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Abstract

A �ow is called quasigeodesic if each �owline is uniformly e�cient at

measuring distances on the large scale. We study quasigeodesic �ows on

closed hyperbolic 3-manifolds from the perspective at in�nity.

IfM is a closed hyperbolic 3-manifold with a quasigeodesic �ow, the orbit

space P of the lifted �ow on H3 is planar, and it inherits an action by π1(M).

We use Calegari's universal circle S1
u to compactify P to a closed disc P in a

way that is compatible with this action. We show that the maps e± : P →

∂H3 that send each orbit to its forward/backward limit extend continuously

to P , and e+ = e− on ∂P . Consequently, the restriction e : ∂P → ∂H3

is a π1-equivariant sphere-�lling curve, generalizing the Cannon-Thurston

theorem which produces such curves for suspension �ows. If the �ow has no

closed orbits then we show that π1(M) acts on ∂P as a hyperbolic Möbius-

like group that is not Möbius, which conjecturally cannot occur. Finally, we

show that π1(M) acts on ∂P with pseudo-Anosov dynamics.

This completes a major part of Calegari's program to show that quasi-

geodesic �ows are homotopic (through quasigeodesic �ows) to pseudo-Anosov

�ows.
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CHAPTER 1

Introduction

The goal of this thesis is to outline the theory of quasigeodesic �ows

from the point of view �at in�nity.� The guiding conjecture for this, due

to Danny Calegari, is that every quasigeodesic �ow on a closed hyperbolic

3-manifold is homotopic (through quasigeodesic �ows) to a pseudo-Anosov

�ow. Both quasigeodesic and pseudo-Anosov �ows give rise to universal

circles at in�nity, and our program attempts to relate quasigeodesic and

pseudo-Anosov �ows using their dynamics on the universal circle.

1. Overview

Much of this thesis is about how certain 3-dimensional smooth dynamical

objects give rise to an array of intricately related 1- and 2-dimensional dis-

crete dynamical objects. The 3-dimensional objects we're concerned with are

quasigeodesic and pseudo-Anosov �ows, and these give rise to discrete group

actions on 1-dimensional universal circles and 2-dimensional orbit spaces that

preserve certain laminations, singular foliations, and unbounded decomposi-

tions. Some of these objects are built out of others by topological trickery,

some come from quotient maps, and at the end they all �t together nicely

in a group-equivariant way. We'll start informally in order to get to this

picture before plodding through all of the technical ingredients. To preserve

continuity we'll refrain from citing sources here, but precise citations will

accompany the precise statements in the main chapters.

Let M be a closed hyperbolic 3-manifold. Its universal cover is isomet-

ric to H3, and π1(M) acts on H3 by loxodromic isometries with M as its

quotient. Hyperbolic space has a natural compacti�cation H3
= H3∪S2

∞ by

adding a sphere at in�nity, and the action of π1(M) extends continuously to

the boundary.
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2 1. INTRODUCTION

A �ow on M lifts to a �ow on H3, and the action of π1(M) by deck

transformations preserves the foliation by �owlines. In general, �owlines

won't behave well with respect to the boundary of H3
, and might spiral

close to in�nitely many points in S2
∞. An obvious way to avoid this would

be to insist that each �owline is a geodesic, but a theorem of Zeghib implies

that no such �ows exist. It turns out that quasigeodesic �ows, where each

�owline tracks a geodesic in the large scale, are exactly the �ows whose

�owlines have well-de�ned and continuously varying endpoints in S2
∞.

A �ow F on a 3-manifold is called Anosov if the tangent bundle splits

into three perpendicular sub-bundles: the bundle TF tangent to the �ow,

a stable bundle Es, and an unstable bundle Eu. Nearby orbits along the

stable direction converge exponentially in forwards time, and nearby orbits

along the unstable direction converge exponentially in backwards time. The

(weak) stable and unstable bundles integrate to a pair of transverse folia-

tions (Λs,Λu), where TΛs spans the tangent and stable directions, and TΛu

spans the tangent and unstable directions. Leaves of Λs and Λu intersect

transversely, and the intersection of two leaves is either empty or an orbit

of F. The orbits in a single leaf of Λs are all forwards asymptotic, and the

orbits in a single leaf of Λu are all backwards asymptotic.

A �ow is called pseudo-Anosov if it is Anosov except near some isolated

singular orbits, where the �ow looks like the suspension of a p-prong in the

plane (see Figure 1). A pseudo-Anosov �ow has a pair of singular foliations

(Λs,Λu). These are true transverse foliations away from the singular orbits,

and they look like Figure 2 near singular orbits.

1.1. Suspension �ows. The prototype example for both quasigeodesic

and pseudo-Anosov �ows is the suspension of a pseudo-Anosov homeomor-

phism. Let Σ be a surface of genus at least two, and consider M ′ = Σ × I

with the unit �ow F′ in the positive direction along I. The manifoldM built

by gluing Σ×{0} to Σ×{1} with a homeomorphism f is hyperbolic exactly

when the mapping class of f is aperiodic and irreducible. In this case, f is

isotopic to a pseudo-Anosov homeomorphism, so it preserves a pair (λs, λu)

of 1-dimensional measured singular foliations on Σ. The monodromy f is
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Figure 1. A 4-prong singularity in the plane.

Figure 2. Stable and unstable foliations near a singular orbit.

contracting along leaves of λs and expanding along leaves of λu. The �ow F′

on M ′ glues up to form a �ow F on M called the suspension �ow of f , and

F is both pseudo-Anosov and quasigeodesic. The 2-dimensional singular fo-

liations of F on M restrict to the 1-dimensional singular foliations preserved

by f on Σ. That is,

Λs ∩ (Σ× {0}) = λs

and

Λu ∩ (Σ× {0}) = λu.

The �ow F lifts to a pseudo-Anosov �ow F̃ on H3 whose stable and

unstable singular foliations are the lifts (Λ̃s, Λ̃u). A copy of the surface, say
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Σ×{1
2}, lifts to a plane Σ̃ that is transverse to the �ow, and (Λ̃s, Λ̃u) restrict

to the lifts (λ̃s, λ̃u) on Σ̃. See Figure 3.

Σ̃ H3

S2
∞

i

Σ

id× { 12}

M

Figure 3. A surface bundle and lifted surface.

The surface Σ̃ is transverse to the �ow, and it hits every �owline, so

there's a natural quotient map

π : H3 → Σ̃

that sends each �owline to its point of intersection with Σ̃. That is, Σ̃ is

naturally homeomorphic to the orbit space of the �ow F̃. Quasigeodesity of

F implies that the maps

e± : Σ̃→ S2
∞

that send each orbit to its forward/backward limit are well-de�ned and con-

tinuous. The fact that orbits in a stable leaf are forwards asymptotic means

that e+(p) = e+(q) if p and q are both contained in a leaf of λ̃s. Similarly,

e−(p) = e−(q) if p and q are both contained in a leaf of λ̃u.
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The fundamental group π1(M) acts on H3 preserving the 1-dimensional

foliation by �owlines, as well as the 2-dimensional foliations Λ̃s and Λ̃u.

Pushing forward under the map π, we obtain an action of π1(M) on Σ̃ that

preserves λ̃s and λ̃u. The e± maps are equivariant with respect to this action.

The surprising behavior of suspension �ows becomes apparent when we

compactify Σ̃. The surface Σ̃ is homeomorphic to the hyperbolic plane H2,

since it's the universal cover of the hyperbolic surface Σ. However, its geom-

etry as a subspace of H3 is very di�erent from the geometry it gets as a lift of

a hyperbolic surface. The hyperbolic plane has a natural compacti�cation to

a closed disc H2
= H2 ∪ S1

∞ by adding a circle at in�nity, so we can use the

homeomorphism Σ̃ ' H2 to compactify our transversal Σ̃. It turns out that

this can be done in a way that respects the action of π1(M). The famous

Cannon-Thurston theorem states that the inclusion map i : Σ̃→ H3 extends

to the boundary circle, where it restricts to a π1-equivariant curve

i : S1
∞ → S2

∞

that �lls the sphere. In fact, the e± maps also extend continuously to the

boundary, and e+|S1
∞

= e−|S1
∞

= i|S1
∞
.

1.2. Pseudo-Anosov and quasigeodesic �ows in general. Much

of this structure remains in place for a general pseudo-Anosov �ow. Fix a

closed hyperbolic 3-manifold M and let F be a pseudo-Anosov �ow on M .

The �owspace P is the set of �owlines of the lifted �ow on H3. We can

endow P with a topology by thinking of it as the quotient of H3 obtained

by collapsing each �owline to a point. It turns out that P is homeomorphic

to the plane. If we take a section i of the quotient map π : H3 → P , we

can think of P as a transversal to the �ow F̃. That is, P takes the place

of Σ̃. As before, the 2-dimensional singular foliations (Λ̃s, Λ̃u) restrict to

1-dimensional singular foliations (λ̃s, λ̃u) on P , which are preserved by the

induced action of π1(M). However, note that these are not generally lifts

of singular foliations on a compact surface, since the quotient of P is not

generally a surface. We lose the e± maps since F is no longer quasigeodesic

in general.
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Although P no longer has a natural homeomorphism to H2, it turns out

that the pair of foliations (λ̃s, λ̃u) can be used to build a compacti�cation

P = P ∪ S1
u by adding a universal circle S1

u at in�nity. This universal circle

is built by introducing a point at in�nity for each end of each leaf of λ̃s

and λ̃u � the nonsingular leaves contribute two points and p-pronged leaves

contribute p points. The fact that λ̃s and λ̃u are π1-equivariant implies that

the action of π1(M) on P extends to S1
u. However, the section i : P → H3

does not generally extend to the boundary of P .

The action of π1(M) on S1
u takes a particular dynamical form. Each g ∈

π1(M) acts on S1
u with an even number of �xed points that are alternately

attracting and repelling.

Now let F be a quasigeodesic �ow on M . The �owspace P is de�ned

similarly. Once again it turns out to be a plane, and once again it can be

interpreted as a transversal to F̃ by choosing a section i of the quotient map

π : H3 → P . We lose the pair of singular foliations (Λ̃s, Λ̃u), but this time we

get to keep the maps e± : P → S2
∞. And, inspired by the case of a suspension

�ow, we will use e+ and e− to build replacements for λ̃s and λ̃u. Fix a point

p ∈ S2
∞ and consider (e+)−1(p), the set of �owlines whose positive endpoints

lie at p. Each component of (e+)−1(p) is closed and unbounded, and we

can collate these to form the positive decomposition D+ of P . The negative

decomposition D− is built similarly using the e− map. The decompositions

D± are invariant under the action of π1(M), and we will treat (D+,D−) as

a generalization of (λ̃s, λ̃u). Where in the pseudo-Anosov case a stable leaf

and an unstable leaf intersect transversely in a single orbit, here a positive

decomposition element and a negative decomposition element intersect in a

compact collection of orbits, all of which share a pair of endpoints in S2
∞.

Remarkably, there's still enough structure to build a compacti�cation

for P . The decomposition elements are arbitrarily complicated closed un-

bounded sets instead of just lines and p-prongs, so we need to be more

sophisticated when talking about ends. Still, there is a workable notion of

an end, and the ends of each decomposition element appear as points in a

universal circle S1
v . Here's where the new part of the story begins. We'll
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show that this universal circle compacti�es the orbit space, and the maps

i, e+, and e− all extend continuously to (and agree on) the boundary. This

vastly generalizes the Cannon-Thurston theorem.

We'll also show that the dynamics of π1(M) on S1
v looks just like the

pseudo-Anosov case. Each g ∈ π1(M) acts on S1
u with an even number of

�xed points that are alternately attracting and repelling.

Finally, we'll show that the action of π1(M) on S1
v contains a surprising

amount of information about F, even though it's just a discrete 1-dimensional

image of the smooth 3-dimensional dynamics of a quasigeodesic �ow. In

particular, we can use it to �nd closed orbits in F. We'll show that if an ele-

ment g ∈ π1(M) acts, up to conjugacy, as anything other than a hyperbolic

Möbius transformation, then the �ow F contains a closed orbit in the free

homotopy class of g. Consequently, if F has no closed orbits then the action

of π1(M) on S1
v is an example of a Möbius-like group that is not conjugate

into PSL(2,R).

2. Statement of results

For convenience, we'll collect our main original theorems. If F is a quasi-

geodesic �ow on a 3-manifold M then P is the orbit space of F̃. Calegari

[3] constructs a universal circle S1
u, which turns out to be larger than we

need. We'll work with a quotient S1
v on which it's more natural to study the

dynamics of π1(M). Still, our �rst four theorems hold for both S1
u and S1

v .

The following idea is due to Calegari [3]. Calegari's original construction

of the universal circle involves approximating the ends of sets in the plane

by proper rays. Our more direct handling of ends allows us to complete the

proof.

Compactification Theorem. Let F be a quasigeodesic �ow on a

closed hyperbolic 3-manifold M , and let S1
v be the universal circle. Then

P = P ∪S1
v has a natural topology making it into a closed disc with interior

P and boundary S1
v . The action of π1(M) on P extends to P and restricts

to the universal circle action on ∂P .

The space P is called the end compacti�cation of P .
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Continuous Extension Theorem. Let F be a quasigeodesic �ow on

a closed hyperbolic 3-manifold M . The endpoint maps e± : P → S2
∞ admit

unique continuous extensions to P , and e+ agrees with e− on the boundary.

Consequently, the restriction e : S1
v → S2

∞ of e± is a π1-equivariant

sphere-�lling curve, generalizing the Cannon-Thurston theorem.

A group Γ acting on the circle is called hyperbolic Möbius-like if each

element is conjugate to a hyperbolic Möbius transformation.

Möbius-like Theorem. Let F be a quasigeodesic �ow on a closed hy-

perbolic 3-manifold M . Suppose that F has no closed orbits. Then π1(M)

acts on the universal circle S1
v as a hyperbolic Möbius-like group.

In contrast:

Conjugacy Theorem. Let F be a quasigeodesic �ow on a closed hy-

perbolic 3-manifoldM . Suppose that F has no closed orbits. Then the action

of π1(M) on the universal circle is not conjugate into PSL(2,R).

Finally:

Pseudo-Anosov Dynamics Theorem. Let F be a quasigeodesic �ow

on a closed hyperbolic 3-manifold M . Then each g ∈ π1(M) acts on S1
v with

an even number of �xed points (possibly zero) that are alternately attracting

and repelling.



CHAPTER 2

Flows

A �ow F on a manifold M is a continuous R-action. That is, for each

point x ∈ M and t ∈ R there is a point t · x ∈ M , and this satis�es the

following conditions:

(1) If x ∈M and t, s ∈ R, then (t+ s) · x = t · (s · x), and

(2) the map R×M →M de�ned by (t, x) 7→ t · x is continuous.

We will call a �ow nonsingular if for each x ∈ M there is some t such

that t · x 6= x.

We will restrict attention to nonsingular �ows. The orbit of each point

x ∈ M is the �owline R · x, and we'll use the same symbol to refer to both

the �ow and the associated oriented foliation

F = {R · x|x ∈M}

by �owlines.

1. The orbit space

Given a nonsingular �ow F on a manifold M , the orbit space OF is the

set of �owlines in M , with the topology obtained as a quotient of M by

collapsing each �owline to a point.

We denote the universal cover of M by M̃ . The �ow F on M lifts to a

�ow F̃ on M̃ . The �owspace of F is the orbit space O
F̃
of the lifted �ow.

The action of the fundamental group π1(M) on M̃ by deck transformations

preserves the foliation F̃ by �owlines, so the quotient map

π : M̃ → O
F̃

induces an action of π1(M) on the �owspace O
F̃
.

9
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While the orbit space of a �ow on a closed 3-manifold is often not very

nice, in general not even Hausdor�, the �owspace is often much nicer. In

particular, the �ows we're concerned with will be product covered:

Definition 2.1. A �ow F on a 3-manifold M is called product covered

if the foliation F̃ by lifted �owlines is topologically equivalent to the product

foliation of R3 as R2×R. Equivalently, if the �owspace O
F̃
is homeomorphic

to R2.

2. Quasigeodesics

Definition 2.2. Let k, ε be non-negative constants. A curve γ : R→ X

in a metric space (X, d) is a (k, ε)-quasigeodesic if it satis�es

1/k · d(γ(x), γ(y))− ε ≤ |x− y| ≤ k · d(γ(x), γ(y)) + ε

for all x, y ∈ R. A curve is called a quasigeodesic if it is a (k, ε)-quasigeodesic

for some constants k, ε.

If X is a geodesic space and γ is a curve parametrized by arc length then

the left-hand inequality always holds, so we can think of the quasigeodesic

condition as ensuring that a curve makes de�nite progress on a large scale.

Recall that hyperbolic space Hn has a natural compacti�cation as a

closed disc by adding a sphere at in�nity Sn−1
∞ . Geodesics in Hn have well-

de�ned endpoints in Sn−1
∞ . In hyperbolic space, quasigeodesics are qualita-

tively similar to geodesics:

Proposition 2.3 (see [1], pp. 399�404 or [18]). (1) If γ is a (k, ε)-

quasigeodesic in Hn, then γ has well-de�ned, distinct endpoints in

Sn−1
∞ .

(2) There is a constant C, depending only on k, ε, and n, such that

every (k, ε)-quasigeodesic in Hn is contained in the C-neighborhood

of the geodesic with the same endpoints.

Quasigeodesity can also be formulated as a local condition. A curve

γ : R→ H3 is called a c-local k-quasigeodesic if d(γ(x), γ(y)) ≥ |x−y|k − k for

all x, y ∈ R with |x− y| < c.
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Lemma 2.4. (Gromov, [16]) For every k ≥ 1, there is a universal con-

stant c(k) such that every c(k)-local k-quasigeodesic is a (2k, 2k)-quasigeodesic.

3. Quasigeodesic �ows

Definition 2.5. A nonsingular �ow F on a manifold M is said to be

quasigeodesic if each �owline lifts to a quasigeodesic in M̃ . It is uniformly

quasigeodesic if there are uniform constants k, ε such that each �owline lifts

to a (k, ε)-quasigeodesic.

It turns out that we don't need to distinguish between quasigeodesic and

uniformly quasigeodesic �ows:

Lemma 2.6 (Calegari. [3], Lemma 3.10). Let M be a closed hyperbolic

3-manifold. Then every quasigeodesic �ow on M is uniformly quasigeodesic.

Theorem 2.7 (Calegari. [3], Theorem 3.12). Let M be a closed hyper-

bolic 3-manifold. Then every quasigeodesic �ow on M is product covered.

In particular, if F is a quasigeodesic �ow on a closed hyperbolic 3-

manifold M , then O
F̃
is homeomorphic to the plane. From now on we'll

use the notation P := O
F̃
for the �owspace of a quasigeodesic �ow.

Example 2.8 (Surface bundles). Let M be a closed surface bundle over

the circle. Zeghib shows in [37] that any �ow that is transverse to the

foliation by surfaces is quasigeodesic.

Example 2.9 (Mosher's examples). In [25], Mosher constructs a class of

quasigeodesic �ows that do not come from the surface bundle construction.

Start with the �ow on R3 de�ned by

(x, y, z) · t = (x · λt, y · λ−t, z + t)

for some λ > 1. Cut along the eight planes de�ned by xy = ±1
2 , x = ±1,

and y = ±1 and mod out by a translation in the z direction. The result is a

�ow FT on an octagonal torus T . Actually, this is just a semi-�ow, i.e. the

�ow is not de�ned for all time, as some orbits leave T . The boundary of T

consists of eight annuli, and the �ow points inward on two of these, outward
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on two, and is tangent to the remaining four. There is a single closed orbit

σ, the core of T . Every other �owline either spirals around σ or runs from

one of the inward-pointing annuli to one of the outward-pointing annuli.

Now let Σ be a compact surface with four boundary components, and

consider the unit �ow on Σ × I that moves along the positive I direction.

The boundary of Σ× I consists of two copies of Σ and four annuli. The �ow

points inward along Σ × {0}, outward along Σ × {1}, and is tangent along

the four annuli. We can glue the four boundary annuli of Σ× I to the four

annuli of T along which FT is tangent. The result is a 3-manifold M ′ with a

�ow F′ that points inward along one boundary surface ∂− and outward along

another boundary surface ∂+. Glue these two surfaces together to build a

closed 3-manifold M with a �ow F, and let S be the embedded surface that

is the image of ∂+ and ∂−.

If we make the right choices during this construction, we can ensure that

M is a closed hyperbolic 3-manifold and S is an incompressible surface. The

�ow F has one closed orbit, σ. If we follow any �owline γ, we �nd that it

either eventually tracks σ, or it crashes through S with de�nite frequency.

If it tracks σ then quasigeodesity follows easily. Otherwise, we can see that

the lifts of S in the universal cover H3 obey a certain uniform separation

property. This is enough to see that the orbits that crash through S makes

de�nite progress towards a single point in S2
∞, and quasigeodesity follows.

Example 2.10 (Finite depth foliations). Mosher's �ows are particular

examples of a more general phenomenon. The �ow above is transverse to a

depth-1 foliation. If M is a closed, orientable, irreducible 3-manifold and ξ

is a nontrivial class in H2(M) then Gabai [15] constructs a taut, �nite-depth

foliation whose compact leaves represent ξ. Given such a foliation on a hyper-

bolic manifold, Mosher [26] constructs an almost transverse pseudo-Anosov

�ow, where almost transverse means that it is transverse after blowing up

�nitely many closed orbits. In [9], Fenley and Mosher show that these �ows

are also quasigeodesic.

3.1. Endpoint maps. Let M be a closed hyperbolic 3-manifold with

a quasigeodesic �ow F. Since each �owline is a quasigeodesic, there are
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well-de�ned endpoint maps

e± : P → S2
∞

that send each �owline to its positive/negative endpoint.

These endpoint maps are continuous. In fact, this characterizes quasi-

geodesic �ows:

Theorem 2.11. Let M be a closed hyperbolic 3-manifold with a �ow

F. Then F is quasigeodesic if and only if the maps e± are well de�ned and

continuous and satisfy e+(p) 6= e−(p) for all p ∈ M̃ .

The �if� direction is [9], Theorem B and the �only if� direction is [3],

Lemma 4.3. Note that this theorem does not presuppose that the orbit

space is planar.

Much of the peculiar behavior of quasigeodesic �ows is contained in the

following two observation.

Lemma 2.12 (Calegari, [3], Lemma 4.4). Let M be a closed hyperbolic

3-manifold with a quasigeodesic �ow F. Then e+(P ) and e−(P ) are both

dense in S2
∞.

This is true simply because π1(M) acts almost transitively on S2
∞, so

any nontrivial invariant subset is dense.

Lemma 2.13 (Calegari, [3], Lemma 4.5). Let M be a closed hyperbolic

3-manifold with a quasigeodesic �ow F. If D ⊂ P is an embedded disc in the

�owspace, then

e±(D) = e±(∂D).

Proof. We'll sketch this. Picture D embedded in H3 as a transversal

to F. That is, choose a section σ : D → H3 of the quotient map π : H3 → P .

Let S be the surface in H3 consisting of σ(D), together with the positive

half-�owlines emanating from the boundary of σ(D). Choosing the correct

orientation on S, if x ∈ H3 is a point on the positive side of S then the

positve half-�owline emanating from x stays on the positive side of S and

the negative half-�owline intersects σ(D). Now suppose, contradicting our
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hypothesis, that there is some point p ∈ D such that e+(p) /∈ e+(∂D). Then

e+(∂D) encloses some non-empty region U 3 e+(p). Since e−(P ) is dense,

there is some �owline γ whose negative endpoint is in U . But then the

negative half of γ is on the positive side of S, a contradiction. �

We can think of the endpoints of lifted �owlines as a subspace of (S2
∞, S

2
∞)\

∆, where ∆ = {(p, p)|p ∈ S2
∞} is the diagonal. That is, there is a map

e+ × e− : P → (S2
∞, S

2
∞) \∆

de�ned by

x ∈ P 7→ (e+(x), e−(x)).

Recall that a map is called proper if preimages of compact sets are com-

pact.

Lemma 2.14. Let F be a quasigeodesic �ow on a closed hyperbolic 3-

manifold M . Then

e+ × e− : P → (S2
∞, S

2
∞) \∆

is a proper map.

Proof. Let A ⊂ (S2
∞, S

2
∞)\∆ be compact, and set B = (e+×e−)−1(A).

Then B is closed since it's the preimage of a closed set.

Let X be the set of all geodesics with endpoints in A. Then we can �nd a

compact setK ⊂ H3 that intersects every element ofX. Recall that there is a

constant C such that each �owline has Hausdor� distance at most C from the

geodesic connecting its endpoints (Proposition 2.3). Therefore, each �owline

with endpoints in A intersects the closed C-neighborhood K ′ = NC(K).

The image π(K ′) is compact, and B ⊂ π(K ′), so B is bounded. Hence B is

compact. �

3.2. Decompositions. The following is a consequence of Lemma 2.13.

Lemma 2.15 (Calegari, [3], Lemma 4.8). Let M be a closed hyperbolic 3-

manifold with a quasigeodesic �ow F. For any point in p ∈ S2
∞ in the image

of e+, every connected component of (e+)−1(p) is unbounded, and similarly

for e−.
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Roughly, if some component K ⊂ (e+)−1(p) were bounded, then we

could surround it by a simple closed curve γ disjoint from (e+)−1(p), which

contradicts the previous lemma.

Definition 2.16. Let F be a quasigeodesic �ow on a closed hyperbolic

3-manifold M . The positive and negative decompositions of the �owspace P

are

D± = {components of (e±)−1(p)|p ∈ S2
∞}.

By the previous lemma, the elements of D+ and D− are closed, un-

bounded subsets of the plane. The action of π1(M) on P preserves D+ and

D−.

We will draw an analogy between the pair of decompositions that come

from a quasigeodesic �ow and the pair of transverse singular foliations that

come from a pseudo-Anosov �ow. There's no notion of transversality for

general closed unbounded subsets of the plane, but the following will su�ce:

Lemma 2.17. Let F be a quasigeodesic �ow on a closed hyperbolic 3-

manifold M . If K ∈ D+ and L ∈ D− then K ∩ L is compact.

Proof. Let p = e+(K) and q = e−(L). Then K ∩ L is contained in

(e+ × e−)−1((p, q)), which is compact by Lemma 2.14. �

Our study of quasigeodesic �ows centers around the following theorem.

Theorem 2.18 (Calegari, [3]). Let M be a closed hyperbolic 3-manifold

with a quasigeodesic �ow F. Then π1(M) acts faithfully by homeomorphisms

on a topological circle S1
u, called the universal circle of F.

We will prove this theorem in Chapter 5, where it follows easily from

the technical machinery in Chapters 3 and 4. Each (positive or negative)

decomposition element is unbounded, and we will think of the ends of a

decomposition element as directions towards in�nity. The universal circle

is built by collating the ends of decomposition elements, taking a sort of

completion, and collapsing some ends together.





CHAPTER 3

Circular Orders

An ordered triple of distinct points x, y, z in the circle is said to be

positively ordered if it spans a positively oriented simplex in the disc, and

negatively ordered otherwise. Four points x, y, z, w ∈ S span four unoriented

simplices, and the orientation on one pair of adjacent simplices determines

the orientation on the other pair. This structure, in abstract, is called a

circular order.

Definition 3.1. A circular order on a set S is a map

〈·, ·, ·〉 : S × S × S → {+1, 0,−1}

such that

• 〈x, y, z〉 is nonzero exactly when x, y, and z are distinct,

• if τ is a permutation of x, y, z ∈ S, then 〈τx, τy, τz〉 = −1sgn(τ)〈x, y, z〉,

and

• (cocycle condition) if x, y, z, w ∈ S are distinct then 〈y, z, w〉 −

〈x, z, w〉+ 〈x, y, w〉 − 〈x, y, z〉 = 0.

A circularly ordered set is a set together with a circular order. An or-

dered triple of points x, y, z in a circularly ordered set is said to be positively

ordered if 〈x, y, z〉 = +1 and negatively ordered if 〈x, y, z〉 = −1. In line

with tradition, we also refer to these, respectively, as being in counterclock-

wise and clockwise order. An ordered n-tuple of points x0, x2, x3, ..., xn−1

in a circularly ordered set is said to be positively/negatively ordered if

〈xi−1, xi, xi+1〉 = ±1 for all i mod n.

Example 3.2. The oriented circle S1 has a natural circular order deter-

mined by the choice of orientation. One way to think of an orientation of

is a choice of generator τ for H1(S1;Z) ' Z. A ordered triple of distinct

points x, y, z ∈ S1 determines a 1-cycle ∆xyz consisting of three 1-simplices,

17
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the ordered segments between x and y, y and z, and z and x. We can think

of 〈x, y, z〉 as the value of τ on ∆xyz.

Remark 3.3. If S is circularly ordered and s ∈ S, then one can construct

a linear order <s on S \ {s} by de�ning q <s p if 〈s, p, q〉 = +1. For distinct

s, t ∈ S, the orders <s and <t di�er by a cut: For any p, q distinct from s, t,

p <s q implies p <t q unless p <s t <s q in which case q <t p.

This provides an alternate de�nition of a circular order on S as a family

of linear orderings {<s}s∈S , where each <s is de�ned on S \ {s}, and any

two di�er by a cut.

Let x and z be points in a circularly ordered set S. We de�ne the open

interval

(x, z) := {y ∈ S|〈x, y, z〉 = +1}

and the closed interval

[x, z] := (x, z) ∪ {x, z},

and note that [x, z] = (z, x).

The open intervals in a circularly ordered set form a basis for a topology,

called the order topology. Note that the statement

y ∈ (x, z)

is the same as

〈x, y, z〉 = +1,

so we will often use the former, more familiar notation to work with circular

orders.

A map

f : S1 → S2

between circularly ordered sets S1 and S2 is called order-preserving if

〈x, y, z〉 = 〈f(x), f(y), f(z)〉

for all x, y, z ∈ S1. Two circularly ordered sets are called order-isomorphic

is there is an order-preserving bijection between them.
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Given a circularly ordered set, we would like to know whether it embeds

in the circle. This is immediate if our set is countable.

Lemma 3.4. Let S be a countable circularly ordered set. Then S is order-

isomorphic to a subset of the circle.

Proof. We will construct a map f : S ↪→ S1 directly.

Enumerate S = {si}∞i=1. Map s1 and s2 to antipodal points. Once

we have speci�ed f on s1, s2, ..., si−1 there are unique a, b < i such that

si ∈ (sa, sb), and no other sj , j < i lies in (sa, sb). Map si to the midpoint

of the interval (f(sa), f(sb)). �

Remark 3.5. There are other ways to embed a countable circularly

ordered set in the circle. For example, if f : S → S1 is an order-preserving

map, one can blow up any point p ∈ S1 \ f(S) to an open interval. Our

construction is more natural since it does not add such extraneous intervals.

More precisely, a gap in a circularly ordered set S is an ordered pair of

points x, y ∈ S such that (x, y) is empty. Let S be a countable circularly

ordered set, and let f : S ↪→ S1 be the order-isomorphism constructed in the

proof of Lemma 3.4. We will show that if I ⊂ S1 is a maximal open interval

in the complement of f(S), then there are x, y ∈ S such that (x, y) is a gap

and I = (f(x), f(y)). Indeed, otherwise we could �nd i and j such that f(si)

and f(sj) are arbitrarily close to, but not both equal to, the endpoints of I.

Then for k large enough, f(sk) would be the midpoint of (f(si), f(sj)), and

hence contained in I, a contradiction.

1. Order completion

Definition 3.6. A circularly ordered set S is called order complete if

every nested sequence of closed intervals I1 ⊂ I2 ⊂ I3... has non-empty

intersection.

Every circularly ordered set S has a canonical order completion.

Lemma 3.7. Let S be a circularly ordered set. There is a unique, mini-

mal, order complete set S containing S, and S is dense in S with the order

topology.
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By minimal, we mean that if T is an order complete set and i : S ↪→ T

is an order-preserving injection, then i extends to S (though the extension

may not be unique).

Proof. We will construct S directly.

Call a sequence (Ii)
∞
i=1 of closed intervals in S admissible if Ii ⊂ Ii+1

for each i, and
⋂
i Ii = ∅. That is, admissible sequences are the ones that

make S fail the test of order completeness. If (Ii) and (Jj) are admissible

sequences, de�ne (Ii) ∼ (Jj) if for every n > 0 there exists k > 0 such that

Ik ⊂ Jn.

Let's check that this is an equivalence relation. For symmetry, suppose

(Ii) ∼ (Jj). Given n′ > 0, the fact that
⋂
Ii = ∅ means that for k′ large

enough, Ik′ is either contained in or disjoint from Jn′ . But it cannot be

disjoint, since by hypothesis (setting n = k′) there is a k such that Ik ⊂ Jk′ .

Thus (Jj) ∼ (Ii). Transitivity and re�exivity are obvious.

Now let S′ be the set of admissible sequences modulo this equivalence,

and set S = S ∪ S′. To de�ne the circular order on S, we can represent

each point x ∈ S \ S′ by a constant sequence ([x, x]). If (Ii), (Jj), and (Kk)

represent distinct elements of S then for n large enough, In, Jn, and Kn are

disjoint. Choose x ∈ In, y ∈ Jn, and z ∈ Kn and set 〈(Ii), (Jj), (Kk)〉 =

〈x, y, z〉. It is easy to check that this is well-de�ned, order complete, and

minimal, and that S is dense in S; uniqueness follows immediately using

minimality. �

2. Universal circles

We would like to know which circularly ordered sets embed in the circle.

2nd countability is certainly necessary, and this turns out to be the only

requirement.

In practice, we'll use the following criterion to check for 2nd countability.

Recall that a gap in a circularly ordered set S is an ordered pair of points

x, y ∈ S with (x, y) = ∅.

Lemma 3.8. Let S be a circularly ordered set. Then S is 2nd countable

if and only if it is separable and has countably many gaps.
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Proof. Suppose that S is separable and has countably many gaps. Let

S0 ⊂ S be a countable, dense set that contains the endpoints of all gaps,

and let U be the collection of open intervals with endpoints in S0. We will

show that U is a basis for the order topology on S.

Suppose U ⊂ S is open, and let x ∈ U . Then x is contained in some open

interval (a, b) ⊂ U . We will �nd a′, b′ ∈ S0 such that x ∈ (a′, b′) ⊂ (a, b). If

(a, x) is nonempty then it contains some point in S0, so let a′ be this point.

Otherwise (a, x) is a gap, so a ∈ S0 and we can take a′ = a. A suitable b′

can be found similarly, so U is indeed a basis.

For the converse, suppose that S is 2nd countable. It is well-known that

2nd countable implies separable. To see that S has countably many gaps, let

U be a basis, which we may assume consist of open intervals. We will show

that for each gap (a, b) in S, there is a point b′ so that (a, b′) is contained

in U . Consequently, if there were uncountably many gaps then we will have

produced uncountably many distinct elements in U .

Indeed, suppose (a, b) is a gap, and let c ∈ S\{a, b}. Note that (a, c) is an

open set that contains b, so there is some interval I ∈ U with b ∈ I ⊂ (a, c).

Since (a, b) = ∅, such an interval must be of the form I = (a, b′) for some

b′ ∈ S. �

Example 3.9. Consider the double circle S := S1 × {0, 1}, where each

of the subspaces S1 × {0} and S1 × {1} have the usual circular order, and

each point in S1×{1} is immediately counterclockwise to the corresponding

point in S1 × {0}. This set has uncountably many gaps; for each s ∈ S1,

(s, 0) and (s, 1) form a gap.

Proposition 3.10. Let S be a 2nd countable, order complete, circularly

ordered set. Then S is order-isomorphic to a compact subset of the circle.

Proof. We'll construct a map f : S → S1.

By the previous lemma we can �nd a set S′ ⊂ S that is countable, dense,

and contains the endpoints of gaps. Enumerate this set as {si}∞i=1 = S′ and

de�ne f on S′ as in Lemma 3.4.
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If x ∈ S \ S′, choose a sequence of points xi ∈ S′ converging to x, and

de�ne f(s) = limi→∞ f(xi). To see that this is well-de�ned, recall that S

is 2nd countable, so we can �nd a nested sequence of intervals (ai, bi) ⊂ S

with ai, bi ∈ S′ that form a neighborhood basis for x. Since these are nested,

the sequence of intervals (f(ai), f(bi)) has a well-de�ned Hausdor� limit.

Let I be this limit, and note that I is in the complement of f(S′) since⋂
(ai, bi) = x. Therefore, by Remark 3.5, I must be a point.

It follows that f is well-de�ned and order-preserving, and injectivity is

obvious. We'll show that f(S) is closed. Suppose a ∈ S1 lies in the closure of

f(S). If f(S) approaches a from only one side, then a is an endpoint of some

complementary open interval, hence it lies in f(S) by the Remark 3.5. If

f(S) approaches a from both sides, let xi and yi be sequences so that f(xi)

and f(yi) approach a from the counterclockwise and clockwise direction,

respectively. Since S is order complete, there is a point x in
⋂
i[xi, yi], and

a = f(x).

Finally, continuity of f follows from the fact that f(S) is closed. If

(a, b) ⊂ S1 is an open interval, let a′ be the point in f(S) closest to a

on its clockwise side, and let b′ be the point in f(S) closest to b on its

counterclockwise side. Then f−1((a, b)) = (f−1(a′), f−1(b′)). �

Given an uncountable compact subset of the circle, we would like to

collapse complementary intervals to obtain the circle itself. Naively, one

might take the closure of each complementary interval and collapse this to a

point. However, some of these may intersect, so we'd have to combine them

before collapsing. We'd then have to combine any of these larger intervals

that intersect, etc., and it's not clear a priori that this process terminates.

We'll be more clever and use the Cantor-Bendixson theorem. See [19]

for a proof.

Theorem 3.11 (Cantor-Bendixson). Let Y be a closed subset of a sepa-

rable, completely metrizable topological space X. Then Y = T ∪ U where T

is closed and perfect and U is countable.
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Construction 3.12 (Universal circles). Let S be an uncountable, 2nd

countable circularly ordered set. Take the order completion S, which is an

uncountable compact subset of S1, and decompose it as S = T ∪U as in the

Cantor-Bendixson theorem. The universal circle S1
u is the image of the map

φ : S → S1
u

that collapses the closure of each interval in S1 \ T .

Note that points x, y ∈ S are collapsed in the universal circle if and only

if there are countably many points between them, i.e. either (x, y) or (y, x)

is countable.

3. Circularly ordered groups

The following section is not integral to our discussion, but it provides

examples of manifolds that admit no quasigeodesic �ows.

Definition 3.13. Let G be a group. A (left) circular order on G is a

circular order on the underlying set, such that the left action of any element

induces an order isomorphism G→ G. A group is (left) circularly orderable

if it admits a left circular order.

Example 3.14. The usual order on the circle is a (left- and right-

invariant) circular order for the multiplicative group S1 = {z ∈ C|z| = 1}.

The following well-known theorem is a useful characterization of circu-

larly orderable groups. A proof can be found in [4], Section 2.6.

Theorem 3.15. A countable group is circularly orderable if and only if

it admits a faithful representation to Homeo+(S1), the group of orientation-

preserving homeomorphisms of the circle.

One can check whether a group is circularly ordered in some cases and

for certain classes of groups, such as automatic groups [2]. If a group is not

circularly ordered then it cannot have any quasigeodesic or pseudo-Anosov

�ows, since the existence of such a �ow implies that the fundamental group

acts faithfully on the circle by Theorem 2.18.
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Example 3.16 ([4], Example 2.102). TheWeeks manifold is the smallest-

volume closed, orientable hyperbolic 3-manifold. One can show that its fun-

damental group is not circularly orderable, so it has no quasigeodesic �ows.



CHAPTER 4

Decompositions

A quasigeodesic �ow gives rise to decompositions D± of the planar orbit

space P by closed, unbounded subsets (see Section 3.1). These decompo-

sitions have some extra properties which we will discuss in Chapter 5, but

much of the machinery we'll need to analyze them makes sense in a more

general context.

Definition 4.1. An unbounded continuum is a closed, connected, un-

bounded subset of the plane.

Definition 4.2. An unbounded decomposition D of the plane P is a

collection of unbounded continua such that

(1) for any K,L ∈ D distinct, K ∩ L = ∅, and

(2) the union of all K ∈ D covers P .

Sierpinski proved [30] that no Hausdor� continuum can be decomposed

into countably many disjoint closed sets. If D is a nontrivial (i.e. containing

more than one element) unbounded decomposition of the plane, then an

arc γ between any two decomposition elements is a Hausdor� continuum.

We obtain a partition of γ by taking the intersection of each decomposition

element with γ. Applying Sierpinski's theorem:

Lemma 4.3. Every nontrivial unbounded decomposition of the plane con-

tains uncountably many elements.

The decompositions D+ and D− that come from a quasigeodesic �ow

are unbounded decompositions. Recall that if K ∈ D+ and L ∈ D−, then

K and L are eventually disjoint, i.e. the intersection K ∩ L is compact

(Lemma 2.17). This is all we need to work with ends, so we'll expand our

notion of a decomposition to handle the union D = D+ ∪ D−.
25
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Definition 4.4. A generalized unbounded decomposition of the plane P

is a collection of unbounded continua such that

(1') for any K,L ∈ D distinct, K ∩ L is compact, and

(2) the union of all K ∈ D covers P .

Unlike unbounded decompositions, generalized unbounded decomposi-

tions need not be uncountable. For example, the plane may be decomposed

into elements Ki, where each Ki is a disc of radius i together with a proper

ray. Of course, the generalized unbounded decomposition D = D+ ∪ D−

coming from a quasigeodesic �ow is uncountable, since D+ and D− are un-

countable.

Throughout this chapter, P will denote the plane and D a generalized

unbounded decomposition of P . The reader may think of P as the �owspace

of a quasigeodesic �ow with D the associated decomposition.

We'll summarize the results of this chapter. Suppose that D is a general-

ized unbounded decomposition of the plane P . Each decomposition element

K ∈ D has a natural set of ends, E(K), which we'll de�ne formally in

Section 1. In Section 2, we'll show that the set E(D) of all ends of decom-

position elements has a natural circular order. In Section 3 we'll show that

E(D) has the necessary topological properties to construct a universal circle

S1
u. Finally, in Section 4 we'll use the universal circle to construct the end

compacti�cation of P . This is a closed disc P with interior P and boundary

S1
u that behaves well with respect to the decomposition D.

1. Ends

Freudenthal [13] introduced the notion of the ends of a topological space.

We'll state the de�nition for metric spaces, since we'd like to be able to use

bounded sets instead of just compact sets.

Definition 4.5. Let X be a metric space. An end of X is a map ξ that

assigns to each bounded set A ⊂ X a component ξ(A) of X \ A, with the

condition that if A′ ⊃ A then ξ(A′) ⊂ ξ(A). The set of all ends of X is

denoted E(X).
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In the sequel we'll specialize to subsets of the plane. Suppose X ⊂,

and ξ ∈ E(X). Then ξ(A) is de�ned for bounded sets A ⊂ P by setting

ξ(A) = ξ(A ∩X).

Remark 4.6. The data of an end can be expressed in a countable man-

ner. In order to specify an end it is enough to keep track of its values on any

exhaustion of P by bounded sets. Indeed, �x such an exhaustion (Ai)
∞
i=0

and let Xi = ξ(Ai) for each i. If A ⊂ P is any bounded set, then for i

su�ciently large, Xi is disjoint from A. Hence ξ(A) is the component of

X \A containing Xi.

In practice, we will use this to explicitly specify an end. Let (Ai)
∞
i=0 be

a bounded exhaustion of P , and suppose we have a sequence (Xi)
∞
i=0 where

Xi is a component of X \ Ai and Xi+1 ⊂ Xi for each i. Then there is a

unique end ξ ⊂ E(X) with ξ(Ai) = Xi for all i.

Example 4.7. Suppose K ⊂ P is a proper ray in the plane. There is

exactly one end κ ∈ E(K). Indeed, let γ : [0,∞)→ P be a parametrization

of K. If D ⊂ P is a bounded open disc, let t be the last time that γ

intersects D. Then γ([t,∞)) is the only unbounded component of K \D, so

κ(D) = γ([t,∞)).

Example 4.8. Similarly, if K ⊂ P is the union of n proper rays that are

eventually disjoint, then K has exactly n ends, each corresponding to one of

the rays.

Lemma 4.9. Let K ⊂ P be an unbounded continuum in the plane and

let A ⊂ P be a bounded set. Then some component of K \A is unbounded.

Proof. Let P̂ = P ∪ {∞} be the one-point compacti�cation of P , and

let K̂ be the closure of K in P̂ , i.e. K̂ = K ∪ {∞}. We'll start by showing

that the connected component of K̂ \ A containing ∞ is not just {∞}. Let

{Ui}∞i=1 be a sequence of connected open neighborhoods of K̂ with intersec-

tion ∩iUi = K̂, and let D be a compact disc in P that contains the closure of

A. Fix a point p ∈ (K ∩D), and for each i let γi : [0, 1]→ P be an arc from

p to∞ contained in Ui. For each i let ti be the last time that γi intersects D,
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and set γ′i = γ([ti, 1]). After taking a subsequence, the γi Hausdor� converge

(in P̂ ) to some compact, connected set Z ⊂ K̂ \A that contains both p and

∞.

Now we'll show that some component of Z \ {∞} accumulates on ∞,

completing the proof. Fix a point q ∈ Z\{∞}. The collection of subcontinua

of Z that contain {q,∞} is inductively ordered by inclusion, so we can use

Zorn's lemma to produce a minimal element Z ′. We claim that Z ′ \ {∞} is

connected. Suppose on the contrary that Z ′ \ {∞} = B ∪ C, where B and

C are separated. If q ∈ B then B ∪{∞} is a continuum containing {q∪∞},

contradicting the minimality of Z ′. So we see that Z ′ \ {∞} is a connected,

unbounded subset of K that is disjoint from A. �

Corollary 4.10. Let K ⊂ P be an unbounded continuum in the plane.

Then K has at least one end.

Proof. Let (Ai)
∞
i=1 be an exhaustion of the plane by nested, bounded

open sets. By the preceding lemma we can �nd a sequence of sets Ki, where

Ki is an unbounded component of Ki−1 \Ai for each i. By Remark 4.6 this

determines an end κ ∈ E(K). �

The notion of an end behaves a bit less nicely for sets that are not closed.

For example, we'll produce a connected, unbounded open set with no ends.

Example 4.11. Let X be the set in R2 consisting of the line segment

X0 = [0, 1]×{0} together with the line segments Xn = {1/n}× [0, n] for all

integers n ≥ 1. Then every component of X \X0 is bounded, so E(X) = ∅.

By thickening each Xn we can make X open.

Let X ⊂ Y ⊂ P . If ξ is an end of X, there's a corresponding end ν of

Y such that ν(A) ⊃ ξ(A) for every bounded set A ⊂ P . Therefore, we can

de�ne a natural map

E(X)→ E(Y ),

that sends each ξ ∈ E(X) to its corresponding ν ∈ E(Y ).

We'll say that the set X ⊂ P is a tail of Y ⊂ P if X is an unbounded

component of Y \ A for some bounded set A ⊂ P . In this case, the map

E(X)→ E(Y ) is injective.
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In particular, any set that contains an unbounded continuum has at least

one end. The following lemma provides a converse of this for open sets.

Lemma 4.12. Let U ⊂ P be an open, connected set in the plane with at

least one end. If µ ∈ E(U), then there is properly embedded ray K ⊂ U such

that the end κ ∈ K maps to µ under the canonical map E(K)→ E(U).

Proof. Let (Ai)
∞
i=1 be an exhaustion of P by nested, bounded open sets.

Fix a point k0 ∈ U , and for each i let ki be a point in µ(Ai). For each i, let

Ki be an arc contained in µ(Ai−1) that connects ki−1 to ki. Concatenating

these arcs, we obtain a ray K. This ray is proper since it stays outside

of Ai−1 after it hits ki. We can turn it into an embedded ray by taking a

shortcut whenever it intersects itself. By construction, it is immediate that

κ ∈ E(K) maps to µ. �

We're particularly interested in unbounded continua and their comple-

ments. Note that ifK ⊂ P is an unbounded continuum then each component

U of P \ K is a disc. Indeed, if γ is a simple closed curve in U then the

compact region bounded by γ must be disjoint from K. So U is simply

connected, hence a disc by the uniformization theorem.

Lemma 4.13. Let K ⊂ P be an unbounded continuum and let U be a

connected component of P \K. Then U has at most one end.

Proof. Let µ1, µ2 ∈ E(U). By Lemma 4.12, there are proper rays L1

and L2 whose ends λ1 and λ2 map to µ1 and µ2 respectively. Let L be a

curve consisting of L1, L2, and an arc connecting them, and make L into an

embedded curve by taking shortcuts if necessary. By the Jordan-Schön�ies

theorem there is a homeomorphism of P taking L to the x-axis. Now K

is contained in, say, the lower half plane, so the entire upper half plane is

contained in U . It is now obvious that, for any bounded set A ⊂ P , λ1(A)

and λ2(A) are contained in the same component of U \ A. Indeed, we can

connect λ1(A) to λ2(A) with an arc in the upper half plane. Therefore,

µ1 = µ2. �

It is possible for U to be unbounded, but still have no ends. For example,

let U ⊂ P be the no-ended open set in Example 4.11 and let K = P \ U .
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On the other hand, ifK is an element of an unbounded decomposition D,

then every component U of P \K is 1-ended, since some other decomposition

element L is contained in U .

2. Circular orders

Let C be a collection of unbounded continua in the plane that are even-

tually disjoint. We'll de�ne the set of ends of C to be

E(C) :=
⋃
K∈C
E(K).

In this section we'll de�ne a circular order on E(C).

Let's sketch the de�nition of the circular order before going into details.

Refer to Figure 1. If κ, λ, µ ∈ E(C) we can �nd a bounded open disc D ⊂ P

such that K = κ(D), L = λ(D), and M = µ(D) are disjoint unbounded

continua, and we can ensure that no one separates the other two. Decide

whether the triple K,L,M is positively or negatively ordered as follows: Let

γ be an arc from K to M that avoids L. If L is on the positive (right) side

of γ, we'll set 〈K,L,M〉 = +1, and if it is on the negative side we'll set

〈K,L,M〉 = −1. Finally, set 〈κ, λ, µ〉 = 〈K,L,M〉.

Our task in the rest of this section is to de�ne this more carefully. In

order to see that 〈, , 〉 de�nes a circular order on E(C), we must show that it

does not depend on the choice of γ and D, and that it satis�es the cocycle

condition on triples (see De�nition 3.1).

K

L

M

γ

Figure 1. 〈K,L,M〉 = +1
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2.1. For collections of unbounded continua. A collection C of dis-

joint unbounded continua in the plane is said to be mutually nonseparating

if there are no K,L,M ∈ C such that K separates L from M in the plane.

We'll start by de�ning a circular order on such a collection.

Lemma 4.14. Let K1,K2, ...,Kn ⊂ P be a disjoint, mutually nonsepa-

rating, unbounded continua in the plane. There is exactly one component

C(K1, ...,Kn) of P \ (
⋃
iKi) that limits on every one of the Ki. Every other

component limits only one of the Ki.

Proof. The Ki are presumed to be mutually nonseparating, so for each

i there is some component Ui of P \ Ki that contains every Kj , for j 6= i.

We'll expand the Ki by setting K ′i := P \Ui for each i. By [36], Thm. I.9.11

1, each K ′i is connected.

Let

C :=

n⋂
i=1

Ui = P \ (

n⋃
i=1

K ′i.

Observe that C is connected, since each K ′i is nonseparating, and the

union of �nitely many disjoint nonseparating sets in the plane is nonsep-

arating ([36], Thm. II.5.28a). It is maximal among connected subsets of

P \ (
⋃
iKi) since any x ∈ P \ (

⋃
iKi) that is not in C is separated from C

by one of the Ki. Therefore, C is a component of P \ (
⋃
iKi), and it clearly

limits on every one of the Ki, so we de�ne

C(K1, ...,Kn) := C.

It is easy to see that every other component of P \ (
⋃
iKi) is just one of

the non-Ui components of P \Ki for some i. �

We'll use the notation C(· · · ) regularly in what follows.

Definition 4.15. Let K and M be closed subsets of the plane P . An

arc from K to M is an embedded, oriented arc γ with initial point in K,

terminal point in M , and whose interior γ̊ is disjoint from both K and M .

1If C is a connected subset of a connected space M and A is a component of M \ C,

then M \A is connected.
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If K and M are disjoint unbounded continua, then any arc from K to

M has interior in C(K,M), and it separates C(K,M) into two discs.

Definition 4.16. Let K,M ⊂ P be disjoint unbounded continua in the

plane, and let γ be an arc from K to M . We de�ne C+(γ;K,M) to be the

component of C(K,M) \ γ on the positive side of γ and C−(γ;K,M) to be

the component on the negative side. If the sets K and M are implicit then

we'll use the abbreviation C±(γ) for C±(γ;K,M).

We note:

Lemma 4.17. Let K,M ⊂ P be disjoint unbounded continua in the plane,

and let γ be an arc from K to M . Then C+(γ) and C−(γ) are both un-

bounded.

Proof. Suppose that C+(γ) is bounded. Then Fr C+(γ) = K ′∪γ∪M ′,

where K ′ and M ′ are bounded subsets of K and M respectively. 2 Choose

a point p in the interior of C+(γ). Neither K ′ nor γ separate p from ∞

in P̂ = P ∪ {∞}, and K ′ ∩ γ is connected. So K ′ ∪ γ does not separate p

from ∞ by [36], Thm II.5.29. 3 Similarly, neither K ′ ∪ γ nor L′ separate p

from ∞ so (K ′ ∪ γ) ∩ L′ = Fr C+(γ) does not separate p from ∞. This is a

contradiction, so C+(γ) must be unbounded. The same argument works for

C−(γ). �

Lemma 4.18. Let K,L,M ⊂ P be disjoint, mutually nonseparating un-

bounded continua. Then L ⊂ C(K,M).

Proof. Note that C(K,L,M) limits on both K and M , so it must be

contained in C(K,M). But C(K,L,M) also limits on L, so L must also be

in C(K,M). �

Therefore, if K,L,M are disjoint unbounded continua and γ is an arc

from K to M that avoids L, then L is contained in either C+(γ;K,M) or

2Recall that if A is a subspace of a topological space X, the frontier of A is Fr A =

cl(A) ∩ cl(X \A).
3If x and y are points in S2 which are not separated by either of the closed sets A

and B, and A ∩B is connected, then x and y are not separated by A ∪B.
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C−(γ;K,M). We now have all the notation we need to de�ne a circular

order on a triple of unbounded continua.

Definition 4.19. Let K,L,M ⊂ P be disjoint, mutually nonseparating,

unbounded continua in the plane. Choose an arc γ from K toM that avoids

L. De�ne

〈K,L,M〉 = +1

if L ⊂ C+(γ;K,M) and

〈K,L,M〉 = −1

if L ⊂ C−(γ;K,M)

Before we prove that this is well-de�ned, we need to understand what it

looks like when we have multiple arcs between two unbounded continua.

Lemma 4.20. Let K,M ⊂ P be disjoint unbounded continua in the plane

and let γ1, γ2 be disjoint arcs from K to M . We can relabel γ1 and γ2 as the

�outer arc� γ+ and �inner arc� γ− in such a way that

(1) γ+ ⊂ C+(γ−) and γ− ⊂ C−(γ+);

(2) C(K,M) \ (γ+ ∪ γ−) consists of three components:

C+(γ+),

C−(γ+) ∩ C+(γ−),

and

C−(γ−);

(3) C+(γ+) ⊂ C+(γ−) and C−(γ−) ⊂ C−(γ+); and

(4) C−(γ+) ∩ C+(γ−) has no ends.

Proof. If γ1 ⊂ C+(γ2), then label γ+ := γ1 and γ− := γ2. If γ2 ⊂

C+(γ1), then label γ+ := γ2 and γ− := γ1. We need to show that

γ− ⊂ C−(γ+).

If on the contrary γ− ⊂ C+(γ+), then there is an oriented arc λ from γ−

to γ+ whose interior λ̊ lies on the positive side of both γ+ and γ−. Let λ′

be an arc from γ+ ∩K to γ− ∩K that avoids M . Let c be the simple closed
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K

M

γ+ γ−

Figure 2. An unbounded middle region.

curve that follows λ, then γ+ backwards to where it meets K, then λ′, and

�nally γ− to where it meets λ. Then c separatesM ∩γ+ fromM ∩γ−, which

is impossible.

This completes the proof of (1). Statements (2) and (3) follow easily.

Finally, suppose that C−(γ+)∩C+(γ−) has an end. Then by Lemma 4.12

it contains a properly embedded ray λ : [0,∞) → P . Let ν be an arc that

runs from γ+ to λ(0), and then to γ−. Either K orM is on the same side of ν

as λ, say K is. Let λ′ be an arc from λ(0) toM , and observe thatM ∪λ∪λ′

separates γ+ from γ−. Therefore, it separates γ+ ∩K from γ− ∩K, which is

impossible. �

Remark 4.21. Let K,M ⊂ P be disjoint unbounded continua in the

plane, and let Γ be a collection of disjoint arcs from K to M . Then Γ

is naturally endowed with a linear order: for γ, γ′ ∈ Γ, de�ne γ′ > γ if

γ′ ⊂ C+(γ). This is well-de�ned by the preceding lemma.

Remark 4.22. While the middle section C−(γ+) ∩ C+(γ−) in the pre-

ceeding lemma has no ends, it may be unbounded. For example, see Figure 2

where K is upper rectangle with the no-ended open set of Example 4.11 cut

out.

Proposition 4.23. Let C be a collection of disjoint, mutually nonsepa-

rating unbounded continua in the plane. Then 〈, , 〉 de�nes a circular order

on C.
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Proof. Let K,L,M ∈ C be distinct. We will start by showing that

〈K,L,M〉 does not depend on the choice of γ. Note that if γ1 and γ2 are

arcs from K to M then we can �nd another arc from K to M disjoint from

both of them. So we may assume without loss of generality that γ1 and γ2

are disjoint. Relabel the arcs according to Lemma 4.20 and suppose that

L ⊂ C+(γ+). By part (4) of the lemma, L is contained in either C+(γ+) or

C−(γ−), so 〈K,L,M〉 is well-de�ned by part (3) of the lemma.

Next we'll show that

〈K,L,M〉 = (−1)sgn(τ)〈τ(K), τ(L), τ(M)〉,

for a permutation τ of (K,L,M).

It is immediate that 〈K,L,M〉 = −〈M,L,K〉, so we just need to show

that 〈K,L,M〉 = −〈K,M,L〉. Indeed, assume that 〈K,L,M〉 = +1, i.e.

that L ⊂ C+(γ) for some arc γ from K to M . We can �nd an arc γ′ from

K to M that intersects L and lies on the positive side of γ. Let γ′′ be the

sub-arc of γ′ that runs from K to L. Then γ is on the negative side of γ′′,

hence so is M . Therefore, 〈K,M,L〉 = −1 as desired.

It remains to show that the circular order is compatible on quadruples,

i.e. to verify the cocycle condition. Let K,L,M,N ∈ C. Suppose that

〈K,L,M〉 = +1 and 〈K,N,M〉 = −1. Choose an arc γ from K to M that

avoids L and N . Then L ∈ C+(γ) while N ∈ C−(γ). Let γ′ be an arc

from L to N , which we can choose to intersect γ only once and transversely.

Then the initial segment of γ is on the negative side of γ′ hence so is K.

Therefore we have 〈L,K,N〉 = −1 and 〈K,L,N〉 = +1 as desired, and

similarly 〈L,M,N〉 = +1. �

2.2. For ends. We can now de�ne a circular order on the ends of a

generalized unbounded decomposition.

Definition 4.24. Let C be a collection of eventually disjoint unbounded

continua in the plane, and let κ1, κ2, κ3, ... ∈ E(C) be distinct ends. A

bounded set A ∈ P is said to distinguish the κi if κ1(A), κ2(A), κ3(A), ...

are disjoint and mutually nonseparating.
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We can always �nd a distinguishing set for a �nite collection of ends.

Indeed, if κ1, κ2, ..., κn are distinct, one can choose a bounded open disc D′

so that the κ1(D′), κ2(D′), ..., κn(D′) are disjoint. Then any disc D ⊃ D′

that intersects all of the κi(D
′) distinguishes.

Definition 4.25. Let C be a collection of eventually disjoint unbounded

continua in the plane P , and let κ, λ, µ ∈ E(C) be distinct ends. Choose a

disc D that distinguishes these ends and de�ne

〈κ, λ, µ〉 = 〈κ(D), λ(D), µ(D)〉.

Proposition 4.26. Let C be a collection of eventually disjoint unbounded

continua in the plane P . Then 〈·, ·, ·〉 de�nes a circular order on E(C).

Proof. We only need to check that 〈κ(D), λ(D), µ(D)〉 does not depend

on the choice of D.

Let D and D′ be bounded open discs that distinguish the ends κ, λ, µ ∈

E(D). Let K = κ(D), L = λ(D), and M = µ(D) and de�ne K ′, L′, and

M ′ similarly. Without loss of generality we may assume that D ⊂ D′, which

implies that K ′ ⊂ K, etc.

Suppose that 〈K,L,M〉 = +1. Let γ be an arc from K toM that avoids

L. Then L is on the positive side of γ, hence so is L′. So we can �nd an

arc l from γ to L′ whose interior lies on the positive side of γ. Let γ′ be an

arc that runs from K ′ to the initial point of γ, follows γ, and then runs to

M ′. We can choose this so that the �rst and last segments avoid L∪ l. Then

γ′ is an arc from K ′ to M ′, and the fact that l is on the positive side of γ′

exhibits that L′ is as well. Therefore, 〈K ′, L′,M ′〉 = +1 as desired. �

Remark 4.27. Suppose that K, L, and M are disjoint, mutually non-

separating unbounded continua. Then 〈K,L,M〉 = 〈κ, λ, µ〉 for any ends

κ ∈ E(K), λ ∈ E(L), and µ ∈ E(M).

2.3. Properties of the circular order. Two pairs x, y and z, w of

points in a circularly ordered set S are linked if either z ∈ (x, y) and w ∈

(y, x), or w ∈ (x, y) and z ∈ (y, x). Two subsets A,B ⊂ S are linked if there

are x, y ∈ A and z, w ∈ B that are linked. A subset A ⊂ S separates the
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subsets B,C ⊂ S if there are points a, a′ ∈ A such that B ⊂ (a, a′) and

C ⊂ (a′, a). Note that this is not the same as topological separation in S

with the order topology.

The separation properties of disjoint unbounded continua can be detected

by their ends:

Proposition 4.28. Let K,L ⊂ P be disjoint unbounded continua in the

plane. Then E(K) and E(L) do not link in the canonical circular order on

E({K,L}).

Let K,L,M ⊂ P be disjoint unbounded continua in the plane. Then K

separates L from M if and only if E(K) separates E(L) from E(M) in the

canonical circular order on E({K,L,M}).

Proof. For the �rst statement, let κ1, κ2 ∈ E(K) and λ1, λ2 ∈ E(L).

Let D be a bounded open disc distinguishing the κi(D) and λj(D) and

choose an oriented arc γ from κ1(D) to κ2(D) that avoids L. Then λ1(D)

and λ2(D) are on the same side of γ since they are both contained in L, and

L is connected and disjoint from γ. This applies for any κ1, κ2 ∈ E(K) and

λ1, λ2 ∈ E(L), so E(K) and E(L) do not link.

One direction in the second statement follows from the �rst. Suppose

that K does not separate L from M . Then we can choose an arc γ from L

to M disjoint from K, and let X = L∪ γ ∪M . The inclusion (L∪M) ↪→ X

induces an order-preserving bijection between E(L)∪ E(M) and E(X). Now

X and K are disjoint unbounded continua, so by the �rst statement their

ends do not link, hence E(K) does not separate E(L) from E(M).

It remains to show that if K separates L from M then there are ends

κ1, κ2 ∈ E(K), λ ∈ E(L), and µ ∈ E(M) such that λ ∈ (κ1, κ2) and µ ∈

(κ2, κ1). Let γ be an arc from L to M , and let γ′ be the minimal connected

sub-arc that contains γ ∩K. Set

K ′ := K ∪ γ′

and

K ′± := K ′ ∩ C±(γ;L,M).
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Note that the K ′± are both closed and connected and neither one separates

L from M . Also, K ′+ ∩K ′− is connected, so in order for K ′ = K ′+ ∪K ′− to

separate L fromM , both K ′+ and K ′− must be unbounded by [36], Theorem

II.5.23. 4 So we can choose κ1 to be any end of K ′+ and κ2 to be any end of

K ′−, where we're using the bijection E(K ′+ ∪K ′−)→ E(K). �

Lemma 4.29. Let K ⊂ P be an unbounded continuum in the plane, and

let κ1, κ2, κ3 ∈ E(K) be distinct ends, ordered counterclockwise. Suppose

U ⊂ P is a connected, bounded open set that distinguishes κ1, κ2, and κ3.

Then U distinguishes κ2 from any end of K in (κ3, κ1).

Proof. Let κ4 ∈ (κ3, κ1) and suppose that U does not distinguish κ2

from κ4. That is, κ2(U) = κ4(U). Then by Proposition 4.28, κ2(U) separates

κ1(U) from κ3(U), contradicting the assumption that U distinguishes. �

Remark 4.30 (Singular foliations). A singular foliation of the plane is

an unbounded decomposition, where each decomposition element consists of

�nitely many properly embedded rays that share an initial point. It's easier

to work with the circular order on the ends of a singular foliation, since ends

are represented by properly embedded rays.

Let K, L, and M be properly embedded rays in the plane P . Choose an

embedded circle S ⊂ P that intersects all three, and orient S consistently

with P . Let k, l, and m be, respectively, the last intersections of K, L,

and M with S. Then k, l,m has a circular order inherited from S, and this

determines the circular order of K,L,M .

3. Universal circles

We now have a canonical circular order on the ends of a generalized

unbounded decomposition, and we'd like to form a universal circle using

Construction 3.12. First, we'll need to know a couple of things about the

topology of the set of ends.

Proposition 4.31. Let C be a collection of eventually disjoint unbounded

continua in the plane. Then E(C) is separable.

4If x and y are points of S2 which are not separated by either of the closed sets A

and B, and A ∩B is connected, then x and y are not separated by A ∪B.
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Proof. Fix an exhaustion of the plane P by a nested sequence of bounded

open discs Di. That is, Di−1 ⊂ Di for each i and
⋃
iDi = P . For each i,

consider

P i :=
⋃
K∈C

KDi ,

where KDi is the union of the unbounded components of K \Di. Recall that

a subspace of a separable space is separable. So P i is separable for each i,

and we can choose a countable set {pij}∞j=1 that is dense in P i. For each i

and j let Ki
j ∈ C be the element containing pij , and choose an end κij so that

κij(Di) is the component of Ki
j \Di containing p

i
j . We will show that

E ′ = {κij}i,j

is dense in E(C).

Let κ, µ ∈ E(C), and assume that (κ, µ) contains at least one end, λ.

We will show that κij ∈ (κ, µ) for some i, j. Choose a bounded disc D that

distinguishes κ, λ, and µ and set

K = κ(D),

M = µ(D).

Let γ be an arc from K to M and choose i large enough so that Di

contains D and γ. Set C+ := C+(γ;K,M). Now C+ ∩ P i is open as a

subset of P i, and it is nonempty because it contains λ(Di). So for some j

there is a pij ∈ C+. The corresponding end κij is contained in (κ, µ), since

κij(Di) is contained in C+. �

If our unbounded decomposition were actually a singular foliation, then

we could work with the circular orders more concretely using embedded

circles as in Remark 4.30. Suppose K, L, and M are properly embedded

rays. Choose an embedded circle S ⊂ P that intersects all three, and let

k, l,m ∈ S be the last intersections of K,L,M with S. If 〈K,L,M〉 = +1,

then the oriented sub-arc (k, l) ⊂ S is outermost, in the sense that S never

crosses between K and L on the positive side of (k, l). Similarly, (l,m) is the

outermost sub-arc between L and M , and (m,n) is the outermost sub-arc

between M and N .
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In general, there's no natural way to de�ne the last intersection between

an unbounded continuum and a circle, but we can still �nd outermost sub-

arcs. The �rst of the following two lemmas can be taken as a de�nition

of outermost sub-arcs, and the second shows that they behave as expected.

We'll use them in the proof of Lemma 4.34.

Lemma 4.32. Let K,M ⊂ P be disjoint unbounded continua in the plane,

and let S ⊂ P be a positively oriented embedded circle that intersects both K

and M . There is a unique sub-arc γo ⊂ S running from K to M (with the

orientation inherited from S) such that every component of S ∩ C+(γo) has

both ends in either K or M .

We'll call γo the outermost sub-arc from K to M .

Proof. The components of S \ (K ∪M) form a countable collection of

oriented open arcs. Let Γ be the collection of closures of these arcs. We will

partition

Γ = ΓK ∪ ΓM ∪ ΓK,M ∪ ΓM,K

where

ΓK = {sub-arcs from K to itself},

ΓM = {sub-arcs from M to itself},

ΓK,M = {sub-arcs from K to M},

and

ΓM,K = {sub-arcs from M to K}.

Let Γs = ΓK,M ∪Γ−M,K , where the minus means to reverse the orientation

of each arc (the �s� stands for �spanning�). As in Remark 4.21, Γs is endowed

with a linear order. We will show that Γs has a maximal element, and that

this maximal element lies in ΓK,M rather than Γ−M,K .

Suppose Γs has no maximal element. Then we can �nd a sequence γ0 <

γ1 < γ2... of arcs in Γs that dominates Γs, in the sense that for every γ ∈ Γs

there exists j such that γ < γj . Take a Hausdor� convergent subsequence

of the γi and let γ∞ be the limit. Although γ∞ is a sub-arc of S, it is not

necessarily an element of Γ since γ̊∞ might intersect K orM . However there
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is at least one sub-arc γ ⊂ γ∞ from K to M or M to K. But then γ ∈ Γs,

and γi < γ for all i, a contradiction. Hence we can �nd a maximal element

γo ∈ Γs.

We now turn to showing that γo ∈ ΓK,M rather than Γ−M,K , i.e. that γo

runs from K to M with the orientation inherited from S. Enlarge K and M

to

K ′ = K ∪ (
⋃
γ∈ΓK

γ)

and

M ′ = M ∪ (
⋃

γ∈ΓM

γ).

Note thatK ′ andM ′ are still disjoint unbounded continua, so C := C+(γo;K
′,M ′)

is unbounded by Lemma 4.17. Note that C is disjoint from S, so if γo were

oriented fromM toK then C would be contained in the bounded component

of P \ S, which is impossible. �

Lemma 4.33. Let K,L,M,N ⊂ P be disjoint, mutually nonseparating

unbounded continua in the plane, ordered counterclockwise. If S ⊂ P is an

embedded circle intersecting all four, then the outermost sub-arc from K to

L is disjoint from the outermost sub-arc from M to N .

Proof. Suppose otherwise. Then without loss of generality we have

an arc γ : [0, 1] → P with an initial segment γ1 := γ([0, x]) that is the

outermost sub-arc from K to L, and a terminal segment γ2 := γ([y, 1]) that

is the outermost sub-arc from M to N , and these two intersect, i.e. y < x.

Let's replace M with a tail M ′ that is disjoint from γ. For example,

choose any µ ∈ E(M) and let M ′ = µ(D) for a bounded open disc D that

contains γ. By hypothesis, 〈K,M,L〉 = −1, so M ′ is on the negative side of

γ1.

On the other hand, 〈K,M,N〉 = +1 by hypothesis, and γ is an arc from

K to N , so M ′ must be on the positive side of γ. But M ′ can't be on the

positive side of γ and the negative side of γ1 ⊂ γ. �

Proposition 4.34. Let C be a collection of eventually disjoint unbounded

continua in the plane. Then E(C) has countably many gaps.
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Proof. Fix an exhaustion {Di}∞i=1 of P by nested bounded open discs

and let Sji = ∂Di for all i > j (j is a dummy variable, i.e. for each j we want

to keep a copy of every circle outside of Dj). If (κ, λ) is a gap then let n be

the �rst integer such that Dn distinguishes κ from λ, and let k be the �rst

integer such that Snk intersects both κ(Dn) and λ(Dn). We will associate the

gap (κ, λ) with the open interval Uκ,λ ⊂ Snk whose closure is the outermost

arc from κ(Dn) to λ(Dn).

The disjoint union ⋃
i>j

Sji

is second countable, so any collection of disjoint open subsets is countable.

Distinct gaps correspond to disjoint open intervals in
⋃
Sji by Lemma 4.33,

hence there are only countably many gaps. �

Applying Lemma 3.8, we have:

Corollary 4.35. Let C be a collection of eventually disjoint unbounded

continua in the plane. Then E(C) is 2nd countable.

This �lls a gap in the literature, as 2nd countability had not previously

been shown.

Construction 4.36 (Universal circles). Let D be a generalized un-

bounded decomposition of the plane P , and suppose that E(D) is uncount-

able. Recall that this is immediate if D is a (non-generalized) unbounded

decomposition by Lemma 4.3. The universal circle S1
u of D is simply the

universal circle for E(D) that we built in Construction 3.12.

Example 4.37. It is appealing to think that the ends of a decomposition

element would map to a closed set in the universal circle, but this is not

generally true. For example, the set in Figure 3 has no rightmost end.

4. The end compacti�cation

Let's �x a generalized unbounded decomposition D of the plane P , and

let S1
u be its universal circle. We will show that there is a natural topology

on the set P := P ∪ S1
u that makes it into a closed disc with interior P and

boundary S1
u.
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Figure 3. An unbounded continuum with no rightmost end.

Definition 4.38. Let D be a generalized unbounded decomposition of

the plane P . A subordinate set is a tail of an element of D. That is, K is a

subordinate set if there is a κ ∈ E(D) and a bounded open disc D ⊂ P so

that K = κ(D).

If K = κ(D) is a subordinate set, let K ′ be the decomposition element

containing K, i.e. K ′ = κ(∅). Then E(K) is naturally identi�ed with a

subset of E(K ′).

The �peripheral sets� in the following de�nition will serve as neighbor-

hoods in P of points on the boundary circle S1
u. Here φ : E(D)→ S1

u is the

natural map that takes ends to their images in the universal circle.

Definition 4.39. Let D be a generalized unbounded decomposition of

the plane P . Fix subordinate sets K and L, and let γ be an arc from K

to L. Let I be the maximal open interval in S1
u \ φ(E(K) ∪ E(L)) that runs

from φ(E(K)) to φ(E(L)). The peripheral set determined by K,L, and γ is

de�ned to be

O(K,L, γ) := I ∪ C+(γ;K,L).

Remark 4.40. It is possible that O(K,L, γ)∩S = ∅, i.e. that the interval

I is empty. For example, let K be the set in Example 4.37 and L its mirror

image.

Construction 4.41 (End Compacti�cation). Let D be a generalized

unbounded decomposition of the plane P , and let S1
u be its universal circle.

The end compacti�cation of P with respect to D is the set

P := P ∪ S1
u
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with the topology generated by open sets in P and peripheral sets.

We'll start by showing how to construct a peripheral set to particular

speci�cations.

Lemma 4.42. Let D be an unbounded decomposition of the plane P with

universal circle S1
u. Let a, b, c, d ∈ S1

u be positively ordered. Then there is

a peripheral set O such that (b, c) ⊂ (O ∩ S1
u) ⊂ (a, d). In addition, O can

be chosen to be disjoint from any bounded set A ⊂ P , and contained in any

peripheral set O′ as long as O′ ∩ S1
u ⊃ [b, c].

Proof. Ends are dense in S1
u, so we can choose ends κ1, κ, κ2, λ1, λ, λ2

positively ordered such that the κ's have image in (a, b) and the λ's have

image in (c, d). Let D be a bounded open disc that distinguishes the κ's

and λ's. This way, K = κ(D) and L = λ(D) have ends in (a, b) and (c, d)

respectively by Lemma 4.29. 5 Connect K and L with an arc γ and set

O = O(K,L, γ).

If we're provided with a bounded set A and a peripheral set O′, start by

shrinking (a, d) so that it's contained in O′∩S1
u. Suppose O

′ = O(K ′, L′, γ′),

where K ′ = κ′(DK′) and L′ = λ′(DL′). Choose D so that it contains DK′ ,

DL′ , A, and γ′, and choose γ to lie inside of O′. Then O will be contained

in O′ and disjoint from A as desired. �

Now we can get a handle on the topology on P .

Lemma 4.43. Let P be the end compacti�cation of the plane P with

respect to the generalized unbounded decomposition D. Then

(1) the open sets in P and peripheral sets form a basis for P ,

(2) P is 1st countable,

(3) the inclusion maps P ↪→ P and S1
u ↪→ P are homeomorphisms onto

their images, and

5If we hadn't chosen the �helper ends� κ1, κ2 and λ1, λ2, then K and L would still

have some ends in (a, b) and (c, d) respectively, but they might also have ends outside of

these intervals. The helper ends ensure that we choose D large enough to cut o� these

extra ends.
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(4) P is compact.

Proof. (1) � (2): Let p ∈ S1
u. We'll start by constructing a neighbor-

hood basis for p that consists of peripheral sets.

Fix an exhaustion of the plane by bounded open discs Di, and a sequence

of open intervals (ai, bi) ⊂ S1
u such that [ai+1, bi+1] ⊂ (ai, bi) for each i, and⋂

i(ai, bi) = p. Using Lemma 4.42 we can �nd a sequence of peripheral sets

Oi = O(Ki, Li, γi) such that [ai+1, bi+1] ⊂ (Oi ∩ S1
u) ⊂ (ai, bi), Oi+1 ⊂ Oi,

and Oi ∩Di = ∅ for each i.

If O′ = O(K ′, L′, γ′) is any peripheral set containing p, then the Oi are

eventually contained in O′. Indeed, simply choose i so that (Oi ∩ S1
u) ⊂

(O′ ∩ S1
u) and Di ⊃ (DK′ ∪ γ′ ∪ DL′), where DK′ and DL′ are the discs

determining the subordinate sets K ′ and L′.

To prove (1) and (2) it su�ces to note that if U and V are peripheral

and p ∈ U ∩ V ∩ S1
u then for large enough i, p ∈ Oi ⊂ (U ∩ V ).

(3): It is clear that P ↪→ P is a homeomorphism onto its image. For

S1
u ↪→ P , it is clear that the preimage of an open set is open. Conversely,

if U ⊂ S1
u is open then for each p ∈ U we can �nd a peripheral set O with

p ∈ (O ∩ S1
u) ⊂ U .

(4): Let U be an open cover of P . Since S1
u is compact we can �nd

a �nite subcollection {U1, U2, ..., Un} ⊂ U that covers S1
u. After reordering

and taking a re�nement we can assume that each Ui is a peripheral set

Ui = O(Ki, Li, γi) such that Ki, Li−1,Ki+1, Li is positively ordered for all i

(mod n + 1). Further, we can assume that the arcs γi do not intersect the

Kj and Lk for any i, j, k, and that γi intersects γi+1 only once, transversely,

for all i. See Figure 4.

We can concatenate the sub-arcs between intersections of the γi to form

a simple closed curve γ. Points on the negative side of γ are contained in at

least one of the Ui and the positive side of γ is compact. So we can �nd a

�nite sub-cover of U that covers this compact piece and the rest is covered

by the Ui. �

The end compacti�cation behaves well when we take closures of decom-

position elements.
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P

Ki

Li−1

Ki+1

Li

γi

γi−1

γi+1

...

...

Figure 4. A re�nement covering S.

Lemma 4.44. Let P be the end compacti�cation of the plane P with

respect to the generalized unbounded decomposition D. If K ∈ D then

clP (K) = K ∪ clS1
u
(φ(E(K)),

where φ is the natural map from E(D) to S1
u.

Proof. It is clear that clP (K) ∩ P = K, so let p ∈ S1
u. If p is not in

clS1
u
(φ(E(K))) then we can �nd a peripheral set containing p that does not

intersect K, so p /∈ clP (K). �

We're ready for the punchline of the chapter.

Theorem 4.45. Let D be a generalized unbounded decomposition of the

plane P . The end compacti�cation P is homeomorphic to a closed disc with

interior P and boundary S1
u. Any homeomorphism of P that preserves D

extends to a homeomorphism of P .

Proof. The second statement follows from the fact that the image of

a peripheral set under a D-preserving homeomorphism is again a peripheral

set. To prove that P is a closed disc we will use the following characterization

of the disc. An arc γ with endpoints a, b is said to span a set S ⊂ X if a, b ∈ S

and γ̊ ⊂ X \ S.

Theorem 4.46 (Zippin, [36], Theorem II.5.1). Let X be a connected,

compact, 1st countable Hausdor� space. Suppose that X contains a 1-sphere
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S such that some arc in X spans S, every arc that spans S separates X,

and no closed proper subset of an arc spanning S separates X. Then X is

homeomorphic to a closed 2-disc with boundary S.

It is clear that P is connected and Hausdor� and we have already shown

that it is 1st countable and compact. Let's check the remaining conditions.

Existence of a spanning arc: Fix p ∈ S1
u. Let {Oi}∞i=1 be nested

sequence of peripheral sets such that ∩iOi = p, and Oi = O(Ki, Li, γi) for

each i. Choose a point pi ∈ γi for each i and let ci be an arc that connects

pi to pi+1 with interior in Oi \ Oi+1. The concatenation of these arcs is a

proper ray whose closure is an arc from c0 to p. Construct two such rays

and connect their endpoints with an arc in P .

Spanning arcs separate: Let γ : [0, 1] → P be an arc spanning S1
u

with initial point a and terminal point b. Note that γ̊ is a properly embedded

curve in P so it separates P into two unbounded discs by the Jordan curve

theorem. We will �nd subordinate sets K and L that are separated by γ.

Let Oa = O(Ka, La, γa) and Ob = O(Kb, Lb, γb) be disjoint peripheral

sets containing a and b respectively, and let (x, y) = Oa ∩ S1
u and (z, w) =

Ob ∩ S1
u. There is a t0 such that γ([0, t0]) ⊂ Oa, since otherwise γ would

intersect either Ka or La in some proper in�nite sequence, implying that γ

accumulates on some point in either clP (Ka) or clP (La). Similarly, there is

a t1 such that γ([t1, 1]) ⊂ Ub.

Therefore, the compact sub-arc γ′ = γ([t0, t1]) has the property that

γ \ γ′ is contained in Oa ∪ Ob. So we can �nd a subordinate set K disjoint

from γ with ends in (y, z): just choose a subordinate set whose ends lie

in (y, z) that is disjoint from Ka, La, γa,Kb, Lb, γb and γ
′. Similarly, �nd a

subordinate set L with ends in (w, x) that is disjoint from γ.

Suppose that γ did not separate K from L. Then we could �nd an arc µ

from K to L disjoint from γ. But then b ∈ O(K,L, µ) while a /∈ O(K,L, µ),

implying that γ must intersect either K, L, or µ, a contradiction. So γ must

separate K from L.

No subset of a spanning arc separates: Let γ be a spanning arc

and let γ′ = γ \ {x} for some point x.
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Suppose x ∈ S1
u. Then γ′ separates P into two discs, one containing a

subordinate set K and one containing a subordinate set L (as above). Note

that S1
u \ γ′ is connected, and clPK and clPL both intersect S1

u \ γ′. Hence

P \ γ′ is connected.

If on the other hand x ∈ P , then P \ γ′ is connected. But P \ γ′ is

contained in clP (P \ γ′), hence connected. �



CHAPTER 5

Quasigeodesic Flows

Now that the technical machinery of Chapters 3 and 4 is out of the

way, we can reprise our main topic. Throughout this chapter, M will be a

closed hyperbolic 3-manifold with a quasigeodesic �ow F. The �owspace P

is homeomorphic to the plane, and it comes with unbounded decompositions

D+ and D−. The union of these,

D := D+ ∪ D−,

is a generalized unbounded decomposition. We'll write

E± := E(D±)

and

E := E(D).

The fundamental group π1(M) acts on H3 by deck transformations, and this

induces an action on P via the quotient map

π : H3 → P.

The decompositions D± and D are preserved by this action

Calegari's universal circle is de�ned to be the universal circle S1
u built

from D (Construction 4.36), which inherits an action of π1(M) via the nat-

ural map

φ : E(D)→ S1
u.

This completes the proof of Theorem 2.18.

The �owspace P can be compacti�ed to a disc P using the universal cir-

cle (Construction 4.41), and the action of π1(M) on P extends to P (Theo-

rem 4.45. The restriction of this action to the boundary is the usual universal

circle action.

This completes one version of our �rst main theorem.

49
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Compactification Theorem. Let F be a quasigeodesic �ow on a

closed hyperbolic 3-manifold M , and let S1
u be Calegari's universal circle.

Then P = P ∪ S1
u has a natural topology making it into a closed disc with

interior P and boundary S1
u. The action of π1(M) on P extends to P and

restricts to the universal circle action on ∂P .

We will de�ne another universal circle S1
v in Section 2 and show that this

theorem holds for it too.

Note that one could build universal circles S1,+
u and S1,−

u using only

D+ and D−. In fact, one could even use these universal circles to build

compacti�cations P
+

and P
−
. However, the compacti�cation P is more

useful, as it behaves well with respect to D+ and D− simultaneously.

1. Extending the endpoint maps

In this section we'll show that the endpoint maps

e± : P → S2
∞

extend continuously to P .

Given a point x ∈ S1
u, we might hope to �nd a sequence of (say, positive)

decomposition elements that nest down to x. That is, we'd like to �nd a

sequence of Ki ∈ D+ that converge to x in the Hausdor� sense, arranged so

that Ki separates Ki−1 from Ki+1 for each i. If such a sequence exists, then

it turns out that e+(Ki) converges to some point p ∈ S2
∞, and we can extend

e+ by setting e+(x) = p. Any sequence of points xi ∈ P approaching x gets

trapped between the Ki, and it follows that e+(xi) converges to p (this is

Case 2 in the proof of Lemma 5.3) Therefore, we've found the unique way

to extend e+ continuously to x.

In general, not all points in S1
u will have such a nice structure. One

way to prove continuous extension is to break the analysis into several cases,

depending on how the decompositions D± look near each point in S1
u. The

proof that follows is less direct. However, it has the bene�t of brevity, and

we obtain a concise understanding of D± along the way.
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1.1. Sequences in the �owspace. We'll start by understanding how

sequences of �owlines look in H3 as we go to in�nity in P .

There's no way to extend hyperbolic metric on H3 to S2
∞, since the

distance between points will be in�nite. However, if we think about H3 in the

unit ball model, then S2
∞ is the unit sphere, and we can endow H3

= H3∪S2
∞

with the Euclidean metric. This will be useful when we consider sets that

are �close to in�nity.�

Remark 5.1 (A note on notation). If A is a subset of either H3 or H3
,

we'll write A for the closure of A in H3
. Similarly, if B is a subset of either

P or P , then B is the closure of B in P . In all other cases we'll use clX(C)

to mean the closure of the set C in the space X.

Recall that if p ∈ P , then π−1(p) ⊂ H3 is the �owline corresponding to

p, and the closure of a �owline is just the �owline plus its endpoints. In

other words,

π−1(p) = e−(p) ∪ π−1(p) ∪ e+(p).

The following lemma says that sets of �owlines that are close to in�nity in

P have uniformly small diameter in H3
.

Lemma 5.2. For each ε > 0 there is a compact set A ⊂ P such that for

each p ∈ P \A, the diameter of π−1(p) is at most ε in the Euclidean metric.

Proof. Recall that there is a constant C such that every �owline has

Hasudor� distance at most C from the geodesic between its endpoints (in the

hyperbolic metric). Geodesics with endpoints close together in the Euclidean

metric have small diameter in the Euclidean metric. So given ε there is a

constant ε′ such that all �owlines whose endpoints are ε′-close have Euclidean

diameter at most ε. Let B ⊂ (S2
∞ × S2

∞) \∆ be the set of pairs (p, q) with

d(p, q) ≥ ε′, and let A = (e+ × e−)−1(B), which is compact by Lemma 2.14.

�

The following lemma is one of the main technical ingredients in our

proof of continuous extension. Recall that if (Ai)
∞
i=1 is a sequence of sets in

a topological space X then lim supAi is the set of points x ∈ X such that

every neighborhood of x intersects in�nitely many of the Ai (see [17]).
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Lemma 5.3. Let (Ui)
∞
i=1 be a sequence of disjoint open sets in P with

frontiers Ai = Fr Ui. Then

lim sup e+(Ui) ⊆ lim sup e+(Ai),

and similarly for e−.

Proof. Let (xi)
∞
i=1 be a sequence of points with xi ∈ Ui for each i,

where we might have already taken a subsequence of the Ui. It su�ces to

show that if e+(xi) converges, then lim e+(xi) ∈ lim sup e+(Ai).

Fix such a sequence and set p := lim e+(xi) and Q := lim sup e+(Ai).

We need to show that p ∈ Q.

Case 1: Suppose that in�nitely many of the xi are contained in a

bounded set. Then after taking a subsequence we can assume that the xi

converge to some point x, and note that e+(x) = p (see Figure 1). Then

since Ai separates xi from xi−1 for each i, we can �nd points yi ∈ Ai that

also converges to x. But then lim e+(yi) = p, so p ∈ Q as desired.

x1 x2 x3 x

U1 U2 U3

A1 A2 A3

· · ·

· · ·

· · ·

· · ·

Figure 1. Case 1.

So assume that the xi escape to in�nity.

Case 2: Suppose for the moment that the Ai escape to in�nity, i.e. that

they are eventually disjoint from every bounded set. If p /∈ Q then we can

�nd disjoint open sets U and V in H3
that contain p and Q respectively.

By Lemma 5.2, π−1(xi) and π−1(Ai) are eventually contained in U and

V respectively (see Figure 2). But this contradicts the fact that π−1(Ai)

separates π−1(xi) from π−1(xi−1) for each i. So we must have p ∈ Q.
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x1

x2

x3

· · ·

· · ·
π

p

Q

U
V

Figure 2. Case 2.

Case 3: Now suppose that the Ai do not escape to in�nity. We will cut

a compact set out of each Ui to make the Ai escape to in�nity. In general

this might change Q = lim supAi, but by choosing carefully we can ensure

that Q shrinks.

Choose an exhaustion (Dj)
∞
j=1 of P by compact discs, each of which

intersects all of the Ui, where we might have to pass to a subsequence. The

argument in Case 1 shows that that for a bounded sequence of points yi ∈ Ui,

e+(yi) is eventually close to Q. Note that for �xed j, the sets Dj ∩Ui are all

contained in the bounded set Dj . So for �xed j, e+(Dj ∩ Ui) is eventually

close to Q.

It follows that we can �nd a diagonal sequence: For each j choose an

integer i(j) su�ciently large so that (a) xi(j) is outside of Dj and such that

(b) lim supj→∞ e
+(Dj ∩ Ui(j)) ⊂ Q. For each j, let yj := xi(j), let Vj be the

component of P \ (Dj ∪Ui(j)) that contains yj , and let Bj := Fr Vj . Also, set

Q′ := lim supj→∞Bj . Observe that since each point in Bj is contained in

either Ai(j) or (Dj ∩ Ui(j)), property (b) ensures that Q′ ⊂ Q. See Figure 3.

The Bj escape to in�nity, so by case 2 lim e+(yj) ⊂ Q′ and therefore

p ∈ Q as desired.

�

Corollary 5.4. Let B,C ⊂ S2
∞ be disjoint compact sets. Then (e+)−1(B)

intersects at most �nitely many components of P \ (e+)−1(C), and similarly

for e−.
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xi(j)

Bj

Dj ∩ Ui(j)

Fr Dj

· · · · · ·

.

.

.

.

.

.

Figure 3. Case 3: Fixing the Ai.

Proof. Otherwise we would have a sequence of points bi in (e+)−1(B),

each of which is contained in a di�erent component of P \ (e+)−1(C). By

the preceding lemma, lim sup e+(bi) ∈ C. But lim sup e+(bi) ∈ B, so this

contradicts the assumption that B and C are disjoint. �

1.2. Unions of decomposition elements. Recall (Lemma 4.44) that

if K ∈ D then K = K ∪ φ(E(K)).

Lemma 5.5. For each point x ∈ S1
u, there are at most countably many

decomposition elements K ∈ D whose closures intersect x.

Proof. By Lemma 4.44, each decomposition element K ∈ D whose

closure intersects x either has an end at x (i.e. there is a κ ∈ E(K) with

φ(κ) = x) or has ends approaching x (i.e. there are κi ∈ E(K) with φ(κi)→

x as i → ∞). In the construction of the universal circle, at most countably

many ends are collapsed into one point, so there are at most countably

many decomposition elements with an end at x. Therefore, it su�ces to

show that there are at most countably many decomposition elements with

ends approaching x. In fact there are at most four.

We will say that a positive decomposition element K ∈ D+ has ends

approaching x in the positive direction if there are κi ∈ E(K) such that

φ(κi) → x as i → ∞, and the κ1, κ2, κ3, ... are ordered counterclockwise.

There can be at most one decomposition element with ends approaching x

in the positive direction, since if there were two then their ends would link,
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implying that they intersect (Proposition 4.28). Similarly, there is at most

one negative decomposition element with ends approaching x in the positive

direction, and at most one positive and one negative decomposition element

with ends approaching x in the negative direction. �

Lemma 5.6. Let A be a closed subset of the plane that separates the points

x and y. Then some component of A separates x and y.

Proof. Let U be the component of P \ A that contains x, and let V

be the component of P \ U that contains y. Then Fr V separates x and y.

It is connected because the plane satis�es the Brouwer property (see [36],

De�nition I.4.1): if M is a closed, connected subset of the plane P and V is

a component of P \M then Fr V is connected. Therefore, the component of

A containing Fr V separates x and y. �

Recall that if (Ai)
∞
i=1 is a sequence of sets in a topological space, then

lim inf Ai is the set of points x such that every neighborhood of x intersects

all but �nitely many of the Ai. If lim inf Ai is nontrivial and agrees with

lim supAi, then the Ai are said to converge in the Hausdor� sense, and we

write limAi = lim supAi = lim inf Ai (see [17]). If the Ai live in the plane,

and in�nitely many intersect some compact set, then we can always �nd a

Hausdor� convergent subsequence.

Lemma 5.7. Let A ⊂ P be a closed, connected set that is a union of

positive decomposition elements and let U be a component of P \ A. Then

Fr U is contained in a single decomposition element.

Proof. Note that Fr U is connected by the Brouwer property, so it

su�ces to show that e+(Fr U) is a point.

Suppose that e+(Fr U) is not a point. Then it is in�nite, so we can

choose three points k, l,m ∈ Fr U whose images under e+ are distinct. Let

K,L,M ⊂ A be the positive decomposition elements that contain k, l,m

respectively. These are mutually nonseparating, so by Proposition 4.28 their

ends are mutually nonseparating.

Assume that K,L,M are positively ordered, and if N is a decomposition

element contained in U then M,N,M is positively ordered. Let ni ∈ P be a
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sequence of points in U that limit to some point in L, and for each i let Ni

be the decomposition element that contains ni. Note that in�nitely many

of the Ni intersect a compact set (for example, any arc from K to M) after

taking a subsequence they converge to some set N∞ ⊂ P . See Figure 4.

Observe that N∞∪L separatesK fromM . Indeed, if γ is any arc fromK

to M that avoids L then the ni are eventually on the positive side of γ, and

the Ni have ends between E(M) and E(K), so the Ni eventually intersect γ.

By Lemma 5.6, some component B of N∞ ∪ L separates K from M . But

then E(B) separates E(K) from E(M), a contradiction. Therefore, e+(Fr U)

is a single point as desired.

A

Fr U

K

L

M

N∞

Figure 4

�

Combining the last two lemmas, and using the fact that if X ⊂ P sepa-

rates x, y ∈ P then so does Fr X 1:

Corollary 5.8. Let A ⊂ P be a closed union of positive decomposition

elements. If A separates the points x, y ∈ P then some decomposition element

K ⊂ A separates x and y.

1.3. Extending the endpoint maps. We can now prove the main

theorem of this section.

1Let U be the component of P \X containing x. Any connected set that intersects

both x and y must intersect both U and P \ U , hence it must intersect Fr U ⊂ Fr X.
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Continuous Extension Theorem. Let F be a quasigeodesic �ow on

a closed hyperbolic 3-manifold M . The endpoint maps e± : P → S2
∞ admit

unique continuous extensions to P , and e+ agrees with e− on the boundary.

Proof. Fix x ∈ S1
u, and let (xi)

∞
i=1 be a sequence of points in P that

converges to x. After taking a subsequence we can assume that e+(xi)→ p

as i→∞ for some p ∈ S2
∞. Set e

+(x) = p.

To see that this is well-de�ned, suppose we have two such sequences

(xi)
∞
i=1 and (yi)

∞
i=1 converging to x, with e+(xi) → p and e+(xi) → q for

p 6= q. Let A′ ⊂ S2
∞ be a simple closed curve separating p and q. Then

A = (e+)−1(A′) separates {xi}∞i=I from {yi}∞i=I for large enough I. By

Lemma 5.3, the xi are eventually contained in a single component of P \A,

as are the yi. So by Corollary 5.8, some decomposition element K ∈ D+

separates {xi}∞i=I from {yi}∞i=I . Therefore, K separates {xi}∞i=I from {yi}∞i=I
in P . This implies that x ∈ K.

There are uncountably many disjoint simple closed curves separating p

and q, so the argument above would produce uncountably many distinct

decomposition elements K with x ∈ K. This would contradict Lemma 5.5,

so the extension of e+ to P is well-de�ned. The same applies for e−, and

continuity and uniqueness are immediate.

To see that e+ and e− agree on S1
u, let x ∈ S1

u and choose a sequence of

points xi ∈ P converging to x. By Lemma 5.2, the distance between e+(xi)

and e−(xi) approaches 0 as i→∞, so lim e+(xi) = lim e−(yi). �

From now on,

e± : P → S1
u

will denote the extended endpoint maps, and

e : S1
u → S2

∞

their restriction to the universal circle.

We'll restate the continuous extension theorem in a way that matches

the Cannon-Thurston theorem. Let F be a quasigeodesic �ow on a closed

hyperbolic 3-manifold M . A complete transversal to the lifted �ow is an

embedded 2-manifold N ⊂ H3 that is transverse to the foliation by �owlines.
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Any complete transversal can be identi�ed with the orbit space P via the

quotient map π : H3 → P , so we can think of N as a section ψ : P → H3

of π. Therefore, we can compactify N to a closed disc N by adding the

universal circle S1
u, and the embedding i : N ↪→ H3 extends to the boundary

by setting i = e on S1
u. This is continuous since the diameter of �owlines

goes to zero as we go to the boundary (Lemma 5.2). We have:

Theorem 5.9 (Generalized Cannon-Thurston Theorem). Let F be a

quasigeodesic �ow on a closed hyperbolic 3-manifold M , and let N ⊂ H3

be a complete transversal to the lifted �ow on the universal cover. There is

a natural compacti�cation of N as a closed disc N = N ∪ S1
u that inherits

a π1 action, and the embedding i : N ↪→ H3 has a unique continuous exten-

sion i : N ∪ S1
u → H3 ∪ S2

∞. The restriction of i to S1
u is a π1-equivariant

space-�lling curve in S2
∞.

2. A more convenient circle

Calegari's universal circle may contain more information than we need.

For clarity, we'll momentarily add subscripts to some of our spaces. Let P u

be the compacti�cation of P built from S1
u. Ends of decomposition elements

correspond to points in the universal circle via the map φu : E → S1
u. The

endpoint maps e± : P → S2
∞ extend to e±u : P u → S2

∞, and these restrict to

eu : S1
u → S2

∞ on the boundary.

If p ∈ S2
∞, it is possible that some components of e−1

u (p) ⊂ S1
u are

intervals. Let S1
v be the quotient of S1

u after collapsing each component of

e−1
u (p) to a point, for every p ∈ S2

∞. The action of π1(M) on S1
u descends

to an action on S1
v . Composing the quotient with φu, we obtain a map

φv : E → S1
v . The map eu factors through the quotient to form ev : S1

v → S2
∞.

We can use Construction 4.41 and Theorem 4.45 to produce a compact-

i�cation P v = P ∪S1
v by simply replacing S1

u with S1
v and φu with φv in the

proofs. We can extend the endpoint maps by setting e±v : P → S2
∞ to agree

with ev on the boundary.

Note that e−1
v (p) is now totally disconnected for any p ∈ S2

∞. Therefore,

P v is the smallest compacti�cation of P for which the endpoint maps extend
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to the boundary. This is exactly the property that we want from the universal

circle. In addition, the fact that point preimages are totally disconnected

will be useful when we study the dynamics of π1(M) on S1
v .

In the sequel, we will drop the subscripts and let context determine which

version of P , e±, e, and φ we're referring to.

In many cases, S1
u = S1

v . For example, if F is both quasigeodesic and

pseudo-Anosov then the endpoints of leaves of λ̃± determine a dense lam-

ination of S1
u, and it follows that point preimages are already totally dis-

connected. In fact, as far as we know, it is possible that S1
u = S1

v for every

quasigeodesic �ow.

2.1. Upper-semicontinuous decompositions. We can also see that

S1
v compacti�es P without referring back to the construction of the end-

compacti�cation. LetX be a topological space, and letD be a decomposition

of X into closed, connected subsets. The decomposition is called upper

semicontinuous if for any open set U ⊂ X, the union of decomposition

elements contained in U is open.

Moore [24] proved that if D is an upper semicontinuous decomposition

of the sphere S2 into non-separating sets, then the quotient obtained by

collapsing each decomposition element to a point is still homeomorphic to

S2.

Double the disc P u to obtain a sphere S2. Let D be the decomposition

whose elements are the components of e−1
u (p) for each p ∈ S2

∞, and the points

in each copy of P . This is clearly upper semicontinuous, so the quotient is

still S2, consisting of two copies of P v glued along S1
v .

3. Properties of the decompositions

We'll collect some useful observations concerning the regularity of D±

and D. The statements in this section hold for both S1
u and S1

v .

Lemma 5.10. Let p ∈ S2
∞. Then (e+)−1(p)∪(e−)−1(p) ⊂ P is connected.

Proof. Let Ai ⊂ H3
be a nested sequence of closed horoballs centered

at p. Set Bi = π(Ai ∩ H3) for each i. The Bi's are connected subsets of P ,
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so their closures Bi are connected, compact subset of the compact space P .

Therefore,

B =
⋂
i

Bi

is connected.

Suppose x ∈ B. Then there is a sequence of points xi ∈ Bi approaching

x (after taking subsequences). The corresponding �owlines π−1(xi) intersect

the Ai, so after taking a subsequence either e+(xi) or e−(xi) approaches p.

Therefore, either e+(x) = p or e−(x) = p as desired.

If x /∈ B then the �owline π−1(x) is eventually disjoint from the horoballs

Bi, so neither e+(x) nor e−(x) is p. �

Corollary 5.11. Let p ∈ S2
∞, and suppose that no �owline has p as an

endpoint. Then e−1(p) is a point.

Proof. Saying that no �owline has p as an endpoint is the same as say-

ing that (e+)−1(p)∪(e−)−1(p) is contained in S1
u, i.e. (e+)−1(p)∪(e−)−1(p) =

e−1(p). By the preceding lemma, e−1(p) is connected, so it is either a point or

an interval. Images of ends are dense in S1
u, so if e

−1(p) were an interval, the

closure of some K ∈ D would intersect it. But then (e+)−1(p) ∪ (e−)−1(p),

which was supposed to be empty, would contain K. �

4. Dynamics on the universal circle

We can now analyze the dynamics of the fundamental group action on

the universal circle.

Suppose f : S1 → S1 is a homeomorphism. Let x ∈ S1 be an isolated

�xed point, and choose an interval x ∈ I ⊂ S1 that isolates x. Then x is

called attracting if f(I) ⊂ I, repelling if f(I) ⊃ I, and indi�erent otherwise.

Each g ∈ π1(M) acts on S2
∞ with two �xed points in an attracting-

repelling pair. Let ag and rg be the attracting and repelling �xed points,

respectively. Set

Ag = e−1
v (ag) ⊂ S1

v ,

and

Rg = e−1
v (rg) ⊂ S1

v .
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Note that Ag and Rg are disjoint, closed, and invariant under g.

Lemma 5.12. If g ∈ π1(M) has a �xed point on S1
v , then it has at least

two.

Proof. Suppose p ∈ S1
v is the only �xed point of g. The iterates of g

take any point to p. Therefore, Ag and Rg must both contain p since they

are closed and invariant. This is impossible since they are disjoint. �

Let Fg be the set of �xed points of g on S1
v . If x ∈ S1

v is �xed by g, then

e(x) ∈ S2
∞ is �xed by g, so

Fg ⊂ Ag ∪Rg.

We'll partition Fg into FAg and FRg, where

FAg = Fg ∩Ag,

and

FRg = Fg ∩Rg.

Suppose we have distinct x, y ∈ FRg. Note that Rg is totally discon-

nected, so there is some point z ∈ (x, y) that is not in Rg. Iterating by gn

takes e(z) towards rg, so after taking a subsequence, gn(z) approaches some

point z′ ∈ (x, y) with e(z′) = ag. A similar statement applies replacing R by

A and g by g−1. In other words, between any two points in FRg there is a

point in FAg, and between any two point in FAg there is a point in FRg.

It follows that FAg is �nite. Otherwise we could �nd a sequence of

xi ∈ FAg that converges monotonically to some point x, with x ∈ FAg. For

each i let yi ∈ (xi, xi+1) be in FRg, and observe that the yi also converge to

x. This implies that x ∈ FRg, a contradiction. Similarly, FRg is �nite.

Therefore, Fg is �nite, and �xed points alternate between FAg and FRg.

Note that for any z ∈ S1
v that is not a �xed point, limi→∞ g

n(e(z)) =

ag, and limi→−∞ g
n(e(z)) = rg. Therefore, limi→∞ g

n(z) ∈ FAg, and

limi→−∞ g
n(z) ∈ FRg. Hence the points in FAg are attracting, and the

points in FRg are repelling. In summary:
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Pseudo-Anosov Dynamics Theorem. Let F be a quasigeodesic �ow

on a closed hyperbolic 3-manifold M . Then each g ∈ π1(M) acts on S1
v with

an even number of �xed points (possibly zero) that are alternately attracting

and repelling.

5. Closed orbits

We now turn to the question of whether quasigeodesic �ows have closed

orbits. The general question of �nding closed orbits in 3-manifold dates back

to 1950, when Seifert asked whether every nonsingular �ow on the 3-sphere

has a closed orbit [29]. Schweizer provided a counterexample in 1974, and

showed that every homotopy class of nonsingular �ows on a 3-manifold has

a C1 representative without closed orbits. Schweitzer's examples have since

been generalized to smooth [22] and volume-preserving �ows [21].

On the other hand, Taubes' 2007 proof of the 3-dimensional Weinstein

conjecture shows that Reeb �ows on closed 3-manifolds do have closed orbits

[31]. Reeb �ows are geodesible, i.e. there is a Riemannian metric in which the

�owlines are geodesics. Complementary to this result, though by di�erent

methods, Rechtman showed in 2010 that the only geodesible real analytic

�ows on closed 3-manifolds that contain no closed orbits are on torus bundles

over the circle with reducible monodromy [27].

Geodesibility is a local condition, and furthermore one that is not stable

under perturbations. By contrast, quasigeodesity is a macroscopic condition,

and it is a stable condition under C0 perturbations when the ambient 3-

manifold is hyperbolic.

Calegari conjectured in 2006 that quasigeodesic �ows on closed hyper-

bolic 3-manifolds should all have closed orbits. In this section we will provide

evidence for this conjecture.

5.1. Möbius-like groups. A Möbius transformation is a conformal

automorphism of the plane that preserves the unit circle. The group of

orientation-preserving Möbius transformations is isomorphic to PSL(2,R).

Each Möbius transformation is determined by its action on the unit circle,
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so we can think of PSL(2,R) as a subgroup of Homeo+(S1), the orientation-

preserving homeomorphisms of the circle.

An orientation-preserving Möbius transformations is classi�ed as either

elliptic, parabolic, or hyperbolic by whether it has no �xed points, one in-

di�erent �xed point, or two �xed points in an attracting-repelling pair.

A group Γ < Homeo(S1) is called Möbius-like if each g ∈ Γ \ {id} is

conjugate to a Möbius transformation. It is called hyperbolic Möbius-like if

each g ∈ Γ is conjugate to a hyperbolic Möbius transformation. It is called

Möbius if the whole group is conjugate into PSL(2,R).

Any homeomorphism of S1 with two �xed points in an attracting-repelling

pair is conjugate to a hyperbolic Möbius transformation, so a group Γ <

Homeo(S1) is hyperbolic Möbius-like if and only if each g ∈ Γ has exactly

two �xed points, of which one is attracting and the other repelling.

There was a long-standing question whether all Möbius-like groups are

conjugate into PSL(2,R). This was shown to be false by Kovacevic [20];

however, her counterexamples are still the only ones known.

In fact, work of Casson-Jungreis [7], Gabai [14] and Tukia [34] shows

that a group acting on the circle is conjugate into PSL(2,R) if and only if

satis�es a certain dynamical criterion.

Definition 5.13. Let (gi)
∞
i=1 be a sequence of homeomorphisms of S1.

Then (gi) is a convergence sequence if there are a, b ∈ S1 such that gi con-

verges to the constant map to a uniformly on compact subsets of S1 \ b.

A group Γ acting on the circle is a convergence group if every sequence of

elements has a subsequence that is convergence.

Theorem 5.14 (Casson-Jungreis, Gabai, Tukia). A group Γ < Homeo(S1)

is Möbius if and only if it is a convergence group.

We will show:

Möbius-like Theorem. Let F be a quasigeodesic �ow on a closed hy-

perbolic 3-manifold M . Suppose that F has no closed orbits. Then π1(M)

acts on the universal circle S1
v as a hyperbolic Möbius-like group.

In contrast:
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Conjugacy Theorem. Let F be a quasigeodesic �ow on a closed hy-

perbolic 3-manifoldM . Suppose that F has no closed orbits. Then the action

of π1(M) on S1
v is not Möbius.

None of the known examples of Möbius-like groups that are not Möbius

are 3-manifold groups. This provides evidence for Calegari's conjecture that

every quasigeodesic �ow on a closed hyperbolic 3-manifold has closed orbits.

The Möbius-like Theorem follows immediately from the �ner statement

below.

Closed Orbits Theorem. Let F be a quasigeodesic �ow on a closed

hyperbolic 3-manifold M , and let g ∈ π1(M). Then F has a closed orbit

in the free homotopy class represented by g, unless the action of g on S1
u is

conjugate to a hyperbolic Möbius transformation.

These three theorems all hold with S1
v instead of S1

u.

We'll need the following lemma. Each g ∈ π1(M) acts on S2
∞ as a

loxodromic isometry, so it has an attracting �xed point ag and a repelling

�xed point rg.

Lemma 5.15. Let F be a quasigeodesic �ow on a closed hyperbolic 3-

manifold M and let g ∈ π1(M). Then F has a closed orbit in the free

homotopy class represented by g if and only if F̃ has a �owline with an

endpoint at either ag or rg.

Proof. Suppose that F has a closed orbit in the free homotopy class of

g. Then some lift γ of this orbit to the universal cover is �xed by g, hence

the endpoints of γ are ag and rg.

Conversely, suppose that some �owline γ in F̃ has an endpoint at rg

(replace g by g−1 if it has a �xed point at ag). Then the endpoints of gn(γ)

approach ag and rg as n → ∞, so the gn(γ) all intersect a compact set in

H3. In other words, the corresponding point π(γ) ⊂ P in the �owspace has

a bounded forward orbit under g. The Brouwer plane translation theorem 2

2If f is a homeomorphism of the plane P , and some point x ∈ P has a bounded

forward orbit, then f �xes some point in P . See [12].
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implies that g must �x a point in P , and this �xed point corresponds to a

closed orbit in the free homotopy class of g. �

Proof of the Closed Orbits Theorem. Suppose that F has no closed

orbits in the free homotopy class of g. Note that A = e−1(ag) and B =

e−1(rg) are single points by Corollary 5.11 (which applies to both S1
u and

S1
v). But these are invariant, so they're �xed points. Every other point in

S1
u is moved, so g has exactly two �xed points.

For every point x ∈ S1
u \ {A ∪ B}, gn(x) must limit to A since gn(e(x))

limits to ag. Therefore, A is attracting and B is repelling. �

Proof of the Conjugacy Theorem. Suppose that the action of π1(M)

on S1
v (or S1

u) were conjugate to G < PSL(2,R). Note that G cannot be

discrete, since then it would be isomorphic to a surface group. A closed

subgroup of a Lie group is a Lie subgroup by the Cartan theorem ([35],

Theorem 3.42), so the closure G is a Lie subgroup. All proper Lie subgroups

of PSL(2,R) are virtually solvable (see below), so G = PSL(2,R). But ev-

ery element of PSL(2,R) with no �xed points has a neighborhood consisting

of elements with no �xed points, so some element of G has no �xed points.

This contradicts the Möbius-Like Theorem.

Let H < PSL(2,R) be a connected, proper Lie subgroup. We'll show

that it's solvable.3 The exponential map is surjective on PSL(2,R), soH has

dimension 0, 1, or 2. If it has dimension 0 or 1 then it's trivially solvable.

If it has dimension 2, let X,Y ∈ H be a basis. Then [X,Y ] = aX + bY

for some a, b. If either a = 0 or b = 0 then H is solvable. Otherwise,

[X,Y ] = aX + bY = a(X + b
aY ), so after a change of basis we're in the

previous case and H is solvable. �

3Thanks to Danny Calegari for pointing this out.
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