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Euclidean algorithm

Given two positive integers p, q, how can we

find the greatest common factor (gcf)? That

is, the biggest integer which divides both p and

q.

Euclid (325–265 BC) proposed the following

computer program:

E1. Is p = q? If yes, return p and quit

E2. Is p > q? If no, interchange p and q

E3. Set p equal to p − q and go to E1

Example: p = 7, q = 5. This gives:

(7,5) → (2,5) → (5,2) → (3,2) →

→ (1,2) → (2,1) → (1,1) → 1 = gcf(7,5)



Steps E2 and E3 in the algorithm can be re-

coded numerically as follows. Encode the pair

(p, q) as the fraction z := p
q.

In this scheme, the algorithm becomes:

If z < 1, do z → 1
z . If z > 1, do z → z − 1

Example: the “itinerary” of the initial choice
7
5 is

7

5
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2
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1
→ 1

1



Continued fractions

There is a convenient notation for keeping track

of the steps in the algorithm. This is the no-

tation of a continued fraction.
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By truncating this partial fraction, we get suc-

cessive approximations to 7
5:
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Euclid’s algorithm shows how to encode any

positive rational number as a continued frac-

tion.

More generally, continued fractions can be fi-

nite or infinite. An infinite continued fraction

is necessarily irrational.

Example:
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which gives rational approximations
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Example:

φ = 1 +
1
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∴ φ = 1 +
1

φ

∴ φ2 − φ − 1 = 0

∴ φ =
1 +

√
5

2
(because φ > 1)

This particular quadratic irrational φ is known

as the golden ratio. The successive rational

approximations to φ are ratios of Fibonacci

numbers:
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A continued fraction expansion is a convenient

way of expressing a real number, similar in

some ways to a decimal expansion.

In fact, it has some advantages over decimal

expansion, as well as some disadvantages.

Dec. CF
finite p/10n rational

periodic rational quad.irrational
unique no yes

+,−,×, / easy hard
rat’l approx. poor good

Algorithms for performing addition, subtrac-

tion, multiplication and division on continued

fractions were developed by R. W. Gosper.



Gauss’ transformation

The two transformations z → 1/z and z → z−1

can be collapsed to a single transformation:

G. Given z ∈ (0,1), replace z by the fraction-

-al part of 1
z

We denote the fractional part of a real number

z by {z}. Example: {3.1415926} = 0.1415926

The transformation is denoted symbolically by

G : z →
{
1

z

}

Note that G(1
n) = 0 for any integer n. For

convenience, we define G(0) = 0 by conven-

tion, and then think of G as a function from

the half-open interval [0,1) to itself.



C. F. Gauss (1777–1855) studied the proper-

ties of the transformation

G : [0,1) → [0,1)

He showed that for almost every choice of num-

ber r ∈ [0,1), the sequence

r, G(r), G2(r), G3(r), . . .

gets close to every point in [0,1), with density

1

(1 + x) ln(2)

(
=

d

dx
log2(1 + x)

)

It follows that for almost every real number r,

the integer n appears in the continued fraction

expansion of r with frequency

freq(n) = log2

(
1 +

1

n

)
− log2

(
1 +

1

n + 1

)

Example: the number 1 appears about 41.5%

of the time.



Rational approximation and geometry

On the real number line, put a circle of diam-

eter 1
q2

at each reduced rational number of the

form p/q :

-2 -1 0 1 2-3/2 -1/2 1/2 3/2

The circles are tangent, and are tightly packed,

but they do not cross.



For any real number r draw a vertical line which
hits the real number line at r. The circles it
intersects on the way down correspond to the
rational numbers of the form p/q such that

|r − p/q| ≤ 1

2q2

Note that if r is irrational, there are infinitely
many such p/q.
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Hyperbolic geometry

Hyperbolic geometry takes place above the real

number line in the plane. As objects move

towards the real line, they shrink, in proportion

to the (usual Euclidean) distance to the line.

Since footsteps shrink the closer one moves

to the line, the “shortest distance” between

two points (i.e. fewest footsteps necessary) is

actually the arc of a circle perpendicular to the

real axis.



The pattern of circles from before is part of a

symmetric tessellation in hyperbolic geometry:

-2 -1 0 1 2-3/2 -1/2 1/2 3/2

Each (black) semicircle lands on the real line

at two rational numbers, and passes through

the point where the associated (grey) circles

are tangent.



A vertical line crosses a sequence of semicircles

on the way down. These circles pivot left or

right in sequence. The number of consecutive

pivots in each direction are the terms in the

continued fraction.
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Hyperbolic origami

If we “fold up” the real line plus infinity into
a circle, the hyperbolic plane folds up into a
disk:

If we include the real numbers in the complex
plane, then the hyperbolic plane includes as a
“slice” through hyperbolic 3-space.



The space QF

Many beautiful fractals can be obtained by

bending and folding this copy of the hyper-

bolic plane in hyperbolic 3-space, according to

precise instructions.

The set of all ways of doing this is parameter-

ized by a certain space called Quasi-Fuchsian

space, or QF for short.

In 2004, J. Brock, R. Canary and Y. Minsky

proved Thurston’s Ending Lamination Conjec-

ture, which gives a very good picture of the

space QF.

QF is high-dimensional, but we can study it by

looking at finite dimensional “slices” through

it.



Maskit’s slice

When a sequence of folded planes approaches

the boundary of QF, they start to bump into

themselves. On each slice, a point on the

boundary is parameterized by a real number r.

The Ending Lamination Conjecture says that

the corresponding fractal can be reconstructed

from the continued fraction expansion of r.
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