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1. INTRODUCTION

1.1. Statement of results.

1.2. Acknowledgements. I would like to thank Sarah Koch, Curt McMullen,
Dylan Thurston and Giulio Tiozzo for some helpful suggestions and insights. Danny
Calegari was supported by NSF grant DMS 1005246.

2. EMBEDDABLE ENDOMORPHISMS OF PLANAR TREES

2.1. Itinerary generating function. In this section we consider endomorphisms
of planar trees.

Definition 2.1.1 (Piecewise monotone). Let X be a compact tree. An endomor-
phism f : X — X is piecewise monotone if X admits a subdivision into finitely
many intervals on each of which the restriction of f is monotone to its image.

A center for f is a choice of point * € X.

One natural choice for a center is a fixed point; other natural choices include
critical points. Every endomorphism of a compact tree has a fixed point, but such
a point is typically not unique.

Definition 2.1.2 (Itinerary generating function). Let X be a compact tree, and
f+ X — X piecewise monotone with center *. Let S be the set of components of
X — %, let S = SUx, and let R[S’] be the real vector space with basis the elements
of S.

For x € X and a non-negative integer j, define s;(z) € S to be equal to x if
f7(x) = *, and to be equal to the component of X — x containing f7 () otherwise;
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and define I(x;t) to be the itinerary generating function of x:

I(x;t) :== Z sj(x)t)
=0

Note that I is a formal power series with coefficients in R[S].

Now suppose v is probability measure on X. We can define
I(v;t) == / I(z;t)dv(t)
X

i.e. I(v;t) is the formal power series whose coefficients s;(v) are simply the v-
expectation of the S-valued function s;(z).

Lemma 2.1.3. Suppose v is f-invariant. Then I(v;t) = so(v)/(1 —t).

Proof. For any measure v (not necessarily f-invariant) and any j > 1 we have

50) = [ si@ir@) = [ 5@ = [ sa@d)@ =5 0)

X

so if v is f-invariant we have I(v;t) = so(v)(1+t+t2+---) = s0(v)/(1 —t). O

For |t| < 1 the power series I(x;t) is absolutely convergent, and takes values in
R[S]. We are thus motivated to define

n—1

o(x) = nh_)rr;o % Z sj(x)

Jj=0

providing this limit exists.
Informally, we think of o(x) as the “residue” of I(X;t) at t = 1.

Lemma 2.1.4. Suppose v is f-invariant and ergodic. Then for v-a.e. x the limit
o(x) exists and is equal to so(v).

Proof. This follows from the Birkhoff ergodic theorem, except that we must be
slightly careful about the center . If x has zero measure, then the same is true
for its preimages, and we may restrict attention to the space X — U;f77(x) on
which the tautological S-valued function on X — % is continuous, so that the usual
Birkhoff theorem applies. Otherwise, since v is ergodic, v is supported on a finite
orbit which includes %, and the lemma is obvious. ([l

In practice, we will be only be interested in attracting f-invariant measures of
two kinds:

(1) an atomic measure supported on an attracting periodic orbit; or
(2) an absolutely continuous invariant measure with full support.

Both possibilities occur with positive measure in the parameter spaces we consider
(see Jakobson [2]).
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2.2. Planar trees. Now, suppose X is a planar tree, and f : X — X is piecewise
monotone with center x. The set X — * decomposes into g connected components,
which we call the spokes; the planar embedding lets us cyclically order the spokes
as Xj/q for 0 < i < g. The choice of labeling is not unique; rather the set of labels
should be thought of as an affine space for Z/gZ. In some contexts, however, there
is another natural choice of center *' on X, and by convention we let Xy denote
the component containing «’.

Andre de Carvalho [I] has shown how planar graphs can be decorated with
infinitesimal edges and loops so that their endomorphisms are carried by generalized
traintrack maps which can be approximated by planar embeddings. We use de
Carvalho’s language of thick graphs and thick graph maps; see [1], Definitions 1 and
2.

Definition 2.2.1. An endomorphism f : X — X of a planar tree is embeddable if
there is a planar thick graph N, an embedding F': N — N which is a thick graph
map, and a retraction 7 : N — X satisfying the following properties:

(1) the fibers of 7 are the leaves and junctions of N;

(2) the map 7 semiconjugates F': N = N to f: X — X;

(3) the map 7 is compatible with the planar structures on N and X, in the
sense that the circular ordering coming from the planar structures on links
of higher order junctions of N resp. vertices of X are preserved by .

A choice of F': N — N as above is called an embedding of f: X — X.

Now suppose f : X — X is embeddable, and F : N — N is an embedding. de
Carvalho [I], Lemma 1 implies that the invariant set A := N;FJ(N) is homeomor-
phic to the inverse limit of f : X — X, and the restriction of F' to A is conjugate
to the inverse limit map. Thus, thickening gives us a way to realize the action on
the inverse limit as the restriction of a planar homeomorphism to an invariant set.

Now suppose * is a fixed point for f. Identifying A with the inverse limit of
f X — X lets us choose a canonical lift of x to A C F (namely the element
(-++,#%,%,%,x)) which we denote * by abuse of notation. Thus F restricts to a
homeomorphism of the annulus obtained by deleting * from the plane, and every
invariant measure for F' (which is necessarily supported on A) has a well-defined
rotation number in R/Z.

In fact, we may even extend this rotation number to the fixed point * itself: the
link of * is circularly ordered, and the condition of embeddability implies that the
restriction of f to the link of * is monotone with respect to this circular order; thus
there is a well-defined rotation number there.

3. QUADRATIC RATIONAL MAPS OF THE INTERVAL

3.1. Definitions.

Definition 3.1.1. A map f : I — I is unimodal if it has exactly one critical point
c and is elsewhere locally injective.

Milnor-Thurston [3] define the kneading determinant as follows:
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Definition 3.1.2 (Kneading determinant). Suppose x € I is not a preimage of the
critical point ¢. Define _1(z) = 1 and inductively,

0@ i fiw) < o

Define a formal power series 6(z,t) = 3,5, 0;(z)t*, and then the kneading deter-
minant D(t) of f is the formal power series D(t) = 6(c™,t); i.e. the limit of 6(z, 1)
as ¢ — c from below.

Now, for any center a € I we can define ¢;(z, @) by ¢o(z, ) = 0, and inductively
for i > 0 by

—1 otherwise

i ix_a i_l$—a
<ML@{1fG() Y1) - a) < 0

and then define a formal power series ¢(z,a;t) = Y5 di(z, @)t'. and R(a;t) =
¢(c™,a;t) as above. Then if R(«;t) has a simple pole at 1 we define p(«) (or just
p if @ is understood) to be the residue there.

Remark 3.1.3. For a = ¢, there is a close relationship between 6(z,t) and ¢(z, ¢, t);
namely the coefficient ¢; is the product of the coefficients 6;_260;_16;. In other
words, formally we can write ¢ = 6 x t0 * t20, where * denotes “logarithmic convo-

lution”; i.e. '
(9 =5 [ s (3)

where v is a sufficiently small loop about 0.

Ezample 3.1.4. A unimodal map is postcritically finite if the critical point ¢ is
eventually periodic under iteration, with period ¢. In this case we have R(a;t) =
s(t) + p(t)/(1 — t?) where p is a polynomial of degree ¢ — 1, and the residue at 1
is p(1)/g, which is the rotation number (up to a factor of 2) of the endomorphism
with respect to the center a.

Example 3.1.5. Consider the real quadratic map f. : 2 — 22 +c. For c € [-2,—1.6]
this takes the interval [c, §] into itself, where 0 is the critical point, and 8 = (1 +
V1 —4c)/2. The other fixed point is @ = (1 — /1 —4c¢)/2. We take this fixed
point « as the center. Then the graph of the rotation number p(«) is illustrated in

Figure

Proposition 3.1.6. Let o be the fized point of f. Then p achieves its supremum
on a.
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FIGURE 1. Rotation number for real unimodal maps z — 22 + ¢
for ¢ € [-2,—1.6].
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