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1. Kleinian groups

A Kleinian group is a finitely generated and discrete group of
conformal symmetries of the sphere, where

1. “the sphere” means the round unit sphere in Euclidean
3-space; and

2. “conformal” means smooth maps which preserve angles.

The collection of all conformal symmetries of the sphere is a Lie
group; “discrete” means discrete as a subset of this group.



A finite group
of rotations is a
Kleinian group.



The symmetry
group of a
Euclidean
tessellation is a
Kleinian group
by stereographic
projection.



A Kleinian group
preserving a
round circle on
the sphere is a
Fuchsian group.



And there are many other examples.



If we identify the unit sphere with the Riemann sphere

S2 = CP1 := C ∪∞

then (orientation-preserving) conformal symmetries are fractional
linear transformations

z → az + b

cz + d

and the group of all such transformations is PSL(2,C).



2. Differential Equations

Kleinian groups arise in nature as monodromy groups of differential
equations.

Euler introduced the hypergeometric equation

z(1− z)
d2w

dz2
+ [c − (a + b + 1)z ]

dw

dz
− abw = 0

where w is a function of the variable z , and a, b, c are real
constants.

For Euler, w and z were real; but for us they can be complex
numbers.



The space of solutions to the hypergeometric equation is a
complex vector space V of dimension 2.

There are regular singular points at 0, 1 and ∞, and solutions may
be analytically continued around these points.

If f and g are a basis for V , the map

D : z → f (z)/g(z)

is well-defined in the upper half plane

H := {z ∈ C with positive imaginary part}



Schwarz showed that the image D(H) is a curvilinear triangle T in
C whose sides are segments of round circles or straight lines and
whose angles are |1− c |π, |c − a− b|π and |a− b|π.

The corners of T are the images of 0, 1 and ∞.



If we analytically continue D across a segment of R− {0, 1,∞}, it
maps the lower half plane H onto a triangle obtained from T by
inversion in the corresponding circular side (or reflection in a
straight side).

Continuing D around loops, we get a representation

D∗ : π1(CP1 − {0, 1,∞})→ PSL(2,C)



If the angles of the curvilinear triangle T are of the form π/n for
integers n, the image of D∗ is discrete, and hence is a Kleinian
group called a triangle group.



3. Hyperbolic geometry

Poincaré realized that PSL(2,C) is also the group of
(orientation-preserving) isometries of hyperbolic 3-space H3.

In Poincaré’s model, H3 is the interior of the unit ball. The
hyperbolic metric is obtained by rescaling the Euclidean metric by
a factor of 2/(1− r2) where r is the distance to 0.

Straight lines in the Poincaré metric are arcs of Euclidean straight
lines or circles perpendicular to the boundary sphere.



In the Poincaré
metric, objects
near the
boundary sphere
look smaller.



If Γ is a torsion-free Kleinian group, then Γ acts freely and properly
discontinuously on H3 by isometries.

Thus the quotient M := H3/Γ is a hyperbolic manifold with
universal cover H3, and fundamental group π1(M) ∼= Γ.

Conversely, every 3-manifold M with a complete hyperbolic metric
has universal cover M̃ isometric to H3, realizing the deck group
π1(M) as a Kleinian group Γ.



Thurston conjectured, and Perelman proved, the

Hyperbolization Theorem: a closed 3-manifold M admits a
hyperbolic structure if and only if

1. every smooth embedded sphere in M bounds a ball;

2. π1(M) is infinite; and

3. π1(M) contains no Z2 subgroup.



4. Dynamics

If Γ is a Kleinian group, the sphere S2 decomposes into

1. the Limit set Λ where Γ acts ergodically, and

2. the Domain of discontinuity Ω where Γ acts properly
discontinuously.

Λ is closed, and Ω is open. For torsion-free Kleinian groups, Λ is
the closure of the set of fixed points of Γ.

The quotient Ω/Γ is a Riemann surface. Ahlfors showed it is of
finite type; i.e. it is homeomorphic to a compact surface minus
finitely many points.



A random walk in the Euclidean plane is recurrent. In higher
dimensions, it diverges, but very slowly and chaotically.

In hyperbolic space of any dimension, the negative curvature
freezes the trajectory of a random walk, so that it converges to a
definite point on the sphere at infinity.



If Γ is a Kleinian group, measurable functions on Ω/Γ are the
asymptotic values of harmonic functions on the hyperbolic
manifold M := H3/Γ.

So whenever Λ is not equal to S2 there are many harmonic
functions on M.

limit set images by Curt McMullen



If M is a closed hyperbolic manifold, there are no nonconstant
harmonic functions on M, by the maximum principle. So Λ = S2.

But it is possible for Λ = S2 even if M is noncompact!



Example: Σ is a surface, and φ : Σ→ Σ is a diffeomorphism.
Define the mapping torus

Mφ := Σ× [0, 1]/(s, 1) ∼ (φ(s), 0)

which is topologically a bundle over S1 with fiber Σ:

Σ→ Mφ → S1



There is a corresponding short exact sequence of fundamental
groups

0→ π1(Σ)→ π1(Mφ)→ Z→ 0

In particular, π1(Σ) is a normal subgroup of π1(Mφ).

If φ is sufficiently complicated, Thurston showed Mφ is hyperbolic.



Let M̂φ be the infinite cover of Mφ with fundamental group π1(Σ).

Topologically, M̂φ = Σ× R.

Since π1(Σ) is normal in π1(Mφ), it follows that Λ(M̂φ) is invariant
under all of π1(Mφ); in fact

Λ(M̂φ) = Λ(Mφ)

But Mφ is closed, so Λ(Mφ) = S2.



Each fiber Σ is a surface, whose universal cover Σ̃ is topologically
a plane, which is properly embedded in M̃φ

∼= H3.

This plane accumulates on Λ(M̂φ) = S2; i.e. it limits to all of S2!

〈show movie〉



5. Ahlfors’ Conjecture and Tameness

In 1966, Ahlfors formulated his

Ahlfors Measure Conjecture: If Γ is a Kleinian group, then either
Λ = S2 or Λ has measure zero.

If Γ violates Ahlfors conjecture, we can build a function χΛ on S2

which is 1 on Λ and 0 on Ω, and a nonconstant harmonic function
hΛ on M := H3/Γ which is zero on Ω/Γ.



A random walk preserves the value of a harmonic function on
average. If Γ violates Ahlfors conjecture, a random walk on
M := H3/Γ has a definite chance of failing to converge to Ω/Γ.

Where else can a random walk go? It has to go into one of the
ends of M and stay there.



The manifold M := H3/Γ has π1(M) ∼= Γ which is finitely
generated.

The Scott Core Theorem says that there is a compact core C ⊂ M
such that C → M is a homotopy equivalence.

The ends of M are the components of M − C .

Some of these ends limit to components of Ω/Γ; these are the
geometrically finite ends.



Example: The cyclic cover M̂φ = Σ× R has two geometrically
infinite ends. The surfaces Σ× t have bounded area, so a random
walk on M̂φ looks like a random walk on R.

But a random walk on R is recurrent! So the random walk on M̂φ

will not stay in either of the ends, but keeps coming back to any
compact region.



Thurston and Canary showed that to prove Ahlfors Conjecture, it
suffices to show that the ends of M := H3/Γ are all topologically
products Σ× R+. Such ends are said to be tame.

In 1974, Marden conjectured that all hyperbolic manifolds
M := H3/Γ are tame; equivalently, they are all homeomorphic to
the interior of a compact 3-manifold, possibly with boundary.

In 2004, Marden’s Tameness Conjecture was proved independently
by Agol and by Calegari–Gabai; thus by the combined work of
many people, we know that Ahlfors’ Conjecture is true.
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