RIEMANNIAN GEOMETRY, SPRING 2013, HOMEWORK 3

DANNY CALEGARI

Homework is assigned on Fridays; it is due at the start of class the week after it is assigned. So this homework is due April 26th.

Problem 1. Give an example of a Riemannian metric on \mathbb{R}^2 which is complete but has finite total area.

Problem 2. Suppose s_i are local sections of a smooth bundle E, and ∇ is a connection on E for which we can write (in terms of these coordinates) $\nabla = d + \omega$ where ω is a matrix of 1-forms (with components ω_{ij}). Express R in the same coordinates as a matrix of 2-forms Ω, and show that

$$\Omega = d\omega - \omega \wedge \omega$$

How does Ω transform if we change coordinates on E locally to $s'_i := \sum g_{ij} s_j$? What does this have to do with R being a tensor?

Problem 3. (i): Let G be a group of (real or complex) $n \times n$ matrices, thought of as a subspace of \mathbb{R}^{n^2} or \mathbb{C}^{n^2} with coordinates given by the entries. In each of the following cases, show that G is a smooth submanifold of \mathbb{R}^{n^2} or $\mathbb{C}^{n^2} = \mathbb{R}^{2n^2}$, and determine the tangent space at the identity as a vector space of the space of $n \times n$ (real or complex) matrices (this tangent space at the identity matrix is denoted \mathfrak{g}, and called the Lie algebra of the Lie group G).

- $G = \text{GL}(n)$, the group of invertible $n \times n$ matrices.
- $G = \text{SL}(n)$, the group of invertible $n \times n$ matrices with determinant 1.
- $G = \text{O}(n)$, the group of invertible $n \times n$ matrices satisfying $A^T = A^{-1}$.
- $G = \text{Sp}(2n)$, the group of invertible $2n \times 2n$ matrices satisfying $A^T J A = J$ where $J := \begin{vmatrix} 0 & I \\ -I & 0 \end{vmatrix}$.
- $G = \text{U}(n)$, the group of invertible $n \times n$ complex matrices satisfying $A^* = A^{-1}$ (where A^* denotes the complex conjugate of the transpose).

(ii): Let E be a smooth (real or complex) bundle over M with a G-structure where G is one of the groups above. This means that E admits a collection of local trivializations where the transition functions between two trivializations on each fiber are contained in G. Say that a connection ∇ is compatible with the G structure if parallel transport induces an automorphism of fibers represented by an element of G (with respect to one of the local trivializations). Show that this is equivalent to the condition that, in any of the local trivializations, ∇ can be expressed in the form $\nabla = d + \omega$ where ω is a 1-form with coefficients in \mathfrak{g}.

(iii): Let E be a smooth bundle over M with a G-structure, and suppose ∇ is compatible with the G structure. Show that R can be expressed in local coordinates as a matrix Ω of 2-forms with coefficients in \mathfrak{g}. Now suppose that $P : \mathfrak{g} \to \mathbb{C}$ is a homogeneous polynomial of degree m in the entries of \mathfrak{g} which is invariant under conjugation by G. Deduce that $P(\Omega)$ is a well-defined $2m$-form on M, independent of the choice of local trivialization.

Problem 4. Show directly that the Riemann curvature tensor (for the Levi-Civita connection on TM) can be recovered from the values of the sectional curvature, by giving an explicit formula for $\langle R(X, Y)Z, W \rangle$ in terms of K.

Problem 5. Let C be the circle in the x–z plane defined by the equation $(x - 3)^2 + z^2 = 1$, and let T be the surface in \mathbb{E}^3 obtained by revolving C around the z-axis. For each point on T give a formula for the size and the directions of the principal curvatures, and the sectional curvature. What is the integral of the sectional curvature over T?
DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, CHICAGO, ILLINOIS, 60637
E-mail address: dannyc@math.uchicago.edu