1. Use the method of Lagrange multipliers to optimize each function subject to the given constraint.

(a) \(f(x, y) = x^2 + y^2 \) on the curve \(4x^2 + y^2 = 4 \)

Lagrange multiplier equations: \(2x = 8\lambda x, 2y = 2\lambda y \)

Note that if \(x \) and \(y \) are both nonzero, these equations give us \(\lambda = \frac{1}{4} \) and \(\lambda = 1 \), which is a contradiction. The only solutions are the points where either \(x = 0 \) or \(y = 0 \), namely \((1, 0), (-1, 0), (0, 2), \) and \((0, -2)\). The function \(f \) has a maximum value of 4 at \((0, 2)\) and \((0, -2)\) and a minimum value of 1 at \((1, 0)\) and \((-1, 0)\).

(b) \(f(x, y) = x + y \) on the curve \(x^4 + y^4 = 1 \)

Lagrange multiplier equations: \(1 = 4\lambda x^3, 1 = 4\lambda y^3 \)

Solving for \(\lambda \) in the first equation and substituting this into the second equation, we find that \(x = y \). This happens at two places on the constraint curve \(x^4 + y^4 = 1 \), at the points \((2^{-1/4}, 2^{-1/4})\) and \((-2^{-1/4}, -2^{-1/4})\). Evaluating \(f \) at these two points, we see that the function achieves a maximum value of \(2^{3/4} \) at \((2^{-1/4}, 2^{-1/4})\) and a minimum value of \(-2^{3/4} \) at \((-2^{-1/4}, -2^{-1/4})\).

(c) \(f(x, y, z) = 2x + 2y + z \) on the sphere \(x^2 + y^2 + z^2 = 9 \)

Lagrange multiplier equations: \(2 = 2\lambda x, 2 = 2\lambda y, 1 = 2\lambda z \)

Solving for \(\lambda \) in the first equation and substituting into each of the other two equations, we obtain \(x = y \) and \(x = 2z \). The points \((x, y, z)\) satisfying these two conditions and the constraint are \((2, 2, 1)\) and \((-2, -2, -1)\). As always, we check the value of \(f \) at these two points to see that it has a maximum value of 9 at \((2, 2, 1)\) and a minimum value of \(-9\) at \((-2, -2, -1)\).

2. Find the maximum and minimum values of \(f(x, y) = x^2 + y^2 \) in the triangular region bounded by the lines \(y = 3 + x, y = 3 - x, \) and \(y = 1 \).
To optimize this function, we need to consider the critical points of f, endpoints, and critical points when constrained to each of the three lines making up one of the triangle’s sides. The only critical point of f is at $(0,0)$, but this is outside of the region of interest, so we ignore it. The corners of the triangle are at $(0,3)$, $(2,1)$, and $(-2,1)$. Using Lagrange multipliers on each of the three lines, we turn up the additional boundary critical points $(-\frac{3}{2}, \frac{3}{2})$, $\left(\frac{5}{2}, \frac{3}{2}\right)$, and $(0,1)$, one on each line. The overall maximum value of f is 1 at $(0,1)$, and the minimum value is 9 at $(0,3)$.

If you want even more practice, try reworking the optimization problems 2(a), 2(b), and 2(c) from yesterday using Lagrange multipliers to optimize on the boundary.