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I had the good fortune to be among Rod Downey’s long and distin-
guished list of postdocs, in my case in 1999–2000. I recall Rod saying
once that he had hoped that his young postdocs would be interested in
joining him in his many athletic activities, but ended up with a bunch
of drunks instead. I did learn a lot about wine from Rod, but I think
I managed to squeeze some learning about mathematics as well while
I was in Wellington. In any case, to the extent that I was able to hold
my own with Rod at the blackboard and around the decanter, I am
proud.

There is no denying that Rod is a theory-builder, parameterized
complexity being a shining example, but he is also a problem-solver,
problem-creator, and problem-disseminator of the first water. So in
honor of his 60th birthday, I have chosen to discuss a few open prob-
lems I particularly like, and that are connected in one way or another
with his work and my mathematical interactions with him. Most of
these problems are well-known to experts in their areas (computable
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structure theory, reverse mathematics, algorithmic randomness, and
asymptotic computability), but I hope there is some value in bringing
them together, with some background and a bit of personal history
thrown in.

I will assume familiarity with the basics of computability theory
throughout, as well as those of reverse mathematics, algorithmic ran-
domness, and model theory in places.

1. The Slaman-Wehner Theorem for linear orders. My disser-
tation was in computable structure theory. Rod’s research in that
area was deeply influential, as was his expository work in papers such
as [14, 15, 16, 30]. Russell Miller was working on his dissertation at
around the same time as I, and I believe it was Rod who first told me
about an exciting result by Russell that answered a couple of questions
Rod had asked in [14], while leaving a third tantalizingly open.

In model theory, one identifies isomorphic structures, but in com-
putable mathematics, structures that are isomorphic but not com-
putably isomorphic can be quite different from each other. Thus one
of the main concerns of computable structure theory is the study of
concrete copies of a countable structure (in a computable language) up
to computable isomorphism.

Definition 1.1. A presentation of a countably infinite structure M is
a structure A ∼= M with universe ω. A structure is computably pre-
sentable if it has a presentation whose atomic diagram is computable.
More generally, the degree of a presentation A is the (Turing) degree
of the atomic diagram of A. The (atomic) degree spectrum of M is the
set of degrees of presentations of M.

The degree spectrum of M measures the computability-theoretic
complexity of obtaining a concrete copy of M. Knight [67] showed
that, except in trivial situations in which the degree spectrum is a
singleton, every degree spectrum is closed upwards. Thus nontrivial
computably presentable structures all have the same degree spectrum.

The simplest degree spectra are those of the form {d : d > a},
and for any degree a, it is not difficult to find a structure M with this
degree spectrum. In this case, it makes sense to say that a is the degree
of (the isomorphism class of) M, but not every degree spectrum has
this form. For instance, Richter [97] showed that if a linear order is not
computably presentable, then its degree spectrum has no least element.

On the other hand, not all upwards-closed sets of degrees are degree
spectra of structures. For instance, if a and b are incomparable de-
grees, then the union of the upper cones {d : d > a} and {d : d > b}



SOME QUESTIONS IN COMPUTABLE MATHEMATICS 3

is not the degree spectrum of any structure, a fact established in un-
published work of Knight and others [personal communication] and
by Soskov [108]. Thus it becomes interesting to ask whether certain
natural upwards-closed classes of degrees can be degree spectra of struc-
tures. (For a broader survey of this general question, see the chapter
on computable model theory by Fokina, Harizanov, and Melnikov [35]
in a volume dedicated to Turing’s legacy edited by Rod.)

One can think of the set of presentations of a countable structure as a
mass problem (i.e., a subset of 2ω) via some suitable encoding. One way
to compare the relative complexity of two mass problems is via Muchnik
reducibility, also known as weak reducibility. (Medvedev reducibility,
or strong reducibility, is the uniform version of Muchnik reducibility.)
For two mass problems P and Q, say that P is Muchnik reducible to Q if
every element of Q computes some element of P . As usual, this notion
leads to a degree structure on mass problems. The least Muchnik degree
consists of those mass problems that have a computable member. There
is also a least nontrivial Muchnik degree, namely the degree of all mass
problems P such that P has no computable member, but has an X-
computable member for each noncomputable X. It might seem at first
that it would be difficult to find “natural” mass problems living in this
degree, but that has turned out not to be the case.

Lempp (see [106, 115]) asked whether there are structures whose
degree spectra are in this degree (and Knight (see [106, 115]) asked
a closely related question about enumerations of families of sets). A
positive answer was given by Slaman [106] and Wehner [115].

Theorem 1.2 (Slaman [106]; Wehner [115]). There is a structure
whose degree spectrum consists of all nonzero degrees.

Whenever a structure with a particularly interesting computability-
theoretic feature is found, it is natural to ask whether similar struc-
tures exist within various well-known classes of structures. For some
classes C, there are general results that show that, for certain kinds
of computability-theoretic phenomena, anything that can happen in
general can happen within C. For instance, Hirschfeldt, Khoussainov,
Shore, and Slinko [52] gave such results for classes such as partial or-
ders, lattices, integral domains, commutative semigroups, and 2-step
nilpotent groups, which in particular imply that the Slaman-Wehner
Theorem holds in these classes. That is, each of these classes contains
a structure whose degree spectrum consists of all nonzero degrees.

On the other hand, there are many classes that are not “universal” in
the above sense, and in particular do not contain structures realizing all
the degree spectra that are possible in general. A well-known example
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is the class of Boolean algebras. Downey and Jockusch [23] showed
that every low Boolean algebra is isomorphic to a computable one, and
this result was extended to low2 Boolean algebras by Thurber [112]
and then to low4 Boolean algebras by Knight and Stob [68]. Thus if
the degree spectrum of a Boolean algebra contains any low4 degree,
then it contains all degrees. In particular, there is no Boolean algebra
whose degree spectrum consists of all nonzero degrees. It is not known
whether every lown Boolean algebra is isomorphic to a computable one.
This question, which goes back to Downey and Jockusch [23], remains
a major one in computable structure theory.

Richter’s result mentioned above shows that the class of linear orders
is also not universal as far as degree spectra are concerned. On the other
hand, unlike Boolean algebras, linear orders can have presentations
that are close to being computable without actually being computably
presentable. Jockusch and Soare [61] showed that for every nonzero
c.e. degree, there is a linear order of that degree that is not isomorphic
to any computable linear order. Downey and independently Seetapun
(see [14]) extended this result to all nonzero ∆0

2 degrees, and finally
Knight (see [14]) extended it to all nonzero degrees.

In many ways, linear orders occupy a particularly interesting place
in computable structure theory. They are neither so unstructured as
to basically be the general case in disguise nor so structured as not
to admit any computability-theoretic “pathologies”. When I was in
Wellington, Rod and I spent some time thinking about linear orders
(and in particular a question about the successivity relation in com-
putable linear orders that Rod finally solved in joint work with Lempp
and Wu [29]). As I remember Rod saying several times back then,
“Linear orders are hard!”

In light of the results discussed above, it was natural for Rod to
ask in [14] whether there are linear orders that are not computably
presentable but whose degree spectra contain all nonzero c.e. degrees,
or all nonzero ∆0

2 degrees, or even all nonzero degrees. The first two
of these questions were the ones answered by Russell’s result.

Theorem 1.3 (Miller [87, 88]). There is a linear order whose degree
spectrum contains every nonzero ∆0

2 degree except 0.

The proof consists of modifying the basic module of the Jockusch-
Soare construction in [61] and combining it with ∆0

2-permitting so
that, for any noncomputable ∆0

2 set C, the construction produces a
C-computable linear order whose order type is independent of C. The
resulting order type L is of the form S0 + A0 + S1 + A1 + · · · , where
each An is used to diagonalize against the possibility that nth partial
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computable linear order is isomorphic to L, and each Sn is a separator
of the form 1 + η + i + η + 1, where η is the order type of the ratio-
nals and i ∈ N. The separators keep the individual diagonalization
constructions apart.

Chisholm [unpublished] and Downey [unpublished] showed that the
degree spectrum of L in fact includes all hyperimmune degrees. Barm-
palias (see [36]) argued that no hyperimmune-free degree is sufficiently
strong to carry out the basic module of the construction of L, leading
to the conjecture that the degree spectrum of L consists exactly of the
hyperimmune degrees. Of course, even if this conjecture holds, it may
still be possible to go beyond the hyperimmune degrees with a different
order type, so Rod’s third question remains open.

I Open Question 1.4 (Downey [14]). Is there a linear order whose
degree spectrum consists of all nonzero degrees?

See Frolov, Harizanov, Kalimullin, Kudinov, and Miller [36] for more
on degree spectra of linear orders. In particular, they showed that for
every n > 2, there is a linear order whose degree spectrum consists
exactly of the nonlown degrees. The n = 1 remains open, however.
(Notice that Question 1.4 is the n = 0 case.)

I Open Question 1.5 (Frolov, Harizanov, Kalimullin, Kudinov, and
Miller [36]). Is there a linear order whose degree spectrum consists of
the nonlow degrees?

As noted by Fokina, Harizanov, and Melnikov [35], analogs of Ques-
tion 1.4 are also open for other interesting classes of structures, such as
abelian groups. In that case, Khoussainov, Kalimullin, and Melnikov
[65] proved the analog of Theorem 1.3 (and its extension to hyperim-
mune degrees), while Melnikov [78] gave a positive answer to the analog
of Question 1.5.

Noah Schweber [101] has suggested an approach to giving a posi-
tive answer to Question 1.4, which goes through another set of results
related to the Slaman-Wehner Theorem.

An alternative measure of the complexity of a structure can be ob-
tained by looking at its full elementary diagram rather than just its
atomic diagram.

Definition 1.6. A (presentation of a) structure is decidable if its el-
ementary diagram is computable. The elementary degree spectrum of
M is the set of degrees of elementary diagrams of presentations of M.

It is easy to see that the usual Henkin proof of the completeness the-
orem can be effectivized to show that every complete decidable theory
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has a decidable model, but things are often different if one wants this
model to have certain special properties. For instance, every atomic
theory in a countable language has a countable atomic model, but this
result does not hold effectively. (Recall that a theory T is atomic if
every formula consistent with T is contained in a principal type, and a
model is atomic if every type realized in it is principal.) To make this
statement more precise and cast it in a form that will be more relevant
to Question 1.4, consider the following definition.

A binary tree is a set T of finite binary strings such that if σ ∈ T
and τ ≺ σ then τ ∈ T . A string σ ∈ T is a dead end if σ0, σ1 /∈ T . A
path on T is an infinite binary sequence P such that every finite initial
segment of P is in T .

Definition 1.7. A PAC tree is a computable binary tree with no dead
ends, each of whose paths is computable.

The motivation behind this definition is that PAC trees are essen-
tially the trees of types of complete decidable theories all of whose types
are computable. (See [43, 46] for more details.) Such a theory has only
countably many types, and hence is atomic. Goncharov and Nurtazin
[42] and Harrington [44] showed that a complete decidable theory T has
a decidable atomic model if and only if there is a computable listing
of the principal types of T . Millar [85] showed that another sufficient
condition for a complete decidable theory T to have a decidable atomic
model is that there be a computable listing of all types of T . Thus,
in a sense, the simplest possible complete decidable theory with no de-
cidable atomic model would be one such that each type is individually
computable, but there is no way to uniformly compute all the types, or
even all the principal types. Since isolated paths correspond to princi-
pal types, the following result has as a corollary that there exists such
a theory. (For more on the computability-theoretic and proof-theoretic
aspects of the existence of atomic models, see [47, Section 9.3] and
the references mentioned there. Note that Open Question 9.47 in that
section has now been answered by Cholak and McCoy [6].)

Theorem 1.8 (Goncharov and Nurtazin [42]; Millar [84]). There is a
PAC tree whose isolated paths cannot be computably listed.

Thus the Muchnik degree of the set of listings of the isolated paths
of a PAC tree is not always trivial. However, there is only one other
possibility for what this degree can be.

Theorem 1.9 (Hirschfeldt [46]). Let T be a PAC tree and let X >T ∅.
Then the isolated paths of T can be X-computably listed.
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Combining this result with Theorem 1.8 shows that there is a PAC
tree T such that the isolated paths of T can be X-computably listed
if and only if X is not computable. Restated in model-theoretic terms,
Theorem 1.9 says that if T is a complete decidable theory all of whose
types are computable, then the elementary degree spectrum of the
atomic model of T includes all nonzero degrees. This result extends an
earlier one of Csima [11, 12], who showed that such a spectrum includes
all nonzero ∆0

2 degrees.
The translation of trees into theories can be done in such a way that

the atomic model of the theory obtained from the PAC tree in Theorem
1.8 not only has no decidable presentation, but does not even have
a computable presentation. Thus we have the following fact, which
extends the Slaman-Wehner theorem to models of decidable theories.

Corollary 1.10 (Hirschfeldt [46]). There is a structure M whose
atomic and elementary degree spectra both consist of the nonzero de-
grees. Furthermore, M can be chosen to be the atomic model of a
complete decidable theory each of whose types is computable.

Let us now return to Question 1.4. For a tree T , let L(T ) be the
linear order consisting of the isolated paths of T with the lexicographic
order. Schweber [101] observed that if I is a listing of the isolated paths
of T , then L(T ) has an I-computable presentation, and hence, if T is
a PAC tree, then the degree spectrum of L(T ) contains all nonzero
degrees. Thus a positive answer to the following question would imply
a positive answer to Question 1.4.

I Open Question 1.11 (Schweber [101]). Is there a PAC tree T for
which L(T ) has no computable presentation?

Schweber [101] did show that there is no computable way to pass
from an index for a PAC tree T to one for a computable presentation
of L(T ). Nevertheless, both he and I strongly believe that the answer
to this question is negative. The linear orders L(T ) arising from PAC
trees T do not seem sufficiently complex to permit diagonalization
against computable presentations. In particular, each such ordering
is scattered, i.e., does not contain a suborder of type η, and hence
cannot contain Jockusch-Soare-style separators. Indeed, it seems quite
reasonable to conjecture that no scattered linear order can have degree
spectrum consisting exactly of the noncomputable degrees, although
this has not been shown to be the case.

Incidentally, the following question is also open.

I Open Question 1.12 (Schweber [101]). Is every computable scat-
tered linear order isomorphic to L(T ) for some PAC tree T ?
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But perhaps a little more life can be injected into this approach by
considering more complicated trees. For a tree T and σ ∈ T , let Tσ

be the tree consisting of all τ such that στ ∈ T . Let [T ] be the set of
paths on T .

Definition 1.13. A quasi-PAC tree is a computable binary tree T with
no dead ends such that for each noncomputable path P of T , there is
a σ ≺ P for which [Tσ] is perfect (i.e., has no isolated elements).

For a quasi-PAC tree T , let S(T ) be the set of all σ ∈ T such
that [Tσ] is either a singleton or perfect. Let M(T ) be the set of
minimal elements of S(T ) (i.e., nodes σ ∈ S(T ) such that if τ ≺
σ then τ /∈ S(T )). Let L(T ) be the linear order obtained by first
ordering M(T ) lexicographically, then replacing each σ ∈ M(T ) such
that [Tσ] is perfect by a copy of the rationals. (If T is a PAC tree,
then this definition agrees with the previous definition of L(T ) up to
isomorphism.) Notice that, unlike in the case of PAC trees, this linear
order is not necessarily scattered, and indeed can include Jockusch-
Soare-style separators.

Proposition 1.14. Let T be a quasi-PAC tree. Then the degree spec-
trum of L(T ) contains all nonzero degrees.

Proof. Let X >T ∅. The idea is to first build an X-computable collec-
tion of paths on T using the same method as in the proof of Theorem
1.9 above given in [46], then use it to build an X-computable presen-
tation of L(T ).

Let σ0, σ1, . . . list the nodes of T , say in length-lexicographic order.
For each n, let fn be the path of T defined as follows. Begin at σn, and
proceed along T until there is a split in T , i.e., a τ < σn such that τ0
and τ1 are both in T . (Of course, such a split might never be found.)
Take the right node of this split if 0 ∈ X, and take the left node if
0 /∈ X. Then continue along T until there is another split (if ever).
Then take the right node of this split if 1 ∈ X, and take the left node
if 1 /∈ X. Continue in this way, deciding which side of splits to follow
depending on successive bits of X.

Now f0, f1, . . . are uniformly X-computable paths of T , and include
all the isolated paths on T . Let S = {n : ∀m < n (fn 6= fm)}. Then
S is c.e. Let n0, n1, . . . be an enumeration of S and let gi = fni

. Then
the gi are uniformly X-computable and list the same paths as the fi,
but without repetitions. Let L be the X-computable linear order with
domain ω defined by letting i <L j if gi is to the left of gj.

The claim now is that L is a presentation of L(T ). Let M(T ) be as
above (i.e., the minimal elements of the set of σ ∈ T such that [Tσ] is
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either a singleton or perfect). If gn is not isolated then infinitely many
splits are encountered in its definition. Which direction gn takes at
each split is determined by successive bits of X, so in this case X can
be computed from gn. Thus every gn is isolated or noncomputable. So,
by the definition of quasi-PAC tree, every gn extends some element of
M(T ). Of course, it is also the case that for every σ ∈ M(T ), there is
a gn extending σ, which is unique if Tσ has only one path. Thus it is
enough to show that if [Tσ] is perfect, then the set of gn extending σ
has the order type of the rationals under the lexicographic order.

Suppose that gm and gn both extend such a σ, for m 6= n. Since gm 6=
gn, assume without loss of generality that there is a τ < σ such that
τ0 ≺ gm and τ1 ≺ gn. Since gm is not isolated, it is not computable,
and hence cannot be the rightmost path of T extending τ0 (since T
has no dead ends, and hence this rightmost path is computable). Thus
there is a ρ � τ0 that is to the right of gm. This ρ is to the left of gn,
and there must be some gk extending ρ. Now gk is strictly in between
gm and gn. Similar arguments show that there cannot be a leftmost or
a rightmost gn extending σ. �

Thus, as in the case of Question 1.11, a positive answer to the fol-
lowing question would imply a positive answer to Question 1.4.

I Open Question 1.15 (Hirschfeldt (see Schweber [101])). Is there
a quasi-PAC tree T for which L(T ) has no computable presentation?

Some time spent trying to give a positive answer to this question has
made me lean toward believing that the answer is actually negative,
but with less confidence than in the case of Question 1.11.

2. Linearizing partial orders. There are several other intriguing
questions involving linear orders. In this section, and the next, I will
briefly describe a couple of my favorite ones.

After finishing my dissertation and before going to New Zealand
as Rod’s postdoc, I spent a month with him visiting Steffen Lempp
and Reed Solomon at Wisconsin. The four of us sat in Steffen’s office
for hours on end, day after day. Not exactly Rod’s favorite mode of
working, but productive in the event, as it yielded three papers. One of
these took a reverse-mathematical look at linear extensions of partial
orders.

Szpilrajn [110] showed that every partial order (X, 6P) has a linear
extension, that is, a linear order (X, 6L) such that if a 6P b then
a 6L b. It is natural to ask which properties of a partial order can be
preserved by some linear extension. For instance, if a partial order is
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well-founded, does it have a well-ordered linear extension? This and
similar questions can be stated concisely using the following notation.

Definition 2.1. Let τ be a linear order type. Say that τ is extendible
if every partial order with no suborder of type τ has a linear extension
with no suborder of type τ . Say that τ is weakly extendible if every
countable partial order with no suborder of type τ has a linear extension
with no suborder of type τ .

Characterizations of the extendible and weakly extendible countable
order types were obtained by Bonnet [4] and Jullien [62], respectively.
For the purposes of reverse-mathematical and computability-theoretic
analysis, weak extendibility is the natural notion to study.

Definition 2.2. Let EXT(τ) be the statement that τ is weakly ex-
tendible.

EXT(ω∗), for example, is the statement that every countable well-
founded partial order has a well-ordered linear extension, which is in-
deed true. Downey, Hirschfeldt, Lempp, and Solomon [20] studied the
weak extendibility of ω∗, η (which recall is the order type of the ratio-
nals), and ζ (the order type of the integers). Only in the last case did
we obtain a full reverse-mathematical characterization, though. (For
definitions of RCA0, ATR0, and other systems mentioned here, see
Simpson [105].)

Theorem 2.3 (Downey, Hirschfeldt, Lempp, and Solomon [20]). The
principle EXT(ζ) is equivalent to ATR0 over RCA0.

For EXT(ω∗) (i.e., the principle that every countable well-founded
partial order has a well-ordered linearization), we were able to find the
following bounds.

Theorem 2.4 (Downey, Hirschfeldt, Lempp, and Solomon [20]). The
principle EXT(ω∗) is provable in ACA0, and is strictly stronger than
WKL0 over RCA0.

The following questions remain open, however. Ramsey’s Theorem
for pairs (RT2

2) and some related principles will be discussed further
below.

I Open Question 2.5 (Downey, Hirschfeldt, Lempp, and Solomon
[20]; Hirschfeldt [47]). Does RCA0 + EXT(ω∗) ` ACA0? What is the
relationship between EXT(ω∗) and RT2

2 (and related principles)?

Another way to state EXT(η) is that every scattered partial order has
a scattered linear extension. Becker (see [20]) showed that Π1

1-CA0 `
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EXT(η). As part of his analysis of the reverse-mathematical strength of
Julien’s classification of the weakly extendible order types, Montalbán
[92] improved this result by showing that ATR0 +IΣ1

1 ` EXT(η). Con-
versely, Joe Miller [unpublished] showed that EXT(η) implies WKL0

over RCA0, and implies ATR0 over Σ1
1-AC0. The exact strength of

EXT(η) is still unknown, and in particular, the following question is
open.

I Open Question 2.6 (Montalbán [92]). What is the exact relation-
ship between ATR0 and EXT(η) over RCA0?

For some further discussion of this and related questions, see [47,
Sections 10.2 and 10.3].

3. The Dushnik-Miller Theorem and computability theory.
The paper by Downey, Lempp, and Wu [29] mentioned in Section 1
introduced a new method for constructing ∆0

3 isomorphisms, which
was also used by Downey, Kastermans, and Lempp [27] to give a par-
tial answer to the longstanding Effective Dushnik-Miller Conjecture of
Downey and Moses (see [15]).

A nontrivial self-embedding of a linear order L is an order preserving
map from L into itself that is not the identity. The Dushnik-Miller
Theorem [31] states that every infinite linear order has a nontrivial
self-embedding. This theorem does not hold effectively, even for the
simplest order type of infinite linear orders: Hay and Rosenstein (see
[98]) showed that there is a computable linear order of order type ω with
no computable nontrivial self-embeddings, and Downey and Lempp [28]
improved this result by building a computable linear order L of order
type ω such that any nontrivial self-embedding of L computes ∅′. They
also showed that the latter construction can be turned into a proof that
the Dushnik-Miller Theorem is equivalent to ACA0 over RCA0. (See
Downey, Jockusch, and Miller [25] for a clarification of that proof.)

Downey, Jockusch, and Miller [25] showed that every computable
infinite linear order has an ∅′′-computable nontrivial self-embedding,
but there is a computable infinite linear order with no ∅′-computable
nontrivial self-embeddings.

I Open Question 3.1 (Downey, Jockusch, and Miller [25]). Is there
a computable infinite linear order L such that every nontrivial self-
embedding of L computes ∅′′?

As mentioned above, there is a computable presentation of ω with no
computable nontrivial self-embeddings, and the same is true of many
order types. There is one known class of computably presentable linear



12 DENIS R. HIRSCHFELDT

orders for which every computable presentation has a computable non-
trivial self-embedding. A linear order L is η-like if the order type of L
can be obtained from η by replacing each point by a nonempty block of
finitely many points. A linear order L is strongly η-like if there is an n
such that the order type of L can be obtained from η by replacing each
point by a nonempty block of at most n many points. Watnick and
Lerman (see [15]) noted that if a computable linear order has a strongly
η-like interval, then it has a computable nontrivial self-embedding.

Since having a strongly η-like interval is a property of an order type,
rather than of its presentations, if a computably presentable linear or-
der L has a strongly η-like interval, then every computable presentation
of L has a computable nontrivial self-embedding. Downey and Moses
(see [15]) conjectured that this is the only situation in which this is the
case, that is, that the answer to the following question is positive.

I Open Question 3.2 (Downey and Moses (see [15])). If every com-
putable presentation of a computable linear order L has a computable
nontrivial self-embedding, must L contain a strongly η-like interval?

Downey, Kastermans, and Lempp [27] showed that this conjecture
of Downey and Moses holds for all computable η-like linear orderings.
In [15], Rod discussed some of the difficulties involved in proving the
full conjecture.

4. Computable dimension and relatively easy isomorphisms.
Another natural question to ask about a computably presentable struc-
ture is how many computable presentations it has, up to computable
isomorphism. This number is known as the computable dimension of
the structure. A structure of computable dimension 1 is said to be
computably categorical. There are many examples of computably cate-
gorical structures, such as (Q, <), and of structures of computable di-
mension ω, such as (N, <). Structures of finite computable dimension
greater than 1 do not seem to occur “in nature”, but nevertheless exist,
as shown by Goncharov [38]. Indeed, there are structures of any given
finite dimension. By the kinds of general encoding results mentioned
in Section 1, such structures also exist within various familiar classes
of structures. A particularly interesting recent result in this direction
by Miller, Poonen, Schoutens, and Shlapentokh [90], which resolved a
longstanding open question, is that the class of fields has the same uni-
versality properties as the ones dealt with by Hirschfeldt, Khoussainov,
Shore, and Slinko [52] (as discussed in Section 1). In particular, there
are fields of any given finite dimension. (Another interesting aspect of
[90] is the casting of encoding results such as the ones in [52] in terms
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of a new kind of computable category theory. This line of research
has been further pursued by Harrison-Trainor, Melnikov, Miller, and
Montalbán [45].)

There are several situations in which structures of finite computable
dimension greater than 1 cannot exist, however. For instance, Gon-
charov and Dzgoev [41] and Remmel [96] showed that every computably
presentable linear order has computable dimension 1 or ω; Goncharov
[40] did the same for Boolean algebras (though the result was implicit
in earlier work of Goncharov and, independently, LaRoche [70]); and
Lempp, McCoy, Miller, and Solomon [71, 72] for trees (as partial or-
ders, or under the meet function). A more computability-theoretic ob-
struction to the existence of structures of finite computable dimension
greater than 1 is given by the following result.

Theorem 4.1 (Goncharov [39]). Let A and B be computable struc-
tures such that there is no computable isomorphism between A and B,
but there is a ∆0

2 isomorphism between them. Then A has computable
dimension ω.

Goncharov’s examples in [38] of structures of finite computable di-
mension greater than 1 are ∆0

3-categorical, i.e., for each such structure
M, there is a ∆0

3 isomorphism between any two given presentations of
M. Thus Theorem 4.1 cannot be extended to ∆0

3 isomorphisms. But
perhaps it can be extended to some class intermediate between ∆0

2 and
full-blown ∆0

3 isomorphisms.
One way to zero in on a potential class of this kind is to consider

concrete examples. One such example is given by locally finite con-
nected graphs, where a graph is locally finite if each vertex is on only
finitely many edges. (It does not matter here whether the graphs are
directed or undirected.) There are several examples of graphs of finite
computable dimension greater than 1, and in every case they make
essential use of vertices connected to infinitely many other vertices. It
seems difficult to modify these constructions to produce locally finite
graphs. Nevertheless, the following question, which comes from joint
work with Bakh Khoussainov, remains open.

I Open Question 4.2. Is there a locally finite connected graph of
finite computable dimension greater than 1?

Another interesting example is that of algebraic fields.

I Open Question 4.3 (Hirschfeldt, Kramer, Miller, and Shlapentokh
[53]). Is there an algebraic field of finite computable dimension greater
than 1?
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What connects these two classes of structures is that if we take two
isomorphic computable structures A and B in either of these classes,
there is a computable infinite, finitely branching subtree of ωω each of
whose paths is an isomorphism between A and B. (In the sense that
for each such path P , the map n 7→ P (n) is such an isomorphism.)
If A and B are isomorphic computable locally finite connected graphs
and we fix a ∈ A and b ∈ B such that (A, a) and (B, b) are isomorphic,
it is easy to build a computable finitely branching tree whose paths
are exactly the isomorphisms between (A, a) and (B, b). If A and B
are isomorphic computable algebraic fields then Miller [89] showed that
there is a computable finitely branching tree whose paths are exactly
the isomorphisms between A and B.

It is possible that Theorem 4.1 can be extended to cover this general
case, giving a positive answer to the following question, which comes
from discussions with Russell Miller, and hence negative answers to
Questions 4.2 and 4.3.

I Open Question 4.4. Let A and B be computable structures that are
not computably isomorphic. Suppose that there is a computable infinite,
finitely branching subtree of ωω each of whose paths is an isomorphism
between A and B. Must the computable dimension of A be infinite?

5. Ramsey’s Theorem and computability-theoretic reductions.
Another of the papers I worked on with Rod, Steffen, and Reed at Wis-
consin introduced me to a question that has continued to preoccupy
me off and on since then: determining the exact relationship between
Ramsey’s Theorem for Pairs (RT2

2) and its stable version SRT2
2. (Some

of this section overlaps with a recent open questions paper by Patey
[95], which also contains many questions on the reverse mathematics
of Ramsey-type statements not considered here.)

The computability-theoretic and reverse-mathematical analysis of
versions of Ramsey’s Theorem has been an important line of research
since the work of Specker [109] and Jockusch [59] in the early 1970’s.

Definition 5.1. For a set X, let [X]n be the collection of n-element
subsets of X. A k-coloring of [X]n is a map c : [X]n → k. A set
H ⊆ X is homogeneous for c if there is an i < k such that c(s) = i for
all s ∈ [H]n.

Ramsey’s Theorem for n-tuples and k colors RTn
k is the statement

that every k-coloring of [N]n has an infinite homogeneous set. RTn
<∞

is the statement ∀k RTn
k . RT is the statement ∀n RTn

<∞.

It is not difficult to show that RTn
k is equivalent to RTn

2 over RCA0

for all k > 2, and of course RT1
2 is provable in RCA0. Building on
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computability-theoretic results of Jockusch [59], Simpson [104] showed
that RTn

2 is equivalent to ACA0 over RCA0 for all n > 3. The n = 2
case has proved to be considerably more interesting. Building on
computability-theoretic results of Jockusch [59], Hirst [56] showed that
RT2

2 is not provable in WKL0. Seetapun (see [103]) showed that RT2
2

does not imply ACA0 over RCA0. More recently, Liu [75, 76] showed
that RT2

2 does not imply WKL0, or even WWKL0 (which will be dis-
cussed further below), over RCA0.

Unlike WKL0, there are not many principles equivalent to RT2
2, but

there is a whole universe of principles provable from RCA0 + RT2
2. (I

have told some of this story in considerably more detail in [47].) For
instance, Cholak, Jockusch, and Slaman [8] found a highly productive
way to split RT2

2 into two principles, called SRT2
2 and COH.

Definition 5.2. A coloring c : [N]2 → k is stable if limy c(x, y) exists
for all x. Stable Ramsey’s Theorem for Pairs and k colors SRT2

k is the
statement that every stable k-coloring of [N]2 has an infinite homoge-
neous set. SRT2

<∞ is the statement ∀k SRT2
k.

A set C is cohesive for a collection of sets R0, R1, . . . if C is infinite
and for each i, either C ⊆∗ Ri or C ⊆∗ Ri (where X ⊆∗ Y means that
X \Y is finite). The Cohesive Set Principle COH is the statement that
every countable collection of sets has a cohesive set.

One direction of the original proof in [8] that RT2
2 is equivalent to

SRT2
2 + COH required Σ0

2-induction, but this use of induction was re-
moved by Mileti [83] and Jockusch and Lempp [unpublished].

Theorem 5.3 (Cholak, Jockusch, and Slaman [8]; Mileti [83]; Jockusch
and Lempp [unpublished]). RT2

2 is equivalent to SRT2
2 + COH over

RCA0.

Cholak, Jockusch, and Slaman [8] showed that COH does not imply
RT2

2 over RCA0, but obtaining the analogous statement for SRT2
2 in

place of COH proved far more elusive. For well over a decade, many
researchers, myself included, tried a variety of approaches to this prob-
lem without success.

A frustrating aspect of this problem is that, from the point of view of
computability theory, stability does allow us to decrease the complexity
of homogeneous sets in general. Jockusch [59] showed that there are
computable 2-colorings of [N]2 with no ∆0

2 infinite homogeneous sets.
On the other hand, if the computable coloring c : [N]2 → 2 is stable,
then ∅′ can compute the function x 7→ limy c(x, y), from which it is
easy to obtain an infinite homogeneous set for c effectively. Thus c has
a ∆0

2 infinite homogeneous set. However, this fact in itself does not
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help to build a model of SRT2
2 that is not a model of RT2

2, because
such a model would have to contain not only an infinite homogeneous
set H for c, but one for every H-computable stable 2-coloring of pairs,
at which point one might be in the realm of ∆0

3 sets (and of course
the complexity of homogeneous sets might get even higher as further
iterations are considered). What would help would be to find a C ⊂ ∆0

2

such that every 2-coloring of pairs c ∈ C has an infinite homogeneous
set H such that c⊕H ∈ C. Cholak, Jockusch, and Slaman [8] suggested
that the low sets might form such a class, but that turns out not to be
the case.

Theorem 5.4 (Downey, Hirschfeldt, Lempp, and Solomon [19]). There
is a computable stable 2-coloring of pairs with no low infinite homoge-
neous sets.

It did not occur to us (or at least to me) to ask whether this the-
orem holds in nonstandard models of Σ0

1-PA (the first-order part of
RCA0). As it turns out, it does not, though it takes a rather intricate
construction to establish this fact. Chong, Slaman, and Yang [9] built
a model of RCA0 + SRT2

2 (in which Σ0
2-induction fails) whose second-

order part consists entirely of low sets, in the sense of the first-order
part of the model. As shown by Cholak, Jockusch, and Slaman [8], BΣ0

2

(Σ0
2-bounding) must hold in any model of RCA0 + SRT2

2. Chong, Sla-
man, and Yang [9] also showed that Jockusch’s result in [59] that there
are computable 2-colorings of [N]2 with no ∆0

2 infinite homogeneous
sets goes through in RCA0 + BΣ0

2. Thus they were able to separate
SRT2

2 and RT2
2 in the reverse-mathematical setting.

Theorem 5.5 (Chong, Slaman, and Yang [9]). RCA0 + SRT2
2 0 RT2

2.

Remarkable as it is, this result still leaves open the question of
whether any approach along more traditional lines, working in the stan-
dard first-order model, can be made to work. Such an approach would
in fact establish a stronger result. Recall that an ω-model of second-
order arithmetic is one with standard first-order part. Write P 6ω Q to
mean that every ω-model of RCA0+Q is an ω-model of P . For example,
COH and (S)RT2

2 can be separated via ω-models, for instance by using
a conservativity result of Hirschfeldt and Shore [55] or by considering
the principle DNR, as in Hirschfeldt, Jockusch, Kjos-Hanssen, Lempp,
and Slaman [49], so RT2

2 
ω COH. The natural follow-up question to
Theorem 5.5 can now be stated as follows.

I Open Question 5.6 (Cholak, Jockusch, and Slaman [8]; Chong,
Slaman, and Yang [9]). Is RT2

2 6ω SRT2
2? Equivalently, is COH 6ω

SRT2
2?
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In light of the methods in [9] discussed above, the following question
is also of interest (and a positive answer to it would imply a positive
answer to Question 5.6).

I Open Question 5.7 (Chong, Slaman, and Yang [10]). Does RCA0+
IΣ0

2 + SRT2
2 ` RT2

2?

It is possible that the approach to answering Question 5.6 ruled out
in its simplest form by Theorem 5.4 could still be revived, if the answer
to the following questions is positive.

I Open Question 5.8 (Hirschfeldt, Jockusch, Kjos-Hanssen, Lempp,
and Slaman [49]). Does every computable stable 2-coloring of pairs have
an infinite homogeneous that is both ∆0

2 and low2 (or just ∆0
2 and lown

for some n, where n could even depend on the coloring)?

As explained in [49], a relativizable positive answer to this question
would yield a negative solution to Question 5.6. On the other hand,
it could be that there is a computable stable 2-coloring of pairs such
that the jump of every infinite homogeneous set has PA degree relative
to ∅′, which, again as explained in [49], would not only give a negative
answer to Question 5.8, but (if this fact is relativizable) also a positive
one to Question 5.6.

Another way to think about Question 5.6 is to study its analogs for
computability-theoretic reducibilities stronger than 6ω. Many inter-
esting principles (including Ramsey’s Theorem and its variants) have
the form

∀X [Θ(X) → ∃Y Ψ(X, Y )]

with Θ and Ψ arithmetic. Such a principle can be thought of as a
problem. An instance of this problem is an X such that Θ(X) holds
and a solution to this instance is a Y such that Ψ(X, Y ) holds.

For principles of this kind, the definition of 6ω can be reformulated
without reference to reverse mathematics. Recall that a Turing ideal is
a collection of sets closed under Turing reduction and finite joins. Say
that a problem P holds in a Turing ideal I if every instance of P in I
has a solution in I. Turing ideals are exactly the second-order parts of
ω-models of RCA0, so P 6ω Q if and only if P holds in every ideal in
which Q holds.

Reducibilities such as the following ones allow for a finer-grained
investigation of relationships between problems. All four of the notions
below capture the idea of being able to solve any given instance X
of a problem P by using the ability to solve an instance of another
problem Q obtained computably from X. The difference between the
computable and Weihrauch versions is that the latter are uniform. The
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difference between the normal and strong versions is that the latter do
not allow the use of X itself in computing a solution to X.

Definition 5.9. Let P and Q be problems.

1. Say that P is computably reducible to Q, and write P 6c Q, if for

every instance X of P , there is an X-computable instance X̂ of Q

such that, for every solution Ŷ to X̂, there is an X ⊕ Ŷ -computable
solution to X.

2. Say that P is strongly computably reducible to Q, and write P 6sc Q,

if for every instance X of P , there is an X-computable instance X̂

of Q such that, for every solution Ŷ to X̂, there is a Ŷ -computable
solution to X.

3. Say that P is Weihrauch reducible to Q, and write P 6W Q, if there
are Turing functionals Φ and Ψ such that, for every instance X of

P , the set X̂ = ΦX is an instance of Q, and for every solution Ŷ to

X̂, the set Y = ΨX⊕bY is a solution to X.
4. Say that P is strongly Weihrauch reducible to Q, and write P 6sW Q,

if there are Turing functionals Φ and Ψ such that, for every instance

X of P , the set X̂ = ΦX is an instance of Q, and for every solution

Ŷ to X̂, the set Y = Ψ
bY is a solution to X.

(Strong) Weihrauch reducibility is also known as (strong) uniform
reducibility. The notion of Weihrauch reducibility is a broader one,
introduced by Weihrauch [116, 117] in the context of computable anal-
ysis, but the definition given above is equivalent to a special case of
it. (See Dorais, Dzhafarov, Hirst, Mileti, and Shafer [13]. See also the
papers listed in the bibliography [5].)

One approach to Question 5.6 is to seek partial answers, perhaps
involving methods that can be adapted to answer the full question, by
replacing 6ω with each of the stronger notions of reducibility above.
Of course, given the computability-theoretic difference between RT2

2

and SRT2
2, the second of the two equivalent statements of Question 5.6

is the relevant one here. All but one of these versions of Question 5.6
have been answered by Dzhafarov [32].

Theorem 5.10 (Dzhafarov [32]). COH 
sc SRT2
2 and COH 
W SRT2

2

(and hence COH 
sW SRT2
2).

The case of computable reducibility remains open, however, and
might well be the most relevant one to a potential solution to Question
5.6.

I Open Question 5.11 (Hirschfeldt and Jockusch [48]). Is COH 6c

SRT2
2?
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It should be noted that, when considering reducibilities stronger than
6ω, the number of colors starts to matter. For instance, while it is not
difficult to show that RTn

k 6ω RTn
j even when 2 6 j 6 k, Patey [94]

showed that RTn
k 
c RTn

j in this case, as long as n > 2. Thus the
following results strengthen Theorem 5.10.

Theorem 5.12 (Dzhafarov [32]). COH 
W SRT2
<∞.

Theorem 5.13 (Dzhafarov, Patey, Solomon, and Westrick [33]).
COH 
sc SRT2

<∞.

The analog of Question 5.11 for SRT2
<∞ is also open.

The difference between 6c and 6ω is that the latter covers cases in
which a problem P is reducible a problem Q, but only if one is allowed
to use several instances of Q to solve an instance of P . It is thus natural
to seek a nonuniform version of 6ω that allows for multiple uses of a
principle, but only if the relevant instances are produced in a uniformly
computable way. Such a notion was defined in [48] using games.

Definition 5.14. For problems P and Q, the reduction game G(Q →
P ) is a two-player game that proceeds as follows. If at any point one
of the players does not have a legal move, then the game ends with a
victory for the other player.

On the first move, Player 1 plays an instance X0 of P , and Player 2
either plays an X0-computable solution to X0 and declares victory, in
which case the game ends, or responds with an X0-computable instance
Y1 of Q.

For n > 1, on the nth move (if the game has not yet ended), Player
1 plays a solution Xn−1 to the instance Yn−1 of Q. Then Player 2 ei-
ther plays a (

⊕
i<n Xi)-computable solution to X0 and declares victory,

in which case again the game ends, or plays a (
⊕

i<n Xi)-computable
instance Yn of Q.

Player 2 wins this play of the game if it ever declares victory, or
if Player 1 has no legal move at some point in the game. Otherwise,
Player 1 wins.

Reduction games can be used to give a characterization of 6ω. A
strategy for a player in a game such as the above ones is a map taking
any sequence of moves by the opponent to a move by the given player.
Such a strategy is winning if it enables the player to win no matter
what the opponent does.

Theorem 5.15 (Hirschfeldt and Jockusch [48]). If P 6ω Q then Player
2 has a winning strategy for G(Q → P ). Otherwise, Player 1 has a
winning strategy for G(Q → P ).
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Effectivizing winning strategies yields a notion of generalized uni-
form reducibility between Π1

2 principles. (See [48] for a more detailed
definition.)

Definition 5.16. A computable strategy for Player 2 in a reduction
game is a Turing functional that, given the join of Player 1’s first n
moves as an oracle, outputs Player 2’s nth move.

Say that P is uniformly (or Weihrauch) reducible to Q in the gener-
alized sense, and write P 6gu Q, if Player 2 has a computable winning
strategy in G(Q → P ).

Assuming that, as expected, the answer to Question 5.6 is negative,
the following might be an easier version of that question.

I Open Question 5.17 (Hirschfeldt and Jockusch [48]). Is RT2
2 6gu

SRT2
2?

It is also worth noting that it does not seem trivial to adapt the
proof of Theorem 5.5 above given in [9] to the case of arbitrarily many
colors. For one thing, Cholak, Jockusch, and Slaman [8] showed that
SRT2

<∞ implies BΣ0
3, and hence IΣ0

2, over RCA0, so SRT2
<∞ does not

hold in the model built in that proof. Thus the following question is
still open.

I Open Question 5.18 (Cholak, Jockusch, and Slaman [8]). Does
SRT2

<∞ imply RT2
<∞ over RCA0?

A liability of writing an open questions paper is that some of the
questions might be solved while the paper is in preparation. Indeed,
while I was in the final stages of revising this paper for submission,
a problem I had planned to discuss was solved by Monin and Patey
[91]. I will still include this discussion here, however, as an example of
ongoing work in the area, and as an opportunity to mention a couple
of open questions in [91].

One of the things that looking at notions of computability-theoretic
reduction does is highlight cases in which relationships between prin-
ciples are less well-understood than might have been thought. Recall
that Weak Weak König’s Lemma (WWKL) is the statement that if T

is a binary tree such that lim infn
|{σ∈T :|σ|=n}|

2n > 0, then T has a path.
The system WWKL0 obtained by adding this statement to RCA0 has
played a significant role in reverse mathematics, and there is a case
for according it similar status to the area’s “big five” systems (making
it the John Havlicek of reverse mathematics, perhaps). This system
is very closely connected with algorithmic randomness, since the “fat
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trees” in the statement of WWKL correspond to Π0
1 classes of posi-

tive measure, and as shown by Kučera [69], a Π0
1 class C has positive

measure if and only if every 1-random set has a tail in C.
Liu’s proof in [76] that WWKL 
ω RT2

2 could be seen as closing the
story on the relationship between WWKL0 and RTn

k , since for n > 3
and k > 2, RTn

k is equivalent to ACA0 over RCA0, and hence consid-
erably stronger than WWKL0. Indeed, as shown by Jockusch [59], in
this case, there is a k-coloring of [N]n all of whose infinite homogeneous
sets compute ∅′, and relativizing this result shows that WWKL 6c RTn

k .
Jockusch’s argument actually shows that WWKL 6W RTn

k .
But what about strong reductions? Relativizing Jockusch’s theo-

rem shows that if n > 3 and k > 2 then for any X, there is an X-
computable instance of RTn

k such that X ′ 6T H ⊕X for any solution
H. However, the conclusion of this statement cannot in general be im-
proved to X ′ 6T H. Indeed, Hirschfeldt and Jockusch [48] showed that
if X is not hyperarithmetic, then there is no instance of RT (of any
complexity) such that every solution computes X. In particular, RT
does not allow self-encoding, where a problem P allows self-encoding
if for every X there is an X-computable instance Z of P all of whose
solutions compute X. (This notion is similar to that of cylinder in the
theory of Weihrauch reducibility, but that notion requires the solutions
of Z to compute X uniformly.) An example of a principle that does
allow self-encoding, and indeed is a cylinder, is WKL. (Given X, con-
sider an X-computable binary tree whose only path is X.) As noted
in [48], it follows that WKL 
sc RT.

WWKL, on the other hand, does not allow self-encoding. Relativiz-
ing the result of Kučera mentioned above shows that every set that is
1-random relative to a given set X computes a solution to every X-
computable instance of WWKL, and it is well-known that for most X,
no set that is 1-random relative to X can compute X. (The precise
statement, proved by Hirschfeldt, Nies, and Stephan [54], is that this is
the case unless X belongs to the countable class of K-trivial sets. Rod
and researchers influenced by him have played a major role in develop-
ing the theory of these sets, which are now one of the central objects
of study in algorithmic randomness.) Thus the version of Hirschfeldt
and Jockusch [48] current at the time of writing includes the following
questions (which can also be asked for sW-reducibility): Let n > 3 and
k > 2. Is WWKL 6sc RTn

k? Is WWKL 6sc RT?
Another way to look at these questions is as being about the rela-

tive distribution of homogeneous and 1-random sets. For instance, the
question of whether WWKL 6sc RT can be restated as follows: Is it
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the case that, for every X, there is an X-computable instance of Ram-
sey’s Theorem each of whose infinite homogeneous sets computes a set
that is 1-random relative to X?

As noted above, all of these questions have now been answered by
the following recent result.

Theorem 5.19 (Monin and Patey [91]). WWKL 
sc RT.

A set A is computably encodable if every infinite set has an infinite
subset that computes A. The proof of Theorem 5.19 uses a notion
called Π0

1 encodability, which is introduced in [91] as an extension of
computable encodability. The definition in [91] is for subsets of ωω,
but it is a bit simpler, and sufficient for the proof of Theorem 5.19, to
consider subsets of 2ω.

Definition 5.20. A class C ⊆ 2ω is Π0
1 encodable if every infinite set

has an infinite subset X such that C has a nonempty Π0,X
1 subclass.

The key to proving Theorem 5.19 is the following result.

Theorem 5.21 (Monin and Patey [91]). A class C ⊆ 2ω is Π0
1 encodable

if and only if it has a nonempty Σ1
1 subclass.

As explained in [91], this theorem implies Solovay’s result in [107]
that a set is computably encodable if and only if it is hyperarithmetic.

Theorem 5.19 follows from Theorem 5.21 by letting T be an instance
of WWKL such that the class [T ] of paths on T has no nonempty
Σ1

1 subsets. As noted in [91], an example of such a T is an infinite
tree whose paths are all 1-random relative to Kleene’s O, since every
nonempty Σ1

1 class has an element computable from O. Now let c be
an instance of RT such that any solution computes a path on T . Since
every infinite set has an infinite subset that is homogeneous for c, it
follows that [T ] is encodable, contradicting Theorem 5.21.

This argument actually proves something stronger, because there is
no need for c to be computable from T . Monin and Patey [91] made
the following definition.

Definition 5.22. A problem P is strongly omnisciently computably
reducible to a problem Q, written as P 6soc Q, if for every instance X

of P , there is an instance X̂ of Q such that, for every solution Ŷ to X̂,

there is a Ŷ -computable solution to X.

As noted in [91], several proofs that show that P 
sc Q in fact
show that P 
soc Q. As discussed above, this is in particular true of
Theorem 5.19.

Theorem 5.23 (Monin and Patey [91]). WWKL 
soc RT.



SOME QUESTIONS IN COMPUTABLE MATHEMATICS 23

Monin and Patey [91] asked the following questions about soc-reduc-
ibility.

I Open Question 5.24 (Monin and Patey [91]). Let n, k > 2. Is
RTn

k+1 6soc RTn
k? Is RTn+1

k 6soc RTn
k?

Before moving away from reverse mathematics, I will mention one
more question, which was posed by Damir Dzhafarov and Noah Schwe-
ber (see [102]), and came from work they did in reverse mathematics.

Definition 5.25. Let f be a computable binary function such that
f(n, s + 1) 6 f(n, s) for all n and s, and let F (n) = lims f(n, s). A
limit-nondecreasing subsequence for f is a set X such that if i, j ∈ X
and i < j then F (i) 6 F (j). (Such an X is called f -good in [102].)

It is easy to see that every f of this kind has an ∅′-computable limit-
nondecreasing subsequence. Dzhafarov and Schweber (see [102]) asked
whether this upper bound is tight. That is, they asked whether there
is an f as above such that every limit-nondecreasing subsequence com-
putes ∅′, and failing that, whether it is the case that a set that computes
a limit-nondecreasing subsequence for every such f must compute ∅′.
Patey (see [102]) has given negative answers to both of these questions,
and provided further computability-theoretic information on the com-
plexity of limit-nondecreasing subsequences. There may be more to say
on this front, however.

I Open Question 5.26 (Dzhafarov and Schweber (see [102])). How
complicated must a limit-nondecreasing subsequence for a function f as
above be in general?

Kolmogorov complexity functions, such as plain or prefix-free com-
plexity, are natural examples of functions with nonincreasing approxi-
mations. Suppose for example that f(n) = Cs(n), where Cs(n) is the
stage s approximation to the plain Kolmogorov complexity C(n) of n,
and let X be a limit-nondecreasing subsequence for f . Since there can-
not be 2k many numbers n with C(n) < k, the 2kth element n of X must
have C(n) > k. Thus there is an X-computable function g such that
C(g(k)) > k for all k. By results of Kjos-Hanssen, Merkle, and Stephan
[66], X has DNC degree. (That is, there is an X-computable function
h that is diagonally noncomputable, which means that h(e) 6= Φe(e)
for all e, where Φe is the eth partial computable function.) Thus, as
pointed out in [102], the answer to the first part of Question 5.26 is at
least at the level of the DNC degrees.

Kolmogorov complexity functions are rather special, though. If A has
DNC degree then, again by results in [66], A computes an increasing
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function g such that C(g(k)) > k for all k. Let c be such that C(n) 6
n + c for all n. Then one can A-computably find n0 < n1 < · · · such
that C(g(ni+1)) > g(ni)+c for all i. The set X = {g(ni) : i ∈ ω} is then
an A-computable limit-nondecreasing subsequence for the function f
in the previous paragraph. Thus in this case there is a full answer to
the first part of Question 5.26, but the general case might well require
more powerful oracles.

Question 5.26 can also be restated in reverse-mathematical terms.
Let LNS be the following statement: If f is a binary function such that
f(n, s+1) 6 f(n, s) for all n and s then there is an infinite set X such
that if i, j ∈ X and i < j then ∃t∀s > t (f(i, s) 6 f(j, s)).

I Open Question 5.27. What is the reverse mathematical strength
of LNS?

Patey (see [102]) showed that LNS does not imply the principle ADS
(which was studied in [55] and is strictly weaker than RT2

2) over RCA0.

6. Measures of relative randomness. Much of my time in Welling-
ton was spent thinking about algorithmic randomness. Richard Coles
brought a question of Cris Calude’s down from Auckland, which Rod,
André Nies, and I eventually solved [21]. In the process of working on
this question, Rod and I started to get increasingly interested in the
general area. This interest led to several papers, a survey article with
André Nies and Bas Terwijn [22], and a slim volume called Algorithmic
Randomness and Complexity [17].

The Sydney Opera House was completed ten years late and almost
fifteen times over budget. By those standards, Rod and I did not do too
badly. Our book took about seven years longer to write and ended up
being three or four times as long as we had initially projected. Some
of this delay was caused by the rapidly moving target that the area
became as more and more researchers—many of them brilliant young
ones, and many of them mentored or influenced by Rod—began to
solve its problems and unearth new ones at an alarming rate. In this
section and the next, I would like to mention two old problems (by the
standards of this area) that have endured despite these efforts.

The Kučera-Gács Theorem [37, 69] states that every set is Turing
reducible, and indeed wtt-reducible, to some 1-random set. Merkle
and Mihailović [80] showed that the use of this reduction can always
be taken to be of order n + o(n). One of the few original results in the
Downey-Hirschfeldt book [17] is that this bound cannot be improved to
n+O(1). Say that A is cl-reducible to B if there is a Turing functional
Γ such that ΓB = A and γB(n) 6 n+O(1), where γ is the use function
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of Γ. (The original name for this notion in Downey, Hirschfeldt, and
LaForte [18] was “strong weak truth table (sw-) reducibility”. For some
reason, this adjectival salad was not popular. Lewis and Barmpalias
[73, 74] renamed it “computable Lipschitz (cl-) reducibility”, reflecting
the fact this reducibility is an effective version of the notion of Lipschitz
transformation.)

Theorem 6.1 (Downey and Hirschfeldt [17]). There is a set that is
not cl-reducible to any 1-random set.

Given the relationship between initial-segment complexity and ran-
domness, if A 6cl B then there is reason to say that A is no more ran-
dom than B. (In particular, in this case K(A � n) 6 K(B � n) + O(1),
where K is prefix-free Kolmogorov complexity.) This is no longer the
case if the bound on the use is even slightly relaxed. For instance,
for any unbounded, nondecreasing computable function f and any 1-
random set A, it is easy to find a non-1-random set B such that A is
Turing reducible to B via a reduction with use bounded by n + f(n).
Other measures of relative randomness include the following.

Definition 6.2. Say that A is K-reducible to B if K(A � n) 6 K(B �
n)+O(1), and that A is C-reducible to B if C(A � n) 6 C(B � n)+O(1)
(where, as above, C is plain Kolmogorov complexity).

Say that A is rK-reducible to B if K(A � n | B � n) 6 O(1). It is
easy to see that this definition does not change if K is replaced by C.

The development of the theory of algorithmic randomness seems
to have made these notions less significant than they once may have
seemed, but the following questions, motivated by Theorem 6.1, still
seem worth answering.

I Open Question 6.3 (Downey, Hirschfeldt, Nies, and Terwijn [22];
Miller and Nies [86]). Is every set K-reducible to some 1-random set? Is
every set C-reducible to some 1-random set? Is every set rK-reducible
to some 1-random set?

Although these questions have not been central to the study of algo-
rithmic randomness, I do believe they (and particularly the first one)
are of intrinsic interest, given that the interplay between levels of ran-
domness and initial-segment complexity has been a major theme in
the area. Furthermore, the fact that they have remained open for so
long, in the face of our greatly improved understanding of the notions
involved, suggests that they may depend on aspects of the notions of 1-
randomness and Kolmogorov complexity that remain underdeveloped.
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7. Nonmonotonic randomness. An even older question in algorith-
mic randomness is that of establishing the relationship between non-
monotonic randomness and 1-randomness. This question seems quite
fundamental, since the nonmonotonic betting strategies used to define
nonmonotonic randomness are natural generalizations of the usual bet-
ting strategies that can be used to define notions such as 1-randomness,
computable randomness, and Schnorr randomness. Furthermore, it is
the only remaining one I know of in determining implications between
major notions of algorithmic randomness.

Nonmonotonic randomness (also know as Kolmogorov-Loveland ran-
domness) was introduced by Muchnik, Semenov, and Uspensky [93].
The version of the definition below is essentially the one given by
Merkle, Miller, Nies, Reimann, and Stephan [81].

In algorithmic randomness, a martingale is a function d : 2<ω → R>0

such that d(σ) = d(σ0)+d(σ1)
2

, representing a strategy for betting on the
successive bits of a binary sequence. The initial capital available is
d(λ), where λ is the empty string. If σ represents the bits seen so far,

then the strategy is to bet d(σ0)
2d(σ)

of the current capital on the next bit

being 0, and d(σ1)
2d(σ)

of this capital on the next bit being 1. If that strategy

is followed, then for any τ , the capital available after seeing the bits of
τ is d(τ). A martingale d succeeds on a set A if lim supn d(A � n) = ∞.

A martingale is computable if its values are uniformly computable,
and c.e. if its values are uniformly left-c.e. One of the several ways to
define 1-randomness is to say that a set is 1-random if no c.e. martingale
succeeds on it. Say that a set is computably random if no computable
martingale succeeds on it. Schnorr [99] showed that the latter notion,
which he introduced in [99, 100], is strictly weaker than 1-randomness.

Schnorr [99, 100] also introduced the notion of Schnorr randomness,
which he believed more adequately captures the informal idea of “com-
putable randomness” than the notion now known as computable ran-
domness. (He saw 1-randomness itself as a notion of computably enu-
merable randomness.) An order is an unbounded, nondecreasing func-

tion from N to N. A set X is Schnorr random if lim supn
d(X�n)
h(n)

< ∞ for

every computable martingale d and every computable order h. Wang
[113, 114] showed that Schnorr randomness is strictly weaker than com-
putable randomness.

It is natural to ask what happens if one is allowed to bet on the bits
of a sequence out of order, which leads to the idea of a nonmonotonic
betting strategy. Such a strategy has two components, a scan rule and a
stake function. These determine the next bit to bet on, and how much
to bet on each possible value of that bit, respectively, based on the
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values observed at the previously selected bits. Of course, a strategy
cannot be allowed to bet twice on the same bit. (In the definition
in [81], the scan rules and stake functions making up nonmonotonic
betting strategies are partial functions, but Merkle [79] showed that,
for the purpose of defining nonmonotonic randomness, it is enough to
consider total nonmonotonic betting strategies.)

Definition 7.1. A finite assignment is a sequence (r1, a1), . . . , (rn, an)
with ri ∈ N and ai ∈ {0, 1}, such that the ri are pairwise distinct. The
domain of this assignment is {r1, . . . , rn}.

A scan rule is a function s from the set of finite assignments to N
such that s(x) is not in the domain of x for each finite assignment x.

A stake function is a function from the collection of finite assignments
to [−1, 1].

A nonmonotonic betting strategy is a pair consisting of a scan rule
and a stake function.

The idea behind this definition of a stake function q is that, letting
the current capital be d, a negative value of q(x) represents a bet of
−q(x)d that the value of the next bit bet on is 0, while a positive value
of q(x) represents a bet of q(x)d that the value of the next bit bet on
is 1 (and hence q(x) = 0 represents an even bet, which is the same as
not betting at all).

The nonmonotonic martingale dX
b associated with playing a non-

monotonic strategy b on a sequence X (with starting capital 1), and
the resulting notion of nonmonotonic randomness, can now be defined
as follows.

Definition 7.2. Let b = (s, q) be a nonmonotonic betting strategy.
For a set X, let pX(0) = λ and

pX(n + 1) = pX(n)a(s(pX(n)), X(s(pX(n)))).

Then pX(n) is the finite assignment corresponding to scanning X in
accordance with s. Let cX(0) = 1 and

cX(n + 1) =

{
1− q(pX(n)) if X(s(pX(n))) = 0

1 + q(pX(n)) if X(s(pX(n))) = 1.

Let

dX
b (n) =

n∏
i=0

cX(i).

The strategy b succeeds on X if lim supn dX
b (n) = ∞.

Say that X is nonmonotonically random if no computable nonmono-
tonic betting strategy succeeds on it.
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Muchnik, Semenov, and Uspensky [93] showed that 1-randomness
implies nonmonotonic randomness, which in turn clearly implies com-
putable randomness. (Their proof also shows that the notion of ran-
domness obtained by considering c.e. nonmonotonic betting strategies
in place of computable ones is equivalent to 1-randomness.) As ex-
plained for instance in [17, Section 7.5], results of Muchnik (see [93])
on Kolmogorov complexity show that the latter implication is strict.
The following fundamental question remains open, however.

I Open Question 7.3 (Muchnik, Semenov, and Uspensky [93]). Is
there a set that is nonmonotonically random but not 1-random?

Merkle, Miller, Nies, Reimann, and Stephan [81] obtained several
interesting results related to this question. In particular, they showed
that if A⊕B is nonmonotonically random, then at least one of A or B
is 1-random. On the one hand, this result suggests that nonmonotonic
randomness and 1-randomness are quite close (as does Muchnik’s anal-
ysis of the initial-segment Kolmogorov complexity of nonmonotonically
random sets in [93]). On the other hand, it is well-known that if A⊕B is
random (in some sense), then one should expect the level of randomness
of A and B individually to be higher than that of A⊕B. (For instance,
using results of Figueira, Hirschfeldt, Miller, Ng, and Nies [34], Bien-
venu, Greenberg. Kučera, Nies, and Turetsky [3] showed that if A⊕B
is 1-random then at least one of A or B has the stronger property of be-
ing balanced random.) Kastermans and Lempp [64] separated certain
weaker versions of nonmonotonic randomness from 1-randomness.

As far as I know, the following question has not been considered
so far. Say that a set X is Schnorr nonmonotonically random if

lim supn
dX

b (n)

h(n)
< ∞ for every computable nonmonotonic betting strat-

egy b and every computable order h.

I Open Question 7.4. What is the strength of Schnorr nonmono-
tonic randomness in relation to other notions of algorithmic random-
ness?

8. Asymptotic computability. After finishing the book with Rod,
I was slightly burned out on randomness. I was brought back into
thinking about it by a question about coarse computability asked by
Paul Schupp, which led to a paper with him, Carl Jockusch, and Rut-
ger Kuyper [50]. Coarse computability and other notions of asymp-
totic computability capture the idea of computing a set “almost ev-
erywhere”. The contemporary computability-theoretic study of these
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notions began with a paper of Jockusch and Schupp [60], which stud-
ied the notion of generic computability introduced by Kapovich, Myas-
nikov, Schupp, and Shpilrain [63]. As with so many of the most in-
teresting lines of research in computability theory, Rod got into the
game early, in papers with Jockusch and Schupp [26] and Jockusch,
McNicholl, and Schupp [24].

As it turns out, the idea of asymptotic computability had already
occurred to Meyer [82] in the early 70’s, leading him to ask a question
that was answered by Lynch [77]. Much later, Terwijn [111] returned
to this idea, becoming to my knowledge the first person to define coarse
computability. (Meyer and Lynch were working with a different notion
of asymptotic computability, defined below.)

The definitions of generic and coarse computability begin with the
relevant notion of “almost everywhere”.

Definition 8.1. For S ⊆ ω and n ∈ ω, let ρn(S) = |S�n|
n

.
The upper (asymptotic) density ρ(S) of S is lim supn ρn(S).
The lower (asymptotic) density ρ(S) of S is lim infn ρn(S).
If ρ(S) = ρ(S) then this number is called the (asymptotic) density

of S.

Definition 8.2. A partial description of a set A is a partial function f
such that f(n) = A(n) whenever f(n) is defined. A generic description
of A is a partial description of A with domain of density 1. A set is
generically computable if it has a computable generic description.

A coarse description of a set A is a set C such that C(n) = A(n) on
a set of density 1. A set is coarsely computable if it has a computable
coarse description.

Jockusch and Schupp [61] showed that there are sets that are gener-
ically computable but not coarsely computable, and vice-versa.

These notions of asymptotic computability lead naturally to notions
of asymptotic reducibility, from which degree structures are defined as
usual. As with mass problems, there are both uniform and nonuniform
versions.

Definition 8.3. Say that B is nonuniformly coarsely reducible to A if
every coarse description of A computes a coarse description of B.

Say that B is uniformly coarsely reducible to A if there is a Turing
functional Φ such that if C is a coarse description of A, then ΦC is a
coarse description of B.

Say that B is nonuniformly generically reducible to A if for every
generic description f of A, there is an enumeration operator W such
that W graph(f) enumerates the graph of a generic description of B.
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Say that B is uniformly generically reducible to A if there is an
enumeration operator W such that if f is a generic description of A,
then W graph(f) is the graph of a generic description of B.

One of the basic questions one can ask about the degree structures
arising from these reducibilities is whether minimal pairs exist. Recall
that for a given degree structure with a minimum degree 0, nonzero
degrees a and b form a minimal pair if 0 is the only degree that is
below both a and b. Hirschfeldt, Jockusch, Kuyper, and Schupp [50]
showed that there are minimal pairs for (uniform or nonuniform) coarse
reducibility, and indeed proved the stronger result that there are sets
A and B that form a minimal pair for relative coarse computability;
that is, A and B are not coarsely computable, but if C is coarsely
computable relative both to A and to B, then C is coarsely computable.
In fact, any A and B that are sufficiently mutually random form a
minimal pair for relative coarse computability. (See [50] for details.)

The situation for generic reducibility is more complicated. The fol-
lowing question was originally asked for uniform generic reducibility,
but it is open for the nonuniform version as well.

I Open Question 8.4 (Jockusch and Schupp [61]; Igusa [57]). Is
there a minimal pair in the (uniform or nonuniform) generic degrees?

One might expect that, as in the case of the coarse degrees, this
question has a positive answer, which might perhaps be found by con-
sidering mutually random sets. However, if this is the case, then the
proof will have to be significantly different from the one for the coarse
degrees, because Igusa [57] showed that there are no minimal pairs for
relative generic computability; that is, if A and B are not generically
computable, then there is a C that is not generically computable but
is generically computable relative both to A and to B. (A weaker form
of this result, with the additional hypothesis that A and B are ∆0

2, was
proved by Downey, Jockusch, and Schupp [26].)

One approach to Question 8.4, suggested by Igusa [58], is to focus
on the following question.

I Open Question 8.5 (Igusa [58]). If A is not generically computable,
must there be a B that is uniformly generically reducible to A such that
B is not generically computable but has density 1?

Igusa [58] showed that answering this question in either direction
would have consequences for the uniform dense degrees: a positive an-
swer would imply that there are no minimal degrees (which is also an
open question), while a negative answer would imply that there are
minimal pairs. (For the nonuniform dense degrees, a positive answer
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to the analog of Question 8.5 would imply that there are no minimal
degrees, by the same argument as in the uniform case, but for minimal
pairs the situation is less clear, as the argument in [58] that a nega-
tive answer to Question 8.5 implies the nonexistence of minimal pairs
appears to make essential use of uniformity.)

Cholak and Igusa [7] noted that Question 8.5 can be recast in terms
of the relationship between generic and coarse degrees, because, as they
showed, a (uniform or nonuniform) generic degree contains a coarsely
computable set if and only if it contains a set of density 1.

At the time of writing, I am working with Eric Astor and Carl
Jockusch on a paper [2] that reintroduces Meyer’s notion of asymp-
totic computability, which we call effective dense computability, and
introduces another such notion, called dense computability.

Definition 8.6. A set A is densely computable if there is a partial
computable function f such that f(n)↓ = A(n) on a set of density 1.

A set A is effectively densely computable if there is a (total) com-
putable function f : ω → {0, 1, �} such that {n : f(n) = �} has
density 0, and f(n) = A(n) for all n outside this set.

It is easy to see that effective dense computability implies both
generic and coarse computability, and that both generic and coarse
computability imply dense computability. As mentioned above, generic
and coarse computability are incomparable notions, so all of these im-
plications are strict.

As with generic computability and coarse computability, one can de-
fine notions of reducibility associated with dense computability and ef-
fective dense computability, and corresponding degree structures. Eric,
Carl, and I have shown that there are minimal pairs in the (uniform
or nonuniform) dense degrees, but we do not know whether this is the
case for the effective dense degrees. Settling this question seems likely
to require methods similar to those needed to answer Question 8.4.

I will finish with one more question in this area. Definitions of the
classes of sets and degrees mentioned below can be found e.g. in [17].

To each notion of asymptotic computability, one can attach an as-
ymptotic computability bound. The following two notions were intro-
duced by Downey, Jockusch, and Schupp [26] and Hirschfeldt, Jockusch,
McNicholl, and Schupp [51], respectively.

Definition 8.7. Say that A is partially computable at density r if there
is a partial description f of A such that ρ(dom f) > r. The partial
computability bound of A is

α(A) = sup{r : A is partially computable at density r}.
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Say that A is coarsely computable at density r if there is a computable
set C such that ρ({n : C(n) = A(n)}) > r. The coarse computability
bound of A is

γ(A) = sup{r : A is coarsely computable at density r}.

Astor, Hirschfeldt, and Jockusch [2] have shown that the analogous
notions for dense and effective dense computability are equivalent to
the ones for coarse and generic computability, respectively.

As shown in [51], every hyperimmune degree contains a set A such
that γ(A) = 0. Andrews, Cai, Diamondstone, Jockusch, and Lempp
[1] showed that the same is true of every PA degree. However, they
also showed that there are degrees that do not contain any such sets.
Two examples of such degrees given in that paper are the degrees of
computably traceable sets, and the degrees of sets computable from a
1-random set of hyperimmune-free degree. In both cases, every set A
in such degrees has γ(A) > 1

2
.

Definition 8.8. For a degree a, let

Γ(a) = inf{γ(A) : A is a-computable}.

Hirschfeldt, Jockusch, McNicholl, and Schupp [51] showed that every
nonzero degree contains a set A with γ(A) = 1

2
, so Γ(a) 6 1

2
for all

a 6= 0, and the results mentioned above produce examples of degrees
a with Γ(a) = 0 and Γ(a) = 1

2
. Of course, Γ(0) = 1. It would be

remarkable if these are the only possible values of Γ(a).

I Open Question 8.9 (Andrews, Cai, Diamondstone, Jockusch, and
Lempp [1]). Is it the case that Γ(a) is always 0, 1

2
, or 1? If not, then

what are the possible values of Γ(a)?

Andrews, Cai, Diamondstone, Jockusch, and Lempp [1] showed that
if A is truth-table reducible to a 1-random set then γ(A) > 1

2
(from

which their result on 1-random sets of hyperimmune-free degree men-
tioned above follows immediately). Furthermore, the proof in [51] that
every Turing degree contains a set A with γ(A) = 1

2
works for tt-degrees

as well. Thus I believe it is also interesting to consider the values of

Γtt(a) = inf{γ(A) : A is tt-computable relative to a}

for tt-degrees a.

I Open Question 8.10. Is it the case that Γtt(a) is always 0, 1
2
, or

1? If not, then what are the possible values of Γtt(a)?
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rem, Annals of Pure and Applied Logic 139 (2006) 1–42.
[93] An. A. Muchnik, A. L. Semenov, and V. A. Uspensky, Mathematical meta-

physics of randomness, Theoretical Computer Science 207 (1998) 263–317.
[94] L. Patey, The weakness of being cohesive, thin or free in reverse mathematics,

to appear in the Israel Journal of Mathematics.
[95] L. Patey, Open questions about Ramsey-type statements in reverse mathe-

matics, to appear in the Bulletin of Symbolic Logic.



38 DENIS R. HIRSCHFELDT

[96] J. B. Remmel, Recursively categorical linear orderings, Proceedings of the
American Mathematical Society 83 (1981) 387–391.

[97] L. J. Richter, Degrees of structures, Journal of Symbolic Logic 46 (1981)
723–731.

[98] J. G. Rosenstein, Linear Orderings, Pure and Applied Mathematics 98, Aca-
demic Press, Inc., New York–London, 1982.

[99] C.-P. Schnorr, A unified approach to the definition of a random sequence,
Mathematical Systems Theory 5 (1971) 246–258.

[100] C.-P. Schnorr, Zufälligkeit und Wahrscheinlichkeit, Lecture Notes in Mathe-
matics 218, Springer-Verlag, Berlin–New York, 1971.

[101] N. Schweber, Do all linear orders in this class have computable copies?,
mathoverflow.net/questions/161434 (2014).

[102] N. Schweber, Finding limit-nondecreasing sets for certain functions,
mathoverflow.net/questions/227766 (2016).

[103] D. Seetapun and T. A. Slaman, On the strength of Ramsey’s Theorem, Notre
Dame Journal of Formal Logic 36 (1995) 570–582.

[104] S. G. Simpson, Subsystems of Second Order Arithmetic, First edition, Per-
spectives in Mathematical Logic, Springer-Verlag, Berlin, 1999.

[105] S. G. Simpson, Subsystems of Second Order Arithmetic, Second edition, Per-
spectives in Logic, Cambridge University Press, Cambridge and Association
for Symbolic Logic, Poughkeepsie, NY, 2009.

[106] T. A. Slaman, Relative to any nonrecursive set, Proceedings of the American
Mathematical Society 126 (1998) 2117–2122.

[107] R. M. Solovay, Hyperarithmetically encodable sets, Transactions of the Amer-
ican Mathematical Society 239 (1978) 99–122.

[108] I. N. Soskov, Degree spectra and co-spectra of structures, Annuaire de
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