous paragraph, so it will make sense to talk about (A∗)n,r and (A∗)n. The ai
mentioned in (4.2.1)–(4.2.3) will be the i-master nodes of A.

Before describing the construction of A, we note that we can restrict the class
of graphs that must be considered in satisfying property (4.2.3). Fix a computable
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presentation B of the backbone graph with co-infinite domain. Every computable
leveled graph is computably isomorphic to a computable graph containing B as a
subgraph, so it is enough to consider such graphs. It will also be the case that every
cycle in A will have a level except for cycles of the form [10k], k ∈ ω, which will not
have levels, so it is enough to consider graphs satisfying this property.

Thus, in this section, we will only consider partial computable graphs G satisfy-
ing the following conditions for each s ∈ ω.

1. G[s] � (|G[s]| ∩ |B|) ∼= B � (|G[s]| ∩ |B|).

2. If x ∈ |G[s]| then x is contained in a cycle in G[s].

3. Let K be a cycle not of the form [10k], k ∈ ω, in G[s]. There is a unique node
x of B such that x ∈ |G[s]| and there is an edge in G[s] from x to the top of
K, and x is an i-master node for some i ∈ Z.

4. Let K be a cycle of the form [10k], k ∈ ω, in G[s]. For every x ∈ |B|, there is
no edge in G[s] from x to the top of K.

Clearly, there exists a computable list G0,G1, . . . of all partial computable graphs
that satisfy the above conditions, and this list contains all the computable graphs
that must be considered in satisfying property (4.2.3). As in Chapter 3, we will
assume that, for each n, s ∈ ω, there is an embedding of Gn[s] into As.

The fact that Gn contains B means that it makes sense to speak of level i of Gn.
It also makes sense to speak of level i of Gn[s], with the understanding that if the
i-master node of B is not in |Gn[s]| then level i of Gn[s] is empty. The reason for
conditions 3 and 4 above is that they ensure that the following is true. Let K be
a cycle in Gn[s]. If K has level i in Gn[s] then it has level i in Gn, while if K has
no level in Gn[s] then it has no level in Gn. While this fact will not be needed in
our formal construction and verification, it is nevertheless useful in clarifying what
we mean when we speak of the level of a component of Gn or Gn[s] in our informal
discussion below.

In order to satisfy (4.2.2), we will satisfy the following requirement for each
e ∈ ω and i ∈ Z, i 6= 0:

R〈e,i〉 : Φe is not an isomorphism from 〈A, a0〉 to 〈A, ai〉.

Since, given j 6= k ∈ Z, any automorphism of A taking aj to ak takes a0 to ai for
some i 6= 0, this will be enough.

The basic idea for satisfying R〈e,i〉 is simple. We begin with a leveled graph
A0 with following properties. All levels are isomorphic and consist of singleton
components (in the sense of Definition 3.2.6), A∗0 consists of singleton components
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that have no level, no two components of the same level are isomorphic, and no
component that has a level is isomorphic to a component that has no level. We
choose a singleton component E0 of A0

0, let Ei be the component of Ai0 isomorphic
to E0, and let x and y be the coding locations of E0 and Ei, respectively. We
then wait until Φe(x) converges. If this never happens then we win by default. If
Φe(x)↓6= y then we win by doing nothing, thus guaranteeing that any automorphism
of A that takes a0 to ai must take x to y, which implies that Φe cannot be such an
automorphism.

If Φe(x) ↓= y then we act to ensure that no automorphism of A can take x
to y. We do this by performing operations on E0 and Ei that guarantee that
the components of A that extend each of these components are not isomorphic.
Specifically, we first choose components D0, F 0, Di, and F i such that D0 and F 0

have level 0, Di and F i have level i, D0 ∼= Di, and F 0 ∼= F i. Then we perform
an operation that guarantees that E0 is extended by a copy of E0 · F 0, while Ei is
extended by a copy of Di · Ei.

Of course, in order to keep all the levels of A isomorphic, we also need to perform
similar operations on the components of Aj0 isomorphic to D0, E0, and F 0 for each
j ∈ Z. Without any other features to the construction, we could do this simply
by performing the sequence of operations L(D0, E0, F 0) and R(Dj, Ej, F j), j ∈ Z,
j 6= 0, where these operations are as described in Definition 3.2.3.

However, as in Chapter 3, the satisfaction of (4.2.3) will require us to involve
more components than just the Dj, Ej, and F j in our operations; as in that chapter,
whenever we perform an operation, we will have several rows of components involved
in the operation. These rows will share a component, which is what will allow us
to satisfy (4.2.3) in much the same way as we satisfied the corresponding property
in Section 3.3.

In contrast to what we did before, a single operation on A will have certain rows
of components going to the left and other rows going to the right, in the sense of
Chapter 3. All of our operations will be periodic, in the sense that there is an n > 0
such that, if a row of level-i components participates in the operation by going to
the left then so does the isomorphic row of level-(i+nj) components for each j ∈ Z,
and similarly for rows that go to the right.

As an illustration, Figure 4.2, which will be explained below, shows the basic
diagonalization strategy in the case in which we are satisfying R〈e,i〉 for some e ∈ ω
and i = 3. As in the figures in Chapter 3, an arrow from, say, K to L means that
the component K is involved in the operation and becomes a copy of L. Since we
want the level-0 and level-3 components involved in the operation to go in opposite
directions, the period of this operation is 4. As above, we have components D0

and E0, but we now need multiple components F 0
0 , F 0

1 , and F 0
2 in place of F 0, for

reasons that should become clear after examining the figure. For each i ∈ Z, Di, Ei,
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D0

��

E0

��
D0 · E0 E0 � (F 0

0 , F
0
1 , F

1
2 )

similarly for all levels ≡ 0 mod 4

E1

��

F 1
0

��
E1 ·D1 F 1

0 � (E1, F 1
1 , F

1
2 )

similarly for all levels ≡ 1 mod 4

E2

��

F 2
1

��
E2 ·D2 F 2

1 � (E2, F 2
0 , F

2
2 )

similarly for all levels ≡ 2 mod 4

E3

��

F 3
2

��
E3 ·D3 F 3

2 � (E3, F 3
0 , F

3
1 )

similarly for all levels ≡ 3 mod 4

X

�� ...

F 7
2

F 6
1

F 5
0

D4

X F 3
2

F 2
1

F 1
0

D0

...

. . . , F 0
2 , D

1, F 2
0 , F

3
1 , F

4
2 , D

5, F 6
0 , F

7
1 , . . .︸ ︷︷ ︸

�� ...

F 7
1

F 6
0

D5

F 4
2

X F 3
1

F 2
0

D1

F 0
2

...

Figure 4.2: The basic diagonalization strategy
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Figure 4.2 (Continued)
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F i
0, F i

1, and F i
2 are the level-i components isomorphic to D0, E0, F 0

0 , F 0
1 , and F 0

2 ,
respectively. There is also a component X that acts as the link between different
rows of components participating in the operation.

In order to understand Figure 4.2, we need to define two new kinds of basic
operations.

4.2.2 Definition. Let G be a computable leveled graph whose domain is co-infinite.
Let L,K0, K1, . . . be components of G isomorphic to [x], [y0], [y1], . . ., respectively,
where x, y0, y1, . . . ∈ ω, such that K0, K1, . . . have levels and L has no level. Let
S = {Ki | i ∈ ω}. We define two operations, each of which takes G to a new
co-infinite computable structure extending G.

• The operation S · L consists of performing the following steps, and otherwise
leaving G unchanged. Create a new copy of [x] using numbers not in the
domain of G. For each i ∈ ω, add an edge from the top of this new copy of
[x] to the top of Ki.

• The operation L · S consists of performing the following steps, and otherwise
leaving G unchanged. For each i ∈ ω, create a new copy of [yi] using numbers
not in the domain of G. For each i ∈ ω, add an edge from the top of L to the
top of the new copy of [yi] and add an edge from the level(Ki)-master node
to the top of the new copy of [yi].

4.2.3 Definition. Let G be a computable leveled graph whose domain is co-
infinite. Let L and K0, K1, . . . , Kn be components of G isomorphic to [x] and
[y0], [y1], . . . , [yn], respectively, where x, y0, y1, . . . , yn ∈ ω, such that K0, K1, . . . , Kn

have levels.
The operation L � (K0, K1, . . . , Kn), taking G to a new computable structure

extending G, consists of performing the following steps, and otherwise leaving G
unchanged. For each i 6 n, create a new copy of [yi] using numbers not in the
domain of G. For each i 6 n, add an edge from the top of L to the top of the new
copy of [yi], an edge from the top of the new copy of [yi] to the top of L, and an
edge from the level(Ki)-master node to the top of the new copy of [yi]. For each
i, j 6 n, i 6= j, add an edge from the top of the new copy of [yi] to the top of the
new copy of [yj].

The operations in Definition 4.2.2 are infinite versions of those in Definition 3.2.5.
As an example of the operation in Definition 4.2.3, suppose that K0, K1, and K2

are copies of [2], [3], and [4], respectively. Let i, j, k be such that {i, j, k} = {0, 1, 2}.
The operation Ki� (Kj, Kk) consists of extending Ki to a copy of the graph shown
in Figure 4.3, adding an edge from the level(Kj)-master node to the new copy of
Kj, and adding an edge from the level(Kk)-master node to the new copy of Kk.
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•�� ��top // //
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• // //• // //• coding location// //•hhhh

•____top // //
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• // //• // //• // //• coding location// //•jjjj
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• // //• // //• // //• // //• coding location// //•kkkk

Figure 4.3: The result of any of [2]� ([3], [4]), [3]� ([2], [4]), or [4]� ([2], [3])

In Figure 4.2, the result of either of the operations L · S or S · L is repre-
sented by L with a line to each element of S, while the result of the operation
L � (K0, K1, . . . , Kn) is represented simply by L � (K0, K1, . . . , Kn). (The impor-
tant difference between L · (K0, K1, . . . , Kn) and L � (K0, K1, . . . , Kn) is that, for
any partial computable graph G and s < t ∈ ω, if Ki and Kj, i, j 6 n, are different
components of G[s] then they can be extended by the same component of G[t] if this
component results from an operation of the form L · (K0, K1, . . . , Kn), but not if it
results from an operation of the form L� (K0, K1, . . . , Kn).)

As we have seen, we will be performing infinite operations in our construction.
Thus, at a stage s + 1, we might add infinitely many new nodes and edges to As
to obtain As+1. We will do this in such a way that the only edges in A =

⋃
t∈ωAt

between nodes of As+1 are those already present in As+1.
As in Chapter 3, we will use special components to satisfy (4.2.3). The idea is

similar to what we did in Section 3.3. For each finite binary string σ, there will
be a strategy for satisfying (4.2.3) for G|σ|. As before, the string σ will represent a
guess as to which Gm, m < |σ|, recover infinitely often, with σ(m) = 0 representing
a guess that Gm recovers infinitely often and σ(m) = 1 representing a guess that it
does not. We will not allow σ-recovery unless there is τ -recovery for all τ such that
τa0 ⊆ σ, where σ-recovery will be defined much as before, with a few differences
which will be discussed below.

For each σ ∈ 2<ω, G|σ| will have a σ-special component, which will change each
time σ is initialized. At each stage s in the construction, we will have a guess
rσ,s as to which level of A behaves like level 0 of G|σ|, in the same sense that, in
Section 3.3, rσ,s was a guess as to which copy of the structure constructed in that
section behaved like G|σ|.

Suppose that copies of the σ-special component of G|σ| participate in an operation
at a stage s+1 (we say that σ is active at stage s+1) and t+1 is the next σ-recovery
stage after stage s + 1. If the component of At that is isomorphic to the special
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component of G|σ|[t] extends the component of As that is isomorphic to the special
component of G|σ|[s] then rσ,t+1 = rσ,s+1; otherwise, rσ,t+1 6= rσ,s+1.

Because we are diagonalizing against certain potential automorphisms of A
rather than, as in Chapter 3, coding a given set into a relation, we will be able
to arrange the construction so that σ is not active more than once between σ-
recovery stages. In fact, σ will not be active except at σ-recovery stages. This will
simplify the analysis of what happens when σ recovers. We will comment further
on this below.

By performing operations involving the images in A of the σ-special component
of G|σ| (one image for each level of A), we will ensure that, for σ on the true path
of the construction, if G|σ| ∼= A then the σ-special component of G|σ| is infinite.
We will also ensure that either for some i ∈ Z there is a level-i component that,
from some point in the construction on, always goes in the same direction as the
special component of G|σ|, or there is no component in A isomorphic to the special
component of G|σ|. As we will see, this will mean that if G|σ| ∼= A then, for each
j ∈ Z, it will be the case that from some stage sj in the construction on, the jth

level of G|σ| will go in the same direction as (j+ i)th level of A at all stages at which
σ is active.

The reason that sj will depend on j is that the operations in this construction
will involve infinitely many components at a time. Thus, we cannot make it a
requirement for σ-recovery that G|σ| provide all components that will be used in
the next operation to be performed at a stage at which σ is active, as we did in
Chapter 3. Instead, we will only require that G|σ| provide the necessary components
for a finite number of levels; each time σ recovers, the number of levels that must
be provided for the next recovery will increase.

In order to illustrate the recovery process, consider Figure 4.4, which illustrates
an operation that might be performed at some stage s + 1 of our construction,
ignoring for now all components indexed by τ .

Our construction will be such that As will have the following properties. For
each i, j ∈ Z, Ais ∼= Ajs. For each i ∈ Z, no component K of Ais is embeddable in
another component L of As unless, for some j ∈ Z, L is the (unique) component
of Ajs isomorphic to K. No singleton component of A∗s is embeddable in another
component of As.

In Figure 4.4, we are assuming that each of Z0
σ, B0

σ, C0
σ, Y 0

σ,0, Y 0
σ,1, Y 0

σ,2, D0, E0,
F 0

0 , F 0
1 , and F 0

2 are singleton components of A0
s, X is a singleton component of As

that has no level, and S0
σ is the copy of the σ-special component of G|σ|[s] in A0

s.
For each i ∈ Z, Zi

σ, Bi
σ, Siσ, Ci

σ, Y i
σ,0, Y i

σ,1, Y i
σ,2, Di, Ei, F i

0, F i
1, and F i

2 are the
components of Ais isomorphic to Z0

σ, B0
σ, S0

σ, C0
σ, Y 0

σ,0, Y 0
σ,1, Y 0

σ,2, D0, E0, F 0
0 , F 0

1 ,
and F 0

2 , respectively.
Suppose that rσ,s+1 = 0 and we perform the operation pictured in Figure 4.4
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D0

��

E0

��
D0 · E0 E0 � (F 0

0 , F
0
1 , F

1
2 )

similarly for all levels ≡ 0 mod 4

E1

��

F 1
0

��
E1 ·D1 F 1

0 � (E1, F 1
1 , F

1
2 )

similarly for all levels ≡ 1 mod 4

E2

��

F 2
1

��
E2 ·D2 F 2

1 � (E2, F 2
0 , F

2
2 )

similarly for all levels ≡ 2 mod 4

E3

��

F 3
2

��
E3 ·D3 F 3

2 � (E3, F 3
0 , F

3
1 )

similarly for all levels ≡ 3 mod 4

Figure 4.4: A 3, (0, 1)-operation
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Figure 4.4 (Continued)
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σ C0
σ � (Y 0

σ,0, Y
0
σ,1, Y

0
σ,2)

similarly for all levels ≡ 0 mod 4

B1
σ

��

S1
σ

��

C1
σ

��

Y 1
σ,0

��
B1
σ · Z1

σ S1
σ ·B1

σ C1
σ · S1

σ Y 1
σ,0 � (C1

σ, Y
1
σ,1, Y

1
σ,2)

similarly for all levels ≡ 1 mod 4

B2
σ

��

S2
σ

��

C2
σ

��

Y 2
σ,1

��
B2
σ · Z2

σ S2
σ ·B2

σ C2
σ · S2

σ Y 2
σ,1 � (C2

σ, Y
2
σ,0, Y

2
σ,2)

similarly for all levels ≡ 2 mod 4

B3
σ

��

S3
σ

��

C3
σ

��

Y 3
σ,2

��
B3
σ · Z3

σ S3
σ ·B3

σ C3
σ · S3

σ Y 3
σ,2 � (C3

σ, Y
3
σ,0, Y

3
σ,1)

similarly for all levels ≡ 3 mod 4
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Figure 4.4 (Continued)
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similarly for all levels ≡ 1 mod 4
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similarly for all levels ≡ 2 mod 4
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similarly for all levels ≡ 3 mod 4
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Figure 4.4 (Continued)
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Figure 4.4 (Continued)
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Figure 4.4 (Continued)
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Figure 4.4 (Continued)
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on As to obtain As+1 and wait for G|σ| to σ-recover at some stage t + 1 > s + 1.
Notice that this operation preserves the relevant automorphisms of A. That is, if
〈As, a0〉 ∼= 〈As, ai〉 then 〈As+1, a0〉 ∼= 〈As+1, ai〉.

The definition of σ-recovery will be such that G|σ|[s] contains a component X̂
isomorphic to X and, for some k ∈ ω and all i ∈ Z, |i| 6 k, G|σ|[s] contains level-i

components Ẑi, B̂i, Ŝi, Ĉi, Ŷ i
0 , Ŷ i

1 , Ŷ i
2 , D̂i, Êi, F̂ i

0, F̂ i
1, and F̂ i

2 isomorphic to Zi
σ,

Bi
σ, Siσ, Ci

σ, Y i
σ,0, Y i

σ,1, Y i
σ,2, Di, Ei, F i

0, F i
1, and F i

2, respectively.

Let At be the union of (A∗t )k and Ait for each i ∈ Z such that |i| 6 k. Let Gn[t]
be the union of (G∗n[t])k and Gin[t] for each i ∈ Z such that |i| 6 k.

For i ∈ Z, |i| 6 k, let X̃, Z̃i, B̃i, S̃i, C̃i, Ỹ i
0 , Ỹ i

1 , Ỹ i
2 , D̃i, Ẽi, F̃ i

0, F̃ i
1, and F̃ i

2 be

the intersection of the components of G|σ|[t] that extend X̂, Ẑi, B̂i, Ŝi, Ĉi, Ŷ i
0 , Ŷ i

1 ,

Ŷ i
2 , D̂i, Êi, F̂ i

0, F̂ i
1, and F̂ i

2, respectively, with Gn[t].

The fact that G|σ| σ-recovers at stage t + 1 will mean that X̃, Z̃i, B̃i, S̃i, C̃i,

Ỹ i
0 , Ỹ i

1 , Ỹ i
2 , D̃i, Ẽi, F̃ i

0, F̃ i
1, and F̃ i

2, |i| 6 k, of G|σ|[t] must all be isomorphic to
components of At.

Thus, since σ is not active in the interval (s+1, t+1), there are two possibilities.

Either the σ-special component S̃0 of G|σ|[t] is isomorphic to S0
σ·B0

σ or it is isomorphic
to S0

σ · C0
σ.

In the first case, rσ,t+1 6= 0, and the copy of the σ-special component of G|σ|[t] in
At extends a singleton component of As. In fact, every time we have an action at
stage u+ 1 involving copies of the σ-special component of G|σ|[u] and, for the next
σ-recovery stage v+1, rσ,v+1 6= rσ,u+1, the copy of the σ-special component of G|σ|[v]
in Av will extend a singleton component of Au. As in Section 3.4, we will make sure
that if rσ,u has no limit then, for each i ∈ Z, there are infinitely many stages u such
that rσ,u = i. This will guarantee that if σ is on the true path of the construction,
G|σ| ∼= A, and rσ,u has no limit then there is no component of A isomorphic to the
σ-special component of G|σ|[t].

In the second case, we can check that, for each i ∈ Z such that |i| 6 k, level i
of G|σ| must have gone in the same direction as level i of A with respect to those
components involved in the operation under consideration.

That is, let X̌, Ži, B̌i, Ši, Či, Y̌ i
0 , Y̌ i

1 , Y̌ i
2 , Ďi, Ěi, F̌ i

0, F̌ i
1, and F̌ i

2 be the
intersection of the components of At that extend X, Zi

σ, Bi
σ, Siσ, Ci

σ, Y i
σ,0, Y i

σ,1, Y i
σ,2,

Di, Ei, F i
0, F i

1, and F i
2, respectively, with At. We are assuming that S̃0 ∼= Š0, from

which it follows that C̃0 ∼= Č0, since all the components of At that contain copies
of C0

σ are isomorphic to either Š0 or Č0 and, since S̃0 and C̃0 have the same level,

it cannot be the case that S̃0 ∼= C̃0.
Continuing to argue in this way, we see that Ỹ 0

l
∼= Y̌ 0

l for each l < 3, which

implies that X̃ ∼= X̌, which implies that Z̃0 ∼= Ž0, which implies that B̃0 ∼= B̌0.
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Now, using the fact that X̃ ∼= X̌, we can check that, for i ≡ 0 mod 4, |i| 6 k,

Z̃i ∼= Ži, which implies that B̃i ∼= B̌i, which implies that S̃i ∼= Ši, which implies
that C̃i ∼= Či, which implies that Ỹ i

l
∼= Y̌ i

l for each l < 3.

For i ≡ l + 1 mod 4, l < 3, |i| 6 k, again using the fact that X̃ ∼= X̌, we can

check that Ỹ i
l
∼= Y̌ i

l , which implies that Ỹ i
m
∼= Y̌ i

m for each m < 3, and also that

C̃i ∼= Či. This in turn implies that S̃i ∼= Ši, which implies that B̃i ∼= B̌i, which
implies that Z̃i ∼= Ži.

Similar arguments show that, for all i ∈ Z, |i| 6 k, D̃i ∼= Ďi, Ẽi ∼= Ěi, and

F̃ i
l
∼= F̌ i

l for each l < 3.
Thus we see that, for each i ∈ Z such that |i| 6 k, level i of G|σ| goes in the

same direction as level i of A with respect to those components involved in the
operation under consideration. (Since k increases with each σ-recovery, the fact
that the above argument only works for the level-i components, |i| 6 k, will not be
a problem.)

In the previous argument, the fact that rσ,s+1 = 0 was crucial. Indeed, suppose
that rσ,s+1 = 1, we perform the operation described above at stage s + 1, σ then
recovers at stage t + 1, and rσ,t+1 = 1. We could not then argue as above, because

from the fact that S̃1 ∼= Š1 it does not follow that X̃ ∼= X̌. Thus, in order to argue
that, for each i ∈ Z, there is a stage after which level i of G|σ| always goes in the
same direction as level i + lims rσ,s of A at stages at which σ is active, we need to
make sure that, whenever we involve copies of the σ-special component of G|σ| in an
operation at stage s + 1, the row of level-(rσ,s+1) components of A that contains a
copy of the σ-special component of G|σ| goes to the left.

This is illustrated in Figure 4.4. Here we are assuming that the operation pic-
tured is happening at a stage s+ 1 such that rσ,s+1 = 0 and rτ,s+1 = 1 (that is why
we call this a 3, (0, 1)-operation). Now if σ recovers at a stage t + 1 > s + 1 and
rσ,t+1 = 0 then we can argue as above that if |i| is sufficiently small then level i
of G|σ| goes in the same direction as level i of A as far as the components involved
in this operation are concerned. But also, if τ recovers at a stage t + 1 > s + 1
and rτ,t+1 = 1 then we can argue in much the same way that if |i| is sufficiently
small then level i of G|τ | goes in the same direction as level i+ 1 of A as far as the
components involved in this operation are concerned.

In general, whenever we perform an operation at a stage s+1 at which the strings
σ0, . . . , σk−1 are active, that operation will be an n, (rσ0,s+1, . . . , rσk−1,s+1)-operation
for some n > 0, as defined below.

4.2.4 Definition. Let G be a computable leveled graph whose domain is co-infinite.
Let n > 0, k > 0, and d0, . . . , dk−1 ∈ Z. Suppose that, for each i ∈ Z, j < k,

and m < n, we have defined components Y i
j,m, X, Zi

j, B
i
j, S

i
j, C

i
j, D

i, Ei, and F i
m,
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of which all but Sij are singleton components, all but X have levels, and X has no
level.

The n, (d0, . . . , dk−1)-operation

On,(d0,...,dk−1)

({
Y i
j,m

}
, X,

{
Zi
j

}
,
{
Bi
j

}
,
{
Sij
}
,
{
Ci
j

}
,
{
Di
}
,
{
Ei
}
,
{
F i
m

})
consists of applying the following sequences of operations to G.

• X · S0,S1 ·X,S2 ·X, . . . ,Sn ·X, where

Sm =
{
Z
dj+m+p(n+1)
j | j < k, p ∈ Z

}
∪
{
Dm+p(n+1) | p ∈ Z

}
∪{

Y
dj+m+q+1+p(n+1)
j,q | j < k, p ∈ Z, q < n

}
∪{

Fm+q+1+p(n+1)
q | p ∈ Z, q < n

}
.

• For each i ≡ 0 mod n+ 1 in Z:

Di · Ei, Ei �
(
F i

0, . . . , F
i
n−1

)
• For each j < k and i ≡ dj mod n+ 1 in Z:

Zi
j ·Bi

j, B
i
j · Sij, Sij · Ci

j, C
i
j �

(
Y i
j,0, . . . , Y

i
j,n−1

)
• For each i ≡ l + 1 mod n+ 1, l < n, in Z:

Ei ·Di, F i
l �

(
Ei, F i

0, . . . , F
i
l−1, F

i
l+1, . . . , F

i
n−1

)
• For each j < k and i ≡ l + dj + 1 mod n+ 1, l < n, in Z:

Bi
j · Zi

j, S
i
j ·Bi

j, C
i
j · Sij, Y i

j,l �
(
Ci
j, Y

i
j,0, . . . , Y

i
j,l−1, Y

i
j,l+1, . . . , Y

i
j,n−1

)
Note that this definition allows for the case k = 0, in which the only components

involved in the operation are X and the Di, Ei, and F i
m.

Before proceeding with the full construction, there are two more differences
between this construction and the ones in Chapter 3 that should be mentioned.

The first one is that we will not be able to use the isomorphism recovery mecha-
nism described in that chapter. Recall that, in Section 3.3, in order to compute the
isomorphism from A0 to some Gn ∼= A0, we had to guess at the images of finitely
many infinite special components. In the construction in this section, however, each
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special component will have infinitely many images, one for each level of A. This
creates a problem, which we solve as follows.

For each stage s, we define a subgraph Tσ,s of the σ-special component of G|σ|.
Whenever rσ,s+1 6= rσ,s, we define Tσ,s+1 to be the entire σ-special component of
G|σ|[s]. Otherwise, we define Tσ,s+1 = Tσ,s. Whenever copies of the σ-special com-
ponent of G|σ| are involved in an operation and σ later recovers at a stage t+ 1, we
perform a Tσ,t+1-catch-up operation on As, as defined below. (Copies of [10m + 9]
will not be used for any other purpose in the construction.)

4.2.5 Definition. Let G be a computable leveled graph whose domain is co-infinite
and that contains copies of [10m+ 9] for only finitely many m ∈ ω.

Let T be a subgraph of G. Suppose that there are finitely many level-0 com-
ponents L0,0, . . . , L0,n of G that contain a copy of T and that each L0,m, m 6 n,
is a copy of [Pm] for some finite Pm ⊂ ω. Suppose further that, for each m 6 n,
Pm *

⋃
k 6=m Pk, and let lm be the largest element of Pm −

⋃
k 6=m Pk. Let P =⋃

m6n Pm − {l0, . . . , ln}.
For i ∈ Z, let Li,0, . . . , Li,n be the components of Gi isomorphic to L0,0, . . . , L0,n,

respectively.
Let l0, . . . , ln be the n+ 1 least numbers of the form 10m+ 9, m ∈ ω, such that

G does not contain copies of any of [l0], . . . , [ln].
The T -catch-up operation taking G to a new computable structure extending

G consists of extending each Li,m, i ∈ Z, m 6 n, to a copy of [P ∪ {lm}], using
numbers not in the domain of G.

Performing a Tσ,t+1-catch-up operation on As counts as σ being active, which
means that we must then wait for σ to recover before allowing σ to be active again.

If σ is on the true path of the construction and rσ,s comes to a limit then Tσ,s
comes to a limit T . It is not hard to see that, in this case, by performing catch-up
operations as described, we guarantee that every component of A that contains
a copy of T is infinite, and that all such components are isomorphic. This will
be enough to ensure that (4.2.2) is satisfied, while at the same time helping us to
construct the computable isomorphisms needed to satisfy (4.2.3), because it will
mean that if G|σ| ∼= A then any embedding of a copy of T in A into G|σ| can be
extended to an isomorphism from A to G|σ|.

Much as in Section 3.4, we will separate the stages at which we attempt to
satisfy theR-requirements from the stages at which we perform catch-up operations,
reserving the even stages for the former purpose and the odd ones for the latter. In
order to guarantee that every σ on the true path is active at infinitely many even
stages and infinitely many odd stages, we will call recovery at odd stages phase-1
recovery and recovery at even stages phase-2 recovery, and will require that phase-1
σ-recovery stages and phase-2 σ-recovery stages alternate.
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Another difference between the construction in this section and the ones in
Chapter 3, which has already been noted above, is that σ will not be active except at
σ-recovery stages. There will be multiple strategies for satisfying each requirement
R〈e,i〉, one strategy Rσ for each σ ∈ 2<ω such that |σ| = 〈e, i〉. Each of these
strategies will work with a different set of components, which will be subject to
initialization. If σ is accessible at some stage 2s + 2 in the construction and no
requirements of stronger priority require attention then Rσ will have a chance to act
as described above. If it does then copies of the τ -special components of G|τ |[2s+1]
will be involved in the operation performed at stage 2s + 2 if and only if τa0 ⊆ σ,
that is, if and only if 2s+ 2 is a τ -recovery stage.

We now give a few more definitions and conventions that will be used below.
Fix a computable one-to-one function from 2<ω onto ω and let pσq denote the

image under this function of the string σ. (Note that this definition of pσq is slightly
different from the one in Section 3.3.) Fix a computable function ξ from ω onto Z
such that, for each i ∈ Z, there are infinitely many n ∈ ω such that ξ(n) = i.

4.2.6 Definition. Let G be a directed graph. We denote by (G)σ the subgraph of G
consisting of those components C of G that satisfy both of the following conditions.

1. C is not isomorphic to [x] for any x ∈ ω.

2. C contains a copy of [10〈pσq, j〉 + l], j ∈ ω, l ∈ {2, 3, 4, 5, 6, 7}, or a copy of
[10〈pσq, j, k〉+ l], j, k ∈ ω, l ∈ {1, 8}.

Define (G)⊇σ =
⋃
τ⊇σ(G)τ .

In the particular case of G∗, we will wish to define (G∗)σ somewhat differently.

4.2.7 Definition. Let G be a leveled graph. We denote by (G∗)σ the subgraph of G
consisting of the non-singleton components of G∗ that contain a copy of [10〈pσq, j〉],
j ∈ ω. Let n, r ∈ ω. We denote by (G∗)n,rσ the subgraph of G consisting of the
non-singleton components of (G∗)n,r that contain a copy of [10〈pσq, j〉], j ∈ ω. In
case r = 0, we write simply (G∗)nσ.

Define (G∗)⊇σ =
⋃
τ⊇σ(G∗)τ and (G∗)n,r⊇σ =

⋃
τ⊇σ(G∗)n,rτ . In case r = 0, we write

simply (G∗)n⊇σ.

Let k be the number of times σ has been initialized before stage t. Suppose
there is a least stage s 6 t such that G|σ|[s] has a level-0 component K isomorphic
to [10〈pσq, k〉 + 3]. We call the component of G|σ|[t] that extends K the σ-special
component of G|σ|[t]. If σ is initialized only finitely often, say k many times, and
there is a least stage s such that G|σ|[s] has a level-0 component K isomorphic to
[10〈pσq, k〉 + 3] then we call the component of G|σ| that extends K the σ-special
component of G|σ|.
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We now proceed with the construction of A. We will start with a computable
structure A0 with co-infinite domain. In order to ensure that we can carry out
the construction, we require that, when we add elements to the domain of As at
stage s + 1 to get As+1, we do this in such a way that As+1 remains co-infinite.
In order to ensure that A is computable, we require that the collection of sets
(|As+1| − |As|)s∈ω is uniformly computable.

stage 0. Let A0 be a computable leveled graph with co-infinite domain consisting of
the following nodes and edges in addition to the ones required by Definition 4.2.1.

1. For each i ∈ Z, k ∈ ω, and 0 < l < 9, a copy of [10k + l] with an edge from
the i-master node to its top.

2. For each k ∈ ω, a copy of [10k].

For each σ ∈ 2<ω, let rσ,0 = 0 and Tσ,0 = ∅.

stage 2s+1. For σ ∈ 2<ω, let recov(σ, 2s) be the number of σ-recovery stages before
stage 2s + 1. Define the string σ[2s + 1] ∈ 2[0,s] by recursion as follows, beginning
with n = 0. Let σ = σ[2s + 1] � n. Say that 2s + 1 is a phase-1 σ-recovery stage
and that σ is semi-recovered if all of the following conditions hold.

1. σ is not currently semi-recovered.

2. Every τ such that τa0 ⊆ σ has fully recovered (defined below) at least |σ|+ 1
many times.

3. Gn[2s] has a σ-special component isomorphic to some component of A0
2s.

4. For each i ∈ Z such that |i| 6 recov(σ, 2s), (Gin[2s])σ ∼= (A0
2s)σ.

5. For each i ∈ Z such that |i| 6 recov(σ, 2s), (Gin[2s])⊇σa0
∼= (A0

2s)⊇σa0.

6. (G∗n[2s])
recov(σ,2s)

⊇σa0
∼= (A∗2s)

recov(σ,2s)

⊇σa0
.

If 2s+1 is a σ-recovery stage then let σ[2s+1](n) = 0. Otherwise, let σ[2s+1](n) =
1.

For each σ such that 2s+1 is a σ-recovery stage, proceed as follows. Let i = rσ,2s.
Let Sσ,2s be the component of Ai2s that is isomorphic to the σ-special component
of G|σ|[2s]. If 2s + 1 is either the first σ-recovery stage ever or the first σ-recovery
stage since the last time σ was initialized then let rσ,2s+1 = 0 and Tσ,2s+1 = Sσ,2s.
Otherwise, proceed as follows. Let 2t + 2 be the last σ-recovery stage before stage
2s + 1. If Sσ,2s extends Sσ,2t+1 then let rσ,2s+1 = i and Tσ,2s+1 = Tσ,2s; otherwise,
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declare 2s+1 to be a σ-change stage, let n be the number of σ-change stages before
stage 2s+ 1, let rσ,2s+1 = ξ(n), and let Tσ,2s+1 = Sσ,2s.

For each σ ∈ 2<ω such that 2s + 1 is not a σ-recovery stage, let rσ,2s+1 = rσ,2s
and Tσ,2s+1 = Tσ,2s.

Declare each σ to the right of σ[2s + 1] to have been initialized. This includes
declaring σ to be neither semi-recovered nor fully recovered.

Proceed as follows to obtain A2s+1 from A2s. For each σ ∈ 2<ω such that 2s+ 1
is a σ-recovery stage, perform the Tσ,2s+1-catch-up operation and say that σ is active
at stage 2s+ 1.

stage 2s + 2. For σ ∈ 2<ω, let recov(σ, 2s + 1) be the number of σ-recovery stages
before stage 2s+ 2, let init(σ, 2s+ 1) be the number of times σ has been initialized
before stage 2s+ 2, and let c(σ, 2s+ 1) = max(recov(σ, 2s+ 1), init(σ, 2s+ 1)).

Define the string σ[2s+ 2] ∈ 2[0,s] by recursion as follows, beginning with n = 0.
Say that 2s+2 is a phase-2 σ-recovery stage and that σ is fully recovered (and hence
not semi-recovered) if all of the following conditions hold.

1. σ is currently semi-recovered.

2. The σ-special component of Gn[2s + 1] is isomorphic to some component of
A0

2s+1.

3. For each i ∈ Z such that |i| 6 recov(σ, 2s+ 1), (Gin[2s+ 1])σ ∼= (A0
2s+1)σ.

4. For each i ∈ Z such that |i| 6 recov(σ, 2s+1), (Gin[2s+1])⊇σa0
∼= (A0

2s+1)⊇σa0.

5. If τ ⊇ σa0 has not yet fully recovered since the last time it was initialized and
|τ | 6 recov(σ, 2s + 1) then, for each i ∈ Z such that |i| 6 recov(σ, 2s + 1),
Gin[2s+ 1] has a component isomorphic to [10〈pτq, init(τ, 2s+ 1)〉+ 3].

6. Let τ be such that either τ = σ or both τ ⊇ σa0 and |τ | 6 recov(σ, 2s + 1).
Let i ∈ Z be such that |i| 6 recov(σ, 2s + 1). For each m < c(σ, 2s + 1),
there is a component of Gin[2s + 1] isomorphic to [10〈pτq, c(τ, 2s + 1),m〉 +
1]. For each l ∈ {2, 4, 5}, there is a component of Gin[2s + 1] isomorphic to
[10〈pτq, c(τ, 2s+ 1)〉+ l].

7. Let τ be such that R|τ | has not yet been satisfied (defined below), τ ⊇ σa0,
and |τ | 6 recov(σ, 2s + 1). Let i ∈ Z be such that |i| 6 recov(σ, 2s + 1).
There is a component of Gn[s] isomorphic to [10〈pτq, init(τ, 2s+ 1)〉]. For each
l ∈ {6, 7}, there is a component of Gin[s] isomorphic to [10〈pτq, init(τ, 2s +
1)〉 + l]. For each m < π1(pτq), there is a component of Gin[s] isomorphic to
[10〈pτq, init(τ, 2s+ 1),m〉+ 8].
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If 2s+2 is a σ-recovery stage then let σ[2s+2](n) = 0. Otherwise, let σ[2s+2](n) =
1.

For each σ such that 2s + 2 is a σ-recovery stage, proceed as follows. Let
i = rσ,2s+1. Let Sσ,2s+1 be the component of Ai2s+1 that is isomorphic to the σ-
special component of G|σ|[2s + 1]. Let 2t + 1 be the last σ-recovery stage before
stage 2s + 2. If Sσ,2s+1 extends Sσ,2t then let rσ,2s+2 = i and Tσ,2s+2 = Tσ,2s+1;
otherwise, declare 2s + 2 to be a σ-change stage, let n be the number of σ-change
stages before stage 2s+ 2, let rσ,2s+2 = ξ(n), and let Tσ,2s+2 = Sσ,2s+1.

For each σ ∈ 2<ω such that 2s+ 2 is not a σ-recovery stage, let rσ,2s+2 = rσ,2s+1

and Tσ,2s+2 = Tσ,2s+1.
Declare each σ to the right of σ[2s + 2] to have been initialized. This includes

declaring σ to be neither semi-recovered nor fully recovered.
Say that Rσ, σ ⊆ σ[2s+ 2], requires attention if R|σ| has not yet been satisfied,

π1(|σ|) 6 c(τ, 2s + 1) for all τ such that τa0 ⊆ σ, and, for the coding locations x

and y of the (unique) copies of [10〈pσq, init(σ, 2s + 1)〉 + 7] in A0
2s+1 and Aπ1(|σ|)

2s+1 ,
respectively, Φπ0(|σ|)(x)[s]↓= y.

Let e be the least number less than s such that Rσ[2s+2](e) requires attention. (If
no such e exists then end the stage.) If σa0 ⊆ σ[2s+ 2] then say that σ is active at
stage 2s+ 2.

Let X2s+1 be the component of A2s+1 isomorphic to [10〈pσ[2s+2](e)q, init(σ[2s+
2](e), 2s+ 1)〉]. For each i ∈ Z and m < π1(e), let Di

2s+1, Ei
2s+1, and F i

m,2s+1 be the
components of Ai2s+1 isomorphic to [10〈pσ[2s+ 2](e)q, init(σ[2s+ 2](e), 2s+ 1)〉+ 6],
[10〈pσ[2s+ 2](e)q, init(σ[2s+ 2](e), 2s+ 1)〉+ 7], and [10〈pσ[2s+ 2](e)q, init(σ[2s+
2](e), 2s+ 1),m〉+ 8], respectively.

Let σ0, . . . , σk−1 be all the strings that are active at stage 2s+2. For each j < k,
i ∈ Z, and m < π1(e), let Y i

σj ,m,2s+1, Zi
σj ,2s+1, Bi

σj ,2s+1, and Ci
σj ,2s+1 be the level-i

components of A2s+1 isomorphic to [10〈pσjq, c(σj, 2s+1),m〉+1], [10〈pσjq, c(σj, 2s+
1)〉+ 2], [10〈pσjq, c(σj, 2s+ 1)〉+ 4], and [10〈pσjq, c(σj, 2s+ 1)〉+ 5], respectively. For
each j < k and i ∈ Z, let Siσj ,2s+1 be the level-i component of A2s+1 isomorphic to
Sσj ,2s+1.

For j < k, let dj = rσj ,2s+2. Perform

Oπ1(e),(d0,...,dk−1)

({
Y i
σj ,m,2s+1

}
, X2s+1,

{
Zi
σj ,2s+1

}
,
{
Bi
σj ,2s+1

}
,
{
Siσj ,2s+1

}
,{

Ci
σj ,2s+1

}
,
{
Di

2s+1

}
,
{
Ei

2s+1

}
,
{
F i
m,2s+1

})
on A2s+1 to get A2s+2. Declare Re to be satisfied.

This completes the construction. Let A =
⋃
s∈ωAs. Since the collection of

sets (|As+1| − |As|)s∈ω is uniformly computable, A is computable. We now wish to
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argue that properties (4.2.1)–(4.2.3) are satisfied. Theorem 4.1.3 will then follow
immediately.

Define the true path TP of the construction to be the leftmost path of 2ω such
that there are infinitely many stages s with σ[s] ∈ TP . For each i ∈ Z, let ai be
the i-master node of A.

We begin by showing that property (4.2.2) is satisfied.

4.2.8 Lemma. If σ ∈ TP then Rσ requires attention only finitely often.

Proof. Assume by induction that there is a stage s such that, for all τ ( σ, Rτ does
not require attention after stage s. Let 2t+2 > s be such that Rσ requires attention
at stage 2t + 2. Then, by definition, σ ⊆ σ[2t + 2], and hence R|σ| is satisfied at
stage 2t+ 2, which implies that Rσ will never again require attention.

4.2.9 Lemma. Let e = 〈j, i〉. If Re is ever satisfied then Φj is not an isomorphism
from 〈A, a0〉 to 〈A, ai〉.

Proof. Suppose that Re is satisfied at stage 2s + 2. Let σ = σ[2s + 2](e). Let K
and L be the components of A0

2s+1 and Ai2s+1, respectively, that are isomorphic to
[10〈pσq, init(σ, 2s + 1)〉 + 7], and let x and y be the coding locations of K and L,
respectively. Since Rσ requires attention at stage 2s+ 2, Φj(x)↓= y.

LetK ′ and L′ be the components ofA0 andAi that extendK and L, respectively.
The operation performed at stage 2s+2 guarantees that K ′ � L′, so no isomorphism
from 〈A, a0〉 to 〈A, ai〉 can take x to y.

4.2.10 Lemma. For every i 6= j ∈ Z, 〈A, ai〉 is not computably isomorphic to
〈A, aj〉.

Proof. Since, given k 6= l ∈ Z, any automorphism of A taking ak to al takes a0 to
ai for some i 6= 0, it is enough to show that, for each j ∈ ω and i ∈ Z, i 6= 0, Φj is
not an isomorphism from 〈A, a0〉 to 〈A, ai〉.

Fix j ∈ ω and let e = 〈j, i〉. Let σ = TP (e), let s be a stage after which no
Rτ , τ ( σ, requires attention and such that σ is not initialized after stage s, and
let k be the total number of times σ is initialized. If Re is ever satisfied then, by
Lemma 4.2.9, we are done. So suppose that Re is never satisfied.

This means that the components K and L ofA0
0 andAi0, respectively, isomorphic

to [10〈pσq, k〉+7] never participate in operations. Let x and y be the coding locations
of K and L, respectively. Since Re is never satisfied, Rσ never requires attention
after stage s. So it cannot be the case that Φj(x)↓= y. But K and L are the unique
copies of [10〈pσq, k〉+7] in A0 and Ai, respectively, so any isomorphism from 〈A, a0〉
to 〈A, ai〉 must take x to y.
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In showing that (4.2.1) and (4.2.3) are satisfied, we will need a few easily checked
facts about the construction.

As in Chapter 3, we say that a component of A participates in an operation
at stage s + 1 if it extends a component of As that participates in an operation at
stage s+ 1.

Let G and H be leveled graphs, let K and L be components of G and H, respec-
tively, and let i ∈ Z. We say that K is i-isomorphic to L if there is an isomorphism
f : K ∼= L such that, for all x ∈ K and j ∈ Z, if there is an edge from the j-master
node of G to x then there is an edge from the (j + i)-master node of H to f(x).

4.2.11 Lemma. Let K and L be distinct components of As. If K is not a copy of
[10k + l] for any k ∈ ω and l ∈ {1, 2, 6, 8} then K and L are not extended by the
same component of A. If K and L are extended by the same component M of A
then M is a component of A∗.

4.2.12 Lemma. Every component of A has a level unless it contains a copy of [10k]
for some k ∈ ω.

4.2.13 Lemma. For each s ∈ ω and i, j ∈ Z, 〈As, ai〉 ∼= 〈As, aj〉 and no component
K of As is embeddable in another component L of As unless K is k-isomorphic to
L for some k ∈ Z, k 6= 0. Furthermore, if a component of Ais participates in an
operation at stage s+ 1 then so does the (unique) isomorphic component of Ajs.

4.2.14 Lemma. A component of A that does not contain a copy of [10k] for any
k ∈ ω is infinite if and only if it participates in operations infinitely often.

4.2.15 Lemma. Let k, j ∈ ω and σ ∈ 2<ω. Any component of A containing a
copy of [10k], [10〈pσq, j, k〉 + l], l ∈ {1, 8}, or [10〈pσq, j〉 + l], l ∈ {2, 6, 7}, can
participate in an operation at most once. Any component of Ai containing a copy
of [10〈pσq, j〉+ l], l ∈ {3, 4, 5}, can participate in operations only at stages at which
σ is active.

Note that, since A0 contains only one copy of each [10k], k ∈ ω, Lemma 4.2.15
implies that, for each k ∈ ω, there is at most one stage at which a copy of [10k]
participates in an operation.

4.2.16 Lemma. Let K be an infinite component of A that contains a copy of [10k]
for some K ∈ ω and let m ∈ ω. Then K∩(A∗)m is not embeddable in any component
L 6= K of A unless K and L are i-isomorphic for some i ∈ Z, i 6= 0.

4.2.17 Lemma. If σ is initialized at stage s + 1 then no components of (A)σ that
participate in operations at stages before stage s+ 1 can participate in an operation
after stage s.
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4.2.18 Lemma. Suppose that rσ,s = i 6= rσ,s+1. Of all the components of (Ai)σ
that participate in operations at stages before stage s + 1, the only one that can
participate in an operation after stage s is the one that extends Sσ,s.

4.2.19 Lemma. Let u be a stage after which σ is never initialized. Let s + 1 > u
be a σ-recovery stage that is not the first such stage after u. Let t + 1 be the last
σ-recovery stage before stage s + 1. If rσ,s = i 6= rσ,s+1 then Sσ,s extends either
Bi
σ,2u+1 or Ci

σ,2u+1 for some 2u+ 1 ∈ [t, s).

4.2.20 Lemma. Let T be a subgraph of A. If components K and L of A, each
containing a copy of T , are involved in T -catch-up operations infinitely often then
K and L are infinite and K ∼= L.

4.2.21 Lemma. Let σ ∈ TP and suppose that lims rσ,s exists. Then Tσ,s comes to
a limit T and every infinite component of (As)σ that does not contain a copy [10k]
for any k ∈ ω contains a copy of T .

We now turn to showing that property (4.2.1) is satisfied. As in Chapter 3, this
requires us to characterize the infinite components of A.

4.2.22 Lemma. Let σ ∈ 2<ω. If σa0 is to the left of TP then no component of
(A)σ is infinite unless it contains a copy of [10k] for some k ∈ ω.

Proof. If σa0 is to the left of TP then σ is active only finitely often, so the lemma
follows from Lemmas 4.2.14 and 4.2.15.

4.2.23 Lemma. Let σ ∈ 2<ω. If σ is to the right of TP then no component of (A)σ
is infinite unless it contains a copy of [10k] for some k ∈ ω.

Proof. This follows immediately from Lemmas 4.2.14 and 4.2.17.

4.2.24 Lemma. Let σ ∈ 2<ω be such that σa0 ∈ TP . If rσ,s does not have a limit
then no component of (A)σ is infinite unless it contains a copy of [10k] for some
k ∈ ω.

Proof. By Lemma 4.2.12, it is enough to show that, for each i ∈ Z, no component
of (Ai)σ is infinite.

Let i ∈ Z. If s is the (n + 1)st σ-change stage then rσ,s = ξ(n). Thus there are
infinitely many stages s such that rσ,s = i.

Suppose that rσ,s = i 6= rσ,s+1 and let t + 1 be the last σ-recovery stage before
stage s+1. By Lemma 4.2.18, of all the components of (Ai)σ that have participated
in operations at stages before stage s + 1, the only one that can participate in an
operation after stage s is the component L that extends Sσ,s. By Lemma 4.2.19, L
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extends either Bi
σ,2u+1 or Ci

σ,2u+1 for some 2u+ 1 ∈ [t, s). But, for all 2u+ 1 ∈ [t, s),
Bi
σ,2u+1 and Ci

σ,2u+1 are singleton components, and hence did not participate in an
operation at any stage before stage t+ 1.

Thus, no component of (Ai)σ that participates in an operation before stage t+1
can do so again after stage s. The lemma now follows from Lemma 4.2.14.

4.2.25 Lemma. Let k ∈ ω. There are finitely many components K0, . . . , Kn of A
that contain a copy of [10k], and these can be chosen so that, for all j, k 6 n and
i ∈ Z, i ≡ k − j mod n+ 1, Kj is i-isomorphic to Kk.

Proof. Let K be the copy of [10k] in A0. If K never participates in an operation
then the lemma is trivially true with n = 0 and K0 = K. Otherwise, there is
a stage 2s + 2 such that K participates in an operation at stage 2s + 2 and, by
Lemma 4.2.15, for any t 6= 2s+ 2, no component of A that contains a copy of [10k]
participates in an operation at stage t. The lemma now follows easily from the
definition of the operation performed at stage 2s+ 2.

4.2.26 Lemma. Let σ be such that σa0 ∈ TP and lims rσ,s exists. There are
infinitely many infinite components of (A)σ that do not contain a copy of [10k] for
any k ∈ ω. Let K0, K1, . . . be all such components. Each Kj, j ∈ ω, has a level.
For each i ∈ Z there are infinitely many j ∈ ω such that level(Kj) = i. For all
j, k ∈ ω, Kj

∼= Kk.

Proof. Let u be a stage after which σ is never initialized and such that, for all t > u,
rσ,t = lims rσ,s. Let 2s + 1 be the first phase-1 σ-recovery stage after stage u and
let T = Tσ,2s+1. Since the σ-special component of G|σ|[2s] contains a copy of T , for
each phase-2 σ-recovery stage 2t + 2 after stage 2s + 1, each level of A2t+2 has a
component that contains a copy of T and extends a singleton component of A2t+1.
Thus there are infinitely many components K0, K1, . . . that contain a copy of T .
Furthermore, each Kj, j ∈ ω, has a level, and for each i ∈ Z there are infinitely
many j ∈ ω such that level(Kj) = i.

For each phase-1 σ-recovery stage 2t + 1 > 2s + 1, Tσ,2t+1 = T , so K0, K1, . . .
are involved in T -catch-up operations infinitely often. Thus, by Lemma 4.2.20,
K0, K1, . . . are infinite and, for all j, k ∈ ω, Kj

∼= Kk.
We are left with showing that any component of (A)σ that does not contain a

copy of T or a copy of [10k] for any k ∈ ω is finite. By Lemma 4.2.14, it is enough
to show that any component of (A)σ that does not contain a copy of T participates
in operations only finitely often. But the only components of (A)σ that participate
in an operation at an odd stage after stage 2s + 1 are ones that contain a copy of
T , while for 2t + 2 > 2s + 1, the only non-singleton components of (A2t+1)σ that
participate in an operation at stage 2t + 2 are the ones that are isomorphic to the
special component of G|σ|[2t+ 1], and that therefore contain a copy of T .
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4.2.27 Lemma. For every i ∈ Z, 〈A, ai〉 ∼= 〈A, a0〉.

Proof. By Lemma 4.2.13, it is enough to define a 1–1 map f from the set of infinite
components of A onto itself such that, for each infinite component K of A, f(K)
is i-isomorphic to K.

Let k ∈ ω be such that a copy of [10k] participates in an operation at some point
in the construction and let K0, . . . , Kn be as in Lemma 4.2.25. For j 6 n, let k 6 n
be such that k − j ≡ i mod n+ 1 and define f(Kj) = Kk.

Let σ be such that σa0 ∈ TP and lims rσ,s exists. For each j ∈ Z, let Kj
0 , K

j
1 , . . .

be a list of all infinite components of (Aj)σ that do not contain a copy of [10k] for
any k ∈ ω. By Lemma 4.2.26, each such list is infinite. For j ∈ Z and n ∈ ω, define
f(Kj

n) = Kj+i
n .

By Lemmas 4.2.22, 4.2.23, and 4.2.24, we have defined f on all infinite compo-
nents of A. By Lemmas 4.2.25 and 4.2.26, f is 1–1 and onto, and, for each infinite
component K of A, f(K) is i-isomorphic to K.

We are left with showing that property (4.2.3) is satisfied. We begin by showing
that if σ ∈ TP and G|σ| ∼= A then lims rσ,s is well-defined.

4.2.28 Lemma. If σ ∈ TP and G|σ| ∼= A then there are infinitely many σ-recovery
stages, and hence the σ-special component of G|σ| is infinite.

Proof. If σ ∈ TP and G|σ| ∼= A then G|σ| has a σ-special component. Assume for
a contradiction that there are only m many σ-recovery stages. Let s0 be the last
σ-recovery stage. (If there are no σ-recovery stages then let s0 be the first stage at
which G|σ| has a σ-special component.) Since σ is not active at any stage that is
not a σ-recovery stage, σ is not active at any stage t > s0. By the definition of TP ,
there is a stage s > s0 by which every τ such that τa0 ⊆ σ has fully recovered at
least |σ|+ 1 many times and such that σ is not initialized at any stage greater than
or equal to s.

There are two cases.

Case 1. σ is not semi-recovered at stage s. Then the first condition in the
definition of phase-1 σ-recovery stage is met at every stage greater than or equal to
s.

By the choice of s, the second condition in the definition of phase-1 σ-recovery
stage is met at every stage greater than or equal to s.

Consider the components of A0 that contain a copy of the σ-special component
of G|σ|. By Lemma 4.2.15, each such component is finite. Thus, if the third condition
in the definition of phase-1 σ-recovery stage is not eventually satisfied after stage s
then the σ-special component of G|σ| is not isomorphic to any component of A0.
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Now consider (A0)σ. Again by Lemma 4.2.15, (A0)σ is finite. So, since there are
only finitely many i ∈ Z such that |i| 6 recov(σ, s), if the fourth condition in the
definition of phase-1 σ-recovery stage is not eventually satisfied after stage s then
(Gi|σ|)σ � (A0)σ for some i ∈ Z.

Since we are assuming that there are only finitely many σ-recovery stages, σa1 ∈
TP . Thus it follows from Lemmas 4.2.14 and 4.2.15 that (A0

s)⊇σa0 is finite. So, since
there are only finitely many i ∈ Z such that |i| 6 recov(σ, s), if the fifth condition
in the definition of phase-1 σ-recovery stage is not eventually satisfied after stage s
then (Gi|σ|)⊇σa0 � (A0)⊇σa0 for some i ∈ Z.

Since we are assuming that σa0 is to the left of TP , (A∗s)
recov(σ,s)

⊇σa0
is finite. So

if the last condition in the definition of phase-1 σ-recovery stage is not eventually
satisfied after stage s then (G∗|σ|)⊇σa0 � (A∗)⊇σa0.

Case 2. σ is semi-recovered at stage s. Then the first condition in the definition
of phase-2 σ-recovery stage is met at every stage greater than or equal to s.

By the same arguments as above we have the following facts. If the second
condition in the definition of phase-2 σ-recovery stage is not eventually satisfied after
stage s then the σ-special component of G|σ| is not isomorphic to any component
of A0. If the third condition in the definition of phase-2 σ-recovery stage is not
eventually satisfied after stage s then (Gi|σ|)σ � (A0)σ for some i ∈ Z. If the fourth
condition in the definition of phase-2 σ-recovery stage is not eventually satisfied
after stage s then (Gi|σ|)⊇σa0 � (A0)⊇σa0 for some i ∈ Z.

Since we are assuming that σa0 is to the left of TP , there is a stage t > s
after which no τ such that τ ⊇ σa0 is initialized. Any such τ that has not fully
recovered since the last time it was initialized never again recovers, and hence there
is a component of A0 isomorphic to [10〈pτq, init(τ, t)〉 + 3]. Since there are only
finitely many τ and i ∈ Z such that |τ | , |i| 6 recov(σ, s), if the fifth condition in
the definition of phase-2 σ-recovery stage is not eventually satisfied after stage s
then Gi|σ| � A0 for some i ∈ Z.

Now let τ be such that either τ = σ or both τ ⊇ σa0 and |τ | 6 recov(σ, s), and
let i ∈ Z be such that |i| 6 recov(σ, s). Clearly, c(τ, t) reaches a limit c(τ). It is
easy to see that, for any stage 2t + 2 at which τ is active, c(τ, 2t + 1) < c(τ, s) =
c(τ). So, for each l ∈ {2, 4, 5}, there is a unique component of A0 that contains
a copy of [10〈pτq, c(τ)〉 + l], and it is isomorphic to [10〈pτq, c(τ)〉 + l]. Similarly,
for each m < c(σ, s), there is a unique component of A0 that contains a copy of
[10〈pτq, c(τ),m〉+ 1], and it is isomorphic to [10〈pτq, c(τ),m〉+ 1]. Thus, if the sixth
condition in the definition of phase-2 σ-recovery stage is not eventually satisfied after
stage s then, for some i ∈ Z, there is a component of A0 that is not isomorphic to
any component of Gi|σ|.
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Finally, let τ ⊇ σa0 and i ∈ Z be such that |τ | , |i| 6 recov(σ, s) and consider
R|τ |. If this requirement is ever satisfied then the last condition in the definition
of phase-2 σ-recovery stage will be satisfied for these particular τ and i at all suf-
ficiently large stages. So suppose that R|τ | is never satisfied. It is easy to see
that init(τ, t) reaches a limit init(τ), and there is a component of A isomorphic to
[10〈pτq, init(τ)〉]. Similarly, for each l ∈ {6, 7}, there is a component of A0 isomor-
phic to [10〈pτq, init(τ)〉+ l], and, for each m < π1(pτq), there is a component of A0

isomorphic to [10〈pτq, init(τ),m〉 + 8]. Thus, if the last condition in the definition
of phase-2 σ-recovery stage is not eventually satisfied after stage s then, for some
i ∈ Z, there is a component of A0 that is not isomorphic to any component of Gi|σ|.

In any case, G|σ| cannot be isomorphic to A, contrary to hypothesis. So there
are infinitely many σ-recovery stages.

Now let v be a stage after which σ is never initialized. Given any two stages 2u+
2 > 2t+ 2 > v at which σ is active, the σ-special component of G|σ|[2u+ 1] properly
extends the σ-special component of G|σ|[2t+ 1]. Thus, to establish the second part
of the lemma, it is enough to show that σ is active infinitely often. But it is easy
to find infinitely many τ ⊃ σa0 such that Rτ eventually requires attention. Each
time such an Rτ requires attention, σ is active.

4.2.29 Lemma. If σ ∈ TP and G|σ| ∼= A then lims rσ,s is well-defined.

Proof. This follows immediately from Lemmas 4.2.24 and 4.2.28.

Now fix σ ∈ TP such that G|σ| ∼= A. Let n = |σ| and let g be the 0-master node
of Gn. By Lemma 4.2.29, r = lims rσ,s is well-defined. We wish to show that 〈Gn, g〉
is computably isomorphic to 〈A, ar〉. Let b be the unique map from the backbone
graph B of A to the backbone graph B of Gn that takes ar to g. Note that b is
computable.

We will define a computable isomorphism f from Gn to A extending b. As
in Section 3.3, our method will be to divide |A| into a finite collection of (not
necessarily disjoint) c.e. sets and define f independently on each of these sets. We
will need to be a little more careful here, because A is not rigid, but Lemma 4.2.32
below justifies our approach.

Let ω− = {k ∈ ω | k 6≡ 9 mod 10}. Let N0 = {(k, i) | k ∈ ω−, k 6≡ 0 mod 10, i ∈
Z} and N1 = {k ∈ ω | k ≡ 0 mod 10}. Let N = N0 ∪ N1. For p = (k, i) ∈ N0, let
π(p) = k; for k ∈ N1, let π(k) = k.

4.2.30 Definition. Let p = (k, i) ∈ N0, s ∈ ω, and i ∈ Z. We denote by (p) and
(p)s the components of A and As, respectively, that extend the unique copy of [k]
in Ai0.
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Let k ∈ N1 and s ∈ ω. We denote by (k) and (k)s the components of A and As,
respectively, that extend the unique copy of [k] in A0.

For H ⊆ ω−, let H̃ = {(k, i) | k ∈ H, k 6≡ 0 mod 10, i ∈ Z} ∪ {k ∈ H |
k ≡ 0 mod 10} and let PH be the graph obtained by restricting the domain of A to
|B| ∪

⋃
p∈H̃ |(p)|.

4.2.31 Lemma. Let H and H ′ be disjoint subsets of ω− and let f and f ′ be em-
beddings of PH and PH′, respectively, into Gn. Then f and f ′ agree on PH ∩ PH′.

Proof. By Lemma 4.2.11, if p 6= q ∈ N are such that (p) = (q) then (p) is a
component of A∗. This clearly implies that f−1 ◦ (f ′ � PH ∩ PH′) can be extended
to an automorphism of A∗. But it is also easy to check that A∗ is rigid. Thus f
and f ′ must agree on PH ∩ PH′ .

4.2.32 Lemma. Let H0, . . . , Hm be pairwise disjoint computable subsets of ω− such
that

⋃m
i=0 Hi = ω− and, for i 6= j 6 m, if K and L are components of PHi and PHj ,

respectively, and fi(K) = fj(L), then K = L. Suppose that, for each i 6 m, there
exists a computable embedding fi ⊃ b from PHi into Gn, such that

⋃m
i=0 rng(fi) =

|Gn|. Then there exists a computable isomorphism f ⊃ b from A to Gn.

Proof. Since H0, . . . , Hm are computable, PH0 , . . . , PHm are c.e.. Since
⋃m
i=0Hi =

ω−,
⋃m
i=0 PHi = A. Define f as follows. Given x ∈ A0, wait until x is enumerated

into some PHi , i 6 m, and then let f(x) = fi(x). It is easy to check that the
conditions imposed on H0, . . . , Hm and f0, . . . , fm, together with Lemma 4.2.31,
imply that f is an isomorphism from A to Gn.

We will partition ω− into the pairwise disjoint computable sets H0, . . . , H6 shown
in Table 4.1.

The following two lemmas are versions of Lemmas 3.3.28 and 3.3.29.

4.2.33 Lemma. Let p ∈ N and suppose there is a stage s such that, for each t > s,
(p)t does not participate in an operation at stage t+ 1. Then (p) ∼= (p)s.

Proof. Clearly, if (p)t does not participate in an operation at stage t + 1 then
(p)t+1

∼= (p)t. So, by induction, (p)t ∼= (p)s+1 for all t > s. Since (p) =
⋃
t∈ω(p)t,

the lemma follows.

4.2.34 Lemma. Let H ⊆ ω− and h : H → ω be computable. Suppose that, for
each p ∈ H̃ and t > h(π(p)), (p)t does not participate in an operation at stage t+ 1.
Then there is a unique embedding f ⊃ b of PH into Gn, and f is computable.
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Table 4.1: H0, . . . , H6

H0

{
10〈pτq, k, j〉+ 1, 10〈pτq, k〉+ l | τ to the left of σ or τa1 ⊆ σ,

j, k ∈ ω, l ∈ {2, 3, 4, 5}
}

H1

{
10〈pτq, k, j〉+ 8, 10〈pτq, k〉+ l | τ to the left of σ, j, k ∈ ω, l ∈ {0, 6, 7}

}
H2

{
10〈pτq, k, j〉+ d, 10〈pτq, k〉+ l | τ to the right of σa0, j, k ∈ ω,

d ∈ {1, 8}, l ∈ {0, 2, 3, 4, 5, 6, 7}
}

H3

{
m ∈ ω | for any i ∈ Z, ((m, i)) is an infinite component of (A)τ , τ ⊂ σ,

that does not contain a copy of [10k] for any k ∈ ω
}

H4

{
10〈pτq, k, j〉+ 1, 10〈pτq, k〉+ l | τa0 ⊆ σ, j, k ∈ ω, l ∈ {2, 3, 4, 5}

}
−H3

H5

{
10〈pτq, k, j〉+ 8, 10〈pτq, k〉+ l | τ ⊆ σ, j, k ∈ ω, l ∈ {0, 6, 7}

}
H6

{
10〈pτq, k, j〉+ 1, 10〈pτq, k〉+ l | τ = σ or σa0 ⊆ τ,

j, k ∈ ω, l ∈ {2, 3, 4, 5}
}
∪{

10〈pτq, k, j〉+ 8, 10〈pτq, k〉+ l | σa0 ⊆ τ, j, k ∈ ω, l ∈ {0, 6, 7}
}

Proof. Let x ∈ PH and let p ∈ H̃ be such that x ∈ (p). By Lemma 4.2.33,
(p)h(π(p))

∼= (p), so either (p) is finite or it contains a copy of [10k] for some k ∈ ω.
First suppose that (p) is finite. Since, by Lemma 4.2.13, no finite component K

of A is embeddable in another component L of A unless K and L are i-isomorphic
for some i ∈ Z, i 6= 0, there is a unique finite set T ⊂ Gn such that there is
an isomorphism gx : A � (|(p)| ∪ |B|) ∼= Gn � (|T | ∪ |B|) extending b, and this
isomorphism is unique.

Now suppose that (p) contains a copy of [10k] for some k ∈ ω. If (p) does
not participate in an operation before stage h(π(p)) + 1 then (p) is finite, so the
previous case applies. Otherwise, let m be such that x ∈ (p) ∩ (A∗)m. Since, by
Lemma 4.2.16, (p)∩ (A∗)m is not embeddable in any component L 6= K of A unless
(p) and L are i-isomorphic for some i ∈ Z, i 6= 0, there is a unique finite set T ⊂ Gn
such that there is an isomorphism gx : A � (|(p) ∩ (A∗)m| ∪ |B|) ∼= Gn � (|T | ∪ |B|)
extending b, and this isomorphism is unique.

In either case, define f(x) = gx(x). By the uniqueness of T and gx, f is the
unique embedding of PH into Gn extending b. Furthermore, it is easy to see that gx
can be computably determined given x ∈ PH , which implies that f is computable.

4.2.35 Lemma. Let H0 consist of all numbers of the form 10〈pτq, k, j〉 + 1 or
10〈pτq, k〉 + l, τ to the left of σ or τa1 ⊆ σ, j, k ∈ ω, l ∈ {2, 3, 4, 5}. Then there is
a unique embedding f0 ⊃ b of PH0 into Gn, and f0 is computable.

Proof. Let T be the set of all τ which are either to the left of σ or such that τa1 ⊆ σ.
Since σ ∈ TP , only finitely many elements of T ever recover, and the ones that do



117

recover, do so only finitely often. So there exists a stage s such that if τ ∈ T then
τ is not active after stage s. If we let h(m) = s for all m ∈ H0 then the hypotheses
of Lemma 4.2.34 are satisfied.

4.2.36 Lemma. Let H1 consist of all numbers of the form 10〈pτq, k, j〉 + 8 or
10〈pτq, k〉 + l, τ to the left of σ, j, k ∈ ω, l ∈ {0, 6, 7}. Then there is a unique
embedding f1 ⊃ b of PH1 into Gn, and f1 is computable.

Proof. Since σ ∈ TP , there exists a stage s such that if τ is to the left of σ then τ is
not accessible after stage s. If we let h(m) = s for all m ∈ H1 then the hypotheses
of Lemma 4.2.34 are satisfied.

4.2.37 Lemma. Let τ be to the right of σa0. Let m be of the form 10〈pτq, k, j〉+ d
or 10〈pτq, k〉+ l, j, k ∈ ω, d ∈ {1, 8}, l ∈ {0, 2, 3, 4, 5, 6, 7}. Let s+ 1 be the stage at
which τ is initialized for the (k+1)st time. Let i ∈ Z. If m ∈ N0 then let p = (m, i);
otherwise, let p = m. Then (p) does not participate in an operation after stage s.

Proof. If a singleton component of At of the form [10〈pτq, q〉 + l], l ∈ {0, 3, 6, 7},
or [10〈pτq, q, j〉 + 8] participates in an operation at a stage t + 1 > s then q =
init(τ, t) > k. If a singleton component of At of the form [10〈pτq, q〉 + l], l ∈
{2, 4, 5}, or [10〈pτq, q, j〉+ 1] participates in an operation at a stage t + 1 > s then
q = c(τ, t) > init(τ, t) > k. So if (p) does not participate in an operation before
stage s+ 1 then it does not participate in an operation after stage s.

On the other hand, if (p) participates in an operation before stage s + 1 then
the fact that it does not participate in an operation after stage s follows from
Lemma 4.2.17.

4.2.38 Lemma. Let H2 consist of all numbers of the form 10〈pτq, k, j〉 + d or
10〈pτq, k〉+ l, τ to the right of σa0, j, k ∈ ω, d ∈ {1, 8}, l ∈ {0, 2, 3, 4, 5, 6, 7}. Then
there is a unique embedding f2 ⊃ b of PH2 into Gn, and f2 is computable.

Proof. If m ∈ H2 is of the form 10〈pτq, k, j〉 + d or 10〈pτq, k〉 + l then define h(m)
to be the first stage by which τ has been initialized k+ 1 many times (which exists,
since σa0 ∈ TP ). Then, by Lemma 4.2.37, the hypotheses of Lemma 4.2.34 are
satisfied.

Let H3 be the set of all m ∈ ω such that, for any i ∈ Z, ((m, i)) is an infinite
component of (A)τ , τ ⊂ σ, that does not contain a copy of [10k] for any k ∈ ω.

4.2.39 Lemma. H3 is computable.

Proof. By Lemmas 4.2.15, 4.2.22, and 4.2.24, every element of H3 must be of the
form 10〈pτq, k〉 + l, τa0 ⊆ σ, lims rτ,s exists, k ∈ ω, l ∈ {3, 4, 5}. Let m ∈ ω be of
this form. We will describe an effective procedure for deciding whether m ∈ H3.
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First suppose that l = 3. Since lims rτ,s exists, Tτ,s comes to a limit T by some
stage u. Since τ ∈ TP , init(τ, s) comes to a limit init(τ). If k 6= init(τ) then
m /∈ H3. Otherwise, by Lemma 4.2.21, for any i ∈ Z, m ∈ H3 if and only if
((m, i))u contains a copy of T .

Now suppose that l ∈ {4, 5}. Now let t > u be a stage by which τ has recovered
k + 1 many times, which must exist, since τa0 ∈ TP . Arguing as in the proof of
Lemma 4.2.37, we see that if ((m, i)), i ∈ Z, has not participated in an operation
by stage t then it will never participate in an operation, in which case m /∈ H3. On
the other hand, if ((m, i)), i ∈ Z, has participated in an operation by stage t then,
by Lemma 4.2.21, m ∈ H3 if and only if ((m, i))t contains a copy of T .

For τ ⊂ σ, let Hτ
3 be the set of all m ∈ H3 such that, for any i ∈ Z, ((m, i)) is a

component of (A)τ . The following lemma is easily checked.

4.2.40 Lemma. For each τ ⊂ σ, PHτ
3

is c.e..

For τ ⊂ σ, let Mτ be the union of all infinite components of (Gn)τ that do not
contain a copy of [10k] for any k ∈ ω. Let M =

⋃
τ⊂σMτ .

4.2.41 Lemma. Each Mτ , τ ⊂ σ, is c.e..

Proof. By Lemmas 4.2.15, 4.2.22, and 4.2.24, it is enough to show that, for each
τa0 ⊆ σ such that lims rτ,s exists, Mτ is c.e..

Fix such a τ . Since lims rτ,s exists, Tτ,s comes to a limit T . By Lemma 4.2.21,
the components of Mτ are exactly those that contain a copy of T . Since T is finite,
we can effectively enumerate such components.

4.2.42 Lemma. There exists a computable isomorphism f3 ⊃ b from PH3 to the
graph obtained by restricting the domain of Gn to |B| ∪ |M |.

Proof. Let τ ⊂ σ. By Lemma 4.2.40, PHτ
3

is c.e.. By Lemma 4.2.41, so is Mτ . Thus
there exists a computable 1–1 and onto map dτ from the tops of components of PHτ

3

to the tops of components of Mτ such that if x is the top of a level-i component
of PHτ

3
, i ∈ Z, then dτ (x) is the top of a level-(i − r) component of Mτ . By

Lemma 4.2.26, dτ can be extended to a computable isomorphism f τ3 from PHτ
3

to
Mτ . Now define f3 = b ∪

⋃
τ⊂σ f

τ
3 .

4.2.43 Lemma. Let H4 consist of all numbers of the form 10〈pτq, k, j〉 + 1 or
10〈pτq, k〉 + l, τa0 ⊆ σ, j, k ∈ ω, l ∈ {2, 3, 4, 5}, that are not in H3. Then there is
a unique embedding f4 ⊃ b of PH4 into Gn, and f4 is computable.

Proof. Let m ∈ H4 be of the form 10〈pτq, k〉 + 3, let i ∈ Z, and let p = (m, i). Let
init(τ) = lims init(τ, s).
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If k < init(τ) then let s be the least stage by which τ has been initialized k + 1
many times. Arguing as in the proof of Lemma 4.2.37, we see that (p) does not
participate in an operation after stage s. In this case, let h(m) = s.

If k > init(τ) then (p) never participates in an operation. In this case, let
h(m) = 0.

If k = init(τ) then it must be the case that rτ,s has no limit, since otherwise (p)
would be infinite. Thus Tτ,s has no limit, which means that we can find a stage s
such that (p)s does not contain a copy of Tτ,s. It is not hard to check that (p) does
not participate in an operation after stage s. In this case, let h(m) = s.

Now let m ∈ H4 be of the form 10〈pτq, k, j〉 + 1 or 10〈pτq, k〉 + l, l ∈ {2, 4, 5},
let i ∈ Z, and let p = (m, i). Let 2s + 2 be the least phase-2 τ -recovery stage such
that c(τ, 2s + 1) > k, (p) does not participate in an operation at stage 2s + 2, and
(p)2s+1 does not contain a copy of Tτ,2s+1. Such a stage must exist, since otherwise
(p) would be infinite. It is not hard to check that (p) does not participate in an
operation after stage s. In this case, let h(m) = s.

Now the hypotheses of Lemma 4.2.34 are satisfied.

4.2.44 Lemma. Let H5 consist of all numbers of the form 10〈pτq, k, j〉 + 8 or
10〈pτq, k〉 + l, τ ⊆ σ, j, k ∈ ω, l ∈ {0, 6, 7}. Then there is a unique embedding
f5 ⊃ b of PH5 into Gn, and f5 is computable.

Proof. Let m ∈ H5 be of the form 10〈pτq, k, j〉 + 8 or 10〈pτq, k〉 + l. Let i ∈ Z. If
m ∈ N0 then let p = (m, i); otherwise, let p = m. If R|τ | is never satisfied then (p)
never participates in an operation. In this case, let h(m) = 0. If R|τ | is satisfied at
stage s then (p) never participates in an operation after stage s. In this case, let
h(m) = s. Since there are only finitely many τ ⊆ σ, h is computable, and hence
the hypotheses of Lemma 4.2.34 are satisfied.

Let H ′6 consist of all numbers of the form 10〈pτq, k, j〉+ 1 or 10〈pτq, k〉+ l, τ = σ
or σa0 ⊆ τ , j, k ∈ ω, l ∈ {2, 3, 4, 5}. Let H ′′6 consist of all numbers of the form
10〈pτq, k, j〉+ 8 or 10〈pτq, k〉+ l, σa0 ⊆ τ , j, k ∈ ω, l ∈ {0, 6, 7}. Let H6 = H ′6 ∪H ′′6 .

4.2.45 Lemma. Let τ be such that τ = σ or σa0 ⊆ τ . Let u be a stage after which
σ is never initialized and such that, for all s > u, rσ,s = r. Let 2s + 1 > u be a
phase-1 τ -recovery stage and let 2t + 2 be the next phase-2 σ-recovery stage after
stage 2s + 1. Let i ∈ Z be such that |i− r| 6 recov(σ, 2s + 1). Let K0, . . . , Km

be the components of (Ai2s)τ that participate in an operation at stage 2s + 1. Let
K ′0, . . . , K

′
m be the components of A2t+1 that extend K0, . . . , Km, respectively. Then

the following hold.

1. There exist components K̂0, . . . , K̂m of Gi−rn [2s] such that K̂0
∼= K0, . . . , K̂m

∼=
Km.
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2. Let K̂ ′0, . . . , K̂
′
m be the components of Gn[2t + 1] that extend K̂0, . . . , K̂m, re-

spectively. Then K̂ ′0
∼= K ′0, . . . , K̂

′
m
∼= K ′m.

Proof. Since 2s + 1 is a τ -recovery stage, it is also a σ-recovery stage, so the first
part of the lemma follows from the definition of phase-1 σ-recovery stage; we prove
the second part.

Let j 6 m. Since no component of (A)τ participates in an operation in the inter-
val (2s+1, 2t+2), the definition of the catch-up operation performed at stage 2s+1
guarantees that K ′j is the unique component of Ai2t+1 that contains a copy of Kj.

This means that K̂ ′j is the unique component of Gi−r[2t + 1] that contains a copy

of K̂j. Since, by the definition of phase-2 σ-recovery stage, there must exist a

component of Gi−r[2t+ 1] isomorphic to K ′j, it must be the case that K̂ ′j
∼= K ′j.

4.2.46 Lemma. Let τ be such that τ = σ or σa0 ⊆ τ . Let u be a stage after which
σ is never initialized and such that, for all s > u, rσ,s = r. Let 2s + 2 > u be a
phase-2 τ -recovery stage and let 2t + 1 be the next phase-1 σ-recovery stage after
stage 2s + 2. Let A2t be the union of (A∗2t)recov(σ,2s+1),r (see Definition 4.2.1) and
Ai2t for each i ∈ Z such that |i− r| 6 recov(σ, 2s + 1). Let Gn[2t] be the union of
(G∗n[2t])recov(σ,2s+1) and Gin[2t] for each i ∈ Z such that |i| 6 recov(σ, 2s+ 1).

Let i ∈ Z be such that |i− r| 6 recov(σ, 2s + 1). Let e be such that Re is
satisfied at stage 2s+ 2 and let m = π1(e). Let Y0, . . . , Ym−1, X, Z, B, S, C, D, E,
and F0, . . . , Fm−1 be Y i

τ,0,2s+1, . . . , Y
i
τ,m,2s+1, X2s+1, Zi

τ,2s+1, Bi
τ,2s+1, Siτ,2s+1, Ci

τ,2s+1,
Di

2s+1, Ei
2s+1, and F i

0,2s+1, . . . , F
i
m,2s+1, respectively. Let Y ′0 , . . . , Y

′
m−1, X ′, Z ′, B′,

S ′, C ′, D′, E ′, and F ′0, . . . , F
′
m−1 be the intersection of the components of A2t that

extend Y0, . . . , Ym−1, X, Z, B, S, C, D, E, and F0, . . . , Fm−1, respectively, with
A2t. Then the following hold.

1. There exists a component X̂ of Gi−rn [2s + 1] such that X̂ ∼= X. There exist

components Ŷ0, . . . , Ŷm−1, Ẑ, B̂, Ŝ, Ĉ, D̂, Ê, and F̂0, . . . , F̂m−1 of Gi−rn [2s+1]

such that Ŷ0
∼= Y0, . . . , Ŷm−1

∼= Ym−1, Ẑ ∼= Z, B̂ ∼= B, Ŝ ∼= S, Ĉ ∼= C, D̂ ∼= D,
Ê ∼= E, and F̂0

∼= F0, . . . , F̂m−1
∼= Fm−1.

2. Let Ŷ ′0 , . . . , Ŷ
′
m−1, X̂ ′, Ẑ ′, B̂′, Ŝ ′, Ĉ ′, D̂′, Ê ′, and F̂ ′0, . . . , F̂

′
m−1 be the inter-

section of the components of Gn[2t] that extend Ŷ0, . . . , Ŷm−1, X̂, Ẑ, B̂, Ŝ, Ĉ,

D̂, Ê, and F̂0, . . . , F̂m−1, respectively, with Gn[2t]. Then Ŷ ′0
∼= Y ′0 , . . . , Ŷ

′
m−1
∼=

Y ′m−1, X̂ ′ ∼= X ′, Ẑ ′ ∼= Z ′, B̂′ ∼= B′, Ŝ ′ ∼= S ′, Ĉ ′ ∼= C ′, D̂′ ∼= D′, Ê ′ ∼= E ′, and

F̂ ′0
∼= F ′0, . . . , F̂

′
m−1
∼= F ′m−1.

Proof. Since 2s+ 2 is a τ -recovery stage, if τ 6= σ then σ must have fully recovered
at least |τ | + 1 many times by stage 2s + 1, so the first part of the lemma follows
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from the definition of phase-2 recovery stage; we prove the second part. There are
several cases.

We begin with the τ = σ and i = r case. Since i = rσ,2s+2, the row of level-i
components corresponding to σ in the operation performed at stage 2s+ 2 goes to
the left. That is, Z ′ is a copy of Z · B, B′ is a copy of B · S, S ′ is a copy of S · C,
C ′ is a copy of C � (Y0, . . . , Ym−1), each Yj, j < m, contains a copy of Yj ·X, and
X contains a copy of X · Z.

By definition, Ŝ and Ŝ ′ are the σ-special components of Gn[2s + 1] and Gn[2t],

respectively. Thus, since rσ,2t+1 = rσ,2t = r and 2t+1 is a σ-recovery stage, Ŝ ′ ∼= S ′.
All the components of A2t that contain a copy of C are isomorphic to either S ′

or C ′. Since Ŝ ′ ∼= S ′, it must be the case that Ĉ ′ ∼= C ′.
Let j < m. All the components of A2t that contain a copy of Yj are isomorphic

to either C ′ or Y ′j . Since Ĉ ′ ∼= C ′, it must be the case that Ŷ ′j
∼= Y ′j .

The only components of A2t that contain a copy of X are Y ′0 , . . . , Y
′
m−1 and X ′.

Since, for each j < m, Ŷ ′j
∼= Y ′j , it must be the case that X̂ ′ ∼= X ′.

The only components of A2t that contain a copy of Z are X ′ and components
isomorphic to Z ′. Since X̂ ′ ∼= X ′, it must be the case that Ẑ ′ ∼= Z ′.

All the components of A2t that contain a copy of B are isomorphic to either Z ′

or B′. Since Ẑ ′ ∼= Z ′, it must be the case that B̂′ ∼= B′.

We now deal with the i ≡ rτ,2s+2 mod m + 1 case. As in the first case, the row
of level-i components corresponding to τ in the operation performed at stage 2s+ 2
goes to the left.

The previous case shows that X̂ ′ ∼= X ′.
The only components of A2t that contain a copy of Z are X ′ and components

isomorphic to Z ′. Since X̂ ′ ∼= X ′, it must be the case that Ẑ ′ ∼= Z ′.
All the components of A2t that contain a copy of B are isomorphic to either Z ′

or B′. Since Ẑ ′ ∼= Z ′, it must be the case that B̂′ ∼= B′.
All the components of A2t that contain a copy of S are isomorphic to either B′

or S ′. Since B̂′ ∼= B′, it must be the case that Ŝ ′ ∼= S ′.
All the components of A2t that contain a copy of C are isomorphic to either S ′

or C ′. Since Ŝ ′ ∼= S ′, it must be the case that Ĉ ′ ∼= C ′.
Let j < m. All the components of A2t that contain a copy of Yj are isomorphic

to either C ′ or Y ′j . Since Ĉ ′ ∼= C ′, it must be the case that Ŷ ′j
∼= Y ′j .

We now deal with the i 6≡ rτ,2s+2 mod m + 1 case. Let l < m be such that
i ≡ l+rτ,2s+2+1 mod m+1. In this case, the row of level-i components corresponding
to σ in the operation performed at stage 2s + 2 goes to the right. That is, B′ is
a copy of B · Z, S ′ is a copy of S · B, C ′ is a copy of C · S, Y ′l is a copy of
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Y ′l � (C, Y0, . . . , Yl−1, Yl+1, . . . , Ym−1), each Y ′j , j < m, j 6= l, contains a copy of
Yj ·X, X ′ contains a copy of X · Yl, and Z ′ contains a copy of Z ·X.

As before, the first case shows that X̂ ′ ∼= X ′.
The only components of A2t that contain a copy of Yl are X ′ and components

isomorphic to Y ′l . Since X̂ ′ ∼= X ′, it must be the case that Ŷ ′l
∼= Y ′l .

Let j < m, j 6= l. All the components of A2t that contain a copy of Yj are

isomorphic to either Y ′l or Y ′j . Since Ŷ ′l
∼= Y ′l , it must be the case that Ŷ ′j

∼= Y ′j .
All the components of A2t that contain a copy of C are isomorphic to either Y ′l

or C ′. Since Ŷ ′l
∼= Y ′l , it must be the case that Ĉ ′ ∼= C ′.

All the components of A2t that contain a copy of S are isomorphic to either C ′

or S ′. Since Ĉ ′ ∼= C ′, it must be the case that Ŝ ′ ∼= S ′.
All the components of A2t that contain a copy of B are isomorphic to either S ′

or B′. Since Ŝ ′ ∼= S ′, it must be the case that B̂′ ∼= B′.
All the components of A2t that contain a copy of Z are isomorphic to either B′

or Z ′. Since B̂′ ∼= B′, it must be the case that Ẑ ′ ∼= Z ′.

Finally, we deal with the case of D, E, and F0, . . . , Fm−1. First suppose that
i ≡ 0 mod m+1. In this case, the row of components containing E in the operation
performed at stage 2s + 2 goes to the left. That is, D′ is a copy of D · E, E ′ is
a copy of E � (F0, . . . , Fm−1), each F ′j , j < m, contains a copy of Fj · X, and X ′

contains a copy of X ·D.
As before, the first case shows that X̂ ′ ∼= X ′.
The only components of A2t that contain a copy of D are X ′ and components

isomorphic to D′. Since X̂ ′ ∼= X ′, it must be the case that D̂′ ∼= D′.
All the components of A2t that contain a copy of E are isomorphic to either D′

or E ′. Since D̂′ ∼= D′, it must be the case that Ê ′ ∼= E ′.
Let j < m. All the components of A2t that contain a copy of Fj are isomorphic

to either E ′ or F ′j . Since Ê ′ ∼= E ′, it must be the case that F̂ ′j
∼= F ′j .

Now suppose that i 6≡ 0 mod m+1. Let l < m be such that i ≡ l+1 mod m+1.
In this case, the row of components containing E in the operation performed at
stage 2s + 2 goes to the right. That is, E ′ is a copy of E · D, F ′l is a copy of
F ′l � (E,F0, . . . , Fl−1, Fl+1, . . . , Ym−1), each F ′j , j < m, j 6= l, contains a copy of
Fj ·X, X ′ contains a copy of X · Fl, and D′ contains a copy of D ·X.

As before, the first case shows that X̂ ′ ∼= X ′.
The only components of A2t that contain a copy of Fl are X ′ and components

isomorphic to F ′l . Since X̂ ′ ∼= X ′, it must be the case that F̂ ′l
∼= F ′l .

Let j < m, j 6= l. All the components of A2t that contain a copy of Fj are

isomorphic to either F ′l or F ′j . Since F̂ ′l
∼= F ′l , it must be the case that F̂ ′j

∼= F ′j .
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All the components of A2t that contain a copy of E are isomorphic to either F ′l
or E ′. Since F̂ ′l

∼= F ′l , it must be the case that Ê ′ ∼= E ′.
All the components of A2t that contain a copy of D are isomorphic to either E ′

and D′. Since Ê ′ ∼= E ′, it must be the case that D̂′ ∼= D′.

The following lemma can be easily checked.

4.2.47 Lemma. Let p ∈ H̃6. If (p)2s+1 participates in an operation at stage 2s+ 2
then it is one of Y i

τ,m,2s+1 X2s+1, Zi
τ,2s+1, Bi

τ,2s+1, Siτ,2s+1, Ci
τ,2s+1, Di

2s+1, Ei
2s+1, or

F i
m,2s+1, τ = σ or σa0 ⊆ τ , m ∈ ω, i ∈ Z, and σ is active at stage 2s+ 2.

4.2.48 Lemma. Let u be a stage after which σ is never initialized and such that,
for all s > u, rσ,s = r. Let s+ 1 > u be a σ-recovery stage and let t+ 1 be the next

σ-recovery stage after stage s + 1. Let p ∈ H̃6. Suppose there exists a component
L of Gn[s] that is (−r)-isomorphic to (p)s. Then the component L′ of Gn[t] that
extends L is isomorphic to (p)t.

Proof. If (p) does not participate in an operation in the interval (s, t] then (p)t ∼=
(p)s. Since L′ ⊇ L, (p)t is not properly embeddable in any component of At, and,
by convention, Gn[t] is embeddable in At, this means that L′ ∼= (p)t.

Otherwise, the lemma follows from Lemmas 4.2.45, 4.2.46, and 4.2.47.

4.2.49 Lemma. Let u be a stage after which σ is never initialized and such that,
for all s > u, rσ,s = r. Let x ∈ PH6. There exists a σ-recovery stage s + 1 > u

such that x is contained in (p)s for some p ∈ H̃6 and there exists a (−r)-isomorphic
component L of Gn[s]. For any such s, if we let d be the unique isomorphism from
(p)s to L and let L′ be the component of Gn that extends L then d can be extended
to an isomorphism from (p) to L′.

Proof. If x is contained in a finite component of A then the existence of s and L
follows from the fact that Gn ∼= A. Otherwise, there is a σ-recovery stage s+ 1 > u
such that x is contained in (p)s, p ∈ H̃6, and (p)s is involved in an operation at
stage s+1. Now it follows from Lemmas 4.2.45, and 4.2.46 that there is a component
L of Gn[s] isomorphic to (p)s.

Let s + 1 = s0 + 1 < s1 + 1 < · · · be the σ-recovery stages greater than or
equal to s+ 1. Let Li be the component of Gn[si] that extends L and let L′ be the
component of Gn that extends L. Using Lemma 4.2.48 and induction, we see that,
for each i > 0, there is a unique isomorphism gi : (p)si

∼= Li. Note that g0 = g.
Clearly, if j > i then gj extends gi. Thus the limit g′ of the gi is well-defined and is
an isomorphism from (p) to L′.
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Let T be the graph obtained by restricting the domain of Gn to the union of |B|
with the domain of the set of all components of Gn that contain a copy of [m] for
some m ∈ H6.

4.2.50 Lemma. There exists a computable isomorphism f6 ⊃ b from PH6 to T .

Proof. We begin by defining f6 � B ≡ b. Now let u be a stage after which σ is never
initialized and such that, for all s > u, rσ,s = r. Given x ∈ PH6 , find the least

σ-recovery stage s+ 1 > u such that x is contained in a component (p)s, p ∈ H̃6, of
As and there exists a component L of Gn[s] that is (−r)-isomorphic to (p)s. Such
a stage exists by Lemma 4.2.49. Let dx be the unique isomorphism from (p)s to L
and define f6(x) = dx(x).

We need to show that f6 is computable, that it is an embedding, and that its
range is all of T .

Since dx can be computably determined given x ∈ PH6 , f6 is computable.
By Lemma 4.2.49, all we need to do to show that f6 is an embedding is to show

that if x and y are both contained in a component (p), p ∈ H̃6, then f6(x) and f6(y)
are contained in the same component of Gn. But this follows from Lemma 4.2.48,
which implies, by induction, that if the least σ-recovery stage s+ 1 > u such that x
is contained in (p)s is greater than or equal to the least σ-recovery stage t + 1 > u
such that y is contained in (p)t then dx extends dy.

Finally, notice that, for any s ∈ ω, if K is a component of As that contains a
copy of [m] for some m ∈ H6 then K is (p)s for some p ∈ H̃6.

Let L be a component of T . If L is a singleton component then the fact that
Gn ∼= A implies that, for some σ-recovery stage s+ 1 > u, there is a component K
of As that is r-isomorphic to L. Since K is (p)s for some p ∈ H̃6, L is in the range
of f6.

If L is not a singleton component then it is in (Gn)τ or (G∗n)τ for some τ such that
τ = σ or σa0 ⊆ τ . Let x ∈ L and let t > u be a stage such that x is contained in a
component of Gn[s] that contains a copy of [m] for some m ∈ H6. By the definition
of σ-recovery stage, there is some σ-recovery stage s + 1 > t and components L′

and K of Gn[s] and As, respectively, such that x ∈ L′ and K is r-isomorphic to L′.

Since K is (p)s for some p ∈ H̃6, x is in the range of f6. Thus L is in the range of
f6.

Now H0, . . . , H6 are computable subsets of ω− such that
⋃6
i=0Hi = ω−. It is

not hard to check that, for i 6= j 6 6, if K and L are components of PHi and PHj ,
respectively, and fi(K) = fj(L), then K and L are components of A∗, from which it
follows that K = L. Furthermore, the uniqueness of f0, f1, f2, f4, and f5, together
with the surjectivity of f3 and f6, imply that

⋃m
i=0 rng(fi) = |Gn|. So, combining
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Lemmas 4.2.35, 4.2.36, 4.2.38, 4.2.42, 4.2.43, 4.2.44, and 4.2.50 with Lemma 4.2.32,
we have the following result.

4.2.51 Lemma. There exists a computable isomorphism from 〈A, ar〉 to 〈Gn, g〉.

Theorem 4.1.3 follows from Lemmas 4.2.10, 4.2.27, and 4.2.51. �



Chapter 5

Relations on Algebraic Structures
I: Positive Results

5.1 Introduction

Whenever a computable structure with a particularly interesting property is found,
it is natural to ask whether similar examples can be found within well-known classes
of algebraic structures, such as groups, rings, lattices, and so forth. As an example,
let us consider the computable dimension of computable structures.

It is easy to construct computable structures with computable dimension 1 or ω.
Indeed, most familiar structures and even all members of many classes of familiar
structures have computable dimension 1 or ω. Nurtazin [29], for example, showed
that all decidable structures fall into this category. Goncharov [8] later extended this
result to 1-decidable structures, and there have been several other familiar classes
of structures for which similar results have been established.

5.1.1 Theorem. All structures in each of the following classes have computable
dimension 1 or ω.

• (Nurtazin; Metakides and Nerode) algebraically closed fields

• (Nurtazin) real closed fields

• (Goncharov) Abelian groups

• (Goncharov and Dzgoev; Remmel) linear orderings

• (Goncharov; LaRoche) Boolean algebras

• (Goncharov) ∆0
2-categorical structures

126
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The result for algebraically closed and real closed fields is implied by the results
in [29]; the result for algebraically closed fields was also independently proved in [27].
The result for Abelian groups appears in [11], that for linear orderings independently
in [14] and [30], and that for ∆0

2-categorical structures in [12]. The result for Boolean
algebras appears in full in [13], though it is implicit in earlier work of Goncharov
and, independently, in [26].

Thus, an important question early in the development of computable model the-
ory was whether there exist computable structures of finite computable dimension
greater than 1. This question was answered positively by Goncharov [10].

5.1.2 Theorem (Goncharov). For each n > 0 there is a computable structure with
computable dimension n.

Further investigation led to examples of computable structures with finite com-
putable dimension greater than 1 in several classes of algebraic structures. In each
case, the proof consists of coding families of c.e. sets with a finite number of com-
putable enumerations (up to a suitable notion of computable equivalence of enu-
merations) in a sufficiently effective way.

5.1.3 Theorem. For each n > 0 there are structures with computable dimension n
in each of the following classes.

• (Goncharov) graphs, partial orderings, and lattices

• (Goncharov, Molokov, and Romanovskii) 2-step nilpotent groups

• (Kudinov) integral domains

The results for partial orderings and (implicitly) graphs appear in [10], and the
result for lattices is an easy consequence of the results in that paper. The result for
2-step nilpotent groups (which improves a result in [11]) appears in [16], and that
for integral domains in [25].

In the original proofs of Theorems 3.1.2 and 4.1.2, the structures in question
were directed graphs, and the relation mentioned in Theorem 3.1.2 was unary. The
same holds of the results of Chapters 3 and 4. It is natural to ask, in the spirit
of what was done for structures of finite computable dimension, for which theories
these theorems remain true if we also require that A be a model of the given theory.

In this chapter, we present a method for showing that Theorems 3.1.2 and 4.1.2,
as well as related results, including the results of Chapters 3 and 4, remain true
if we also require that A be a model of a given theory, and apply it to the cases
of symmetric, irreflexive graphs; integral domains of arbitrary characteristic; and
commutative semigroups. These results also appear in [21], where the following
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cases are also dealt with: partial orderings, lattices, rings (with zero-divisors) of
arbitrary characteristic, and 2-step nilpotent groups.

Our method is based on coding computable graphs with the desired properties
into models of the given theory in a way that is effective enough to preserve these
properties. This approach is much simpler than attempting to adapt the original
proofs of the theorems under consideration. Furthermore, our codings are suffi-
ciently effective to make other similar results that might be proved for graphs in the
future carry over to the classes of structures mentioned above without additional
work.

Notice that, by Theorem 5.1.1, most of the results mentioned above cannot
be extended from partial orderings to linear orderings, from lattices to Boolean
algebras, or from commutative semigroups and 2-step nilpotent groups to Abelian
groups. We will say more about this in Chapter 6. A natural open question is what
is the situation for fields. It is not even known whether there exist fields of finite
computable dimension greater than 1.

5.2 A Sufficient Condition

In this section, we give a sufficient condition for a coding of a graph into a structure
to be effective enough for our purposes. This condition is not the most general one
we could give, but it is sufficient for our needs. It corresponds to an especially effec-
tive version of interpretations of theories (in the standard model-theoretic sense).
(See, e.g., chapter 5 of [22] for more on interpretations of theories.)

If Q is an equivalence relation on a set D then by a set of Q-representatives we
mean a set of elements of D containing exactly one member of each Q-equivalence
class.

5.2.1 Theorem. Let G be a computably presentable directed graph and let A be
a computably presentable structure. Suppose there exist intrinsically computable,
invariant relations D(x), Q(x, y), and R(x, y) on |A| and a map G 7→ AG from the
set of computable presentations of G to the set of computable presentations of A
with the following properties.

(P1) For each computable presentation G of G, there is a computable map gG :

D(AG)
onto−−→ |G| such that, for x, y ∈ D(AG), RAG(x, y)⇔ EG(gG(x), gG(y))

and QAG(x, y)⇔ gG(x) = gG(y). (Note that this implies that Q is an equiv-
alence relation and that if Q(x, x′) and Q(y, y′) then R(x, y)⇔ R(x′, y′).)

(P2) For every pair S, S ′ of sets of Q-representatives, if f : S
1–1−−→
onto

S ′ is such that

for every x, y ∈ S, R(x, y) ⇔ R(f(x), f(y)), then f can be extended to an
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automorphism of A.

(P3) If G is a computable presentation of G and S is a computable set of QAG-rep-

resentatives then there is a computable set of existential formulas {ϕ0(~a,~b0, x),

ϕ1(~a,~b1, x), . . .} such that ~a is a tuple of elements of |AG|, for each i ∈ ω,
~bi is a tuple of elements of S, each x ∈ |AG| satisfies some ϕi, and no two
elements of |AG| satisfy the same ϕi. (Such a set of formulas is known as a
defining family for 〈AG, a〉a∈S.)

Then the following hold.

1. A has the same computable dimension as G.

2. If x ∈ |G| then there exists an a ∈ D(A) such that 〈A, a〉 has the same
computable dimension as 〈G, x〉.

3. If V ⊆ |G| then there exists a U ⊆ D(A) such that DgSpA(U) = DgSpG(V ).

Proof. We begin with two remarks. First, if G is a computable presentation of G
and S is a set of QAG-representatives then gG � S is one-to-one. Second, if S and

S ′ are sets of Q-representatives and f : S
1–1−−→
onto

S ′ is such that, for every x ∈ S,

Q(x, f(x)), then (P1) implies that, for every x, y ∈ S, R(x, y) ⇔ R(f(x), f(y)), so
that, by (P2), f can be extended to an automorphism of A.

We now need a few lemmas.

5.2.2 Lemma. Let A and G be computable presentations of A and G, respectively,
let S be a computable set of QA-representatives, and let f : A ∼= AG. If f � S is
computable then so is f .

Proof. It is enough to show that f−1 is computable. Given x ∈ |AG|, find an i ∈ ω
such that AG � ϕi(~a,~bi, x), where ϕi(~a,~bi, x) is as in (P3). By definition, x is the
only element of |AG| that satisfies ϕi. Thus, there exists a unique y ∈ |A| such that

A � ϕi(f−1(~a), f−1(~bi), y), and f−1(x) = y.

5.2.3 Lemma. Let A and G be computable presentations of A and G, respectively.
Let S be a computable set of QA-representatives and let S ′ be a computable set of

QAG-representatives. Suppose that there exists a (computable) map f : S
1–1−−→
onto

S ′

such that, for each x, y ∈ S, RA(x, y) ⇔ RAG(f(x), f(y)). Then f can be extended
to a (computable) isomorphism f̂ : A ∼= AG.
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Proof. Since A and AG are both computable presentations of A, there exists an
isomorphism h : A ∼= AG. By our second remark above, h can be chosen so that
h(S) = S ′. Let d ≡ h � S. Then c ≡ f ◦ d−1 is a one-to-one map from S ′ onto
itself such that, for each x, y ∈ S, RAG(x, y) ⇔ RAG(c(x), c(y)). So, by (P2), c
can be extended to ĉ : AG ∼= AG. Now let f̂ ≡ ĉ ◦ h. Then f̂ : A ∼= AG and
f̂ � S ≡ f ◦ d−1 ◦ d ≡ f . If f is computable then Lemma 5.2.2 implies that f̂ is
computable.

We now need a few definitions. Let A be a computable presentation of A. Let
D̂(A) = {x ∈ D(A) | y < x ⇒ ¬QA(x, y)}, where < is the usual ordering on ω.

Note that D̂(A) is a computable set of QA-representatives. Define GA to be the

computable graph whose universe is D̂(A), with an edge between x and y if and

only if RA(x, y). For any computable presentation G of G, let dG = gG � D̂(AG).
Note that, by our first remark above, dG is one-to-one and hence invertible.

5.2.4 Lemma. If G and G′ are computable presentations of G and h : G ∼= G′ is a
(computable) isomorphism then there exists a (computable) isomorphism f̂ : AG ∼=
AG′ such that f̂ � D̂(AG) ≡ d−1

G′ ◦ h ◦ dG.

Proof. Let f : D̂(AG)
1–1−−→
onto

D̂(AG′) be defined by f ≡ d−1
G′ ◦h◦dG. If h is computable

then so is f . Furthermore, for each x, y ∈ D̂(AG), RAG(x, y)⇔ EG(dG(x), dG(y))⇔
EG′(h ◦ dG(x), h ◦ dG(y))⇔ RAG′ (f(x), f(y)). So, by Lemma 5.2.3, there exists an
isomorphism f̂ : AG ∼= AG′ extending f and if h is computable then so is f̂ .

5.2.5 Lemma. If A and A′ are computable presentations of A and f : A ∼= A′ is

a (computable) isomorphism then there exists a map h : f(D̂(A))
1–1−−→
onto

D̂(A′) such

that h ◦ (f � D̂(A)) is a (computable) isomorphism from GA to GA′.

Proof. For x ∈ f(D̂(A)), let h(x) be the unique y ∈ D̂(A′) such that QA′(x, y).
Then EGA(x, y)⇔ RA(x, y)⇔ RA′(f(x), f(y))⇔ RA′(h◦f(x), h◦f(y))⇔ EGA′ (h◦
f(x), h◦f(y)). Thus h◦(f � D̂(A)) is an isomorphism from GA to GA′ . Furthermore,

if f is computable then clearly so is h ◦ (f � D̂(A)).

5.2.6 Lemma. If G is a computable presentation of G then dG is a computable
isomorphism from GAG to G.

Proof. If x, y ∈ |GAG| then EGAG (x, y)⇔ RAG(x, y)⇔ EG(dG(x), dG(y)). Thus dG
is a computable isomorphism from GAG to G.

5.2.7 Lemma. If A is a computable presentation of A then there exists a computable
isomorphism f : A ∼= AGA such that f � D̂(A) ≡ d−1

GA
.
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Proof. The map d−1
GA

is computable. Furthermore, for each x, y ∈ D(A), RA(x, y)⇔
EGA(x, y) ⇔ RAGA (d−1

GA
(x), d−1

GA
(y)). So, by Lemma 5.2.3, d−1

GA
can be extended to

a computable isomorphism from A to AGA .

We are now ready to show that 1–3 in the statement of Theorem 5.2.1 hold.

5.2.8 Proposition. A has the same computable dimension as G.

Proof. Let G and G′ be computable presentations of G that are not computably
isomorphic. By Lemma 5.2.6, GAG and GAG′

are not computably isomorphic. Thus,
by Lemma 5.2.5, AG and AG′ are not computably isomorphic. So the computable
dimension of A is at least the same as that of G.

Now let A and A′ be computable presentations of A that are not computably
isomorphic. By Lemma 5.2.7, AGA and AGA′ are not computably isomorphic. Thus,
by Lemma 5.2.4, GA and GA′ are not computably isomorphic. So the computable
dimension of G is at least the same as that of A.

5.2.9 Proposition. Let x ∈ |G|. There exists an a ∈ D(A) such that 〈A, a〉 has
the same computable dimension as 〈G, x〉.

Proof. Let f : G ∼= G be a computable presentation of G, let h : A ∼= AG be an
isomorphism, and let a = h−1 ◦ d−1

G ◦ f(x). By Lemma 5.2.4, for every computable
presentation f ′ : G ∼= G′ of G there exists an isomorphism k : A ∼= AG′ such that
a = k−1◦d−1

G′ ◦f ′(x). The rest of the proof is similar to the proof of Proposition 5.2.8.
Let 〈G, xG〉 and 〈G′, xG′〉 be computable presentations of 〈G, x〉 that are not com-

putably isomorphic. By Lemma 5.2.6, 〈GAG , d
−1
G (xG)〉 and 〈GAG′

, d−1
G′ (x

G′)〉 are not

computably isomorphic. Thus, by Lemma 5.2.5, 〈AG, d−1
G (xG)〉 and 〈AG′ , d−1

G′ (x
G′)〉

are not computably isomorphic. So the computable dimension of 〈A, a〉 is at least
the same as that of 〈G, x〉.

Now let 〈B, aB〉 and 〈B′, aB′〉 be computable presentations of 〈A, a〉 that are
not computably isomorphic. By Lemma 5.2.3, there exist computable presentations
〈A, aA〉 and 〈A′, aA′〉 of 〈A, a〉 such that 〈A, aA〉 is computably isomorphic to 〈B, aB〉,
〈A′, aA′〉 is computably isomorphic to 〈B′, aB′〉, aA ∈ D̂(A), and aA

′ ∈ D̂(A′). By
Lemma 5.2.7, 〈AGA , d−1

GA
(aA)〉 and 〈AGA′ , d

−1
GA′

(aA
′
)〉 are not computably isomorphic.

Thus, by Lemma 5.2.4, 〈GA, a
A〉 and 〈GA′ , a

A′〉 are not computably isomorphic. So
the computable dimension of 〈G, x〉 is at least the same as that of 〈A, a〉.

5.2.10 Proposition. Let V ⊆ |G|. There is a U ⊆ D(A) such that DgSpA(U) =
DgSpG(V ).
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Proof. Let f : G ∼= G be a computable presentation of G, let h : A ∼= AG be an
isomorphism, and let U = {x ∈ D | ∃y[Q(x, y)∧ y ∈ h−1 ◦ d−1

G ◦ f(V )]}. Notice that
this definition guarantees that Q(x, y)⇒ (U(x)⇔ U(y)).

By Lemma 5.2.4, for every computable presentation f ′ : G ∼= G′ of G there
exists an isomorphism k : A ∼= AG′ such that U = {x ∈ D | ∃y[Q(x, y) ∧ y ∈
k−1 ◦ d−1

G′ ◦ f ′(V )]} = {x ∈ D | ¬∃y[Q(x, y) ∧ y ∈ k−1 ◦ d−1
G′ ◦ f ′(|G| − V )]}, which

implies that DgSpG(V ) ⊆ DgSpA(U).
On the other hand, for every computable presentation k : A ∼= A of A, our

second remark at the beginning of the proof of Theorem 5.2.1 implies that there
exists an automorphism p : A ∼= A such that p ◦ h−1(D̂(AG)) = k−1(D̂(A)). It is
not hard to check that m = k ◦ p ◦ h−1 ◦ d−1

G ◦ f : G ∼= GA is an isomorphism and

that V = m−1 ◦ k(U � k−1(D̂(A))). This implies that DgSpA(U) ⊆ DgSpG(V ).

Theorem 5.2.1 follows from Propositions 5.2.8, 5.2.9, and 5.2.10. �

5.3 Undirected Graphs

It is usually easier to code symmetric, irreflexive graphs into structures than arbi-
trary directed graphs. Thus, as a simple but useful example of the application of
Theorem 5.2.1, we exhibit a coding of an arbitrary directed graph into a symmetric,
irreflexive graph that allows us to restrict our attention to symmetric, irreflexive
graphs when applying Theorem 5.2.1.

Let G be a computable infinite directed graph with edge relation E.
Let G′ be a computable presentation of G. The computably presentable sym-

metric, irreflexive graph HG′ = 〈|HG′ | , F 〉 is defined as follows.

1. |HG′ | = {a, a′, b} ∪ {ci, di, ei | i ∈ |G′|}.

2. F (x, y) holds only in the following cases.

(a) F (a, a′) and F (a′, a).

(b) For all i ∈ |G′|,
i. F (a, ci) and F (ci, a),

ii. F (b, ei) and F (ei, b),

iii. F (ci, di) and F (di, ci).

iv. F (di, ei) and F (ei, di).

(c) If EG′(i, j) then F (ci, ej) and F (ej, ci).
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a a′

c0 c1 c2

d0 d1 d2

b

e0 e1 e2

Figure 5.1: Part of the graph HG

As an example, Figure 5.1 shows part of HG in the case in which E(0, 1), E(1, 0),
E(1, 2), E(2, 2), ¬E(0, 0), ¬E(0, 2), ¬E(1, 1), ¬E(2, 0), and ¬E(2, 1).

Fix a computable presentation of HG′ for which the map gG′ : ci 7→ i is com-
putable and identify HG′ with this presentation.

It is easy to see that, for any computable presentation G′ of G, HG
∼= HG′ . Now

let a, a′, and b be as in the definition of HG and define

D(x) = {x ∈ |HG| | x 6= a′ ∧ F (a, x)},

Q(x, y) = {(x, x) | D(x)},

and

R(x, y) = {(x, y) | D(x) ∧D(y) ∧ ∃d, e(F (b, e) ∧ F (y, d) ∧ F (d, e) ∧ F (x, e))}.

Clearly, D and Q are intrinsically computable relations, and so is R, since, for
x, y ∈ D(HG),

∃d, e(F (b, e) ∧ F (y, d) ∧ F (d, e) ∧ F (x, e))⇔
¬∃d, e(F (b, e) ∧ F (y, d) ∧ F (d, e) ∧ ¬F (x, e)).

Furthermore, if G′ is a computable presentation of G then D(HG′) = dom(gG′),
QHG′ (x, y)⇔ gG′(x) = gG′(y), and RHG′ (x, y)⇔ EG′(gG′(x), gG′(y)).

To see that D, Q, and R are invariant, it is enough to notice that a is the only
element of HG that satisfies the formula

∃∞y(F (x, y)) ∧ ∃z(F (x, z) ∧ ∀w(F (w, z)→ w = x)),
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a′ is the only element of HG that satisfies

F (x, a) ∧ ∀y(F (x, y)→ y = a)

and x = b is the only element of HG that satisfies

∃∞y(F (x, y)) ∧ ¬F (a, x) ∧ ¬∃z(F (a, z) ∧ F (x, z)).

The only set of Q-representatives is D(HG) itself. If f : D(HG)
1–1−−→
onto

D(HG)

is such that R(x, y) ⇔ R(f(x), f(y)) then we can extend f as follows. Let a, a′,
b, di, and ei be as in the definition of HG. Let f(a) = a, f(a′) = a′, f(b) = b,
f(di) = dgG◦f(i), and f(ei) = egG◦f(i). It can be easily checked that this extended
map is an automorphism of HG.

Finally, given a computable presentation G′ of G, let a and b be as in the
definition of HG′ and consider the computable set of formulas

{x = a, x = a′, x = b} ∪ {x = c | c ∈ D(HG′)}∪
{x 6= a ∧ F (c, x) ∧ ¬F (b, x) | c ∈ D(HG′)}∪

{F (b, x) ∧ ∃d(F (c, d) ∧ F (d, x)) | c ∈ D(HG′)}.

Clearly, every x ∈ |HG′ | satisfies some formula in this set, with no two elements
satisfying the same formula.

It now follows from Theorem 5.2.1 that Theorems 3.1.2 and 4.1.2 and the results
of Chapters 3 and 4 remain true if we require that A be a symmetric, irreflexive
graph and that U be a subgraph of A.

5.4 Integral Domains and Commutative Semi-

groups

In this section, we present a coding of a graph into an integral domain inspired by
Kudinov’s coding [25] of a family of c.e. sets into an integral domain of characteristic
0 and show how this leads to a proof that Theorems 3.1.2 and 4.1.2 and the results
of Chapters 3 and 4 remain true if we also require that A be a integral domain of
arbitrary characteristic and that U be a subring of A. Because our coding does not
make use of the additive structure of the domain, we will simultaneously handle the
case of commutative semigroups.

Let p be either 0 or a prime. We adopt the convention that Z0 = Z. If p = 0
then let F = Q; otherwise, let F = Zp. Let I be the set of invertible elements of Zp.
Note that I is finite.



135

The graphs constructed in Section 5.3 have the following property: For every
finite set of nodes S there exist nodes x, y /∈ S that are connected by an edge.
Thus, in applying Theorem 5.2.1, we can restrict our attention to graphs with this
property.

Let G be a symmetric, irreflexive, infinite computable graph with edge relation
E, having the property mentioned in the previous paragraph.

Let G′ be a computable presentation of G. We assume without loss of generality
that |G′| = ω. The computably presentable integral domain with unit AG′ is defined
to be

Zp [xi | i ∈ ω]

[
y

xixj
| EG′(i, j)

] [
z

xixj
| ¬EG′(i, j)

] [
y

xni
| i, n ∈ ω

]
.

Note that, since G is irreflexive, z
x2i

is included as a generator for each i ∈ ω.

It is easy to see that AG′ is computably presentable. In fact, if we fix a com-
putable presentation P of the ring F(xi | i ∈ ω)[y, z] then AG′ has an obvious
presentation induced from that of P . (Just take as the domain of this presentation
a computable copy of the set of all elements of P that can be generated from the
generators of AG′ .) In what follows, we will identify AG′ with this presentation. We
will also assume that we have chosen P so that the map gG′ : axi 7→ i, a ∈ I, is
computable.

It is easy to check that if G′ is a computable presentation of G then AG′ ∼= AG.
Let y and z be as in the definition of AG. Let

D(x) = {x | x /∈ I ∧ ∃r(x2r = z)},

Q(x, x′) = {(x, ax) | D(x) ∧ a ∈ I},

and
R(x, x′) = {(x, x′) | D(x) ∧D(x′) ∧ ¬Q(x, x′) ∧ ∃r(rxx′ = y)}.

Since AG is a subring of F(xi | i ∈ ω)[y, z], it makes sense to talk of the degree
in y or z of an element r of AG. We will denote these by degy(r) and degz(r),
respectively. Let

Gen = {±1}∪{xi | i ∈ ω}∪
{

y

xixj
| E(i, j)

}
∪
{

z

xixj
| ¬E(i, j)

}
∪
{
y

xni
| i, n ∈ ω

}
.

It will be useful to think of elements of AG as sums of products of elements of Gen.
(Of course, such a representation is not unique, but this will not matter for our
purposes.)

Whenever we mention another ring B, such as Zp[xi, 1
xi
| i ∈ ω][y, z] or Zp[xi |

i ∈ ω], for example, we will think of AG as a subring of B or of B as a subring
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of AG, as appropriate. The relationships between such rings should be clear. For
instance, if degy(r) = degz(r) = 0 then r can be expressed as a sum of products of
the generators xi, i ∈ ω, so that r is in the subring Zp[xi | i ∈ ω] of AG. In this
case, it makes sense to talk of the degree in xi of r, denoted by degxi(r), for any
i ∈ ω. We will make frequent use of these and similar facts.

Let M = Zp[xi, 1
xi
| i ∈ ω][y, z].

5.4.1 Lemma. The only invertible elements of AG are the elements of I.

Proof. If rs = 1 then degy(r) = degz(r) = 0, and hence r ∈ Zp[xi | i ∈ ω]. Clearly,
the only invertible elements of Zp[xi | i ∈ ω] are the invertible elements of Zp.

5.4.2 Lemma. Let r, s ∈ AG. Suppose that r2s = z and r /∈ I. Then r = axi for
some i ∈ ω and a ∈ I.

Proof. Clearly, degy(r) = degz(r) = 0. Since r /∈ I, it must be the case that
r = xir0 + r1 for some i ∈ ω, r0 ∈ Zp[xk | k ∈ ω], r0 6= 0, and r1 ∈ Zp[xk | k 6= i].

Now, degy(s) = 0 and degz(s) = 1, so that, working in M , we can write s =
z
x2i
s0 + z

xi
s1 + s2, where s0 ∈ Zp[xj | j 6= i], s1 ∈ Zp[xj, 1

xj
| j 6= i], and s2 ∈ Zp[xj |

j ∈ ω][ 1
xj
| j 6= i][z].

Suppose that r1 6= 0. It is easy to check that

x2
i z = x2

i r
2s = zr2

1s0 + xi(2zr0r1s0 + zr2
1s1) + x2

i t

for some t ∈ Zp[xj | j ∈ ω][ 1
xj
| j 6= i][z], and hence that zr2

1s0 = xiu for some

u ∈ Zp[xj | j ∈ ω][ 1
xj
| j 6= i][z]. Since degxi(zr

2
1s0) = 0, it must be the case that

s0 = 0. Now (zr2
1s1)xi = x2

i (z − t). Since degxi(zr
2
1s1) = 0, it follows from this that

s1 = 0. But then s2 6= 0 and

x2
i r

2
0s2 = (xir0 + r1)2s2 − (2xir0r1 + r2

1)s2 = z − (2xir0r1 + r2
1)s2.

Since now

degxi(x
2
i r

2
0s2) = 2 degxi(r0) + degxi(s2) + 2 >

degxi(r0) + degxi(s2) + 1 > degxi(z − (2xir0r1 + r2
1)s2),

this is a contradiction. So in fact r1 = 0, and hence r = xir0. We need to show that
r0 ∈ I.

We have

x2
i r

2
0s2 = x2

i r
2
0s− (r2

0s0z + xir
2
0s1z) = z − (r2

0s0z + xir
2
0s1z).
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Since s2 6= 0 implies that

degxi(x
2
i r

2
0s2) = 2 degxi(r0) + degxi(s2) + 2 >

2 degxi(r0) + 1 > degxi(z − (r2
0s0z + xir

2
0s1z)),

it must be the case that s2 = 0. Now xir
2
0s1z = z− r2

0s0z. Since s1 6= 0 implies that

degxi(xir
2
0s1z) = 2 degxi(r0) + 1 > 2 degxi(r0) > degxi(z − r

2
0s0z),

it must be the case that s1 = 0.
So z = x2

i r
2
0
z
x2i
s0 = r2

0s0z, and hence r0 ∈ I.

5.4.3 Corollary. For any computable presentation G′ of G, D(AG′) = {axi | i ∈
ω, a ∈ I}. Furthermore, D is intrinsically computable.

Proof. The first statement follows immediately from Lemma 5.4.2; we prove the
second.

Let A be a computable presentation of AG. We want to show that D(A) is
computable. Abusing notation, we refer to the images of y and z in A as y and z,
respectively. Let D̂(A) be as in Section 5.2. Since I is finite and x ∈ D(A)⇔ ∃a ∈
I(ax ∈ D̂(A)), it is enough to show that D̂(A) is computable.

Clearly, D̂(A) is c.e., and hence so is the set

GenA = D̂(A) ∪
{
r ∈ A | ∃x, x′ ∈ D̂(A), n ∈ ω(xx′r = y ∨ xx′r = z ∨ xnr = y)

}
.

Given x ∈ |A|, we can write x as a sum of products of elements of GenA and hence
computably determine degy(x) and degz(x). If it is not the case that degy(x) =

degz(x) = 0 then x /∈ D̂(A). Otherwise, x is a polynomial over the elements of

D̂(A) with coefficients in Zp, and checking whether a polynomial over a linearly
independent c.e. set is an element of that set can be done computably.

5.4.4 Lemma. If i 6= j and ¬E(i, j) then there is no r ∈ AG such that rxixj = y.
Similarly, if E(i, j) then there is no r ∈ AG such that rxixj = z.

Proof. The proofs of both statements are similar; we prove the first.
Assume for a contradiction that, for some i 6= j ∈ ω and r ∈ AG, ¬E(i, j) and

xixjr = y. We work in the ring M . Since degy(r) = 1 and degz(r) = 0, thinking of r
as a sum of products of elements of Gen, we see that we can write r = y

xi
r0+ y

xj
r1+r2,

where r0 ∈ Zp[xk | k 6= i][ 1
xk
| k 6= j], r1 ∈ Zp[xk | k 6= j][ 1

xk
| k 6= i], and

r2 ∈ Zp[xk | k ∈ ω][ 1
xk
| k 6= i, j][y].
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Let n ∈ ω be such that xni r0, x
n
j r2 ∈ Zp[xk | k ∈ ω][ 1

xk
| k 6= i, j]. Then

(xixj)
n+1r2 = (xixj)

ny − (xni x
n+1
j r0y + xn+1

i xnj r1y).

Since degxi(x
n
i x

n+1
j r0y), degxj(x

n+1
i xnj r1y), and degxi((xixj)

ny) are all less than or

equal to n and r2 ∈ Zp[xk | k ∈ ω][ 1
xk
| k 6= i, j][y], it must be the case that r2 = 0.

Now
(xixj)

ny = xni x
n+1
j r0y + xn+1

i xnj r1y.

But
r0 6= 0⇒ degxi(x

n
i x

n+1
j r0y) 6 n ∧ degxj(x

n
i x

n+1
j r0y) > n

and
r1 6= 0⇒ degxi(x

n+1
i xnj r1y) > n ∧ degxj(x

n+1
i xnj r1y) 6 n.

Since it cannot be the case that r0 = r1 = 0, this means that at least one of
degxi(x

n
i x

n+1
j r0y + xn+1

i xnj r1y) and degxj(x
n
i x

n+1
j r0y + xn+1

i xnj r1y) is greater than n.
However, degxi((xixj)

ny) = degxj((xixj)
ny) = n, so this is a contradiction.

5.4.5 Corollary. R(AG) = {(x, x′) | D(x) ∧ D(x′) ∧ ¬Q(x, x′) ∧ ∃r(rxx′ = y)} =
{(x, x′) | D(x) ∧D(x′) ∧ ¬∃r(rxx′ = z)}, and hence R is intrinsically computable.
Furthermore, for any computable presentation G′ of G, R(AG′) = {(axi, bxj) |
EG′(i, j) ∧ a, b ∈ I}.

We now need to show that D, Q, and R are invariant. Fix an automorphism
f : AG ∼= AG. We will show that f(D) = D, f(Q) = Q, and f(R) = R.

5.4.6 Lemma. Suppose that i ∈ ω and f(xi) = rs for some r, s ∈ AG. Then either
r ∈ I or s ∈ I.

Proof. Since f(I) = I and xi = f−1(r)f−1(s), it is enough to show that if xi = r′s′

for some r′, s′ ∈ AG then either r′ ∈ I or s′ ∈ I. But this follows easily from the
fact that if xi = r′s′ then degy(r

′) = degz(r
′) = degy(s

′) = degz(s
′) = 0, so that

r′, s′ ∈ Zp[xj : j ∈ ω].

5.4.7 Lemma. f(D) = D, which implies that f(Q) = Q.

Proof. It is enough to show that f(D) ⊆ D. Since f is an arbitrary automorphism
of AG, the same proof will show that f−1(D) ⊆ D, and hence that D ⊆ f(D).

Let i ∈ ω. Let n = degy(f(y)) and let r = f( y

xn+1
i

). Then f(xi)
n+1r = f(y), and

hence n = degy(f(y)) > degy(f(xi)
n+1) = (n+ 1) degy(f(xi)). Thus it must be the

case that degy(f(xi)) = 0. A similar argument shows that degz(f(xi)) = 0. Since
f(xi) /∈ I, this means that f(xi) = xjs0 + s1 for some j ∈ ω, s0 ∈ Zp[xl : l ∈ ω],
s0 6= 0, and s1 ∈ Zp[xl : l 6= j].
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Let k be such that xkjf(y) ∈ Zp[xl | l ∈ ω][ 1
xl
| l 6= j][y, z] and let n =

degxj(x
k
jf(y)) + 1. For some r ∈ AG, xkjf(xi)

nr = xkjf(y). Working in M , we
can write

r =
1

xk+1
j

r0 +
1

xkj
r1 + · · ·+ rk+1,

where r0 ∈ Zp[xl | l 6= j][ 1
xl
| l ∈ ω][y, z], r1, . . . , rk ∈ Zp[xl, 1

xl
| l 6= j][y, z], and

rk+1 ∈ Zp[xl | l ∈ ω][ 1
xl
| l 6= j][y, z].

Now

xkj (xjs0 + s1)nrk+1 = xkj (xjs0 + s1)nr − xkj (xjs0 + s1)n(r − rk+1) =

xkjf(y)−

(
xkj (xjs0 + s1)n

(
1

xk+1
j

r0 +
1

xkj
r1 + · · ·+ 1

xj
rk

))
.

But it is easy to check that if rk+1 6= 0 then

degxj
(
xkj (xjs0 + s1)nrk+1

)
=

n degxj(s0) + degxj(rk+1) + k + n > n degxj(s0) + k + n− 1 >

degxj

(
xkjf(y)−

(
xkj (xjs0 + s1)n

(
1

xk+1
j

r0 +
1

xkj
r1 + · · ·+ 1

xj
rk

)))
.

It follows that rk+1 = 0.
It is not hard to see that we can now repeat the above argument with k in place of

k+1 (assuming k > 0). Proceeding in this fashion, we see that r1 = · · · = rk+1 = 0.
So

sn1r0

xj
= xkj (xjs0 + s1)n

1

xk+1
j

r0 − xkj ((xjs0 + s1)n − sn1 )
1

xk+1
j

r0 =

xkjf(y)− ((xjs0 + s1)n − sn1 )
1

xj
r0.

But sn1r0 ∈ Zp[xl | l 6= j][ 1
xl
| l ∈ ω][y, z], which implies that either sn1r0 = 0 or

sn1 r0
xj

/∈ Zp[xl | l ∈ ω][ 1
xl
| l 6= j][y, z]. Since

xkjf(y)− ((xjs0 + s1)n − sn1 )
1

xj
r0 ∈ Zp[xl | l ∈ ω]

[
1

xl
| l 6= j

]
[y, z],

it must be the case that sn1r0 = 0. Since r 6= 0, we conclude that s1 = 0.
Thus f(xi) = s0xj. By Lemma 5.4.6, s0 ∈ I.
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5.4.8 Corollary. f(Zp[xi | i ∈ ω]) = Zp[xi | i ∈ ω].

5.4.9 Lemma. Let r ∈ AG be such that r 6= 0, degy(r) = 0, and degz(r) 6 n.

Then, for all i ∈ ω, x2n+1
i r /∈ Zp[xj, 1

xj
| j 6= i][y, z].

Proof. We work in the ring M . Let i ∈ ω. Thinking of r as a sum of products of
elements of Gen, each term t in this sum can be written as zm

x2mi
s, where m 6 n and

s ∈ Zp[xj | j ∈ ω][ 1
xj
| j 6= i]. So x2n+1

i t = xiu for some u ∈ Zp[xj | j ∈ ω][ 1
xj
|

j 6= i][z]. Thus x2n+1
i r = xiv for some v ∈ Zp[xj | j ∈ ω][ 1

xj
| j 6= i][z], and hence

x2n+1
i r /∈ Zp[xj, 1

xj
| j 6= i][y, z].

5.4.10 Lemma. degy(f(y)) = 1 and degz(f(y)) = 0.

Proof. Let i ∈ ω be such that f(y) ∈ Zp[xj, 1
xj
| j 6= i][y, z]. Working in M , we can

write f(y) = ys0 + s1, where s0 ∈M , s1 ∈ AG, and degy(s1) = 0. Let n = degz(s1).

By Lemma 5.4.7, there exists an r ∈ AG such that x2n+1
i r = f(y) = ys0 + s1.

We can write r = yr0 + r1, where r0 ∈ M , r1 ∈ AG, and degy(r1) = 0. Now

x2n+1
i r1 = s1. Since degz(r1) = degz(s1) = n, it follows from Lemma 5.4.9 that

either r1 = 0 or s1 /∈ Zp[xj, 1
xj
| j 6= i][y, z]. But the latter possibility would imply

that f(y) /∈ Zp[xj, 1
xj
| j 6= i][y, z], contradicting our choice of i. So r1 = 0, and

hence s1 = 0.
We now have f(y) = ys0. A similar argument shows that degy(f

−1(y)) > 1. We
now need to show that degy(s0) = degz(s0) = 0.

Let t ∈ Zp[xj | j ∈ ω] be such that ts0 ∈ Zp[xj | j ∈ ω][y, z]. Then

f−1(t)y = f−1(tf(y)) = f−1(ts0y) = f−1(ts0)f−1(y).

By Corollary 5.4.8, f−1(t) ∈ Zp[xj | j ∈ ω], which means that degy(f
−1(t)y) = 1

and degz(f
−1(t)y) = 0. Since degy(f

−1(y)) > 1, this means that f−1(ts0) ∈ Zp[xj |
j ∈ ω]. By Corollary 5.4.8, ts0 ∈ Zp[xj | j ∈ ω]. So degy(s0) = degz(s0) = 0.

5.4.11 Lemma. f(y) = ty for some t ∈ AG.

Proof. Let i, j, i′, j′ ∈ ω be such that i 6= j, f(xi′) = axi and f(xj′) = bxj for some
a, b ∈ I, f(y) ∈ Zp[xk, 1

xk
| k 6= i, j][y, z], and E(i′, j′). Such numbers exist by

Lemma 5.4.7 and the assumption about G that we made at the beginning of this
section.

Let r = f( aby
x′ix
′
j
). Then xixjr = f(y). By Lemma 5.4.10, degy(f(y)) = 1 and

degz(f(y)) = 0, and hence degy(r) = 1 and degz(r) = 0. Working in M and thinking
of r as a sum of products of elements of Gen, we see that we can write

r = yr0 +
y

xi
r1 +

y

xj
r2 +

y

xixj
r3 + r4,
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where r0 ∈ Zp[xk | k ∈ ω][ 1
xk
| k 6= i, j], r1 ∈ Zp[xk | k 6= i][ 1

xk
| k 6= j], r2 ∈ Zp[xk |

k 6= j][ 1
xk
| k 6= i], and r3, r4 ∈ Zp[xk | k 6= i, j].

Let n ∈ ω be such that xni r1, x
n
j r2 ∈ Zp[xk | k ∈ ω][ 1

xk
| k 6= i, j]. Then

(xixj)
n+1r0y + (xixj)

n+1r4 = (xixj)
nf(y)− (xni x

n+1
j r1y + xn+1

i xnj r2y + (xixj)
nr3y).

But degxi(x
n
i x

n+1
j r1y), degxj(x

n+1
i xnj r2y), degxi((xixj)

nr3y), and degxi((xixj)
nf(y))

are all at most n, r0, r4 ∈ Zp[xk | k ∈ ω][ 1
xk
| k 6= i, j], and degy((xixj)

n+1r4) = 0.
So it must be the case that r0 = r4 = 0.

Now
(xixj)

nf(y)− (xixj)
nr3y = xni x

n+1
j r1y + xn+1

i xnj r2y.

But
r1 6= 0⇒ degxi(x

n
i x

n+1
j r1y) 6 n ∧ degxj(x

n
i x

n+1
j r1y) > n

and
r2 6= 0⇒ degxi(x

n+1
i xnj r2y) > n ∧ degxj(x

n+1
i xnj r2y) 6 n,

which means that either r1 = r2 = 0 or at least one of degxi(x
n
i x

n+1
j r1y+xn+1

i xnj r2y)

and degxj(x
n
i x

n+1
j r1y + xn+1

i xnj r2y) is greater than n. Since

degxi((xixj)
nf(y)− (xixj)

nr3y), degxj((xixj)
nf(y)− (xixj)

nr3y) 6 n,

it must be the case that r1 = r2 = 0. Thus f(y) = xixj
y

xixj
r3 = yr3. Since r3 ∈ AG,

we are done.

5.4.12 Corollary. If ∃r(xixjr = y) then ∃r(xixjr = f(y)).

5.4.13 Lemma. f(R) = R.

Proof. It is enough to show that R ⊆ f(R). Since f is an arbitrary automorphism
of AG, the same proof will show that R ⊆ f−1(R), and hence that f(R) ⊆ R.

By Corollaries 5.4.5 and 5.4.12, R(xi, xj) ⇒ ∃r(xixjr = y) ⇒ ∃r(xixjr =
f(y))⇒ R(f(xi), f(xj)).

Since f is an arbitrary automorphism of AG, Lemmas 5.4.7 and 5.4.13 imply the
following result.

5.4.14 Lemma. D, Q, and R are invariant.

In order to apply Theorem 5.2.1, we are left with showing that properties (P2)
and (P3) in the statement of that theorem are satisfied.
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5.4.15 Lemma. For every pair S, S ′ of sets of Q-representatives, if f : S
1–1−−→
onto

S ′

is such that, for every x, y ∈ S, R(x, y)⇔ R(f(x), f(y)), then f can be extended to
an automorphism of AG.

Proof. Let y, z, and xi be as in the definition of AG. A set of Q-representatives
contains one element of the form axi, a ∈ I, for each i ∈ ω, and it contains no
other elements. So there exist sequences a0, a1, . . . ∈ I and b0, b1, . . . ∈ I such that
S = {a0x0, a1x1, . . .} and S ′ = {b0x0, b1x1, . . .}. Thus, for some permutation π of ω,
f : aixi 7→ bπ(i)xπ(i).

Now, for all i, j ∈ ω, R(xi, xj)⇔ R(xπ(i), xπ(i)). So it is clear from what we have
previously done that the map xi 7→ xπ(i) can be extended to an automorphism of
AG. Thus it is enough to show that the map aixi 7→ bπ(i)xi, or, equivalently, the

map h : xi 7→
bπ(i)
ai
xi can be extended to an automorphism of AG. But h can clearly

be extended to an automorphism of F(xi | i ∈ ω)[y, z] that fixes y and z. Since
bπ(i)
ai
∈ I, this automorphism restricts to an automorphism of AG.

5.4.16 Lemma. For every computable presentation G′ of G and every computable
set S of QAG′ -representatives, there exists a defining family for 〈AG′ , a〉a∈S.

Proof. Let y, z, and xi be as in the definition of AG′ . As mentioned above, S =
{a0x0, a1x1, . . .} for some sequence a0, a1, . . . ∈ I. Let si = aixi and consider the
sets

Gen′ = {±1} ∪ {si | i ∈ ω} ∪
{

y

sisj
| EG′(i, j)

}
∪{

z

sisj
| ¬EG′(i, j)

}
∪
{
y

sni
| i, n ∈ ω

}
and

Gen′k = {±1} ∪ {si | i 6 k} ∪
{

y

sisj
| EG′(i, j), i, j 6 k

}
∪{

z

sisj
| ¬EG′(i, j), i, j 6 k

}
∪
{
y

sni
| i, n 6 k

}
.

For each i, j, n ∈ ω, let the formula ϕi,j,n over the language of rings with addi-
tional constants y, z, s0, s1, . . . be defined by

ϕi,j,n =

{
sisjui,j = y ∧ sni vi,n = y if EG′(i, j),

sisjui,j = z ∧ sni vi,n = y if ¬EG′(i, j).



143

(Here ui,j and vi,n are the free variables of ϕi,j,n.) For each sum t of products of
elements of Gen′, let t′ be the result of substituting all occurrences of y

sisj
or z

sisj
in

t by ui,j, and all occurrences of y
sni

by vi,n. If k is the least number such that t is a

sum of products of elements of Gen′k then let t̂ be the formula

∃u0,0, v0,0, . . . , u0,k, v0,k, . . . , uk,0, vk,0, . . . , uk,k, vk,k

(
t′ ∧

∧
i,j,n6k

ϕi,j,n

)
.

Let t0, t1, . . . be an effective list of all sums of products of elements of Gen′.
Since each si is a product of xi with an element of I, each element of AG′ is equal
to ti for some i ∈ ω. It follows easily that {t̂i | i ∈ ω} is a defining family for
〈AG′ , a〉a∈S.

Lemmas 5.4.3, 5.4.14, 5.4.15, and 5.4.16 and Corollary 5.4.5 are enough to enable
us to apply Theorem 5.2.1. It is straightforward to check that, for any computable
presentation A of AG, if U is a subset of D(A) such that Q(x, y)⇒ (U(x)⇔ U(y))
then the subring of A generated by U has the same degree as U . Thus it follows
that Theorems 3.1.2 and 4.1.2 and the results of Chapters 3 and 4 remain true if we
require that A be an integral domain of characteristic p and that U be a subring of
A.

Now consider the commutative semigroup generated (multiplicatively) by the
elements of Gen. Let

D(x) = {x | ∃r(x2r = z)},

Q(x, x′) = {(x, x) | D(x)},

and
R(x, x′) = {(x, x′) | D(x) ∧D(x′) ∧ x 6= x′ ∧ ∃r(rxx′ = y)}.

It is not hard to check that Theorem 5.2.1 can be applied in this case, with essentially
the same proof as above, to show that Theorems 3.1.2 and 4.1.2 and the results of
Chapters 3 and 4 remain true if we require that A be a commutative semigroup and
that U be a subsemigroup of A.



Chapter 6

Relations on Algebraic Structures
II: Negative Results

6.1 Introduction

As we remarked in Section 5.1, results such as Theorem 3.1.4 cannot be extended
to any of the classes of structures mentioned in Theorem 5.1.1. However, since it
is certainly possible for a relation on a computable structure of infinite computable
dimension to have a degree spectrum of finite cardinality, this does not rule out the
possibility that, for one or more of these classes, results such as Theorem 3.1.3 still
hold if we also require that the structures mentioned in these results are in the given
class. In this chapter, we give conditions that guarantee that the degree spectrum
of a relation on a computable structure is either a singleton or infinite.

Goncharov [12] has shown that if two computable structures are ∆0
2-isomorphic

but not computably isomorphic then their computable dimension is ω. This theo-
rem is quite useful in establishing results such as those in Theorem 3.1.3, since it
reduces the task of building infinitely many noncomputably isomorphic computable
presentations of a computable structure to that of building a single computable
presentation that is ∆0

2-isomorphic but not computably isomorphic to the original
structure. In Section 6.2, we give an analog of this result in the case of degree
spectra of relations and examine some of its consequences. In Section 6.3, we deal
with linear orderings, and in Section 6.4, with 1-decidable structures.

It should be pointed out that, in the general case, there are no known restric-
tions on the sets of degrees that can be realized as degree spectra of relations on
computable structures other than the ones that follow from the fact that the set of
images of a relation on a computable structure in different computable presentations
of the structure is (by definition) Σ1

1.

144
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6.2 General Criteria

We begin this section by proving a technical theorem that will have as an immediate
corollary the analog of Goncharov’s result mentioned above.

Here and below, we will need some notation to talk about “finite portions” of
a computable structure A of (possibly infinite) signature L. Let S ⊂ ω be finite.
Define LS to be the language obtained by restricting L to its first |S| symbols,
substituting all j-ary function symbols by (j+1)-ary relation symbols in the obvious
way, and dropping any constants whose interpretation in A is not in S. Define A � S
to be the finite structure obtained from A by restricting the domain to |A| ∩S and
restricting the language to LS.

For ~x = (x0, . . . , xk−1) ∈ ωk, let max(~x) = max{xi | i < k}.

6.2.1 Theorem. Let k ∈ ω. Let U0 and U1 be k-ary relations on the domains of
computable structures A0 and A1, respectively, and let B0, . . . , Bn−1 ⊂ ωk be ∆0

2 but
not computable. Suppose that U0 is not computable, U1 is computable, and there
exists a ∆0

2 isomorphism f : A0 → A1 such that f(U0) = U1. Then there exists a
∆0

2 function h : |A0| → ω such that h(A0) is a computable structure, h(U0) is not
computable, and for all m < n, Bm 
T h(U0).

Proof. Let k be the arity of U0 and U1. Let Φe be the eth k-ary Turing functional.

We will build h : |A0| 1–1−−→
onto

ω to satisfy the requirements

Qe : Φe 6= h(U0)

and
Rni+j : Φ

h(U0)
i 6= Bj

for each e, i ∈ ω, j < n, while in addition guaranteeing that h(A0) is a computable
structure.

Since f is ∆0
2, there exist sequences Si0, S

i
1, . . . , i = 0, 1, of subsets of ω and a

computable sequence f0, f1, . . . of maps so that, for each s ∈ ω, fs : A0 � S0
s
∼= A1 �

S1
s , S

i
0 ⊂ Si1 ⊂ · · · ,

⋃
s∈ω S

i
s = |Ai|, and, for each x ∈ |A0|, f(x) = lims fs(x). For

each s ∈ ω, we will denote f−1
s (U1 ∩ (S1

s )
k) by U0[s].

Our construction will be similar to the standard finite injury argument that
would be used to satisfy the above requirements with a ∆0

2 set A in place of h(U0).
Of course, when building a ∆0

2 set, we can decide at any stage whether we want the
value of A at some given element to remain the same or change. In our construction,
the only thing we control is h.

At each stage s+ 1, we will define the approximation hs+1 of h to extend either
hs or hs ◦ f−1

s ◦ fs+1. If hs+1 extends hs ◦ f−1
s ◦ fs+1 then, for all ~x in the range of
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hs, U
0(h−1

s+1(~x))[s+ 1] = U0(h−1
s (~x))[s], which means that h(U0) remains unaltered

at this stage. On the other hand, if U0(h−1
s (~x))[s + 1] 6= U0(h−1

s (~x))[s] then we
can change the value of h(U0) at ~x by letting hs+1 extend hs. The fact that f is
∆0

2 means that, for every ~x ∈ ωk, there exists a stage s such that, for all t > s,
f−1
t ◦ ft+1(~x) = ~x. This is what will allow us to ensure that lims hs exists.

We now proceed with the construction. We will use the notation ~x < y to mean
that ~x ∈ ωk, y ∈ ω, and max(~x) < y. The notations ~x 6 y and y 6 ~x are defined
analogously.

stage 0. Let h0 = ∅.

stage s+ 1. For each e < s+ 1, let i and j be such that ni+ j = e and let

qe,s =


max(f−1

s (~z)) Qe is currently satisfied
through ~z (defined below)

max{y | ∀~z < y(Φe(~z)[s]↓)} otherwise,

le,s = max
{
y | ∀~z < y

(
Φ
hs(U0[s])
i (~z)[s]↓= Bj(~z)[s]

)}
,

me,s = max{le,t | t 6 s},

and
re,s = max

{
ϕ
hs(U0[s])
i (~z)[s] | ~z 6 me,s

}
.

In order to define hs+1, we will begin by defining an auxiliary function g. Let
e < s+ 1 be the least number such that fs+1(y) = fs(y) for all y 6 e and all y such
that hs(y) 6 e, and one of the following holds.

1. Qe is not satisfied and, for some ~x ∈ dom(hs), U
0(~x)[s + 1] 6= U0(~x)[s] and

Φe(hs(~x))[s]↓.

2. Not 1 and for some y 6 qe,s, fs+1(y) 6= fs(y).

3. Not 1 or 2, and for some y such that hs(y) 6 re,s, fs+1(y) 6= fs(y).

If no such number exists then let g = hs.
If condition 1 holds then proceed as follows. If Φe(hs(~x)) = U0(~x)[s] then let

g = hs; otherwise, let g = hs ◦ f−1
s ◦ fs+1. In either case, declare Qe to be satisfied

through fs(~x). We say that Qe is active at stage s+ 1.
If condition 2 holds then proceed as follows. If Qe is not satisfied then let g = hs;

otherwise, let g = hs◦f−1
s ◦fs+1. In either case, we say that Qe is active at stage s+1.

If condition 3 holds then let g = hs ◦ f−1
s ◦ fs+1. We say that Re is active at

stage s+ 1.
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If either Qe or Re is active at stage s + 1 then declare each Qi, i > e, to be
unsatisfied.

Now define hs+1 as follows. For y ∈ dom(g), let hs+1(y) = g(y). Let y0 < · · · <
ym be the elements of Ss+1 − dom(g) and let z0 < · · · < zm be the m + 1 least
numbers not in rng(hs). For i 6 m, let hs+1(yi) = zi.

This completes the construction. We now need to show that h = lims hs and
h−1 = lims h

−1
s are well-defined, all requirements are met, and h(A0) is a computable

structure. We begin by showing by induction that h and h−1 are well-defined; each
requirement is active only finitely often; for each e ∈ ω, qe,s and re,s have finite
limits; and for each e ∈ ω, if Φe is total then Qe is eventually permanently satisfied.

For the following lemmas, fix e ∈ ω and assume by induction that, for all i < e,
the requirements Qi and Ri are active only finitely often and lims h

−1
s (i) is well-

defined.

6.2.2 Lemma. h−1(e) = lims h
−1
s (e) is well-defined and (if e ∈ |A0|) so is h(e) =

lims hs(e).

Proof. Let s be a stage such that no requirement Qi or Ri, i < e, is active after
stage s. By construction, for all t ∈ ω, ht+1 extends either ht or ht ◦ f−1

t ◦ ft+1. One
of the conditions for a requirement Qj or Rj, j > e, to be active at stage t+1 is that
ft+1(e) = ft(e) and ft+1(h−1

t (e)) = ft(h
−1
t (e)). So, for all t > s, if ft+1(e) 6= ft(e)

or ft+1(h−1
t (e)) 6= ft(h

−1
t (e)) then no requirement is active at stage t+ 1, and hence

ht+1 extends ht. Thus ht(e) = hs(e) and h−1
t (e) = h−1

s (e) for all t > s.

Let s0 > e be such that no requirement Qi or Ri, i < e, is active after stage s0

and ft(y) = fs0(y) for all t > s0 and all y such that either y 6 e or h−1
s0

(i) = y for
some i 6 e.

6.2.3 Lemma. If Φe is total then Qe is eventually permanently satisfied.

Proof. It is enough to show that if Φe is total thenQe is satisfied at some stage t > s0.
Suppose otherwise. We claim that we can compute U0, which contradicts the

hypothesis the U0 is not computable. Let ~x ∈ ωk. Since Φe is total and Qe is
never satisfied after stage s0, limt qe,t = ∞. Let t > s0 be such that ~x < qe,t and
~x ∈ (dom(ht))

k. As mentioned above, for all u ∈ ω, hu+1 extends either hu or
hu ◦ f−1

u ◦ fu+1. Furthermore, for all u > t, if fu+1(~x) 6= fu(~x) then hu+1 extends
hu. So hu(~x) = ht(~x) for all u > t. Now let u > t be such that Φe(ht(~x))[u] ↓. If
U0(~x)[v+1] 6= U0(~x)[v] for some v > u then Qe is satisfied at stage v+1. Therefore,
~x ∈ U0 ⇔ ~x ∈ U0[u].

6.2.4 Lemma. lims qe,s <∞ and Qe is active only finitely often.
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Proof. If Qe is satisfied through ~z after stage s0 then lims qe,s = max(f−1(~z)).
Otherwise, by the previous lemma, Φe is not total, and thus lims qe,s is equal to
the largest y such that for all ~x < y, Φe(~x)↓.

Now let t > s0 be such that either Qe is satisfied at stage t or Qe is never satisfied
after stage t and, for all u > t and y 6 lims qe,s, qe,u = qe,t and fu(y) = ft(y). Then
Qe is not active after stage t.

Let s1 > s0 be such that Qe is not active after stage s1. Let i and j be such that
ni+ j = e.

6.2.5 Lemma. limsme,s <∞.

Proof. Let t > s1, x 6 re,t, and z = ft ◦ h−1
t (x). For any u > t, if fu+1(x) 6= fu(x)

then hu+1 extends hu ◦ f−1
u+1 ◦ fu. So for all u > t, fu ◦ h−1

u (x) = z. Therefore, for
all u > t, hu(U

0[u])(x) = U0(h−1
u (x))[u] = U1(fu ◦ h−1

u (x)) = U1(ft ◦ h−1
t (x)) =

U0(h−1
t (x))[t] = ht(U

0[t])(x).
Now assume for a contradiction that limsme,s =∞. Then for each ~x ∈ ωk there

is a t~x ∈ ω such that ~x < le,t~x . Since Bj is not computable and we can computably
determine t~x from ~x, there exists an ~x ∈ ωk such that Bj(~x) 6= Bj(~x)[t~x]. Let u
be such that, for all v > u, Bj(~x)[v] = Bj(~x)[u]. Using the result of the previous

paragraph, we conclude that, for all v > u, Φ
hv(U0[v])
i (~x)[v] ↓= Φ

ht~x (U0[t~x])

i (~x)[t~x] ↓=
Bj(~x)[t~x] 6= Bj(~x)[v], which implies that le,v 6 ~x, contradicting the assumption that
limsme,s =∞.

6.2.6 Lemma. lims re,s <∞ and Re is active only finitely often.

Proof. Let t > s1 be such that, for all u > t, me,u = me,t. As shown above,
hu(U

0[u])(~y) = ht(U
0[t])(~y) for all ~y 6 re,t and u > t. Thus, for all u > t and all

~x 6 me,t, ϕ
hu(U0[u])
i (~x)[u] = ϕ

ht(U0[t])
i (~x)[t]. So re = lims re,s <∞.

Now let t > s1 be such that, for all u > t, re,u = re,t. For m 6 re, let zm =
ft ◦h−1

t (m). For all u > t and all m 6 re, fu ◦h−1
u (m) = zm. Let u > t be such that,

for all v > u and all m 6 re, f
−1
v (zm) = f−1

u (zm). For m 6 re, let ym = h−1
u (m).

Now, for all v > u and all m 6 re, h
−1
v (m) = ym and fv(ym) = fu(ym). It follows

that Re is not active after stage u.

This completes the induction. We now show that all requirements are met and
h(A0) is a computable structure.

6.2.7 Lemma. For all e ∈ ω, Φe 6= h(U0).

Proof. If Φe is not total then there is nothing to show, so assume that Φe is total.
By Lemma 6.2.3, for some ~z ∈ ωk and t ∈ ω, Qe is permanently satisfied through
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~z at stage t + 1. Let ~y = ht ◦ f−1
t (~z). It is easy to check that, by the definition of

ht+1, Φe(~y) 6= U1(~z).
We claim that, for all u > t, hu+1 ◦ f−1

u+1(~z) = ~y. Indeed, let u > t and assume
by induction that hu ◦ f−1

u (~z) = ~y. There are two cases.

1. If f−1
u+1(~z) = f−1

u (~z) then, no matter which way hu+1 is defined, hu+1◦f−1
u+1(~z) =

hu ◦ f−1
u (~z) = ~y.

2. If f−1
u+1(~z) 6= f−1

u (~z) then, since qe,u = f−1
u (~z), hu+1 extends hu ◦ f−1

u ◦ fu+1,
and hence hu+1 ◦ f−1

u+1(~z) = hu ◦ f−1
u ◦ fu+1 ◦ f−1

u+1(~z) = hu ◦ f−1
u (~z) = ~y.

So, by induction, for all u > t, hu+1 ◦ f−1
u+1(~z) = ~y, and hence h ◦ f−1(~z) = ~y. Thus

h(U0)(~y) = U0(h−1(~y)) = U0(f−1(~z)) = U1(~z) 6= Φe(~y).

6.2.8 Lemma. For all i ∈ ω and all j < n, Φ
h(U0)
i 6= Bj.

Proof. If Φ
h(U0)
i = Bj then limsmni+j,s = ∞, which we have already shown not to

be the case.

6.2.9 Lemma. h(A0) is a computable structure.

Proof. For all s ∈ ω, rng(hs+1) ⊃ rng(hs) and h−1
s+1 ◦ hs is an embedding from

A0 � Ss into A0 � Ss+1, if we restrict the latter structure to the language LSs .
Furthermore,

⋃
s∈ω rng(hs) = ω. So the images of hs form a chain whose limit

h(A0) is a computable structure.

The theorem follows from Lemmas 6.2.7, 6.2.8, and 6.2.9. �

6.2.10 Corollary. Let U0 and U1 be relations on the domains of computable struc-
tures A0 and A1, respectively. Suppose that U0 is not computable, U1 is computable,
and there exists a ∆0

2 isomorphism f : A0 ∼= A1 such that f(U0) = U1. Then
DgSpA0(U0) is infinite.

The following is an obvious application of Corollary 6.2.10.

6.2.11 Corollary. Let U be an invariant computable relation on the domain of
a ∆0

2-categorical computable structure A. Either U is intrinsically computable or
DgSpA(U) is infinite.

Remark. In the above corollary, both conditions on U are necessary. In Section 2.4,
we saw that there exists an invariant relation on the domain of a ∆0

2-categorical
computable structure whose degree spectrum consists of exactly two degrees, neither
of them computable. Now let A0, A1, U0, and U1 be the structures and relations
built in [24] to prove the theorem that we have numbered Theorem 3.1.2. We can
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assume that |A0| ∩ |A1| = ∅. Let P be the predicate {(x, y) | x ∈ U0 ∧ y ∈
U1∧ there is an isomorphism from A0 to A1 that extends the map x 7→ y} and let
E be the equivalence relation whose equivalence classes are |A0| and |A1|. In the
proof of Theorem 4.2 of [24], it is shown that if B is the computable structure
obtained by taking the union of A0 and A1 and expanding it by P and E then B is
computably categorical. Since B has exactly one nontrivial automorphism, which
sends U1 to U0, DgSpB(U1) = {0, deg(U0)}.

Even when A is not ∆0
2-categorical (and U is not necessarily invariant), it is

sometimes possible to use Corollary 6.2.10 to show that either U is intrinsically
computable or DgSpA(U) is infinite. The concept of a splitting relation is a useful
tool.

6.2.12 Definition. Let U be a k-ary relation on the domain of a computable
structure A. We say that U is splitting if there exists a uniformly ∆0

2 collection of

finite sets S0, S1, · · · ⊂
(
|A|k

)2
such that, for each r ∈ ω, the following conditions

are satisfied.

1. There exists an s ∈ ω such that, for all t > s, Sr[t] = Sr[s].

2. For each (~x0, ~x1) ∈ Sr, U(~x0) 6= U(~x1).

3. There exists an (~x0, ~x1) ∈ Sr such that, for all m > r,max(~x0
a~x1), there exist

embeddings gi : A � [0,m]→ A, i = 0, 1, such that

(a) g0(~x0) = g1(~x1) and

(b) for all j ∈ |A � [0, r]|, g0(j) = g1(j) = j.

6.2.13 Theorem. If U is a splitting relation on the domain of a computable struc-
ture A then DgSpA(U) is infinite.

Proof. To simplify our notation, we assume without loss of generality that |A| = ω.
For each m ∈ ω, let Am = A � [0,m]. Let S0, S1, . . . be as in Definition 6.2.12. We

adopt the convention that, for all r, s ∈ ω, Sr[s] ⊆
(
[0, s]k

)2
.

We will construct a ∆0
2 function f : ω

1–1−−→
onto

ω such that f(A) is a computable

structure and f(U) is not computable. By Corollary 6.2.10, this will be enough to
establish that DgSpA(U) is infinite.

Let k be the arity of U . Let Φe be the eth k-ary partial computable function.
For each e ∈ ω, we will want to satisfy the requirement

Re : Φe 6= f(U),

while ensuring that f(A) is a computable structure.
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We now proceed with the construction of f .

stage 0. Let f0 = ∅ and m0 = 0. For each e ∈ ω, let re,0 = 0.

stage s+ 1. Let e < s+ 1 be the least number, if any, such that Re is not currently
satisfied (defined below) and if (~x0, ~x1) ∈ Sr[s], where r = max({ri,s | i < e}∪{e}∪
{y | fs(y) 6 e}), then Φe(fs(~xi))[s]↓ for i = 0, 1.

If no such number exists then proceed as follows. Let ms+1 = ms + 1. For
each i 6 ms, let fs+1(i) = fs(i), and let fs+1(ms+1) = ms+1. For each i ∈ ω, let
ri,s+1 = ri,s.

Otherwise, let r be as above and search for a number m > ms satisfying one of
the following conditions.

1. There is a pair (~x0, ~x1) ∈ Sr[m]− Sr[s].

2. Not 1 and there exist embeddings gi : Ams → Am, i = 0, 1, such that, for all
j 6 r, g0(j) = g1(j) = j, and for some (~x0, ~x1) ∈ Sr[s], g0(~x0) = g1(~x1).

By the definition of Sr, such a number must exist, so there are three possibilities.

1. Condition 1 holds. For each i 6 ms, let fs+1(i) = fs(i). For each i ∈ [ms +
1,m], let fs+1(i) = i. Let re,s+1 = max{max(~x0

a~x1) | (~x0, ~x1) ∈ Sr[s+ 1]}.

2. Condition 2 holds and, for some i = 0, 1, Φe(fs(~xi)) 6= U(~xi). For each
i 6 ms, let fs+1(i) = fs(i), and for each i ∈ [ms + 1,m], let fs+1(i) = i. Let
re,s+1 = max(~xi) and declare Re to be satisfied.

3. Condition 2 holds and, for i = 0, 1, Φe(fs(~xi)) = U(~xi). Since U(~x0) 6= U(~x1)
and g0(~x0) = g1(~x1), it must be the case that, for some i = 0, 1, Φe(fs(~xi)) 6=
U(gi(~xi)). For each j ∈ gi([0,ms]), let fs+1(j) = fs ◦ g−1

i (j). Let j0, . . . , jn be
the elements of [0,m] − gi([0,ms]). For l 6 n, let fs+1(jl) = ms + l + 1. Let
re,s+1 = max(gi(~xi)) and declare Re to be satisfied.

In any case, let ms+1 = m and say that Re is active at stage s + 1. For i < e,
let ri,s+1 = ri,s; for i > e, let re,s+1 = 0 and declare Ri to be unsatisfied.

This completes the construction. We now need to show that f is ∆0
2, f(A) is

a computable structure, and f(U) is not computable. We begin by showing by
induction that f is ∆0

2 and, for each e ∈ ω, lims re,s is well-defined, Re is active only
finitely often, and if Φe is total then Re is eventually permanently satisfied.

For the following lemmas, fix e ∈ ω and assume by induction that there is a
stage s0 such that, for all i < e, ri,s has achieved a limit ri by stage s0 and Ri is not
active after stage s0. Let r = max({ri,s0 | i < e} ∪ {e} ∪ {y | fs0(y) 6 e}). Notice
that, for all s > s0, max({ri,s | i < e} ∪ {e} ∪ {y | fs(y) 6 e}) = r.
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6.2.14 Lemma. lims fs(e) and lims f
−1
s (e) are well-defined.

Proof. It can be easily checked from the construction that, since r > e, fs+1(e) =
fs(e) and f−1

s+1(e) = f−1
s (e) for all s > s0.

6.2.15 Lemma. If Φe is total then Re is eventually permanently satisfied.

Proof. Assume that Φe is total. It is enough to show that Re is satisfied at some
stage s > s0.

Suppose otherwise. Let t > s0 be such that, for all u > t, Sr[u] = Sr. For
all u > t, re,u = re,t = max{max(~x0

a~x1) | (~x0, ~x1) ∈ Sr}, so for all u > t and
all (~x0, ~x1) ∈ Sr, fu(~xi) = ft(~xi) for i = 0, 1. Thus, since Φe is total, there is a
u > t such that Φe(fu(~xi))[u] ↓ for all (~x0, ~x1) ∈ Sr and i = 0, 1. Re is satisfied at
stage u+ 1.

6.2.16 Lemma. lims re,s is well-defined and Re is active only finitely often.

Proof. If Re is never satisfied after stage s0 then let t > s0 be as in the previous
lemma. Clearly, re,u = re,t for all u > t and Re is not active after stage t.

On the other hand, if Re is satisfied at stage u > s0 then re,v = re,u for all v > u
and Re is not active after stage u.

This completes the induction. We now show that f(A) is a computable structure
and f(U) is not computable.

6.2.17 Lemma. f(A) is a computable structure.

Proof. For all s ∈ ω, rng(fs+1) ⊃ rng(fs) and f−1
s+1◦fs is an embedding fromAms into

Ams+1 , if we restrict Ams+1 to the language of Ams . Furthermore,
⋃
s∈ω rng(fs) =

ω.

6.2.18 Lemma. For all e ∈ ω, Φe 6= f(U).

Proof. We may assume that Φe is total. Let s be a stage by which Re is perma-
nently satisfied. It is easy to check from the construction that, for some ~x ∈ ωk,
U(f−1

s (~x)) 6= Φe(~x) and, for all t > s, f−1
t (~x) = f−1

s (~x). Thus U(f−1(~x)) 6= Φe(~x),
which implies that Φe 6= f(U).

The theorem follows from Lemmas 6.2.14, 6.2.17, and 6.2.18. �
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6.3 Linear Orderings

In this section, we show how Theorem 6.2.13 can be used to establish the following
result.

6.3.1 Theorem. Let U be a computable relation on the domain of a computable
linear ordering L. Either U is intrinsically computable or DgSpL(U) is infinite.

Proof. Suppose that U is not intrinsically computable. We will show that U is
splitting.

Let k be the arity of U . Let ≺ be the order relation of L. In order to simplify
our notation, we will assume without loss of generality that |L| = ω. For T ⊂ ω,
n ∈ ω, and ~x ∈ ωn, let tp∆

T (~x) denote the atomic n-type of ~x in the structure L
expanded by a constant for each element of T .

For r ∈ ω, let Sr be the set of all (~x0, ~x1) ∈ (ωk)2 that satisfy the following
conditions.

1. U(~x0) 6= U(~x1).

2. If (~y0, ~y1) ∈ (ωk)2 satisfies condition 1 and tp∆
{0,...,r}(~y0

a~y1) = tp∆
{0,...,r}(~x0

a~x1)

then 〈~x0
a~x1〉 6 〈~y0

a~y1〉.

Now S0, S1, . . . is a uniformly ∆0
2 collection of finite subsets of (ωk)2, and each

Sr satisfies the first condition in Definition 6.2.12. We need to show that each Sr
satisfies the second condition in Definition 6.2.12.

Fix r ∈ ω. Let x0, x1, . . . , xr be such that {x0, . . . , xr} = {0, . . . , r} and x0 ≺
x1 ≺ · · · ≺ xr. Let I0 = {y ∈ |L| | y ≺ x0}, Ir+1 = {y ∈ |L| | xr ≺ y}, and, for
0 < i 6 r, Ii = {y ∈ |L| | xi−1 ≺ y ≺ xi}.

Let

F = {0, . . . , r} ∪
r+1⋃
i=0
|Ii|<ω

Ii.

Since F is finite, there are only finitely many atomic types over F . Thus, since we
are assuming that U is not intrinsically computable, there exist ~y0, ~y1 ∈ ωk such
that tp∆

F (~y0) = tp∆
F (~y1) and U(~y0) 6= U(~y1). By the definition of Sr, there exists

a pair (~x0, ~x1) ∈ Sr such that tp∆
{0,...,r}(~x0

a~x1) = tp∆
{0,...,r}(~y0

a~y1). But it is easy to
check that

tp∆
F (~y0) = tp∆

F (~y1) ∧ tp∆
{0,...,r}(~x0

a~x1) = tp∆
{0,...,r}(~y0

a~y1)⇒ tp∆
F (~x0) = tp∆

F (~x1).

Thus there exists a pair (~x0, ~x1) ∈ Sr such that tp∆
F (~x0) = tp∆

F (~x1). Let m >
r,max(~x0

a~x1). We need to define embeddings gi : L � [0,m] → L, i = 0, 1, such
that
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1. g0(~x0) = g1(~x1) and

2. for all j 6 r, g0(j) = g1(j) = j.

We begin by setting g0(j) = g1(j) = j for all j 6 r. We can define the gi
independently on each Ik � [0,m], k 6 r + 1. As long as we embed each Ik � [0,m]
into Ik � [0, n], we will have an embedding of L � [0,m] into L � [0, n].

If Ik is finite then, for j ∈ Ik � [0,m], let g0(j) = g1(j) = j. Otherwise, let M
be the finite linear ordering of type tp∆(~x0 ∩ Ik) = tp∆(~x1 ∩ Ik). Since the class
of finite linear orderings has the amalgamation property, there exists a finite linear
ordering N and embeddings h0, h1 : Ik � [0,m] → N such that, for all j such that
~x0(j) ∈ Ik, h0(~x0(j)) = h1(~x1(j)). Since Ik is infinite, there exists an embedding
k : N → Ik. For i = 0, 1 and j ∈ Ik � [0,m], let gi(j) = k ◦ hi(j).

It is now easy to check that the gi are embeddings of L � [0,m] into L with the
desired properties.

6.4 1-decidable Structures

As mentioned in Section 5.1, every 1-decidable structure has computable dimension
1 or ω. In this section, we show that a roughly analogous situation holds in the
context of degree spectra of relations. The extra condition that we need to make
things work is the one that appears as condition (∗) in [2], which is not surprising,
since the proof of Theorem 6.4.3 below is similar to that of Theorem 3.2 in [2].

We will make use of the notion of a formally computable relation, which is also
due to Ash and Nerode [2].

6.4.1 Definition. A k-ary relation U on a computable structure A is formally
c.e. if there exists a c.e. sequence ψ0, ψ1, . . . of existential formulas in the language
of A expanded by finitely many constants from A such that, for every ~x ∈ ωk,
U(~x)⇔

∨
n∈ω ψn(~x).

A relation U on a computable structure is formally computable if both it and its
complement are formally c.e..

6.4.2 Theorem (Ash and Nerode). If a relation U on a computable structure is
formally computable then it is intrinsically computable.

6.4.3 Theorem. Let U be a computable relation on a computable structure A such
that A is 1-decidable and there exists a computable procedure for determining, given
an existential formula ψ(~x) in the language of A expanded by finitely many constants
from A, whether 〈A, U〉 � ∀~x(ψ(~x)→ U(~x)). (Notice that a sufficient condition for
this to hold is that 〈A, U〉 be 1-decidable.) Either U is intrinsically computable or
DgSpA(U) is infinite.
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Proof. To simplify our notation, we assume without loss of generality that |A| = ω.
For s ∈ ω, let Ls and As be L{0,...,s} and A � {0, . . . , s}, respectively, as defined in
Section 6.2.

We will attempt to construct a ∆0
2 function f : ω

1–1−−→
onto

ω such that f(A) is a

computable structure and f(U) is not computable. If we fail then we will be able to
show that U is intrinsically computable by showing that it is formally computable.

Let k be the arity of U . Let Φe be the eth k-ary partial computable function.
For each e ∈ ω, we will want to satisfy the requirement

Re : Φe 6= f(U),

while ensuring that f(A) is a computable structure.
We now proceed with the construction of f .

stage 0. Let f0 = ∅ and m0 = 0. For each e ∈ ω, let re,0 = 0.

stage s+1. Let e < s+1 be the least number, if any, such that both of the following
conditions hold, where r = max({ri,s | i < e} ∪ {e} ∪ {y | fs(y) 6 e}).

1. Re is not currently satisfied (defined below).

2. There exists an ~x ∈ ωk such that

(a) Φe(~x)[s]↓ and

(b) for some ~y ∈ ωk such that U(~y) 6= Φe(~x), there exists an embedding
g : As → A relative to Ls such that g(~x) = ~y, and, for all j 6 r,
g(j) = j.

(Notice that the hypotheses of Theorem 6.4.3 guarantee that we can effectively
check whether (b) holds.)

If no such number exists then proceed as follows. Let ms+1 = ms + 1. For
each i 6 ms, let fs+1(i) = fs(i), and let fs+1(ms+1) = ms+1. For each i ∈ ω, let
ri,s+1 = ri,s.

Otherwise, let g be as in 2(b) above and let ms+1 = max(rng(g)) + 1. Let y0 <
y1 < · · · < yms+1−ms−1 be the numbers in [0,ms+1]− rng(g). For each i ∈ rng(g), let
fs+1(i) = fs ◦ g−1(i). For each yi, 0 6 i < ms+1 −ms, let fs+1(i) = ms + 1 + i. Say
that Re is active at stage s + 1, declare Re to be satisfied, and let re,s+1 = ms+1.
For i < e, let ri,s+1 = ri,s; for i > e, let re,s+1 = 0 and declare Ri to be unsatisfied.

This completes the construction. Suppose that U is not intrinsically computable.
We need to show that f is ∆0

2, f(A) is a computable structure, and f(U) is not
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computable. We begin by showing by induction that f is ∆0
2 and, for each e ∈ ω,

lims re,s is well-defined, Re is active only finitely often, and if Φe is total then Re is
eventually permanently satisfied.

For the following lemmas, fix e ∈ ω and assume by induction that there is a
stage s0 such that, for all i < e, ri,s has achieved a limit ri by stage s0 and Ri is not
active after stage s0. Let r = max({ri,s0 | i < e} ∪ {e} ∪ {y | fs0(y) 6 e}). Notice
that, for all s > s0, max({ri,s | i < e} ∪ {e} ∪ {y | fs(y) 6 e}) = r.

6.4.4 Lemma. lims fs(e) and lims f
−1
s (e) are well-defined.

Proof. It can be easily checked from the construction that, since r > e, fs+1(e) =
fs(e) and f−1

s+1(e) = f−1
s (e) for all s > s0.

6.4.5 Lemma. If Φe is total then Re is eventually permanently satisfied.

Proof. Assume that Φe is total. It is enough to show that Re is satisfied at some
stage s > s0.

Suppose otherwise. We then claim that U is formally computable, which, by
Theorem 6.4.2, contradicts the assumption that U is not intrinsically computable.

Let ~x ∈ ωk. Let t + 1 be the least stage after s0 such that Φe(~x)[t] ↓. Since Lt
is a finite relational language, there exists an existential formula ψ~x in Lt expanded
by a constant for each j 6 r such that ψ~x(~y) holds if and only if there exists an
embedding g : At → A relative to Lt such that g(~x) = ~y, and, for all j 6 r, g(j) = j.

Since Re is not active at stage t + 1, it must be the case that ψ~x(~y) ⇒ U(~y) =
Φe(~x). Thus we have U(~y)⇔

∨
Φe(~x)=1 ψ~x(~y)⇔ ¬

∨
Φe(~x)=0 ψ~x(~y).

6.4.6 Lemma. lims re,s is well-defined and Re is active only finitely often.

Proof. If Re is never satisfied after stage s0 then re,t = re,s0 for all t > s0 and Re is
not active after stage s0. On the other hand, if Re is satisfied at stage t > s0 then
re,u = re,t for all u > t and Re is not active after stage t.

This completes the induction. We now show that f(A) is a computable structure
and f(U) is not computable.

6.4.7 Lemma. f(A) is a computable structure.

Proof. For all s ∈ ω, rng(fs+1) ⊃ rng(fs) and f−1
s+1◦fs is an embedding fromAms into

Ams+1 , if we restrict Ams+1 to the language of Ams . Furthermore,
⋃
s∈ω rng(fs) =

ω.

6.4.8 Lemma. For all e ∈ ω, Φe 6= f(U).
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Proof. We may assume that Φe is total. Let s be a stage by which Re is perma-
nently satisfied. It is easy to check from the construction that, for some ~x ∈ ωk,
U(f−1

s (~x)) 6= Φe(~x) and, for all t > s, f−1
t (~x) = f−1

s (~x). Thus U(f−1(~x)) 6= Φe(~x),
which implies that Φe 6= f(U).

The theorem follows from Lemmas 6.4.4, 6.4.7, and 6.4.8. �
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