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Abstract. We construct a class of relations on computable structures whose degree spectra

form natural classes of degrees. Given any computable ordinal α and reducibility r stronger

than or equal to m-reducibility, we show how to construct a structure with an intrinsically Σα

invariant relation whose degree spectrum consists of all nontrivial Σα r-degrees. We extend

this construction to show that Σα can be replaced by either Πα or ∆α.

1. Introduction

Since the pioneering work of Ash and Nerode [10], the study of additional relations on com-

putable structures has been one of the central topics in computable model theory. Not only is it

often possible to understand the differences between the various computable copies of a struc-

ture M by examining the images in these copies of a particular relation on the domain of M,

but concepts and techniques developed for this purpose have also been instrumental in resolving

several other types of questions about computable structures. (For more on this theme, see for

instance [15], [18], or [21].) Before we proceed, let us recall the basic definitions we will need

below.

1.1. Definition. A structure A is computable if both its domain |A| and the atomic diagram of

〈A, a〉a∈|A| are computable. An isomorphism from a structure M to a computable structure is

called a computable presentation of M. (We often abuse terminology and refer to the image of

a computable presentation as a computable presentation.)

If M has a computable presentation, then it is computably presentable.

Ash and Nerode were concerned with relations that maintain some degree of effectiveness in

different computable presentations of a structure.

1.2. Definition. Let U be a relation on the domain of a computable structure M and let C be

a class of relations. U is intrinsically C on M if the image of U in any computable presentation

of M is in C.

Another approach to the study of relations on computable structures, which began with the

work of Harizanov [12], is to fix a reducibility (most often Turing reducibility) and look at

the collection of degrees of the images of a relation in different computable presentations of a

structure.
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1.3. Definition. Let r be a reducibility, such as many-one reducibility (m-reducibility) or Turing

reducibility. Let U be a relation on the domain of a computable structure M. The r-degree

spectrum of U on M, DgSpr
M(U), is the set of r-degrees of the images of U in all computable

presentations of M.

For simplicity in the statement of results below, we will call an r-degree nontrivial if it contains

an infinite and coinfinite set. Note that if r and s are reducibilities such that r is stronger than s,

and U is a relation on a computable structure M, then DgSps
M(U) is equal to the set of s-degrees

that contain at least one r-degree in DgSpr
M(U).

There has been a large amount of research on degree spectra of relations, both in the gen-

eral case and with certain restrictions imposed on the structure or the relation. Much of this

work has been devoted to exploring syntactic conditions on a relation that guarantee that its

degree spectrum has certain properties. Another rich vein has been the study of “pathological”

examples, such as degree spectra that are finite but not singletons, with work focused both on

constructing such examples and on giving conditions that imply that they cannot occur.

Less work has been devoted to giving examples of relations whose degree spectra form natural

classes of degrees. Despite the fact that there are no known nontrivial restrictions on which sets

of degrees can be realized as degree spectra of relations, such examples are still important to our

understanding of degree spectra of relations, particularly if they are in some sense natural. The

purpose of this paper is to present a family of relations on computable structures whose degree

spectra (with respect to any reducibility stronger than or equal to m-reducibility) coincide with

levels of the hyperarithmetic hierarchy.

Of course, naturalness is very much in the eye of the beholder, but we believe the examples

in this paper qualify because they are built up from trees that explicitly code the alternations of

quantifiers that define the levels of the hyperarithmetic hierarchy. Furthermore, by the results

of [17], our results automatically imply that such examples also exist within well-known classes

of algebraic structures, such as integral domains and 2-step nilpotent groups.

There are two further reasons for our interest in the family of examples constructed in this

paper. First, the trees that form their basic building blocks are useful in establishing a wide

range of results in the classification of the complexity of index sets of computable structures

with given model-theoretic properties (see [25] for details).

Second, realizing levels of the hyperarithmetic hierarchy as degree spectra of relations gives

an illustration of the difference between the general case, in which we are trying to realize

certain sets of degrees as degree spectra of relations on computable structures with no additional

restrictions, and cases in which we impose extra conditions on one or more aspects of this

realization. This is due to the following result, proved independently by Ash, Cholak, and

Knight [2] and Harizanov [14].

1.4. Theorem (Ash, Cholak, and Knight; Harizanov). Let U be a relation on the domain of

a computable structure A. Suppose that for each ∆3 set C there is an isomorphism f from A

to a computable structure B such that f 6T C 6T f(U). Then for each set C there is an

isomorphism f from A to a computable structure B such that f 6T C 6T f(U). In particular,

DgSpT
A(U) contains every degree.

We should stress that, although our result and the specific trees used to prove it appear

to be new, our approach is hardly novel. Indeed, when analyzing hyperarithmetic structures
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and relations, it is quite natural to consider structures similar to our trees, and to analyze

their complexity in terms of recursively defined infinitary formulae as we do. Examples of this

approach to various questions in computable model theory are the following papers of Ash and

Knight [1, 3, 5, 6, 7, 8, 19]; see also their book [4]. (A general abstract framework for these kinds

of results would be useful; Soskov and Baleva [23, 24] have introduced such a framework, but

from a quite different perspective.)

In [13], Harizanov gave a syntactical condition on a computable structure A and a relation U

on A which, with certain additional effectiveness conditions, is equivalent to U being intrinsically

c.e. with degree spectrum consisting of all c.e. Turing degrees. A reasonable extension of this

condition from Σ1 to Σα would of course imply our result (at least for Turing degrees), but in

[7] it is shown that such an extension is unlikely to exist. Indeed, it appears that the natural

classes of degrees captured by such syntactical conditions are not the Σα degrees but the Σα

degrees possessing an α-table (see [7] for a definition), or the Σα degrees over ∆0
α, as in [8].

In [3], conditions on a pair of computable structures A and B and a computable ordinal α are

given which ensure that for any Σα set S there is a uniformly computable family of structures

C0, C1, . . . such that Cn ∼= A if n ∈ S and Cn ∼= B if n /∈ S. We could use these conditions in

proving Proposition 3.2 below, but the direct proof we give is simpler. Indeed, because we are

just producing an example, rather than giving general conditions as in the papers mentioned

above, our analysis is a particularly simple example of this line of research, so we prefer to

give direct proofs rather than attempt to employ some of the abstract theorems available in the

literature.

In the next section, we define relevant concepts relating to the hyperarithmetic hierarchy

and ordinal notations. In Section 3, we define our basic building blocks, the back-and-forth

trees. Finally, in Section 4, we define our relations and structures and establish their relevant

properties.

2. The Hyperarithmetic Hierarchy and Ordinal Notations

Throughout this paper, we will use the standard notions of the arithmetic and analytic hi-

erarchies for predicates R(f, n) on ωω × ω, as in Sacks [20]. However, our definition of the

hyperarithmetic hierarchy will follow the less standard terminology of Ash and Knight [9], since

this is more in line with several important concepts from model theory.

2.1. Definition. A system of notations for ordinals consists of a set O ⊂ ω and a function | |O
taking each element of O to an ordinal. The function | |O defines a natural partial ordering on

O given by

a 6O b ⇔ |a|O 6 |b|O

Our notations will follow certain standard conventions.

(1) 1 ∈ O is the notation for 0. That is, |1|O = 0.

(2) If a ∈ O is a notation for α, then 2a ∈ O is a notation for α+ 1.

(3) Suppose that the eth partial computable function {e} determines a fundamental sequence

for a limit ordinal γ. In other words, {e} is total, {e}(n) 6O {e}(n+ 1) for all n, and γ

is the least upper bound for the ordinals |{e}(n)|O. Then 3 · 5e ∈ O is a notation for γ.

As there are only countably many notations, not every ordinal will have a notation. However,

these standard conventions ensure that every computable ordinal does have a notation. The
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computable ordinals are an initial sequence of all ordinals bounded above by ωck
1 , the first

noncomputable ordinal.

It is clear from the final convention that ordinal notations need not be unique, since any

limit ordinal may have multiple fundamental sequences. In this paper we will restrict ourselves

to a subset O1 ⊆ O of unique notations so that every limit ordinal has a unique fundamental

sequence. For any limit ordinal γ, we define

γn = |{e}(n)|O
where {e} determines our fixed fundamental sequence for γ. Furthermore, we require that this

fixed fundamental sequence contain only successor ordinals and that γ0 = 1. We do this simply

as a matter of convenience; none of the results in this paper depend on our choice of fundamental

sequences.

Given these notations for ordinals, we define the hyperarithmetic hierarchy in terms of com-

putable infinitary formulae.

2.2. Definition. A Σ0 (Π0) index for a computable predicateR(f, n) is a triple 〈Σ, 0, e〉 (〈Π, 0, e〉)
where e is an index for the predicate R. For any computable ordinal α, a Σα (Πα) index for a

predicate R(f, n) is a triple 〈Σ, a, e〉 (〈Π, a, e〉), where a is a notation for α and e is an index for

a c.e. set of Πβk (Σβk) indices for predicates Qk(f, n, x), such that βk < α for all k ∈ ω and

R(f, n)⇔
∨
k∈ω

∃xQk(f, n, x)
(
R(f, n)⇔

∧
k∈ω

∀xQk(f, n, x)
)

We say that a predicate is Σα (Πα) if it has a Σα (Πα) index. We say that a predicate is ∆α

if it is both Σα and Πα.

It is straightforward to check that this definition of the hyperarithmetic hierarchy is equivalent

to other common definitions, with one important exception. In the case of infinite ordinals, the

levels of our hierarchy may be indexed by the appropriate successor ordinal in other definitions of

the hierarchy. For example, in Soare [22, p. 259], a predicate is Σω+1 if it is Σ∅ω
1 . In our definition

above, these are exactly the Σω predicates. We choose this definition because it gives a more

natural correspondence between computable ordinals and infinitary formulae. Furthermore, this

choice does not omit any interesting levels of complexity in the hyperarithmetic hierarchy.

3. Back-and-Forth Trees

Our starting point is the following very simple but highly suggestive example. Let C0 be

the directed graph consisting of a single node and no edges, and let C1 be the directed graph

consisting of two nodes x and y with an edge from x to y. Consider the directed graph G =

〈|G| , E〉 that is the disjoint union of infinitely many copies of each of C0 and C1. Let U be the

unary relation on the domain of G that holds of x if and only if there is a y such that E(x, y).

Since U is defined by an existential formula in the language of directed graphs, U is intrinsically

c.e. Furthermore, it is not hard to check that DgSpm
G (U) contains all nontrivial c.e. m-degrees.

For any n ∈ ω, it is possible to modify this example in a natural way to realize the set of

all n-c.e. degrees as the degree spectrum of an intrinsically n-c.e. relation on the domain of a

computable structure. In fact, this is true even with n replaced by any computable ordinal α

(for the definition of α-c.e. sets and degrees, see [11]). We will not do this here since a stronger

result appears in [16]. Instead, we generalize the above example in a different direction. We

begin by defining building blocks that generalize the graphs C0 and C1 above.
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3.1. Definition. We define the back-and-forth trees by induction on α.

• A1 consists of a single node.

• E1 consists of a root node, to which are attached infinitely many nodes with no children.

This tree is illustrated in Figure 3.1.

Figure 3.1. The base back-and-forth trees

• For any successor ordinal α+1, Aα+2 consists of a root node, with infinitely many copies

of Eα+1 attached to this root. This tree is illustrated in Figure 3.2.

• For any successor ordinal α+1, Eα+2 consists of a root node, with infinitely many copies

of Aα+1 and infinitely many copies of Eα+1 attached to this root. This tree is also

illustrated in Figure 3.2.

• Let γ be a limit ordinal with fundamental sequence { γk }k∈ω. For any k, Lγk consists

of a root node with exactly one copy of Aγn attached to this root for each n 6 k, and

exactly one copy of Eγn attached to this root for each n > k. This tree is well-defined,

since our fundamental sequences consist only of successor ordinals. It is illustrated in

Figure 3.3.

• For any limit ordinal γ, Lγ∞ consists of a root node with exactly one copy of Aγn attached

to this root for each n ∈ ω. This tree is also illustrated in Figure 3.3.

• For any limit ordinal γ, Aγ+1 consists of a root node with infinitely many copies of Lγn
attached to this root for each n ∈ ω. This tree is illustrated in Figure 3.4.

• For any limit ordinal γ, Eγ+1 consists of a root node with infinitely many copies of Lγn
attached to this root for each n ∈ ω ∪ {∞}. This tree is also illustrated in Figure 3.4.

We say that the back-and-forth trees Lγn for n ∈ ω∪{∞} have rank γ, while the back-and-forth

trees Eα and Aα each have rank α.

Note that all of these trees are computably presentable, by effective transfinite recursion on

the computable ordinals. In the case of infinite ordinals, the isomorphism structure of these

Eα+1 Eα+1 Eα+1 Aα+1 Aα+1 Aα+1

Eα+2

Eα+1Eα+1Eα+1

Aα+2

Figure 3.2. The successor back-and-forth trees
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Figure 3.3. The limit back-and-forth trees

L0 L0 L1 L1 L2L2

A +1

L1

E +1

L∞ L∞ L1L0 L0

Figure 3.4. The transition back-and-forth trees

trees does depend on our choice of fundamental sequences for the limit ordinals. However, the

following basic properties of back-and-forth trees are independent of our choice of fundamental

sequences.

3.2. Proposition. Let P(n) be a Σα predicate.

(1) If α is a successor ordinal, there is sequence of trees Tn, uniformly computable from a

Σα index for P, such that for all n,

Tn ∼=

Eα if P(n)

Aα otherwise

(2) If α is a limit ordinal, there is sequence of trees Tn, uniformly computable from a Σα

index for P, such that for all n,

Tn ∼=

Lα∞ if ¬P(n)

Lαk for some k otherwise

Proof. We proceed by effective transfinite recursion.

Case α = 1: Since we can code disjunction over a c.e. set of indices as an existential quantifier,

it follows from Definition 2.2 that P(n) = ∃xQ(x, n) for some computable predicate Q. We

enumerate a root element into Tn. So long as no witness appears for Q(x, n), we do not add any

children. Once a witness appears, we add infinitely many children to Tn. We can do this while

keeping Tn computable by ensuring that the children are all elements greater than our witness

for Q(x, n).
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Case α = β+1, with β a successor ordinal: Again P(n) = ∃xQ(x, n) for some Πβ predicate

Q(x, n). Since we can go uniformly from a Σα index for P to a Σβ index for Q, we apply our

induction hypothesis.

As β is a successor ordinal, we have a computable sequence of trees Ux,n satisfying 1. For each

n, let Tn be a tree whose root has infinitely many copies of Ux,n for each x ∈ ω, and infinitely

many copies of Eβ . As each Ux,n is either Eβ or Aβ , Tn is either Eα or Aα. Furthermore, Tn is

Eα only when at least one of the Ux,n is Aβ , or equivalently, when ∃xQ(x, n).

Case α is a limit ordinal: By padding, we can assume without loss of generality that

P(n) is a computable disjunction of Qk(n) ∈ Σαk with {αk }k∈ω the fundamental sequence for

α. Furthermore, we can go uniformly from a Σα index for P to Σαk indices for the Qk. By

induction, we have a computable sequence Um,n satisfying 1 for the predicate

C(m,n) =def

∨
k6m

Qk(n)

Let Tn be the tree whose root has exactly one copy of Um,n for each m ∈ ω. Then Tn is Lαn

for some n ∈ ω ∪ {∞}. Moreover, Tn is Lα∞ exactly when P(n) fails. So the trees Tn satisfy 2.

Case α = β + 1, with β a limit ordinal: Again we write P(n) = ∃xQ(x, n) for some Πβ

predicate Q(x, n). By induction, there is a computable sequence of trees Sx,n satisfying 2 for

Q. Let Tn be a tree whose root has infinitely many copies of Lαm for each m ∈ ω, and infinitely

many copies of Sx,n for each x ∈ ω. These trees satisfy 1. �

By appropriately padding the indices of our computable structures, this result allows us several

1-reductions from predicates to our collection of back-and-forth trees. Each back-and-forth tree

has a natural level of complexity such that we can go from predicates of that complexity to the

corresponding back-and-forth tree. The following results show that we can also go in the reverse

direction, from computable presentations of back-and-forth trees to hyperarithmetic predicates.

3.3. Definition. Let T be a tree with edge relation E. A tree S is a limb of T if S ⊆ T and

∀x ∈ S∀y ∈ T (E(x, y)⇒ y ∈ S)

If a ∈ T is the parent of the root of S, we say that S is a limb attached to a in T. For convenience,

we often say that S is a limb attached to a if it is isomorphic to a limb attached to a.

3.4. Lemma. Let T be any tree. For each computable ordinal α, there is an infinitary formula

χα(x) ∈ Lω1,ω such that for any back-and-forth limb S of T with root a ∈ T,

(1) T � χα(a)⇔ rank(S) = α

Furthermore, T � χα(a) is a Πα condition for computable structures T.

Proof. We proceed by transfinite induction on the complexity on α.

Case α = 1: We define the formula

χ1(x) =def ∀y, z
(
E(x, y)⇒ ¬E(y, z)

)
This formula is universal, and so T � χ1(a) is Π1 for computable structures T.

Note that T � χ1(a) if and only if every element of S has depth at most 1. Since S is a

back-and-forth tree, this can only be the case when S is either E1 or A1.
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Case α = β + 1: We define the formula

χα(x) =def ∃y E(x, y) ∧ ∀z
(
E(x, z)⇒ χβ(z)

)
Since β > 1, T � χα(a) is Πα for computable structures T.

Because S is a back-and-forth tree, all of the limbs attached to the root of S are also back-and-

forth trees. As limbs of S are also limbs of T, T � χα(a) if and only if all of the limbs attached to

a have rank β and there is at least one attached limb with rank β. It follows from Definition 3.1

that this is true exactly when S has rank α.

Case α is a limit ordinal: Let {αk }k∈ω be the fundamental sequence for α. We define the

formula

χα(x) =def

∧
n∈ω
∃>ny E(x, y) ∧

∀z
(
E(x, z)⇒

∨
k∈ω

χαk(z)

)
∧

∧
n∈ω
∀u, v

((
E(x, u) ∧ E(x, v) ∧ χαn(u) ∧ χαn(v)

)
⇒ u = v

)
Since α > ω, T � χα(a) is Πα for computable structures T.

Because S is a back-and-forth tree, T � χα(a) if and only S has exactly one limb of rank αk

for each k ∈ ω. It follows from Definition 3.1 that this is true exactly when S has rank α. �

3.5. Lemma. Let T be a tree and let B be any back-and-forth tree. Then there is an infinitary

formula φB(x) ∈ Lω1,ω such that for any back-and-forth limb S of T which has root a ∈ T and is

of the same rank as B,

(2) T �

φB(a) if S ∼= B

¬φB(a) otherwise

Furthermore, for computable T, the complexity of T � φB(a) is the natural complexity of B.

Proof. We proceed by transfinite induction on the complexity of B.

Case B ∼= A1: We define the formula

φA1(x) =def ∀y ¬E(x, y)

This formula is universal, and so T � φA1
(a) is Π1 for computable structures T.

Note that T � φA1
(a) if and only if a has no children in T. Since any child of a in T is also a

child of the root in S, this is the case exactly when S ∼= A1.

Case B ∼= E1: We define the formula

φE1
(x) =def ∃y E(x, y)

This formula is existential, and so T � φE1
(a) is Σ1 for computable structures T.

Since S is a back-and-forth tree of the same rank as B, it is isomorphic to either E1 or A1.

T � φE1
(a) if and only if a has a child in T, and hence in S. This is the case exactly when

S ∼= E1.

Case B ∼= Aα+1, α a successor ordinal: We define the formula

φAα+1
(x) =def ∃y E(x, y) ∧ ∀z

(
E(x, z)⇒ φEα(z)

)
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Since α > 1, T � φAα+1(a) is Πα for computable structures T.

Note that T � φAα+1
(a) if and only if all of the limbs attached to the root of S are isomorphic

to Eα. Since S has rank α+ 1, this is the case exactly when S ∼= Aα+1.

Case B ∼= Eα+1, α a successor ordinal: We define the formula

φEα+1(x) =def ∃y
(
E(x, y) ∧ φAα(y)

)
The argument that φEα+1 works is as before.

Case B ∼= Lγ∞: Let { γk }k∈ω be the fundamental sequence for α. We define the formula

φLγ∞(x) =def ∀z
(
E(x, z)⇒

∨
n∈ω

φAγn (z)

)

Note that φLγ∞(x) ∈ Lω1,ω, since it involves a countable disjunction of formulae. Furthermore,

T � φLγ∞(a) is Πγ for computable structures T.

Since S is a back-and-forth tree of the same rank γ as B, S ∼= L
γ
k for some k ∈ ω ∪ {∞}. By

induction, T � φLγ∞(a) if and only if, for each n ∈ ω, any limb of rank αn is isomorphic to Aγn .

This is the case exactly when S ∼= Lγ∞.

Case B ∼= Lγn, n ∈ ω: We define the formula

φLγn(x) =def ∃y, z
(
E(x, y) ∧ E(x, z) ∧ χγn(y) ∧ φAγn (y) ∧ χγn+1

(z) ∧ φEγn+1
(z)
)

This is a formula of Lω1,ω, and T � φLγn(a) is Σγ for computable structures T.

Again, S ∼= L
γ
k for some k ∈ ω ∪ {∞}. By Lemma 3.4, T � φLγn(a) if and only if S has a limb

of rank γn isomorphic to Aγn and another of rank γn+1 isomorphic to Eγn+1
. By Definition 3.1,

this is true exactly when S ∼= Lγn.

Case B ∼= Aγ+1, γ a limit ordinal: We define the formula

φAγ+1
(x) =def ∀y

(
E(x, y)⇒

∨
k∈ω

φLγk (y)

)

The argument that φAγ+1
works is as before.

Case B ∼= Eγ+1, γ a limit ordinal: We define the formula

φEγ+1
(x) =def ∃y

(
E(x, y) ∧ φLγ∞(y)

)
The argument that φEγ+1 works is as before. �

4. Main Results

We are now ready to use the trees defined in the previous section to obtain new examples of

possible degree spectra of relations. A relation on the domain of a structure is invariant if it is

mapped to itself by every automorphism of the structure.

4.1. Theorem. Let α be a computable ordinal and let s be any reducibility stronger than or

equal to m-reducibility. There exists an intrinsically Σα invariant relation U on a computably

presentable structure M such that DgSps
M(U) consists of all nontrivial Σα s-degrees.
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Proof. Let M be a copy of Eα+1, and let r be the root of M.

Case α is a successor ordinal: Let U be the unary relation consisting of the children of r

that are the roots of Eα limbs. Every limb attached to r is a copy of either Aα or Eα, and hence

all such limbs are of the same rank. By Lemma 3.5,

(3) a ∈ U ⇔M � E(r, a) ∧ φEα(a)

Therefore, U is intrinsically Σα.

The parameter r in (3) is first-order definable by the formula ∀y¬E(y, x). Therefore, U is

definable by a parameter-free formula of Lω1,ω. Thus U is invariant.

Given an infinite and coinfinite Σα relation P(n) in Σα, let Tn be the computable sequence

from part 1 of Proposition 3.2. It is straightforward to define a computable presentation M of

M consisting of a copy of Eα with root node 〈0, n〉 for each n ∈ ω, a copy of Aα with root node

〈1, n〉 for each n ∈ ω, and a copy of Tn with root node 〈2, n〉 for each n ∈ ω. Now x ∈ U if

and only if either x = 〈0, n〉 for some n ∈ ω or x = 〈2, n〉 for some n such that P(n). Thus

UM ≡m P.

Case α is a limit ordinal: Let U be the unary relation consisting of the children of r that

are the roots of copies of Lαk for k ∈ ω. By Lemma 3.5,

a ∈ U ⇔M � E(r, a) ∧
∨
k∈ω

φLαk (a)

This is a computable disjunction of Σα predicates, and so U is intrinsically Σα. Furthermore, U

is invariant since r is first-order definable.

Given an infinite and coinfinite relation P(n) in Σα, let Tn be the computable sequence from

part 2 of Proposition 3.2. It is straightforward to define a computable presentation M of M

consisting of a copy of Lαk with root node 〈0, k, n〉 for each n, k ∈ ω, a copy of Lα∞ with root

node 〈1, n〉 for each n ∈ ω, and a copy of Tn with root node 〈2, n〉 for each n ∈ ω. Now x ∈ U if

and only if either x = 〈0, k, n〉 for some n, k ∈ ω or x = 〈2, n〉 for some n such that P(n). Thus

UM ≡m P. �

By replacing U with its complement, we can replace Σα with Πα in the statement of Theo-

rem 4.1. The next result shows that we can also replace Σα with ∆α.

4.2. Theorem. Let α be a computable ordinal and let s be any reducibility stronger than or

equal to m-reducibility. There exists an intrinsically ∆α invariant relation V on a computably

presentable structure N such that DgSps
N(V ) consists of all nontrivial ∆α s-degrees.

Proof. Let M and U be as in the proof of Theorem 4.1, and let M0 and M1 be copies of M. Let

Si be the set of children of the root of Mi, let Ui be the copy of U in Mi, and let Ûi = Si − Ui.
Note that Ui is intrinsically Σα and Ûi is intrinsically Πα. Let ai0, a

i
1, . . . and bi0, b

i
1, . . . be the

elements of Ui and Ûi, respectively.

In addition to the edge relation, the language of N has two unary relations D0 and D1 and

a binary relation F . To define N, we begin with M0 and M1, add new elements c0, c1, . . . and

d0, d1, . . ., and let

FN(x, y)⇔(x = ck ∧ (y = a0k ∨ y = b1k))∨
(x = dk ∧ (y = b0k ∨ y = a1k))



DEGREE SPECTRA OF RELATIONS ON COMPUTABLE STRUCTURES 11

and

DN
i (x)⇔ x ∈Mi

This completes the definition of N. Let V = { c0, c1, . . . }.
Since V can be defined both as

{x ∈ N | ∃y ∈ U0 (F (x, y)) }

and as {
x ∈ N | ∀y (F (x, y)⇒ y ∈ Û1)

}
V is intrinsically ∆α.

Given an infinite and coinfinite relation P(n) in ∆α, we can use the construction in the proof

of Theorem 4.1 to build computable presentations M0 and M1 of M satisfying the following

conditions.

(1) |M0| ∩ |M1| = ∅.
(2) |M0| ∪ |M1| is coinfinite.

(3) For some computable list y00 , y
0
1 , . . . of the elements of S0, UM0(y0k)⇔ P(k).

(4) For some computable list y10 , y
1
1 , . . . of the elements of S1, UM1(y1k)⇔ ¬P(k).

Now build a computable presentation N of N as follows. Begin with M0 and M1. Let

x0 < x1 < · · · be the elements of ω − (|M0| ∪ |M1|). Let DN
i = |Mi|, and let FN ={

(xk, y
i
k) | i < 1, k ∈ ω

}
.

It is easy to check that N is a computable presentation of N. Furthermore, if x /∈ {x0, x1, . . . }
then ¬V N (x), while V N (xk)⇔ UN0 (y0k)⇔ P(k), and hence V N ≡m P. �
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