
CLASSICAL TESSELLATIONS AND 3-MANIFOLDS, SPRING 2014, HOMEWORK 3

DANNY CALEGARI

Homework is assigned on Fridays; it is due at the start of class the week after it is assigned. So this
homework is due April 25th.

Problem 1. Given connected surfaces S1 and S2,

the connect sum, denoted S1#S2, is the surface you get by cutting a small disk out of S1 and S2

and gluing the two boundary circles that result together.

(1) Show that the connect sum operation is associative and commutative; i.e. show that (S1#S2)#S3

is the same topological surface as S1#(S2#S3), and similarly show that S1#S2 is the same as
S2#S1, for any connected surfaces S1, S2, S3.

(2) Show that the 2-sphere S2 is an identity element for connect sum — i.e. that S#S2 = S2#S = S
for any connected surface S.

(3) Show that P#P = K where P is the projective plane, and K is the Klein bottle.
(4) Show that T#P = K#P where T is the torus, K is the Klein bottle, and P is the projective

plane. Show that this identification can be made by “sliding” the handle of T around a loop on P
that reverses orientation.

(5) If S1#S2 = S2, show that S1 and S2 are both S2 (Hint: what is the effect of connect sum on Euler
characteristic?)
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Problem 2. Suppose S is a closed surface (i.e. without boundary) which is made by gluing rigid Euclidean
triangles in such a way that the lengths match along edges that are glued, and the angles at each vertex
add up to 360◦. Show that the Euler characteristic satisfies χ(S) = 0.

Problem 3. Let P be a polygon with 2n sides where n ≥ 2, which are labeled in pairs with distinct labels
e1, · · · , en (with either orientation) so that the result of gluing edges with the same labels identifies all the
vertices of P to a single vertex.

(1) Instead of gluing edges of P together, take infinitely many copies of P , and show that you can glue
them together respecting edge labels, 2n around every corner, so that the result is (topologically)
a plane tiled by copies of P .

(2) If n = 2, so that P has 4 sides, show that you can realize this tiling with Euclidean squares of side
length 1. Find an example for n = 3 and draw a good picture of the tiling (remember to choose
the edge labels so there is exactly one vertex after identification!) (Hint: as you add more and
more hexagons to the picture, draw them smaller so that there is room for them)

(3) Think of the graph in the plane that you get made up from the edges of all the copies of P , together
with its labels by the ei, as the Cayley graph of some group. Deduce that a presentation for this
group is

G := 〈e1, e2, · · · , en | R〉
where R is a word of length 2n in which each ei appears exactly twice, either as ei or as e−1

i ,
depending on how the edges appear (with orientation) in the boundary of P .

Note: if the surface you get by identifying edges of P is denoted S, then the group G above is called the
fundamental group of S, and is denoted π1(S).

Problem 4. One way to embed a torus T in 3-dimensional space is to take a knotted circle K, thicken it
slightly, and let T be the boundary of such a thickened neighborhood; one says that such a T bounds a
“solid torus” — i.e. a space which is topologically a thickened circle. Can you embed a torus in R3 in such
a way that it doesn’t bound a solid torus?

Problem 5. It is impossible to embed a projective plane P in 3-dimensional space without making it
intersect itself. Generically, a surface in 3-dimensional space intersects itself transversely in 1-dimensional
arcs, like two coordinate planes crossing. But there might be isolated points where three sheets of the
surface all cross transversely like three coordinate planes, in a “triple point”, as in the Figure.

Find a way to put the projective plane P into 3-dimensional space in such a way that there is exactly
one triple point of self-intersection.
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