Homework is assigned on Fridays; it is due at the start of class the week after it is assigned. So this homework is due April 19th.

Problem 1. Compute the first variation of energy of a smooth 1-parameter variation of a smooth curve \(\gamma : [0, 1] \to M \) in a Riemannian manifold \(M \). Deduce that (among all smooth curves with fixed endpoints) the critical points of the energy functional are the geodesics.

Problem 2. Let \(C \) be the cone \(x^2 + y^2 = z^2 \) in Euclidean \(\mathbb{E}^3 \), which is smooth away from the point \((0, 0, 0)\). Determine the geodesics on this cone (as smooth curves in \(\mathbb{E}^3 \)) by directly solving the geodesic equations. Now slit the cone open along the ray \(x = z \) and lay it flat in the plane (by “unrolling” it); what do the geodesics look like when the cone is laid flat in the plane?

Problem 3. If \(\Sigma \) is a smooth (2-dimensional) oriented surface in \(\mathbb{E}^3 \), the Gauss map is a map \(g : \Sigma \to S^2 \) (the unit sphere in \(\mathbb{E}^3 \)) defined uniquely by the property that \(T_p \Sigma \) and \(T_{g(p)} S^2 \) are parallel (in \(\mathbb{E}^3 \)) as oriented planes. Show that \(T \Sigma \) can be naturally identified with the pullback \(g^* T S^2 \). Derive the following consequence: the pullback of the Gauss map commutes with parallel transport; i.e. if \(\gamma : [0, 1] \to \Sigma \) is a smooth curve, and \(V \in \Gamma(TS^2) \) is parallel along \(g \circ \gamma \) (i.e. \(\nabla_{(g \circ \gamma)'} (V) = 0 \)) then the pullback \(g^* V \) (as a section of \(T \Sigma \)) is parallel along \(\gamma \).

Problem 4. If the Riemannian metric is expressed locally in coordinates \(x_i \) in the form \(g := \sum g_{ij} dx_i dx_j \), derive a formula for the Christoffel symbols \(\Gamma^k_{ij} \) (in the same coordinates) in terms of the \(g_{ij} \).

Problem 5. Let \(x_i \) be geodesic normal coordinates centered at a point \(p \) (i.e. obtained from the exponential map by exponentiating orthonormal linear coordinates on \(T_p M \)). Show that the metric \(g_{ij} dx_i dx_j \) in these coordinates satisfies

\[
g_{ij}(p) = \begin{cases}
1 & \text{if } i = j \\
0 & \text{otherwise}
\end{cases}
\]

and \((\partial_k g_{ij})(p) = 0 \) for all \(i, j, k \). In other words, the metric “oscillates” the Euclidean metric to first order (at \(p \)).