CLASSICAL TESSELLATIONS AND 3-MANIFOLDS, SPRING 2014, HOMEWORK 3

DANNY CALEGARI

Homework is assigned on Fridays; it is due at the start of class the week after it is assigned. So this homework is due April 25th.

Problem 1. Given connected surfaces S_1 and S_2 ,

the connect sum, denoted $S_1 \# S_2$, is the surface you get by cutting a small disk out of S_1 and S_2

and gluing the two boundary circles that result together.

- (1) Show that the connect sum operation is associative and commutative; i.e. show that (S₁#S₂)#S₃ is the same topological surface as S₁#(S₂#S₃), and similarly show that S₁#S₂ is the same as S₂#S₁, for any connected surfaces S₁, S₂, S₃.
 (2) Show that the 2-sphere S² is an identity element for connect sum i.e. that S#S² = S²#S = S
- (2) Show that the 2-sphere S^2 is an identity element for connect sum i.e. that $S\#S^2 = S^2\#S = S$ for any connected surface S.
- (3) Show that P # P = K where P is the projective plane, and K is the Klein bottle.
- (4) Show that T # P = K # P where T is the torus, K is the Klein bottle, and P is the projective plane. Show that this identification can be made by "sliding" the handle of T around a loop on P that reverses orientation.
- (5) If $S_1 \# S_2 = S^2$, show that S_1 and S_2 are both S^2 (Hint: what is the effect of connect sum on Euler characteristic?)

DANNY CALEGARI

Problem 2. Suppose S is a closed surface (i.e. without boundary) which is made by gluing rigid Euclidean triangles in such a way that the lengths match along edges that are glued, and the angles at each vertex add up to 360°. Show that the Euler characteristic satisfies $\chi(S) = 0$.

Problem 3. Let P be a polygon with 2n sides where $n \ge 2$, which are labeled in pairs with distinct labels e_1, \dots, e_n (with either orientation) so that the result of gluing edges with the same labels identifies all the vertices of P to a single vertex.

- (1) Instead of gluing edges of P together, take *infinitely many copies* of P, and show that you can glue them together respecting edge labels, 2n around every corner, so that the result is (topologically) a plane tiled by copies of P.
- (2) If n = 2, so that P has 4 sides, show that you can realize this tiling with Euclidean squares of side length 1. Find an example for n = 3 and draw a good picture of the tiling (remember to choose the edge labels so there is exactly one vertex after identification!) (Hint: as you add more and more hexagons to the picture, draw them smaller so that there is room for them)
- (3) Think of the graph in the plane that you get made up from the edges of all the copies of P, together with its labels by the e_i , as the Cayley graph of some group. Deduce that a presentation for this group is

$$G := \langle e_1, e_2, \cdots, e_n \mid R \rangle$$

where R is a word of length 2n in which each e_i appears exactly twice, either as e_i or as e_i^{-1} , depending on how the edges appear (with orientation) in the boundary of P.

Note: if the surface you get by identifying edges of P is denoted S, then the group G above is called the fundamental group of S, and is denoted $\pi_1(S)$.

Problem 4. One way to embed a torus T in 3-dimensional space is to take a knotted circle K, thicken it slightly, and let T be the boundary of such a thickened neighborhood; one says that such a T bounds a "solid torus" — i.e. a space which is topologically a thickened circle. Can you embed a torus in \mathbb{R}^3 in such a way that it *doesn't* bound a solid torus?

Problem 5. It is impossible to embed a projective plane P in 3-dimensional space without making it intersect itself. Generically, a surface in 3-dimensional space intersects itself transversely in 1-dimensional arcs, like two coordinate planes crossing. But there might be isolated points where three sheets of the surface all cross transversely like three coordinate planes, in a "triple point", as in the Figure.

Find a way to put the projective plane P into 3-dimensional space in such a way that there is exactly one triple point of self-intersection.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, CHICAGO, ILLINOIS, 60637 *E-mail address*: dannyc@math.uchicago.edu