
CHAPTER 7: RICCI FLOW

DANNY CALEGARI

Abstract. These are notes on Ricci Flow on 3-Manifolds after Hamilton and Perelman,
which are being transformed into Chapter 7 of a book on 3-Manifolds. These notes are
based on a graduate course taught at the University of Chicago in Fall 2019.
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1. The Hamilton–Perelman program

In this section we give a very informal overview of the Hamilton–Perelman program
proving the Poincaré Conjecture and the Geometrization Conjecture for 3-manifolds.

1.1. What is Ricci flow? There’s lots of different ways to answer this question, depending
on the point you want to emphasize. There’s no getting around the precision and economy
of a formula, but for now let’s see how far we can get with mostly words.

First of all, what is curvature? To be differentiable is to have a good linear approximation
at each point: the derivative. To be smooth is for successive derivatives to be themselves
differentiable; for example, the deviation of a smooth function from its derivative has a
good quadratic approximation at each point: the Hessian. A Riemannian manifold is a
space which is Euclidean (i.e. flat) to first order. Riemannian manifolds are smooth, so
there is a well-defined second order deviation from flatness, and that’s Curvature.

In Euclidean space of dimension n a ball of radius r has volume rn times a (dimension
dependent) constant. The scalar curvature R (a function) measures the leading order
deviation of this quantity in a Riemannian manifold. Explicitly, if we pick a point p in
a manifold M , we denote the ball of radius r about p in M by BM(p, r). We want to
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compare the geometry of this ball to that of BEn(0, r), the ball of radius r about the origin
in Euclidean space of dimension n. Then

vol(BM(p, r))

vol(BEn(0, r))
= 1−R r2

6(n+ 2)
+O(r3)

at least if r is small. In words: when the scalar curvature is positive (resp. negative),
volume of metric balls grows slower (resp. faster) than in Euclidean space.

The Ricci curvature Ric measures the deviation of the volume in a particular direction.
At a point p, we can choose a unit vector v and look at the volume growth of a tightly
focussed cone starting at p in the direction v. When the Ricci curvature is positive (resp.
negative) in the direction v, volume growth ‘in the direction v’ is slower (resp. faster) than
in Euclidean space. The deviation is second order, so the Ricci curvature is a (symmetric)
quadratic form; in other words, it has the same units as the Riemannian metric.

Ricci flow is a differential equation for the evolution of a family of metrics on a smooth
manifold; it says that the time derivative of the Riemannian metric is −2 times the Ricci
curvature; i.e. distances contract in directions where the volume grows slower than Eu-
clidean space, and distances expand in directions where the volume grows faster than
Euclidean space. Where does this formula come from? It turns out that in harmonic
local coordinates (i.e. coordinates which are harmonic functions for the metric), the Ricci
curvature is −1/2 times the Laplacian of the metric, up to lower order terms. Thus the
Ricci flow might be thought of as a natural geometric flow modeled on the heat flow for
the metric. Under such a ‘heat flow’, one imagines the metric will average out and become
homogeneous. But just from the definition it’s not at all obvious that Ricci flow is even
defined for short time (it is) or that it does not become singular in finite time (it does).
A proper analysis of its properties, including a classification of finite time singularities,
surgery, and long-time behavior, is far beyond the scope of this survey. Our aim in this
chapter is to give an introduction to the subject, and to explain enough of the recent de-
velopments to sketch how Ricci flow can be used to prove the Poincaré Conjecture and
(with more work) the Geometrization Conjecture.

1.2. Ricci flow. The Ricci curvature is a symmetric 2-tensor, i.e. a section of the sym-
metric square of the cotangent bundle. In other words, it’s a tensor of the same kind as
the Riemannian metric tensor g.

Ricci flow, introduced by Richard Hamilton in his 1982 paper [12], is a differential
equation for a 1-parameter family of Riemannian metrics gt on a manifold M , specifically

∂tg = −2Ric

Ricci flow will typically grow or shrink the volume; when the scalar curvature is positive
the manifold will shrink, and when it is negative the volume will expand.

Ricci flow enjoys two fundamental symmetries: diffeomorphism invariance and parabolic
rescaling.

First, for any diffeomorphism ϕ : M → N we have Ric(ϕ∗g) = ϕ∗Ric(g). In particular,
Ricci flow commutes with the group of self-diffeomorphisms of M . As a corollary Ricci
flow preserves any symmetries of the initial metric.

Second, scaling g by a positive number λ stretches distances by
√
λ and sectional cur-

vatures by λ−1. For the Ricci tensor these two factors cancel, and Ric is unchanged as a
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tensor (although its norm, which depends on the metric, is scaled by λ−1). Thus the Ricci
flow of λg is obtained by rescaling the Ricci flow of g, but proceeds with time stretched
by the same factor λ. In other words, solutions to Ricci flow are preserved by parabolic
rescaling of space and time ds→

√
λ ds, dt→ λ dt.

1.2.1. Short time existence and uniqueness. The Ricci curvature depends linearly on the
second order derivatives of the metric, and nonlinearly on lower order terms. The equation
of Ricci flow is weakly parabolic — the symbol of −2dRic, thought of as a quadratic
form on the tangent space to the space of Riemannian metrics, is non-negative but not
definite. This degeneracy is a result of diffeomorphism invariance. Nevertheless, Hamilton
[12] proved short-term existence and uniqueness of Ricci flow on a compact manifold. A
shorter proof due to DeTurck [10] explicitly breaks the degeneracy by adding a term that
comes from comparison to a fixed background metric. The deformed flow is parabolic, and
turns out to be equivalent to Ricci flow up to (time-dependent) diffeomorphism.

1.2.2. Fixed points. The simplest solutions to Ricci flow are when Ric = 0 so that g is
constant with t. A manifold with this property is said to be Ricci flat. Any real 2n-
manifold with SU(n) holonomy (a Calabi-Yau manifold) is Ricci flat. In 3 dimensions or
less any Ricci flat manifold is a Euclidean space form, but for n = 4 the K3 surfaces are
interesting examples.

A manifold with Ric = λg for some constant λ is called Einstein. Multiplying the metric
by a constant leaves Ric unchanged, so if g0 is Einstein, the family gt = (1 − 2λt)g0 is a
solution to Ricci flow. In 3 dimensions or less an Einstein manifold has constant curvature
λ/(n− 1). If λ ≤ 0 the metric gt is defined for all t ≥ 0 but for λ > 0 it becomes singular,
and the manifold vanishes to a point, at t = 1/2λ. The key example in three dimensions is
the shrinking round sphere S3. A 3-sphere of radius 1 has constant Ricci curvature equal
to 2 and shrinks homothetically to a point at time t = 1/4.

If M is a product M = A× B with product metric gM := gA ⊕ gB then the product of
a geodesic in A with a geodesic in B is a totally flat 2-plane in M , so the Ricci curvature
of M is RicM = RicA ⊕ RicB. It follows that under Ricci flow, M evolves by the product
of Ricci flows on the factors. The key example in three dimensions is the shrinking round
cylinder S2 ×R. This has constant Ricci curvature equal to 1 in the S2 direction and 0 in
the R direction. Thus the R factor is unchanged, and the spheres shrink homothetically to
points at time t = 1.

1.2.3. Solitons. A vector fieldX onM generates a flow ψt, and a flow of the form ∂tg = LXg
(where LX denotes Lie derivative) defines a family of metrics gt which are obtained from
g0 by pullback gt = ψ∗t g0 and are therefore all isometric.

Thus it’s natural to consider generalizations of the Einstein condition, namely metrics
satisfying

Ric = λg − 1

2
LXg

For such an initial metric, Ricci flow scales the metric infinitesimally at the constant speed
−2λ, while simultaneously flowing by X. Thus the metrics gt are all self-similar, in the
sense that each is related to the initial metric by rescaling plus a diffeomorphism. Such a
metric is called a soliton. The soliton is said to be expanding, steady or shrinking according
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to whether λ is negative, zero or positive. A shrinking soliton becomes singular at t = 1/2λ.
Examples of shrinking solitons include the round sphere S3 and the round cylinder S2×R.

A gradient soliton is one for which X = gradf for some function f . Note that there is
an equation Lgradfg = 2Hess(f) so a metric determines a gradient soliton if there is f such
that Ric + Hess(f) = λg.

Hamilton’s cigar soliton is given by the metric g = (dx2 +dy2)/(1+x2 +y2) on R2 which
evolves under Ricci flow by pullback under the radial vector field X = −2(x∂x +y∂y). One
could think of this as an infinite nearly cylindrical cigar whose tip is rounded; under Ricci
flow the tip ‘burns away’ leaving a new cigar isometric to the first. This is very similar to
the grim reaper soliton for mean curvature flow; see § 2.1.3.

Bryant’s bowl soliton exists on Rn for any n ≥ 3, and is given in polar coordinates by
a radially symmetric metric g = dr2 + a(r)2gSn−1 for suitable a(r) asymptotic to

√
r as r

gets large. These are much like the bowl solitons for mean curvature flow.

1.2.4. Berger spheres. The three-sphere is a Lie group if we identify it with the unit quater-
nions. The round metric is left-invariant. Let e1, e2, e3 be a left-invariant orthogonal frame
for the tangent bundle, and let ω1, ω2, ω3 be the dual frame for the cotangent bundle.
A Berger sphere is a Riemannian manifold diffeomorphic to S3, with metric of the form
g = Aω1 ⊗ ω1 + ω2 ⊗ ω2 + ω3 ⊗ ω3. Geometrically, the vector field e1 has flowlines the
(totally geodesic) circles of a Hopf fibration; a Berger metric is obtained from the round
metric by scaling these circles by a factor

√
A. For such a metric, the eigenvectors of

the curvature operator Rm are the coordinate planes ei ∧ ej and one can compute their
sectional curvatures as

K(e1 ∧ e2) = A, K(e1 ∧ e3) = A, K(e2 ∧ e3) = 4− 3A

In other words, for the family of metrics with A→ 0 the sectional curvatures stay bounded
while the volume goes to zero, and the manifold ‘collapses’ to a round 2-sphere of radius
1/2.

The metric g = Aω1 ⊗ ω1 + Bω2 ⊗ ω2 + Bω3 ⊗ ω3 is homothetic to a Berger sphere, so
it has sectional curvatures

K(e1 ∧ e2) = A/B2, K(e1 ∧ e3) = A/B2, K(e2 ∧ e3) = 4/B − 3A/B2

and Ricci curvature

Ric = 2A2/B2 ω1 ⊗ ω1 + (4− 2A/B)ω2 ⊗ ω2 + (4− 2A/B)ω3 ⊗ ω3

In particular, Ric is diagonal with respect to our chosen frame. Actually, this follows from
the fact that the metric (and hence Ric) has an SO(2) family of symmetries fixing every
point with axis in the e1 direction.

Under Ricci flow we evidently get a family of homothetically scaled Berger spheres,
parameterized by (time-dependent) functions A and B that satisfy

A′ = −4A2/B2, B′ = −8 + 4A/B

This system of ODEs becomes singular in finite time, but as it does so the ratio A/B
evolves by (A/B)′ = 8A(B − A)/B3 which is positive if B > A and negative if B < A so
that asymptotically A/B → 1 and the collapsing spheres converge after rescaling to the
round S3. See Figure 1.
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Figure 1. Evolution of A,B parameters for Berger spheres under Ricci flow.
All flowlines become asymptotic to the diagonal near the origin.

1.3. Geometrization. Hamilton’s program, as successfully completed by Perelman, has
spectacular applications to 3-manifold topology of which the most famous is a proof of the
Geometrization Conjecture and (as a special case) the Poincaré Conjecture. The details
of this program lie far beyond the scope of this chapter; it’s challenging even to give an
overview. The following is just a cartoon.

1.3.1. Short time behavior.
(1) Definition of Ricci flow ∂tg = −2Ric
(2) Ricci flow exists and is unique for short time
(3) Uniform curvature bounds give control over higher derivatives of curvature
(4) Monotonicity: certain geometric inequalities (pertaining to curvature or volume or

both) persist or improve with time; most importantly:
(a) non-negative (positive) sectional curvature is preserved
(b) in dimension 3 non-negative (positive) Ricci curvature is preserved
(c) pinching: there is a function φ(s) that goes to 0 as s→∞ so that

Rm ≥ −φ(R)R + C

where the estimate holds pointwise/timewise
(d) κ-noncollapsing in finite time: for Ricci flow on a compact manifold with nor-

malized initial conditions, if we rescale the metric at some finite time so that
R = 1 at some point, there is a lower bound κ on the volume — and hence
injectivity radius — of the ball of (rescaled) radius 1 around this point

It’s important to quantify the implicit estimates. First, by rescaling the original metric
we can assume we have normalized initial conditions: i.e. |Rm| ≤ 1, and every ball of
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radius 1 has volume at least half of the volume of a unit ball in Euclidean space. Second,
the κ in the definition of κ-noncollapsing depends on the time t at which we are doing the
rescaling.

1.3.2. Structure of finite time singularities.
(1) When a singularity develops in time, the effect of doing a parabolic rescaling near

a point where R blows up is to obtain a new flow which is ε-close to a κ-solution
(2) A κ-solution satisfies the following properties:

(a) it’s ancient (flow is defined on (−∞, t])
(b) the curvature is non-negative Rm ≥ 0
(c) the curvature norms |Rm| are bounded on each time slice
(d) the scalar curvature R is positive everywhere
(e) it’s κ-noncollapsed
(f) normalized volume controls normalized curvature and vice versa

(3) The set of pointed κ-solutions is compact in the sense of Cheeger-Gromov-Hamilton
convergence

(4) A compact κ-solution is diffeomorphic to a spherical space form
(5) In every non-compact κ-solution defined at time t, there’s a scale D and a point x

so that outside the ball of radius DR(x, t)−1/2 about x every point is the center of
an ε-neck; this means that after rescaling to have R = 1, the manifold is ε-close to
a round product S2 × R on a ball of radius 1/ε

(6) Unless M is a round cylindrical flow with S2 × R geometry, the ball promised by
the previous bullet is either a 3-ball or a punctured RP3

Again, the estimates must be quantified: D depends on κ and ε, and in order to apply
these structure theorems to finite time singularity, we are only assured some κ which in
turn depends on time.

1.3.3. Surgery.
(1) Just before a singularity, the large curvature part of the manifold (where the curva-

ture is at least some R0 depending on ε and t) consists of entire components which
are ε-close to shrinking space forms or manifolds with S2 × R geometry, or they
have a canonical geometric fibration by almost round 2-spheres, with high curvature
ends capped off by 3-balls or punctured RP3s

(2) Near each frontier region of the large curvature part of the manifold we perform
surgery:
(a) each closed component evolves under Ricci flow and shrinks to an asymp-

totically round or S2 × R geometry point in finite time; in particular, these
summands admit a geometric structure

(b) at a scale where the curvature is at least as big as a certain threshold R0/
√
δ

(but where δ(t) → 0 as t → ∞), we cut off the (nearly product) neck, warp
the metric slightly to round the end, and cap off with a round B3

(c) at the topological level, this has the effect of undoing finitely many connect
sums or self-connect sums

(d) at the geometric level, this can be done in such a way that if we restart the
flow, the pinching inequality still holds, and all relevant geometric quantities
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(κ, D, R0, δ etc.) can still be controlled and deteriorate with time in an a
priori specified way

(3) the estimates on the geometric quantities can be arranged so that when one performs
Ricci flow with surgery, the surgery times do not accumulate, and the flow can be
continued until t =∞

1.3.4. Finite time extinction.

(1) If Ricci flow with surgery becomes extinct (i.e. the manifold is empty after finite
time) then it is obtained from spherical space forms and manifolds with S2 × R
geometry by finitely many connect sums and self-connect sums; in particular, it
satisfies the Geometrization Conjecture

(2) Ricci flow with surgery becomes extinct under the following circumstances:
(a) the scalar curvature R is positive everywhere
(b) the scalar curvature R is non-negative everywhere and M is not Euclidean
(c) if every prime summand of M has non-trivial π2 or π3

(3) In more detail, under Ricci flow with surgery the area of a minimal S2 representing
a nontrivial element of π2, or a minimax S2 associated to a nontrivial element of
π3, shrinks at a definite rate; in particular, a component containing such a sphere
becomes extinct in finite time.

A homotopy 3-sphere has π3(M) = Z; thus under Ricci flow with surgery it becomes
extinct in finite time, and consequently it is homeomorphic to S3. This proves the Poincaré
Conjecture.

1.3.5. Long time behavior.

(1) when t gets big, there is a ‘thick-thin’ decomposition: a point is in the thick part if
the ball around it of radius

√
t has (after rescaling to radius 1) controlled curvature

and injectivity radius
(2) at points in the thin part, there is some scale r ≤

√
t so that rescaled balls have

Rm ≥ −1 and small normalized volume
(3) the evolution equation for scalar curvature implies that the ratio vol(t)/(t+ 1/4)3/2

is non-increasing; if the limit is zero, the entire manifold is thin and the theory of
collapsing with one-sided (lower) curvature bounds implies thatM has the structure
of a graph manifold

(4) otherwise the thick part stays non-empty, and the scalar curvature becomes very
close to its (scaled) infimum throughout the thick part; thus the rescaled balls
converge to a hyperbolic metric

(5) because balls in the thick part of radius
√
t have volume comparable to that of

the entire manifold, we can cover the thick part with boundedly many standard
balls in which the metric is closer and closer to hyperbolic; in particular, the thick
part admits a hyperbolic structure, and the manifold satisfies the Geometrization
Conjecture
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2. Mean curvature flow: a comparison

Riemannian metrics on 3-manifolds are hard to visualize. Fortunately, there is another
domain — mean curvature flow of surfaces in R3 — that displays many of the same quali-
tative features as Ricci flow on 3-manifolds, but where pictures are much easier to draw.

Our survey of mean curvature flow is extremely brief, and meant to highlight a few
key features (monotonicity of curvature, singularity formation and local models, entropy
functionals) which closely parallel Ricci flow.

2.1. Definitions and Basic Examples. Let S be a hypersurface in Rn. The mean
curvature is the trace of the second fundamental form. Recall: if ei are linearly independent
vector fields on S near a point p then II(ei, ej) := ei(ej(x))(p)⊥. Then H(p) :=

∑
i II(ei, ei)

where ei runs over an orthonormal basis for TpS.
If we fix coordinates xj on an abstract surface S and an immersion F : S → Rn then on

S the metric g and second fundamental form h can be expressed in coordinates as

gij := 〈∂iF, ∂jF 〉, hij := −〈ν, ∂i∂jF 〉

where ν(x) is the (outer) unit normal to the surface at F (x). With this notation one also
defines the scalar mean curvature h to be the trace of hij; i.e. h = gijhij. Thus H = −hν
(the sign is chosen so that for a mean convex surface h ≥ 0).

A family of hypersurfaces Ft : S → Rn is said to evolve by mean curvature flow (abbre-
viated MCF) if it satisfies

∂tF = H = −hν

or more generally

(∂tF )⊥ = H

Flows satisfying the second equation differ from the first only by reparameterization of the
surface.

Stationary solutions to mean curvature flow are minimal surfaces, and in fact one can
think of mean curvature flow as gradient flow for the area functional on the space of smooth
maps.

2.1.1. Self-shrinkers. The simplest non-static examples of MCF are shrinking spheres and
cylinders. In R3 examples are a family of 2-spheres of radius

√
−4t and a family of cylinders

of radius
√
−2t for t < 0.

At t = 0 the family of shrinking spheres becomes singular, and collapses to a point,
whereas the family of shrinking cylinders collapses to a straight line.

Both are examples of self-shrinkers:

Definition 2.1 (Self-Shrinker). A family Ft, t ∈ [−1, 0) evolving by MCF is a self-shrinker
if Ft =

√
−tF−1.

By slight abuse of notation we also call Ft a self-shrinker if it satisfies this equation after
translation (in time and/or space) and/or parabolic rescaling (x, t)→ (λx, λ2t).
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2.1.2. Barriers and the maximum principle. If Rt and St are two (complete) hypersurfaces
evolving by mean curvature, then if R0 and S0 are disjoint, then Rt and St continue to be
disjoint for all t > 0 where defined. To see this, suppose that R0 is on the ‘outside’ of S0,
and suppose at some first time t the surfaces Rt and St become tangent at p. Since Rt

is still on the outside of St, the mean curvature of St is bigger than the mean curvature
of Rt in the direction pointing into the interior; but this means that St is moving into
the interior at p faster than Rt is; running time backwards slightly this implies that Rt−ε
already intersected St−ε for small ε, contrary to the definition of t as the first time the
surfaces intersect.

It follows that every closed hypersurface becomes singular under MCF in finite time.
Indeed, any S is in the interior of a round ball B of some finite radius r. Since ∂B shrinks
to a point in time r2/4, the surface S must become singular before this time.

2.1.3. The grim reaper. The grim reaper is a noncompact translating solution to MCF in
the plane. At some initial time it’s given by the graph y = − log cos(x) for x ∈ (−π/2, π/2).
Under MCF it translates upwards at constant speed. Taking products with Euclidean space
gives examples in any dimension. One can also find (O(n − 1)-)rotationally symmetric
solutions, which look roughly like paraboloids, called bowl solitons. Grim reapers are often
used in barrier arguments to get a priori bounds.

2.1.4. The Dumbell. A dumbell is a surface obtained by taking two round spheres (the
‘bells’) and tubing them together by a narrow neck, and then rounding the corners at the
ends of the tube. Typically one takes the two spheres to be the same radius (otherwise the
dumbell is ‘lopsided’). A round sphere concentrically placed inside the bells puts a lower
bound on how long it takes for this part of the surface to shrink to nothing. Meanwhile, a
sufficiently small Angenent doughnut around the tube puts an upper bound on the time to
the first singularity. If the bells are big enough compared to the thickness of the tube, we
can deduce that a singularity develops in finite time without the diameter going to zero;
see Figure 2.

Figure 2. A shrinking dumbell pinches off a neck

This kind of singularity is called a neckpinch. Near the singular time, the neck converges
after parabolic rescaling to the round shrinking cylinder.
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2.1.5. Lopsided Dumbell. A lopsided dumbell is a dumbell with two bells of different radii.
For such a dumbell one of the bells shrinks faster than the other, and for a judicious
choice of bell and tube radius it’s plausible that the bell could shrink to a point at exactly
the same time that the neck becomes singular. At this singularity we are left precisely
with the larger bell and a metric which is convex and nonsingular except at exactly one
‘cone’ point where the curvature has become infinite. It turns out one can then evolve
this singular sphere by MCF; it instantly becomes smooth and convex and thereafter by
Huisken’s Theorem 2.2 shrinks to a round point in finite time. This kind of singularity is
called a degenerate neckpinch.

2.2. Self-shrinkers as minimal surfaces. It turns out that a self-shrinker is just a
minimal surface for a suitable metric on R3. Let’s consider a generalized MCF of the
form ∂tF = H + X for some (time-dependent) vector field X always tangent to F . The
normalized self-shrinker condition is F (t) =

√
−tF (−1) so that at time −1 we have F ′ =

−F/2 +X or equivalently 〈H + F/2, ν〉 = 0.
For any smooth function φ on R3 there’s an associated functional S on surfaces defined

by S(F ) :=
∫
F
φ darea. This functional is nothing but the area of F in the conformally

Euclidean metric ds2 = φ(x)dx2. When is F a minimal surface for such a metric? Let’s
vary F by moving it infinitesimally in the normal direction by fν where f is some smooth
function. Then

δS =

∫
F

δφ darea +

∫
F

φ δdarea =

∫
F

〈fν,∇φ〉+ φ〈fν,−H〉darea

The radially symmetric function φ(x) = e−|x|
2/4 satisfies ∇φ(x) = −(x/2)φ so that δS

vanishes identically for all f if and only if F is a self-shrinker. The functional S is due to
Huisken.

2.2.1. Angenent’s shrinking doughnuts. Using Huisken’s S functional, Angenent [1] con-
structed a smooth embedded torus in R3 which is a self-shrinker. The torus is obtained as
a surface of revolution (about the x-axis), with cross-section a circle γ : S1 → x–z plane.
In order for the resulting torus to be a critical point for S, it’s necessary and sufficient for
γ to be a geodesic for the (incomplete) metric

ds2 = z2e−
x2+z2

4 (dx2 + dz2)

on the upper half plane z > 0.
For simplicity, one looks for a geodesic invariant under the symmetry x→ −x, in which

case one can normalize the initial condition so that γ(0) = (0, s) and γ′(0) = (1, 0).
Continue this initial condition until the first time γ runs into the z axis again (if it does),
at γ(t(s)) = (0, z(s)) with γ′(t(s)) = (α(s), β(s)).

If α(s) < 0 and β(s) = 0 then reflection of the arc γ([0, t]) in the z axis gives the desired
geodesic. The existence of such an s can be proved numerically; it turns out s ∼ 3.3151.

2.3. Convexity and Huisken’s theorem. The following key theorem was proved by
Huisken in 1984:

Theorem 2.2 (Huisken [19] 1.1). Let S0 be a uniformly convex hypersurface in Rn with
n ≥ 3. Then MCF has a smooth solution on a maximal time interval [0, T ) and the surfaces
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St converge to a single point as t → T . Furthermore if the surfaces St are homothetically
rescaled to have constant area they converge to a round sphere of that area in the C∞
topology as t→ T .

One says informally that a convex surface shrinks to a ‘round point’ in finite time.
There is a strong analogy between this theorem, and the theorem of Hamilton (to be

proved in the sequel) that a 3-manifold with positive Ricci curvature converges by (rescaled)
Ricci flow to a spherical space-form, but actually Hamilton’s result came earlier and was
the direct inspiration for Huisken.

2.3.1. Evolution of geometric quantities. By direct calculation one obtains formulae for the
evolution of key geometric quantities. Let’s denote the metric on our surface by gij. The
second fundamental form is either denoted by hij (if we want to emphasize coordinates) or
A (if we just want to think of it as a tensor). This notation is standard, and frees up h to
denote the trace of h, i.e. the scalar mean curvature.

Proposition 2.3. Under MCF one has the formulae for the evolution of the metric gij:

∂tgij = −2hhij

for the second fundamental form hij:

∂thij = ∆hij − 2hhilg
lmhmj + |A|2hij

for the norm of the second fundamental form |A|2:
∂t|A|2 = ∆|A|2 − 2|∇A|2 + 2|A|4

and for the scalar mean curvature h:

∂th = ∆h+ |A|2h

Taking traces of the first equation, one sees that the area form µ :=
√

det gij evolves
by ∂tµ = −h2µ; i.e. total area is decreasing. Furthermore from the third equation and
the maximum principle it follows that if the mean curvature is non-negative (resp. strictly
positive) for any t0, then it stays non-negative (resp. strictly positive) for all t > t0.

By the Gauss equation, the Ricci curvature Rij of a hypersurface satisfies

Rij = hhij − gklhkjhli
Thus under MCF the metric evolves by ∂tgij = −2Ric + 2gklhkjhli. This demonstrates a
family resemblance between MCF and Ricci flow.

2.3.2. Convexity and the tensor maximum principle. A more subtle analysis of the evolu-
tion of the second fundamental form hij shows that not only mean convexity, but honest
convexity is preserved by MCF. The term −2hhilg

lmhmj in the formula for ∂thij reflects the
contribution from the change in the metric, so in a suitable evolving orthonormal frame
ea, eb etc. this term goes away, and the evolution equation for hij simplifies to

∂thab = ∆hab + |hab|2hab
(see Hamilton [16] Thm. 2.3; note that a, b etc. do not denote coordinate indices).

Since hab is a tensor, the ordinary maximum principle does not apply. However, Hamilton
proved a tensor maximum principle, to be discussed in detail in § 3.6, which does apply
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directly to equations of this sort. Roughly speaking, Hamilton’s principle applies to tensors
T which are sections of a vector bundle V evolving by a PDE of the form ∂tT = ∆T +Ψ(T )
where Ψ has order 0. Suppose we want to prove that solutions to the PDE stay in some
closed subspace K of V satisfying suitable conditions on K (fiberwise convexity, invariance
under parallel transport). For each fiber Vx consider the associated ODE ∂tTx = Ψ(Tx).
Hamilton’s tensor maximum principle says that if every solution of a fiberwise ODE which
starts in Kx must stay in Kx, then any solution of the PDE which starts in K must stay
in K.

The conditions of the theorem apply to the evolution equation for the second fundamental
form, where we can take K to be the subspace where the eigenvalues are non-negative.
Thus convexity is preserved by MCF. A strong version of the principle implies that strict
convexity is preserved, and actually a spacewise uniform lower bound on the eigenvalues
can only increase with time.

One consequence is that when the surface becomes singular in finite time (as it must) it
can only collapse to a single point.

2.3.3. Curvature pinching and convergence to a round point. The eigenvalues of the second
fundamental form are the principal curvatures λ and µ. Let’s define the function f :=
h−2(|A|2−h2/2) = h−2(λ−µ)2/2, a scale-invariant measure of how close these eigenvalues
are to each other. We’ve already seen that strict mean convexity h > 0 is preserved under
MCF, so f is nonsingular while MCF is. Evidently, f ≥ 0 and is equal to zero at umbilical
points — those where the principal curvatures are equal.

From the evolution equations for h and for hij one derives the evolution equation (c.f.
[19], Lem. 5.2)

∂tf = ∆f +
2

h
〈∇f,∇h〉 − 2

h4
|h∇ihlk − hlk∇ih|2

At a local spatial pointwise maximum, we must have ∇f = 0 and ∆f ≤ 0. It follows that
the maximum of f is monotonically nonincreasing in time, and with more work Huisken is
able to show it must actually decrease and go to zero everywhere as the surface shrinks to
a point. A similar evolution equation gives an a priori bound on the norm of ∇hij after
rescaling, so as we approach a singularity the rescaled surfaces become more and more
umbilical everywhere. But a totally umbilical surface in R3 is a round sphere or plane, by
a classical theorem of Meusnier. In words, a mean convex surface shrinks by MCF to a
round point in finite time.

The fact that f → 0 monotonically is true in all dimensions; however, Meusnier’s theorem
only holds for hypersurfaces in dimension at least 3. The analog of Huisken’s theorem for
curves in the plane is true (actually, the initial hypothesis of convexity is superfluous) but
the proof is completely different.

2.4. Singularities of MCF. By focussing at the first place a singularity develops, and
rescaling so that |A|2 = 1 we obtain a noncompact surface. Let’s translate the family Ft
in space and time so that the singularity is at the origin (0, 0) and then take a sequence
of parabolic dilations (x, t) → (λx, λ2t) with λ → ∞ to obtain MCFs F λ

t . It turns out
that some subsequence of the F λ

t necessarily converges weakly to a limiting ‘tangent flow’
F∞t . Just as the usual tangent cone construction produces an object with a dilational
symmetry, it turns out that the tangent flow is a self-shrinker; i.e. that F∞t =

√
−tF∞−1.
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This was proved for so-called type I ‘rapidly forming’ singularities by Huisken [20] (we’ll
see his argument in a momemnt) and in full generality by Ilmanen [22].

2.4.1. Entropy functionals. To prove that some limit F∞t exists one needs two-sided control
over the norm of the second fundamental form A and its spatial derivatives ∇mA for F λ

t

for each fixed compact interval a ≤ t ≤ b < 0 independent of λ. Because the surfaces we
are considering are embedded in R3 lower bounds on injectivity radius come for free from
curvature bounds.

The time derivative of |∇mA|2 is equal to ∆|∇mA|2 + 2|∇m+1A|2 plus a polynomial in
the various ∇∗A of order at most m. This lets one use a bootstrapping argument to control
the norm of ∇mA in the rescaled flows in terms of the norm of A. So we are reduced to
getting normalized control on |A|2 as we approach the singularity.

Huisken imposes this control by fiat. First of all by the maximum principle, the evolution
equation

∂t|A|2 = ∆|A|2 − 2|∇A|2 + 2|A|4

implies that the spacewise maximum maxFt |A|2 grows at least like maxFt |A|2 ≥ 1/2(T−t).
A singularity (i.e. a first time T when the surface becomes singular) is said to be rapidly
forming (one also says type I) if this estimate is sharp up to a constant; i.e.

max
Ft
|A|2 ≤ C

2(T − t)
Examples include convex surfaces and cylinders, and rotationally symmetric shrinking
necks. For such a surface one has a priori uniform geometric control on the rescaled flows
F λ
t , and some subsequence converges to a limit flow F∞t called the tangent flow.
To prove that the tangent flow is a self-shrinker there is a further ingredient. Huisken

introduced the first examples of what have become known as entropy functionals in [20]
§ 3. Recall in § 2.2 we defined the function S for surfaces F in R3 by

S(F ) :=
1

4π

∫
F

e−x
2/4darea

(up to a multiple of 4π) and observed that F is a critical point for S if and only if it’s a
self-shrinker.

Let’s suppose F (t) becomes singular at (0, 0), and for the sake of clarity, let’s make the
dimension dependent quantities explicit by working with hypersurfaces in arbitrary Rn+1.
For a family F (t) evolving by MCF, let’s consider the time-dependent functional

St(F ) :=
1

(4π(−t))n/2

∫
Ft

e−x
2/(−4t)dvolt

Write φ(x, t) := e−x
2/(−4t)/(4π(−t))n/2 and τ := −t. With this notation,

Proposition 2.4 (Huisken, [20] Thm. 3.1). The time derivative of St(F (t)) satisfies
d

dt
St(Ft) = −

∫
F (t)

φ
∣∣∣H +

1

2τ
F⊥
∣∣∣2dvolt

In particular, this quantity is non-increasing with t, and is stationary if and only if F is a
self-shrinker.
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Proof. Because F is evolving by mean curvature, the time derivative of the volume form
at time t is −H2dvolt so we have

d

dt
St(F (t)) =

∫
F (t)

〈∇φ,H〉+ φ′ − φH2 dvolt

Now, ∇φ = −(F/2)φ and φ′ = (n/2τ − |F |2/4τ 2)φ. Therefore

d

dt
St(Ft) =

∫
F (t)

−φ
(
H2 − n

2τ
+

1

2τ
〈F,H〉+

|F |2

4τ 2

)
dvolt

=

∫
F (t)

−φ
∣∣∣H +

1

2τ
F
∣∣∣2dvolt +

∫
F (t)

φ

2τ
〈F,H〉dvolt +

∫
F (t)

nφ

2τ
dvolt

Now, let’s consider the variation of the volume of F (t) in the direction Y := φF/2τ . On
the one hand, this is

∫
F (t)
−〈Y,H〉dvolt. On the other hand, if we restrict attention to the

tangent plane to F at some point, then in directions tangent to the level sets of φ the
derivative of distance is φ/2τ whereas in the direction of ∇φ the derivative of distance is
φ/2τ + 〈∇φ/2τ, F>〉. It follows that we obtain an identity∫

F (t)

φ

2τ
〈F,H〉dvolt =

∫
F (t)

φ

(
− n

2τ
+
|F>|2

4τ 2

)
dvolt

Making this substitution proves the identity and the proposition. �

Huisken’s theorem follows from this. Monotonicity of St(Ft) implies that for each fixed t
the function λ→ St(F

λ
t ) is strictly decreasing as a function of λ unless Ft is a self-shrinker.

The infimum is achieved for the limit flow F∞t ; thus the limit flow is a self-shrinker.
Ilmanen removes the type I hypothesis and proves the existence of a self-shrinking tan-

gent flow in full generality; see [22] Lemma 8 for a precise statement. His arguments use
geometric measure theory rather than the PDE methods of Huisken, and his techniques
apply to the more general world of Brakke flows, where in place of hypersurfaces one works
with a family of Radon measures on Rn satisfying MCF only in a weak distributional sense.

2.4.2. Classification of generic singularities. Near a singularity the parabolic blow-ups of a
MCF family converge to a self-shrinker. The example of Angenent’s doughnut shows that
the geometry, and even the topology of a self-shrinker can be rather complicated. However
this leaves open the possibility that for generic surfaces the only self-shrinkers that arise
as limits of singularities are spheres and cylinders.

This is in fact accomplished by Colding-Minicozzi [9]. To explain the argument, let’s
consider a family of functionals of the form

Sx0,t0(F ) :=

∫
F

(4πt0)−n/2e−|x−x0|
2/4t0dvol

This is Huisken’s time-dependent entropy functional, centered at an arbitrary point x0.
Define a new functional λ of a hypersurface λ(F ) to be the supremum of Sx0,t0(F ) over
all x0, t0. This functional is non-negative, invariant under similarities of Euclidean space,
non-increasing under MCF, and the critical points are self-shrinkers. It’s customary to
refer to this functional simply as entropy.
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Now Colding–Minicozzi’s argument has two main ingredients. The first is an analysis of
stability for self-shrinkers: they show that the only ‘stable’ self-shrinkers in dimension 3 are
spheres, planes and cylinders. For every other self-shrinker one can find a small graphical
perturbation whose entropy is strictly smaller. The second is a compactness theorem: for
any fixed upper bound on area and genus, the space of self-shrinkers is compact. Because
of compactness, when you perturb an unstable self-shrinker the entropy goes down by a
definite amount.

So: start with an arbitrary evolving surface, and zoom in right before it becomes singular.
If the tangent flow is stable, there’s nothing to show. Otherwise it can be perturbed a very
small amount so that the entropy is reduced. Repeat the process for the perturbed surface:
i.e. zoom in near an evolving singularity, perturb if necessary, and so on. Since entropy is
always positive, and the entropy of the original surface was finite, we only need to perform
finitely many perturbations before the tangent flow becomes stable.

2.4.3. MCF with surgery. Suppose F develops a singularity with tangent flow a shrinking
round cylinder. One can zoom in to just before the singularity develops and perform surgery
— cut off the neck where it starts to get large, and replace the interpolating cylinder by a
pair of round hemispheres to cap off the exposed ends. This operation is called a surgery.
Topologically, it has the effect of undoing a connect sum or self-connect sum of F . If this
operation is performed judiciously, we can restart MCF on the surgered surface until the
next singularity develops. Near a singularity with tangent flow a shrinking round sphere
there is an even simpler operation: we can zoom in to just before the singularity develops
and simply throw the (nearly) round surface away. For generic initial F this MCF with
surgery makes sense for all time: there are finitely many times where we undo a connect
sum, and finitely many times when some component shrinks to a point and disappears.
After every component has disappeared the ‘flow’ proceeds statically on the empty surface.

Huisken and Sinestrari [21] developed this procedure rigorously in any dimension: near
a singularity with tangent flow is a shrinking round Sn−1×R, cut off the neck and replace
with round hemispheres; near a singularity with tangent flow a shrinking round Sn, throw
the hypersurface away. If these are the only singularities that develop, one deduces (by
reversing the topological operations) that the original hypersurface F was diffeomorphic
either to Sn or to a finite connected sum of Sn−1 × S1s.

Say that a hypersurface is two-convex if the sum λ1 + λ2 of the two smallest eigenvalues
of the second fundamental form is non-negative everywhere. An application of the tensor
maximum principle shows that two-convexity is preserved by MCF. The main result of
[21] is that if n ≥ 3 (so F is a hypersurface in R≥4) and F is two-convex, the only
singularities that develop have tangent flows a round sphere or cylinder, and furthermore
one can perform surgery near these singularities in such a way as to preserve the condition
of two-convexity. As a purely topological conclusion they deduce that any two-convex
hypersurface in R≥4 is diffeomorphic to Sn or a finite connected sum of Sn−1 × S1s.

3. Curvature evolution and pinching

In this section we compute formulae for the evolution of various geometric quantities
under Ricci flow. We prove short time existence and uniqueness of the flow after Hamilton
and DeTurck, and obtain various monotonicity and pinching estimates for curvature as
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applications of the maximum principle. These estimates are crucial for obtaining a priori
control on the structure of the singularities that form in finite time.

3.1. Formulae after all. Let’s turn now to formulae. In Riemannian geometry there’s
typically a trade off between economy of notation and ease of calculation, and in order to
facilitate the latter it’s crucial to be able to work in local coordinates. Unfortunately this
also means using several notational conventions that can obscure the literal meaning of a
formula, especially as certain natural operations involving differential operators are neither
commutative nor associative. Thus in this section we spell out the meaning of the various
formulae we will use throughout the rest of the chapter.

3.1.1. Local coordinates. Let’s work in a local chart with smooth coordinates xi. We use
abbreviations ∂i := ∂/∂xi and ∇i := ∇∂i . For a tensor, lower indices are covariant and
upper indices are contravariant, so a tensor T ∈ Γ(⊗kT ∗M ⊗l TM) is written as

T = T b1b2···bla1a2···akdx
a1 ⊗ · · · ⊗ dxak ⊗ ∂b1 ⊗ · · · ⊗ ∂bl

Usually the dxi and ∂j terms are omitted, so that the tensor is denoted just as T b1b2···bla1a2···ak .
Sometimes we use a single letter to denote a multi-index, e.g. α := a1a2 · · · ak and write T βα .
We use the Einstein summation convention that repeated indices (one upper, one lower)
indicate summation, e.g. X iYi really means

∑
iX

iYi.

3.1.2. The metric tensor g. The metric g is a symmetric 2-form, i.e. a section of S2T ∗M .
At each point p it determines a positive definite inner product g(X, Y )p, also written
〈X, Y 〉p. Typically the point p is omitted. In local coordinates,

g = gijdx
i ⊗ dxj

where gij = gji. We write the inverse of the matrix gij as gij; i.e. gijgjk = δik (remember
the summation convention). The metric gives a canonical identification between TM and
T ∗M , which we can use to raise or lower the indices of a tensor. Thus

gijT βαi = T βjα and gijT βiα = T βαj

In the special case of a vector field X = X i∂i we denote the dual 1-form by X[, so
that X[ = gjiX

idxj = Xjdx
j. Likewise for a 1-form α = αidx

i the dual vector field is
α] = gijαi∂j = αj∂j. For a function f the gradient gradf is by definition gradf = (df)].

Partial derivatives of the gij and gij are related by

0 = ∂l(g
ijgjk) = (∂lg

ij)gjk + gij(∂lgjk)

3.1.3. The Levi-Civita connection ∇. A connection∇ on a smooth vector bundle V overM
is a rule that takes a vector field X onM and a section σ of V and produces another section
∇Xσ of V which is tensorial in X, and satisfies a Leibniz rule ∇Xfσ = X(f)σ+ f∇Xσ for
any smooth function f .

Given g there is a unique connection ∇ on TM called the Levi-Civita connection which
preserves the metric and is torsion-free; i.e.

Z(g(X, Y )) = g(∇ZX, Y ) + g(X,∇ZY ) and ∇XY −∇YX = [X, Y ]
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for all vector fields X, Y, Z. It satisfies the Koszul formula (which can be taken as a
definition):

〈∇XY, Z〉 =
1

2
{Xg(Y, Z)+Y g(Z,X)−Zg(X, Y )+g([X, Y ], Z)−g([Y, Z], X)−g([X,Z], Y )}

The connection is not a tensor, but the difference of two connections on the same bundle
is a tensor. Local coordinates define a ‘trivial’ connection ∇̃ satisfying ∇̃i∂j = 0 and the
difference between ∇ and ∇̃ is expressed locally with the Christoffel symbols

∇i∂j = Γkij∂k where Γkij =
1

2
gkl(∂igjl + ∂jgil − ∂lgij)

Note that Γkij = Γkji since ∇ is torsion-free.

3.1.4. Connections on other bundles. The connection ∇ on TM determines a connection
on T ∗M that we also denote ∇, by the formula

Y (α(X)) = (∇Y α)(X) + α(∇YX)

By the Leibniz rule this gives a connection on every ⊗kT ∗M ⊗l TM . In coordinates,
∇idx

j = −Γjikdx
k.

If T = Tαβ dx
β⊗∂α is a tensor (where α, β are multi-indices), we typically want to compute

the coefficients of ∇T . Here we use the potentially misleading, but common convention
that

∇iT
α
β := (∇T )αiβ = ∂iT

α
β +

∑
k

Γαkil T
α1···l···α|α|
β −

∑
k

ΓliβkT
α
β1···l···β|β|

With this convention, taking higher covariant derivatives is ‘associative’; i.e.

∇i∇jT
β
α := (∇∇T )βijα

and so on. Since ∇ is a metric connection, ∇igjk := (∇g)ijk = 0 so taking covariant
derivatives commutes with contraction of indices.

The alternative convention is to use ∇iT to denote the result of contracting the tensor
∇T with the vector field ∂i. If this convention is meant we denote it with brackets. Hence

∇i∇jT = ∇i(∇jT )−∇∇i∂jT

Fortunately the commutator (∇i∇j −∇j∇i)T is the same in either convention.
At a point p at the center of normal coordinates we have Γkij = 0 so that ∇iT

α
β = ∂iT

α
β .

If the quantity we are computing is a tensor, an equality which holds in special coordinates
at a point holds everywhere. This tremendously simplifies several formulae, as we shall
see, particularly in § 3.2.

3.1.5. Hessian and Laplacian. The Hessian of a tensor T is the second covariant derivative
Hess(T ) := ∇∇T and the rough Laplacian is the trace of the Hessian. That is,

∆T := trHess(T ) = ∇∗∇T = gij∇i∇jT

For a function f we have Hess(f) = ∇df , and ∆f agrees with the usual Hodge–de Rham
Laplacian applied to f . Note that this is the ‘analyst’s Laplacian’, with nonpositive spec-
trum.
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We shall use the same convention for the components of the rough Laplacian applied to
tensors as we do with covariant derivatives, e.g.

∆Tαβ := (∆T )αβ = gij∇i∇jT
α
β

3.1.6. Lie derivative. A vector field X on a closed manifold generates a flow ϕt, and for
any covariant (resp. contravariant) tensor field T we can push forward (resp. pull back) T
under this flow and compute the derivative with respect to t at t = 0. The result is called
the Lie derivative of T in the direction X, denoted LXT .

For a function f we have LXf = X(f) and for a vector field Y we have LXY = [X, Y ].
For a k-form α Cartan’s ‘magic formula’ says LXα = ιXdα+ dιXα where ιX is contraction
with X. For other tensors one can compute Lie derivative by the Leibniz rule. For instance,
if g denotes the metric, then for any vector field X = X i∂i,

g(∇X∂i, ∂j) + g(∂i,∇X∂j) = X(g(∂i, ∂j)) = (LXg)(∂i, ∂j) + g([X, ∂i], ∂j) + g(∂i, [X, ∂j])

so that

LXgij := (LXg)ij = g(∇iX, ∂j) + g(∂i,∇jX) = gkj∇iX
k + gki∇jX

k = ∇iXj +∇jXi

Equivalently, for a 1-form α we have Lα]gij = ∇iαj +∇jαi. As a special case,

Lgradfgij = 2Hess(f)

3.1.7. The Riemann curvature tensor R. The curvature tensor R is defined by

R(X, Y )Z := ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

for all vector fields X, Y, Z. The fact that it is tensorial in all three entries X, Y and Z
follows from a calculation. By abuse of notation we sometimes write

R(X, Y, Z,W ) := 〈R(X, Y )Z,W 〉
In local coordinates,

R(∂i, ∂j)∂k = Rl
ijk∂l where R

l
ijk = ∂iΓ

l
jk − ∂jΓlik + ΓpjkΓ

l
ip − ΓpikΓ

l
jp

We also write
〈R(∂i, ∂j)∂k, ∂l〉 = Rijkl = glmR

m
ijk

It satisfies several symmetries, most prominently

Rijkl = Rklij, −Rijlk = Rijkl = −Rjikl, and Rijkl +Rjkil +Rkijl

The first two symmetries together imply that the curvature can be thought of as a section
of S2Λ2T ∗M ; i.e. as a symmetric quadratic form on Λ2T ∗M . The third symmetry is called
the first, or algebraic Bianchi identity. The second, or differential Bianchi identity is

∇mR
l
ijk +∇iR

l
jmk +∇jR

l
mik

(remember that a term like ∇mR
l
ijk means the ∂l component of (∇mR)(∂i, ∂j)∂k, and so

on).
Recall that ∇idx

j = −Γjikdx
k. Thus

(∇i∇j −∇j∇i)dx
k = Rk

jildx
l
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Thus for vector fields X = Xk∂k and 1-forms α = αkdx
k we obtain formulae

∇i∇jX
k −∇j∇iX

k = Rk
ijlX

l

and
∇i∇jαk −∇j∇iαk = Rl

jikαl = glmRjikmαl
and so on by the Leibniz rule for other tensors.

3.1.8. Curvatures K, Rm, Ric and R. The sectional curvature of the 2-plane spanned by
non-parallel vectors X, Y is the number

K(X, Y ) := 〈R(X, Y )Y,X〉/‖X ∧ Y ‖2

We denote by Rm the curvature tensor thought of as a symmetric quadratic form on
Λ2T ∗M , with the convention that Rm(X ∧ Y, Z ∧W ) := 〈R(X, Y )W,Z〉. Since X ∧ Y :=
X ⊗ Y − Y ⊗X the eigenvalues of Rm are equal to twice the sectional curvatures.

The Ricci curvature is obtained by taking the trace, i.e.

Ric(X, Y ) =
∑
i

〈R(ei, X)Y, ei〉

for any orthonormal basis ei. If v is a unit vector, Ric(v, v) is equal to (n − 1) times the
average of K over all 2-planes containing v. In local coordinates,

Ric = Rijdx
i ⊗ dxj where Rij = Rk

kij = ∂kΓ
k
ij − ∂iΓkkj + ΓmijΓ

k
km − ΓmkjΓ

k
im

=
1

2
gkl(∂j∂kgil − ∂l∂kgij − ∂i∂jgkl + ∂i∂lgkj) + lower order derivatives

The scalar curvature R is obtained by taking a further trace

R = gjiRij

Note that Ric is a section of S2T ∗M while R is a function.

3.1.9. Sign errors. There are many opportunities for sign errors in these formulae. One
major source of such errors are the multiple competing conventions for the definitions
of R and Rijkl. Everyone should agree on the signs of R and K and the eigenvalues
of the symmetric quadratic form Ric. The eigenvalues of Rm depend on the choice of
normalization of wedge product of 1-forms; different normalizations result in a factor of 2.

3.2. Evolution of Curvature. Let’s suppose we have a manifold and a family gij(t) of
smooth metrics. Write hij = ∂tgij, and observe that 0 = ∂t(g

ijgjk) = (∂tg
ij)gjk + gijhjk so

that ∂tgij = −gjkgilhlk.
Recall that the Christoffel symbols are defined by

Γkij =
1

2
gkl(∂igjl + ∂jgil − ∂lgij)

The connection ∇ is not a tensor, but its time derivative is. Thus we can compute the
derivative ∂tΓkij at a point p in normal coordinates where ∂igjk = 0. At such a point

∂tΓ
k
ij =

1

2
(∂tg

kl)(∂igjl + ∂jgil − ∂lgij) +
1

2
gkl(∂ihjl + ∂jhil − ∂lhij)

=
1

2
gkl(∇ihjl +∇jhil −∇lhij)
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and since both sides are components of tensors, equality holds generally (remember our
notational convention for the components of the covariant derivatives of a tensor; see
§ 3.1.4). Using the equality

Rl
ijk = ∂iΓ

l
jk − ∂jΓlik + ΓpjkΓ

l
ip − ΓpikΓ

l
jp

and once more computing at a point in normal coordinates where Γkij = 0 we obtain

∂tR
l
ijk =

1

2
glp (∇i∇jhkp +∇i∇khjp −∇i∇phjk −∇j∇ihkp −∇j∇khip +∇j∇phik)(3.1)

Now if we suppose the metrics g(t) are a solution of Ricci flow, then hij = −2Rij and
therefore

∂tΓ
k
ij = −gkl(∇iRjl +∇jRil −∇lRij)

and

∂tR
l
ijk = glp (−∇i∇jRkp −∇i∇kRjp +∇i∇pRjk +∇j∇iRkp +∇j∇kRip −∇j∇pRik)

Remarkably, the right hand side can be re-written as ∆Rl
ijk plus a term which is quadratic

in the curvature:

Proposition 3.1. Let g(t) be a solution to Ricci flow. Then

∂tR
l
ijk = ∆Rl

ijk + gpq(Rr
ijpR

l
rqk − 2Rr

pikR
l
jqr + 2Rl

pirR
r
jqk)

−Rp
iR

l
pjk −R

p
jR

l
ipk −R

p
kR

l
ijp +Rl

pR
p
ijk

where Rp
i := gpjRij and so on.

Proof. First observe that we can rewrite

−∇i∇jRkp +∇j∇iRkp = gqm(RijkmRqp +RijpmRqk)

Recall the definition of the rough Laplacian as

∆Rl
ijk = gmq∇m∇qR

l
ijk = gmq∇m(−∇iR

l
jqk −∇jR

l
qik)

by the second Bianchi identity. The difference between ∇m∇i and ∇i∇m is a curvature
term, so we can write

∆Rl
ijk = gmq(curvature term−∇i∇mR

l
jqk −∇j∇mR

l
qik)

Now Rl
jqk = glpRjqkp = glpRkpjq and Rl

qik = glpRqikp = glpRkpqi so applying the second
Bianchi identity again and then contracting,

∆Rl
ijk + curvature term = gmqglp(−∇i∇mRkpjq −∇j∇mRkpqi)

= gmqglp(∇i∇kRpmjq +∇i∇pRmkjq +∇j∇kRpmqi +∇j∇pRmkqi)

= glp(−∇i∇kRpj +∇i∇pRkj +∇j∇kRpi −∇j∇pRki)

Collecting curvature terms gives the result. �

Now, ∂tRijkl = ∂tglmR
m
ijk = −2RlmR

m
ijk + glm∂tR

m
ijk so we have

∂tRijkl = ∆Rijkl + quadratic curvature term

and likewise for ∂tRij and ∂tR. Explicitly, one has the following formulae:
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Theorem 3.2 (Hamilton, [12] 7.1, 7.3, 7.5). Let g(t) be a solution to Ricci flow. Define
the tensor Bijkl := gprgqsRpijqRrkls

Then we have the following evolution formulae for curvature. For Rijkl:

∂tRijkl = ∆Rijkl − 2(Bijkl −Bijlk −Biljk +Bikjl)

− gpq(RpjklRqi +RipklRqj +RijplRqk +RijkpRql)

For Rij:
∂tRij = ∆Rij + 2gprgqsRpijqRrs − 2gpqRpiRqk

For R:
∂tR = ∆R + 2gijgklRikRjl = ∆R + 2|Ric|2

3.3. The Ricci flow is not parabolic. The Ricci curvature is a 2nd order differential
operator from metrics to symmetric 2-forms. Although it’s nonlinear, it is semilinear —
i.e. linear in the derivatives of highest order. If we write Γ(S2

+T
∗M) for positive definite

symmetric 2-forms, then Ric : Γ(S2
+T
∗M) → Γ(S2T ∗M). The derivative dRic at any

specific metric g is therefore a linear map dRicg : Γ(S2T ∗M)→ Γ(S2T ∗M). By contracting
indices in equation 3.1 we get the formula

dRicg(hij) =
1

2
gpq(∇q∇ihjp +∇q∇jhip −∇q∇phij −∇i∇qhjp −∇i∇jhpq +∇i∇phqj)

=
1

2
gpq(∇q∇ihjp +∇q∇jhip −∇q∇phij −∇i∇jhpq)(3.2)

(the 4th and 6th term cancel after contraction with gpq).
If P is a linear differential operator of order k between sections of bundles E and F ,

the symbol of P (denoted σ(P )) is the homogeneous term of highest order in the Fourier
transform of P . In other words, σ(P ) is a tensor, i.e. a C∞(M)-linear map

σ(P ) : Γ(SkT ∗M ⊗ E)→ Γ(F )

In local coordinates, we replace each differential operator ∂j by a formal dual variable ξj
which is a coordinate on the cotangent bundle, and take the homogeneous polynomial in
ξ of highest order. In our case we have

σ(dRicg)(ξ) : Γ(S2T ∗M)→ Γ(S2T ∗M)

given by

σ(dRicg)(ξ)(hij) =
1

2
gpq(ξqξihjp + ξqξjhip − ξqξphij − ξiξjhpq)

Now let’s specialize to the case of a 2nd order (possibly nonlinear) differential operator
P : Γ(E) → Γ(E) and let’s fix a metric on (the fibers of) E. The equation ∂tθ = Pθ
is said to be parabolic if for every point p and every ξ nonzero at p, the inner product
〈σ(P )(ξ)(h), h〉 is positive definite on Ep (at least if M is compact — the only case we
consider).

It will turn out for P = −2Ricg that the symbol σ(−2dRicg) is degenerate. Let’s see
why. The reason is the diffeomorphism invariance of the Ricci flow. This gives an enormous
(infinite dimensional) family of symmetries of the flow, and deformations tangent to these
symmetries will be degenerate.
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More precisely: the metric and curvature both pull back under any diffeomorphism
ϕ : M → M ; i.e. Ric(ϕ∗g) = ϕ∗Ric(g). If ϕt is a 1-parameter family of diffeomorphisms
generated by a vector field X, we can differentiate this equality to get

dRicg(LXg) = LXRicg
Define an operator Q : Γ(T ∗M)→ Γ(S2T ∗M) by Q(α) := Lα]gij = ∇iαj +∇jαi. Then

dRicg ◦Q(α) = Lα]Ricg
The right hand side is first order in α, whereas the left hand side is a priori third order,
so (when thought of as a third order operator!) its symbol vanishes. Taking symbols
commutes with composition, so

0 = σ(dRicg ◦Q) = σ(dRicg)σ(Q)

In particular, σ(dRicg)(ξ) vanishes on expressions of the form (ξiαj + ξjαi), so that Ricci
flow is not parabolic.

3.4. The DeTurck trick. Nevertheless, Hamilton [12] demonstrated short time existence
and uniqueness for Ricci flow with arbitrary smooth initial metric on a compact manifold.
In fact, he obtained a lower bound on the lifetime of a maximal solution of the form
const./max |Rm| where the constant depends only on dimension.

Hamilton’s proof is technically difficult, and relies on the Nash–Moser Inverse Function
Theorem. DeTurck [10] gave a much simpler proof. As we have seen, the degeneracy of
the symbol comes from the naturalness of the flow. DeTurck’s trick is to modify Ricci flow
by adding a suitable Lie derivative term, cancelling the degeneracy. The resulting flow is
parabolic and enjoys short term existence and uniquess. On the other hand, if we evolve
the manifold by this modified flow together with a family of diffeomorphisms which undo
the effect of the Lie derivative term, we recover ordinary Ricci flow and prove existence
(uniqueness requires a little more work).

Let’s take another look at the symbol of −2dRicg. The term gpq∇p∇qhij = ∆hij con-
tributes |ξ|2hij to the symbol. This is promising, but we have still to understand the highest
order contribution of the other terms.

We can switch the order of covariant derivatives at the cost of introducing curvature
terms. However, these curvature terms are tensors — i.e. 0th order — and therefore make
no difference to the symbol. So

−2dRicg(hij) = ∆hij −∇ig
pq∇qhjp −∇jg

pq∇qhip + gpq∇i∇jhpq + lower order terms

If we define a 1-form V := Vkdxk by

Vk := gpq∇phqk −
1

2
∇k(g

pqhpq)

then by substitution,

−2dRicg(hij) = ∆hij −∇iVj −∇jVi + lower order terms

Now, ∇iVj + ∇jVi is nothing but LV ]g. This suggests that we should try to find a
natural differential operator from metrics to vector fields ρ : Γ(S2

+T
∗M) → Γ(TM) for

which dρ(hij) = V ], and then the leading term of −2Ricg+Lρ(g)g will be ∆hij with symbol
|ξ|2hij.
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The formula for Vk looks very similar to the contraction of a Christoffel symbol, with
the metric term gij replaced by hij. Now, the Christoffel symbol is not itself a well-defined
tensor, but if we fix a background metric g̃ with Christoffel symbols Γ̃kij, then for any other
metric g the difference Γkij − Γ̃kij is an honest tensor, and we can define the vector field
W k := gpq(Γkpq − Γ̃kpq).

Now, let’s define the modified flow ∂tg = −2Ric + LWg. Define P (g) := −2Ricg + LWg
so that

d(LWg)(hij) = ∇igjkg
pqdΓkpq(hij) +∇jgikg

pqdΓkpq(hij)

= ∇igjkg
pq

(
1

2
gkl(∇phql +∇qhpl −∇lhpq)

)
+ similar term

= ∇ig
pq(∇qhpj −

1

2
∇jhpq) +∇jg

pq(∇qhpi −
1

2
∇ihpq)

so that σ(−2dRicg +dLWg)(ξ)(hij) = |ξ|2hij. Thus the modified flow is parabolic, and has
short time existence and uniqueness. Composing modified flow with the inverse of the flow
generated by the (time-dependent) vector field W recovers ordinary Ricci flow.

3.5. Scalar Maximum Principle. Fix a compact manifoldM , a (time-dependent) vector
field V , and a function ψ of a real variable. A heat equation is an equation of the form

∂tf = ∆f + V (f) + ψ(f)

for some smooth function f . The simplest case is that V = ψ = 0; i.e. ∂tf = ∆f . This
says that the value of f at each point evolves by moving in the direction of the average of
nearby values. Solutions to this equation satisfy a maximum principle which we state in
the following way. Suppose ∂tf = ∆f , and suppose at time 0 the values of f all lie in a
closed convex set K ⊂ R. Then the values of f(t) lie in K for all positive t.

Now let’s consider ∂tf = ∆f + ψ. Suppose f(t) ∈ K for all t up to some first time t0
when there is some p with f(t0)(p) ∈ ∂K. Then f(t0) ∈ K so ∆f(t0)(p) = 0. Suppose
that there is a relationship between f and ψ (in many important cases ψ is a function of
f) so that ψ points into the interior of K whenever f ∈ ∂K. Then the maximum principle
applies, and we deduce f(t) ∈ K for all t. We can even let K depend on t, in which case
we need ψ to dominate ∂t∂K(t) (in the obvious sense) whenever f ∈ ∂K(t).

The first place we want to apply this is to the evolution equation for scalar curvature

∂tR = ∆R + 2|Ric|2

Evidently |Ric|2 ≥ 0 so we can take K to be any set of the form [r,∞) where the obvious
choice for r is Rmin(0), the spatial minimum of R at time 0 (achieved, sinceM is compact).
If R < 0 somewhere at time 0 we can do better. R is the trace of Ric, so Cauchy–Schwarz
implies |Ric|2 ≥ R2/n. Thus we conclude:

Proposition 3.3 (Monotonicity of Rmin). The spatial minimum Rmin(t) is monotone non-
decreasing under Ricci flow and satisfies

Rmin(t) ≥ Rmin(0)

1− 2tRmin(0)/n

In particular, if Rmin(0) is positive, the metric becomes singular in time O(1/Rmin(0)).
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3.5.1. Higher derivatives of curvature. The maximum principle can be used to give control
over the spatial derivatives of curvature as a function of time.

Theorem 3.2 gives a formula for the evolution of the curvature tensor of the form

∂tRm = ∆Rm +O(Rm2)

where O(Rm2) denotes an unspecified term quadratic in Rm. From this we can compute

∂t|Rm|2 = 2〈∂tRm,Rm〉 = 2〈∆Rm,Rm〉+O(|Rm|3)

= ∆|Rm|2 − 2|∇Rm|2 +O(|Rm|3)

where now O(·) is the usual big-O notation for a function. From this one can give an a
priori estimate on the rate of blow-up of |Rm|. Denote by |Rm|max(t) the maximum of |Rm|
at time t. At a spatial maximum for |Rm|2 we have ∆|Rm|2 ≤ 0 so the time derivative
of |Rm|2max(t) is bounded above by 2C|Rm|3max(t) for some C. Therefore we obtain the
following counterpart to Proposition 3.3:

Proposition 3.4 (Curvature blow-up rate). There is a constant C depending only on the
dimension so that

|Rm|max(t) ≤
|Rm|max(0)

1− Ct|Rm|max(0)

One application is a doubling-time estimate: if the norm of the curvature is ≤ K at time
0 it stays ≤ 2K up to time at least 1/2CK.

For any tensor T we have ∆T = tr∇2T so commuting ∇ with ∆ gives rise to an identity
of the form

∇∆T = ∆∇T +O(T,∇Rm) +O(∇T,Rm)

where O(A,B) denotes a term linear in each of A and B. Thus

∇∆Rm = ∆∇Rm +O(∇Rm,Rm)

Likewise, the effect of commuting ∂t with ∇ contributes an O(T,∇Rm) term coming from
the time derivative of the metric (and hence the connection). Putting these contributions
together for T = Rm gives rise to an identity of the form

∂t∇Rm = ∆∇Rm +O(∇Rm,Rm)

and consequently

∂t|∇Rm|2 = ∆|∇Rm|2 − 2|∇2Rm|2 +O(|∇Rm|2|Rm|)
Inductively, one obtains an estimate of the form

∂t|∇mRm|2 = ∆|∇mRm|2 − 2|∇m+1Rm|2 +O
( ∑
i+j=m

|∇iRm||∇jRm||∇mRm|
)

Using this we obtain the following estimate:

Theorem 3.5 (Curvature derivative bounds). Suppose |Rm| ≤ K for all x ∈ M and all
times in the interval t ∈ (0, t0/K]. Then for each integer m there is a constant C depending
on m, on t0 and on the dimension of M , so that for any time t in the same interval there
is an estimate

|∇mRm| ≤ CK

tm/2
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Notice that there is no a priori estimate on any |∇mRm| with m > 0 at time t = 0, and
that the control gets better as time increases. Furthermore, by the doubling time estimate,
if |Rm| ≤ K at time 0 then |Rm| ≤ 2K up to time 1/2CK; so the hypothesis of the
theorem is always satisfied for some K and t0.

Proof. Let’s examine the case m = 1. We want to prove an estimate of the form |∇Rm| ≤
CKt−1/2. For t → 0 we have no control over ∇Rm, so instead we try to control an
expression of the form

f(x, t) := t|∇Rm|2 + α|Rm|2

for some α to be determined. We compute

∂tf ≤ |∇Rm|2 + t(∆|∇Rm|2 + C|∇Rm|2|Rm|) + α(∆|Rm|2 − 2|∇Rm|2 + C|Rm|3)

= ∆f + |∇Rm|2(1 + Ct|Rm| − 2α) + Cα|Rm|3

By hypothesis t|Rm| ≤ t0 and |Rm| ≤ K so

∂tf ≤ ∆f + |∇Rm|2(1 + Ct0 − 2α) + CαK3

for some constant C depending only on the dimension. Thus if we take α = (1 + Ct0)/2
we can ignore the second term, and estimate ∂tf ≤ ∆f + CK3 where now the constant
depends on t0. Since f(0) ≤ αK2, the maximum principle shows that for all time

f ≤ αK2 + CtK3 ≤ CK2

at the cost of adjusting constants, so that |∇Rm| ≤ (f/t)1/2 ≤ CKt−1/2.
The case case of higher spatial derivatives follows in a similar way. �

A more subtle argument due to Shi allows one to control the norm of |∇mRm| pointwise
from only local control over |Rm|. Explicitly, suppose we have an open subset U and we
have a bound |Rm| ≤ K for all p ∈ U and t ∈ (0, t0]. Suppose that at time 0 the ball of
radius r around p is contained in U . Then |∇Rm|2 ≤ CK2(1/r2 + 1/t0 +K) and similarly
for higher derivatives.

3.6. Hamilton’s Tensor Maximum Principle. The evolution formulae in Theorem 3.2
are all of the form ∂tT = ∆T + lower order term. This is a tensorial version of the scalar
heat equations considered in § 3.5. Hamilton [13] Thm 4.3 proved a version of the maximum
principle for tensor equations that we state in the following way.

Suppose V is a tensor bundle over M . We want to give V a (fiberwise) metric and a
connection, so that it makes sense to take the Laplacian of a section of V , to talk about
convexity of subsets etc. The manifold M should admit an evolving Riemannian metric.
There should be a relationship between V and M as follows. Although the metric on V is
fixed, the evolving metric on M manifests itself by an evolving connection on V . We say
that V is natural if the (fixed) fiberwise metric is parallel for the connection at all time.

Theorem 3.6 (Hamilton’s Maximum Principle). Let V be a natural tensor bundle over
M , and let Ψ be a vertical vector field on V . Suppose that there is a closed subset K of V
which satisfies

(1) the set K is fiberwise convex;
(2) for all t the set K is invariant under parallel transport; and
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(3) for any x ∈M any solution to the ODE ∂tT (x) = Ψ(T (x)) which starts in K must
stay in K.

Suppose T (t) is a (time-dependent) section of V which evolves by

∂tT = ∆T + Ψ(T )

and satisfies T (0) ⊂ K. Then T (t) ⊂ K for all t.

Most geometrically natural subsets K that arise in practice will be invariant under
parallel transport.

The idea is to reduce the statement to the scalar maximum principle. A closed subset
of a vector space is convex if it is the sublevel set of a convex function. So if we could find
a parallel fiberwise convex function u with u ≤ 0 on K, to show that T ⊂ K we just need
to check that u(T ) ≤ 0. The key inequality which lets us work with u(T ) in place of T is
the following:

Lemma 3.7 (Laplacian inequality). Let V be a natural tensor bundle over M , and let
u : V → R be a function which is fiberwise convex, and invariant under parallel transport
(at any time); one natural choice is to take u to be equal to the distance to K in each fiber.
Then for any section T of V , at each fixed time t, the following inequality holds pointwise
in M :

∆up(T ) ≥ dup(Tp)(∆T )

Proof. Fix a time t, and a point p ∈ M . We denote the connection on V at time t by ∇.
Fix an orthonormal frame ei(p) for Vp, and extend it locally to an orthonormal frame ei
near p by parallel transport along radial geodesics (in M). Then at the point p, ∇ei = 0
and ∇2ei is antisymmetric, since ∇ preserves the (fiberwise) metric. Thus ∆ei := tr∇2ei
vanishes at p. If we write T locally as T :=

∑
τiei then ∇T =

∑
(dτi)ei + τi∇ei and

∇2T =
∑

(∇dτi)ei + dτi∇ei + τi∇2ei

so we deduce that ∆T =
∑

(∆τi)ei at p.
Since the ei are parallel along radial geodesics, and u is invariant under parallel transport,

it follows that uq(ei(q)) = up(ei(p)) for q near p. Thus

u(T )(q) := uq

(∑
τi(q)ei(q)

)
= up

(∑
τi(q)ei(p)

)
so if we differentiate,

d(u(T ))(q) = dup

(∑
τi(q)ei(p)

)(∑
dτi(q)ei(p)

)
Differentiate again and evaluate at p to get

∇d(u(T ))(p) = Hess(up)(Tp) (∇T,∇T ) + dup(Tp)
(∑

(∇dτi)ei
)

Here Hess(up) means the Hessian of the function up in the vector space Vp; this is a
symmetric quadratic form on Vp, and we are evaluating it at Tp ∈ Vp on (∇T,∇T ). The
result is a quadratic form on TpM , whose value on a pair of vectors X, Y ∈ TpM is
Hess(up)(Tp)(∇XT,∇Y T ).
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Taking the trace of the left hand side gives ∆up(T ). Furthermore,

tr Hess(up)(Tp) (∇T,∇T ) =
∑

Hess(up)(Tp) (∇iT,∇iT )

and because up is convex, each term (and therefore the sum) is ≥ 0. Finally,

tr dup(Tp)
(∑

(∇dτi)ei
)

= dup(Tp)
(∑

(∆τi)ei

)
= dup(Tp)(∆T )

and the lemma is proved. �

Since u is time-invariant, ∂tdu(T ) = du(∂tT ), and therefore by Lemma 3.7, the tensor
PDE implies a scalar differential inequality ∂tu(T ) −∆u(T ) ≤ du(Ψ(T )) to which we can
apply the ordinary scalar maximum principle.

3.6.1. The Uhlenbeck trick. In order to apply the tensor maximum principle, we must deal
with the fact that the tensors we are interested in (e.g. Ric) are living in a bundle whose
(fiberwise) metric is time-dependent. To get around this, we use a bookkeeping trick due
to Karen Uhlenbeck. An orientable 3-manifold M is parallelizable, so for any metric g(0)
we can find a global orthonormal frame e1, e2, e3. Under Ricci flow, we evolve this frame
by g(∂tea, eb) = Ric(ea, eb) and so on (note: it’s safer to use letters like a, b, c for indices so
as not to confuse them for coordinate directions i, j, k). In other words, ∂tea = Ric(ea, ·)].

Lemma 3.8. The evolving frame ea stays orthonormal under Ricci flow.

Proof. Just differentiate

∂t(g(ea, eb)) = (∂tg)(ea, eb) + g(∂tea, eb) + g(ea, ∂teb) = 0

�

The sections ea at any given time determine a family of isomorphisms ι(t) : V → TM
where V is a rank 3 trivial vector bundle. Pulling back the metric gives V a fiberwise
constant metric; pulling back the connection gives it a time-dependent family of connec-
tions, which nevertheless preserve the fiberwise metric. Thus V is natural in the sense
of Theorem 3.6. One may construct in this way natural bundles isomorphic to T ∗M , to
S2T ∗M and so on where the evolution of some tensor of interest is subject to the maximum
principle.

3.6.2. Evolution of the Einstein tensor. The Einstein tensor G, as arises in the theory of
general relativity, is the symmetric 2-tensor Ric − Rg/2. We denote by E its negative;
i.e. E := Rg/2−Ric. In 3-dimensions if the eigenvalues of the curvature operator Rm are
λ, µ, ν (say) then the eigenvalues of Ric are µ+ν, λ+ν, λ+µ and R = 2(λ+µ+ν). It follows
that the Einstein tensor has eigenvalues λ, µ, ν so in three dimensions E corresponds to
Rm under the isomorphism Λ2T ∗M ∼= T ∗M , at least up to a constant.

From the evolution equations for Ric and R, one derives an equation of the form

∂tE = ∆E + Ψ(E)

In an evolving orthonormal frame where E is diagonal with entries λ, µ, ν, the matrix Ψ(E)
is also diagonal with entries λ2 + µν and so forth; i.e. under the ODE ∂tE = Ψ(E) the
eigenvalues evolve by

λ′ = 2(λ2 + µν), µ′ = 2(µ2 + λν), ν ′ = 2(ν2 + λµ)
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This may be proved by a calculation, although it is worth remarking that invariance under
parabolic rescaling implies that Ψ is homogeneous of degree 2, and equivariance under the
orthogonal group shows that it has the same eigenspace decomposition as E.

Let’s suppose that we have R > 0, which (as we have already seen) is preserved by
Ricci flow. Since the derivatives of the eigenvalues are homogeneous of order 2, we may
recover the flowlines of the ODE and their orientation (though not their parameterization)
by projecting to the hyperplane λ+µ+ ν = 1. Figure 3 shows how these quantities evolve
with time.

Figure 3. Projected flowlines of ∂tE = Ψ(E). The green triangle is the
region where Rm ≥ 0 and the blue triangle is the region where Ric ≥ 0.

The convex region with Rm ≥ 0 is indicated by the green triangle, and the convex region
with Ric ≥ 0 is indicated by the blue triangle. Evidently both these regions are preserved
by ∂tE = Ψ(E). The vertices of the green triangle correspond to (projective) fixed points,
where µ = ν = 0, λ = 1 corresponding to the gradient shrinking soliton S2×R. Hamilton’s
tensor maximum principle applied to these convex sets implies:

Theorem 3.9 (Non-negativity). Let M be a closed 3-manifold, and suppose M, g(t) sat-
isfies Ricci flow. If Rm ≥ 0 (resp. Ric ≥ 0) for t = 0 then Rm ≥ 0 (resp. Ric ≥ 0) for all
t > 0.
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It is evident from Figure 3 that concentrically scaled copies of the blue triangle are all
taken inside themselves under the ODE, at least for R ≥ 0. These are the level sets where
the projective inequality Ric ≥ εR holds pointwise. If ε ∈ [0, 1/3) then Ric ≥ εR implies
that R ≥ 0 and we deduce the following:

Theorem 3.10 (Positive pinching). For any ε ∈ [0, 1/3) the inequality Ric ≥ εR is pre-
served by Ricci flow.

3.6.3. Roundness. When Ric is strictly positive (corresponding to the interior of the blue
triangle in Figure 3) every solution to the ODE ∂tE = Ψ(E) projectively converges to the
origin where all eigenvalues are equal. We would like to conclude from the tensor maximum
principle that the same is true for solutions to the PDE.

Let’s suppose we can find a subset K of the bundle of symmetric 2-forms satisfying the
hypotheses of Theorem 3.6 and with the property that pointwise, the level setsK∩{tr(T ) =
C} projectively converge to the origin as C →∞. A solution to the PDE which starts in
K must stay there.

Since R is strictly positive, the spatial infimum of R must blow up in finite time, and
therefore the ratio of the eigenvalues of Ric must tend to 1; colloquially this phenomenon
is called roundness.

Here’s a precise statement:

Theorem 3.11 (Roundness). Let M be a closed 3-manifold, and suppose M, g(t) satisfies
Ricci flow. Suppose there are positive constants α < β so that at time t = 0 we have
α ≤ Ric ≤ β pointwise in the sense of operators. Then for any positive γ there is a
constant C so that

|Ric−Rg/3| ≤ γR + C

Proof. Let’s order the eigenvalues of Rm as λ ≥ µ ≥ ν so that at time t = 0 we have
α ≤ µ+ ν and λ+ µ ≤ β. Evidently |Ric−Rg/3| ≤ λ− ν, so we just need to control the
right hand side.

The inequality µ + ν ≥ α is convex, satisfied at t = 0, and preserved by the ODE, and
therefore holds for all time for the PDE. Likewise the condition Ric ≥ εR for ε := (α/3β)
holds at time 0 and is preserved by the flow by Theorem 3.10; equivalently, µ+ ν ≥ δλ for
δ := 2ε/(1 − 2ε). If we define θ := 1/(1 + δ/2) then θ ∈ (1/2, 1), and for some A � 1 we
can ensure that at t = 0,

λ− ν ≤ A(µ+ ν)θ

The eigenvalue λ is the max of linear functions, and is therefore convex. Likewise, ν and
µ + ν are concave. Thus (λ − ν) − A(µ + ν)θ is convex, and evidently invariant under
parallel transport. We claim that the inequality λ − ν ≤ A(µ + ν)θ is preserved by the
ODE, and therefore also the PDE. From this the theorem follows, since it implies

|Ric−Rg/3| ≤ λ− ν ≤ A(µ+ ν)θ ≤ A(R/2)θ ≤ γR + C

for any fixed γ > 0 and for sufficiently large C.
To prove the claim, it suffices to show that the ratio (λ− ν)(µ+ ν)−θ is decreasing as a

function of time. We compute logarithmic derivatives

log(λ− ν)′ = 2(λ− µ+ ν) and log(µ+ ν)′ = 2
(
λ− µ+ ν + 2µ2/(µ+ ν)

)
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We know µ+ ν ≥ δλ and therefore
δ(λ− µ+ ν) ≤ µ+ ν ≤ µ2/(µ+ ν)

so that log(µ+ ν)′ ≥ (2 + δ)(λ− µ+ ν). From this the claim follows. �

This theorem strongly suggests that a 3-manifold M with Ric > 0 shrinks to a round
point in finite time, and in fact this is one of the main theorems proved by Hamilton in his
first paper on Ricci flow [12]. We shall give a proof of this theorem in § 4.3 when we have
discussed the process of taking limits, modulo a crucial point about injectivity radius that
is established in § 5 using Perelman’s so-called W-functional.

3.6.4. Strong maximum principle and product metrics. A strong version of the maximum
principle says that if a non-negative function f evolves by the heat equation, then if
f(p, t0) > 0 for some point p and time t0, we have f > 0 for every point, and for all
t > t0. Contrapositively, this implies that if there is a positive time t0 with f(p, t0) = 0
then f is identically zero on [0, t0]. For a non-negative function f on a compact conneced
domain K evolving by the heat equation with Dirichlet boundary conditions f |K = 0, one
concludes only that f > 0 for every point in the interior.

Applying this to the evolution equation for R we conclude:

Lemma 3.12. LetM, g(t) be a 3-manifold (not necessarily compact or complete) satisfying
Ricci flow. Suppose Rm ≥ 0 for t = 0 and suppose there is a point p and positive time t0
so that R(p, t0) = 0. Then M is flat on t ∈ [0, t0].

The only subtlety is that M is not assumed to be compact — this is important for
applications, where M might be a limit of parabolic rescalings near a singularity that we
want to show is e.g. a neck pinch.

Proof. Suppose not, so that there is t < t0 and a point q where R(q, t) > 0. Let N be a
compact submanifold containing p and q, and let f be a non-negative function, positive at
q with R ≥ f and with f |∂N = 0, and then evolve f so that it solves the heat equation on N
with Dirichlet boundary conditions. Then ∂t(R− f) = ∆(R− f) + 2|Ric|2 so (R− f) ≥ 0.
But f(t) > 0 in the interior of N . �

Theorem 3.13 (Product metric). Let M, g(t) be a 3-manifold (not necessarily compact
or complete) satisfying Ricci flow. Suppose Rm ≥ 0 for t = 0 and M is not flat. Suppose
further that for some p and t that Ric has a zero eigenvalue at (p, t). Then for t > 0 the
metric splits (locally) as a product of a surface of positive curvature and a line.

Proof. Since M is not flat, Lemma 3.12 implies the strict inequality R > 0 for t > 0. Let
s(x, t) be the function equal at each point to the sum of the two smallest eigenvalues of
Rm. Thus s ≥ 0, and by hypothesis s(p, t) = 0. The function s is convex and invariant
under parallel translation; thus an application of the strong maximum principle implies
that s = 0 identically. It follows that for all t > 0 at every point there is a unique vector
V (up to sign) with ‖V ‖ = 1 and Ric(V ) = 0. Work in a local coordinate patch where
we can choose the sign of V consistently. We claim that V is parallel; this claim evidently
proves the theorem.

Now, since Rm ≥ 0 we can only have Ric(V ) = 0 if the sectional curvature vanishes
on every 2-plane containing V ; i.e. if R(V,X,X, V ) = 0 for all X. We claim that in 3
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dimensions, for any 4-tensor q with the symmetries of R, if there is a nonzero vector V so
that q(V,X,X, V ) = 0 for all X, then q(V, ·, ·, ·) = 0. We prove this as follows. First of
all, for any fixed X the symmetric quadratic form qX(Y ) := q(Y,X,X, Y ) vanishes on X
and V , and therefore (because we are in 3 dimensions) qX(V, Y ) := q(V,X,X, Y ) = 0 for
any Y . In other words, q(V, ·, ·, ·) is antisymmetric in the first two indices, and therefore
antisymmetric in all three indices — i.e. it is a 3-form. On the other hand, q(V,X, Y, V )
is symmetric in X and Y , and since it is also antisymmetric in these terms, it is zero. But
any nonzero 3-form in 3 dimensions is of the form X ∧ Y ∧ V , so q(V, ·, ·, ·) is identically
zero. As a special case, we conclude that R(V, ·, ·, ·) = 0 (and V is evidently the unique
vector with this property, up to scale).

Fix a point p and a curve γ through p and let Ṽ be obtained from V (p) by parallel
transport along γ. LetX be any other parallel vector field along γ. Then R(Ṽ , X,X, Ṽ ) ≥ 0
(because Rm ≥ 0) and vanishes at p, so that ∇γ′(R(Ṽ , X,X, Ṽ )) vanishes at p. Because
Ṽ and X are both parallel along γ,

∇γ′(R(Ṽ , X,X, Ṽ )) = (∇γ′R)(Ṽ , X,X, Ṽ )

and sinceX is an arbitrary parallel field, it follows that (∇γ′R)(V,X,X, V ) = 0 at the point
p for any X. By the algebraic fact we proved above, it follows that (∇γ′R)(V, ·, ·, ·) = 0 at
p, and since p is arbitrary, everywhere.

Now let X, Y, Z be any three parallel vector fields along γ. We compute

0 = ∇γ′(R(V,X, Y, Z)) = R(∇γ′V,X, Y, Z)

Since the values of X, Y, Z at p are arbitrary, this implies that ∇γ′V is in the kernel of R,
which is to say, it is proportional to V . Since ‖V ‖ = 1 it follows that ∇γ′V = 0, and since
γ′ is arbitrary, V is parallel. From this the theorem follows. �

3.6.5. Hamilton–Ivey curvature pinching. Let f(x) := x log x − x. This is convex and
strictly increasing for x ≥ 1, and we let f−1(y) (which is increasing and concave for
y ≥ −1) denote the inverse function. Note that f−1(y)/y → 0 as y →∞.

Theorem 3.14 (Hamilton–Ivey pinching). Let M be a compact 3-manifold and let g(t)
be a solution of Ricci flow which satisfies R ≥ −1 and Rm + f−1(R) ≥ 0 in the sense of
operators, at t = 0. Then these inequalities are both defined and satisfied for t ≥ 0. In
particular, for any initial metric there is a function φ(y) that goes to zero as y → ∞ so
that Rm ≥ −φ(R)R + C.

Proof. Since f−1 ≥ 1, any metric can be rescaled to satisfy the hypothesis of the theorem.
We have already seen that the spatial infimum of R can only increase, so R ≥ −1 is
preserved under Ricci flow. This means that f−1(R) is defined.

Writing the eigenvalues of Rm as λ ≥ µ ≥ ν, we are reduced to showing that for R ≥ −1,
the inequality ν+ f−1(λ+µ+ ν) ≥ 0. The functions ν and f−1 are concave, and λ+µ+ ν
is linear so the subset K where these inequalities are both satisfied is closed, convex and
parallel. It suffices to show that for R ≥ −1, this inequality is preserved fiberwise by the
ODE.
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If ν is non-negative then so is Rm, and the inequality is vacuous. So we assume ν < 0
and we can rewrite the inequality as λ+ µ ≥ (−ν) log(−ν). We compute

(λ+ µ+ ν log(−ν))′ = 2
(
λ2 + µν + µ2 + λν + (ν2 + λµ)(1 + log(−ν)

)
We need to show this derivative is non-negative on ∂K where ν + f−1(λ + µ + ν) = 0.
Since f−1 ≥ 1 we must have ν ≤ −1 on ∂K. Since λ + µ = (−ν) log(−ν) we must have
λ+ µ ≥ 0 on ∂K. Thus we are reduced to showing that

λ2 + µν + µ2 + λν + (ν2 + λµ)

(
1− λ+ µ

ν

)
≥ 0

for λ + µ ≥ 0 and ν ≤ −1. This inequality is homogeneous in the eigenvalues, so we can
rescale to ν = −1, and we just need to show

λ2 + µ2 + 1 + λµ(1 + λ+ µ) ≥ 0

when λ+ µ ≥ 0 and µ ≥ −1. This is straightforward.
The last claim follows if we take φ(x) := f−1(x)/x, where C depends on |Rm| at time

t = 0. �

This theorem is especially useful in the analysis of finite-time singularities. At a singu-
larity |Rm| must blow up. Since any lower bound on R is preserved under Ricci flow, we
can’t have R→ −∞. Furthermore, the theorem implies that any upper bound on R puts
a lower bound on Rm and therefore an upper bound on |Rm|; thus, the only way for a
singularity to occur is for R→∞. But in this case, any negative eigenvalue of Rm is very
small in comparison to R. In particular, if we do a parabolic rescaling near a finite-time
singularity so that R = 1, we must have Rm ≥ −ε for any positive ε. In particular, any
geometric limit near a finite-time singularity has non-negative sectional curvature. This
fact, in conjunction with Theorem 3.13, put extremely strong constraints on the geometry
near a finite-time singularity.

3.6.6. Hamilton’s Harnack inequality. A Harnack inequality controls the values at different
points of a non-negative bounded harmonic function on a domain. Roughly speaking, it
says that when the value of the function is small, it can’t increase too quickly.

Hamilton [15], Thm. 1.1 obtained a tensor Harnack inequality for Ricci flow. He intro-
duces tensors

Pijk := ∇iRjk −∇jRik and Mij := ∆Rij +
Rij

2t
− 1

2
∇i∇jR + curvature term

and defines an operator

Z(U,W ) := MijW
iW j + 2PijkU

ijW k + curvature term

for a vector field W and a 2-vector field U . Hamilton shows that if g(t) solves Ricci flow
for t > 0 and has non-negative curvature operator Rm ≥ 0, then for any U,W , we have
Z(U,W ) ≥ 0 for all t. This is proved using the maximum principle. First of all, the
condition Rm ≥ 0 implies Ric ≥ 0 so when t is small enough, Rij/2t dominates the other
terms and shows Z ≥ 0. Then for U,W at a point and time where Z(U,W ) becomes zero,
Hamilton shows how to extend U and W locally in such a way that one obtains a formula
for (∂t −∆)Z which is ≥ 0 when Z ≥ 0.
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This inequality has some special cases which are extremely useful, and will reappear
when we come to discuss Perelman’s reduced length and reduced volume in § 5.4.

Using ∂tRij = ∆Rij + curvature term we can trade the ∆Rij for a ∂tRij term, modulo
curvature terms. If we fix vector fields X and Y we can take W = Y and U = X ∧ Y =
1
2
(X iY j −XjY i) and define H(X, Y ) = Z(X ∧ Y, Y ). Then

H(X, Y ) = −HessR(Y, Y )− 2〈R(Y,X)Y,X〉+ 4(∇XRic(Y, Y )(3.3)

−∇YRic(Y,X)) + 2∂tRic(Y, Y ) + 2|Ric(Y, )|2 +
1

t
Ric(Y, Y )(3.4)

Summing Y over an orthonormal basis gives

(3.5) H(X) :=
∑
i

H(X, ei) = ∂tR +
1

t
R + 2〈∇R,X〉+ 2Ric(X,X)

Theorem 3.15 (Hamilton trace Harnack inequality; [15] Cor. 1.2). Let M, g(t) be a com-
plete solution to Ricci flow with bounded curvature and non-negative curvature operator
Rm ≥ 0 on some time interval 0 < t < T . Then for any vector field X,

H(X) := ∂tR +R/t+ 2〈∇R,X〉+ 2Ric(X,X) ≥ 0

One particularly important applications is to ancient flows — those defined on a time
interval (−∞, T ). In this case the R/t term goes away, and we get the inequality

∂tR + 2〈∇R,X〉+ 2Ric(X,X) ≥ 0

Applying this to X = 0 we see that for an ancient solution the scalar curvature R is
pointwise non-decreasing!

3.6.7. Time-dependent K. It turns out that one can generalize Theorem 3.6 to the situation
where the fiberwise convex sets K are time-dependent. Hamilton’s argument only allows
this under special circumstances, namely that K should be fiberwise convex in both space
and time. However, Chow–Lu [8] showed that it’s enough to consider K merely spacewise
fiberwise convex. In other words, Theorem 3.6 remains true verbatim if we allow K to
depend on time, and insist only that K(t) is fiberwise convex and invariant under parallel
transport for each fixed t. See [8] Thm 3 for details.

4. Singularities and Limits

We have seen that under Ricci flow singularities frequently must develop in finite time.
It’s crucial to understand the geometry near such a finite-time singularity. If we paraboli-
cally rescale near such a singularity, it will turn out that some subsequence of the rescaled
flows converges (in a suitable sense) to a ‘limit flow’ whose geometry is especially easy to
analyze. Making sense of this convergence, and proving structure theorems for the limit,
depends on some fundamental comparison theorems in Riemannian geometry that we now
discuss.
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4.1. Bishop–Gromov inequality. In this section we prove the Bishop–Gromov inequal-
ity. This says the following. Suppose we are in an n-dimensional manifold M with
Ric ≥ (n − 1)κ; i.e. the Ricci curvature is at least as large as in a space of constant
sectional curvature κ. Fix a point p. The inequality relates the volume of vol(Br(p)), the
ball of radius r about p in M , and volκr , the volume of a ball of radius r in the space of
constant curvature κ. It says that the ratio vol(Br(p))/volκr is non-increasing as a function
of r.

In § 5.4 we shall see that monotonicity of the reduced volume Ṽ for Ricci flow can be
proved using a kind of parabolic substitute for length — Perelman’s so-called L-length,
and we shall emphasize the similarity to the proof of the Bishop–Gromov theorem.

4.1.1. Jacobi fields and the Index Form. Let’s recall that for each p ∈ M the exponential
map expp : TpM →M takes a vector v to γv(1) where γv is the unique geodesic in M with
γv(0) = p and γ′v(0) = v. Lines in TpM map to geodesics γ in M , and linear vector fields
along such lines map to Jacobi fields along γ, satisfying the Jacobi equation

∇γ′∇γ′X = R(X, γ′)γ′

Now, fix a geodesic γ : [a, b]→M . Let V denote the space of normal vector fields along
γ and V0 the space of normal vector fields that vanish at both endpoints. The index form

I(V,W ) : =

∫ b

a

〈∇γ′V,∇γ′W 〉 − 〈R(W, γ′)γ′, V 〉dt

= 〈∇γ′V,W 〉|ba −
∫ b

a

〈∇γ′∇γ′V −R(γ′, V )γ′,W 〉dt

is a symmetric bilinear form on V. Up to the cut locus, it is non-negative on V0, and
vanishes exactly on the Jacobi fields. For a Jacobi field V ∈ V vanishing at γ(a) we have
I(V, V ) = 〈V ′, V 〉γ(b) and again, up to the cut locus, for any otherW withW (a) = V (a) = 0
and W (b) = V (b) we have I(W,W ) ≥ I(V, V ).

4.1.2. Ricci curvature and spherical coordinates. If we choose spherical coordinates r,Θ
on TpM then for each i the vector field d expp ∂θi is a Jacobi field along each radial geo-
desic Θ = const. For each i there is a 2-plane in TpM spanned by ∂r, ∂θi with sectional
curvature Ki; the circle of radius r in this plane maps under expp to a curve of length
2π (r −Kir

3/6 +O(r4)).
Let’s write the volume form onM near p in radial coordinates as µ(r,Θ)drdΘ. Thinking

of trace as the derivative of determinant we get

µ(r,Θ) = rn−1
(
1− Ric(Θ,Θ)r2/6 +O(r3)

)
Here we are interpreting Θ both as a coordinate on the unit (n− 1)-sphere, and as a unit-
length vector in TpM . Said in words, Ric(v) gives the leading order to which the volume
of M grows slower than in Euclidean space along radial geodesics in the direction v.

We can relate this to the Index Form as follows. Let Vi be a collection of normal
Jacobi fields along a radial geodesic in the direction Θ where Vi(0) = 0 and Vi(r) are an
orthonormal basis (such a family exists and is unique before we reach the cut locus). Then
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the logarithmic derivative of µ can be computed from the Index Form by the formula∑
i

I(Vi, Vi) = tr(V ′) =
µ′(r,Θ)

µ(r,Θ)

4.1.3. Bishop–Gromov inequality. Our formula for µ shows that a lower bound for Ric
(actually, R) gives an upper bound for the volume growth near p. The Bishop-Gromov
inequality is a global version of this observation.

Theorem 4.1 (Bishop–Gromov). Suppose Ric ≥ (n − 1)κ for some constant κ. Let volκr
denote the volume of the ball of radius r in the n-dimensional space of constant curvature
κ. Then for an arbitrary point p, the function

r → vol(Br(p))

volκr
is non-increasing as a function of r, and tends to 1 as r → 0.

Proof. This is proved by integrating an inequality between the logarithmic derivative
µ′(r,Θ)/µ(r,Θ) for M , and the analogous quantity µ′κ(r)/µκ(r) in a space of constant
curvature κ.

First let’s assume that r is smaller than the distance to the cut locus of p in the direction
Θ. As we saw in § 4.1.2 the logarithmic derivative of µ can be computed as

µ′(r,Θ)

µ(r,Θ)
=

n−1∑
j=1

I(Vj, Vj)

where I is the index form, and the Vj are normal Jacobi fields along a radial geodesic γ
with Vj(0) = 0 and Vj(r) an orthonormal basis. Let Hj(t) = (sκ(t)/sκ(r))ej(t) be another
collection of vector fields, where ej is a parallel orthonormal frame, and

sκ(t) =


sin(
√
κt)/
√
κ if κ > 0

t if κ = 0

sinh(
√
−κt)/

√
−κ if κ < 0

chosen so that Hj(0) = Vj(0) = 0 and Hj(r) = Vj(r). Up to the cut locus the index
form is positive definite in the space V0 of vector fields vanishing at the endpoints, so
I(Vj, Vj) ≤ I(Hj, Hj).

Now let Hκ
j be normal Jacobi fields along a radial geodesic in a space of constant curva-

ture κ, also defined by the formula Hκ
j (t) = (sκ(t)/sκ(r))e

κ
j (t) where now eκj is a parallel

orthonormal frame in the constant curvature space. By a direct computation,∑
I(Hj, Hj) =

∑
I(Hκ

j , H
κ
j ) +

∫ r

0

(
sκ(t)

sκ(r)

)2 (
(n− 1)κ− Ric(γ′, γ′)

)
dt

so
µ′(r,Θ)

µ(r,Θ)
=
∑

I(Vj, Vj) ≤
∑

I(Hj, Hj) ≤
∑

I(Hκ
j , H

κ
j ) =

µ′κ(r)

µκ(r)
This comparison is valid up to points in the cut locus of p. But when we are at or beyond

the cut locus the inequality still holds — either because µ(r,Θ) vanishes, or because the
exponential map is no longer injective, so there is no further contribution to vol(Br(p)). �
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4.2. Injectivity radius and volume. The following theorem shows that in the presence
of curvature bounds, a lower bound on volume implies a lower bound on injectivity radius,
on every scale. This is crucial to obtain geometric limits under Ricci flow, since the deriv-
ative of volume is directly related to (scalar) curvature. This theorem is a restatement of
Cheeger–Gromov–Taylor [6] Thm. 4.3 in the form most suited to applications. Sometimes
in the literature this theorem is confused with Cheeger’s Propellor Lemma, which is a
slightly different statement about global bounds on the injectivity radius, and depends on
working at a place where there is a smooth nontrivial closed geodesic.
Theorem 4.2 (Volume controls injectivity radius). For every dimension n and every ε > 0
there is a δ(n, ε) > 0 so that if M is a complete Riemannian manifold of dimension n, and
p is any point so that

(1) |Rm| ≤ r−2 on Br(p); and
(2) vol(Br(p)) ≥ εrn,

then the injectivity radius at p is at least δr.
Proof. Note that the statement of the theorem is scale-invariant, so let’s rescale so that
r = 1, and denote B1(p) simply by B. Then |Rm| ≤ 1 on B so the distance from p to
its first conjugate point in any direction is at least π. Thus the theorem is proved if we
can get a lower bound on the length of the shortest nontrivial geodesic γ from p to itself
in terms of ε. Note that γ will almost certainly make a definite angle at p where it meets
itself, unless p is quite special. Let’s suppose the length of γ is `.

Now, the geodesic γ determines a non-trivial element [γ] in π1(B, p) (even if its image in
π1(M, p) is trivial). We claim that the order of [γ] is at least N := b2/`c. To see this, let’s
lift to the universal cover B̃ of B. Let p̃ be the lift of p at the center of a ball B̂ := B1(p̃)
of radius 1, let γ̃ be a geodesic segment starting at p̃ and lifting γ, and let τ be the element
of the deck group taking p̃ to the other end of γ̃. Write p̃0 := p and p̃k = τ k(p̃) and
suppose N < b2/`c. Then the p̃k are all within distance 1 of p̃0 which is to say they’re in
B̂. Because |Rm| ≤ 1 and 1 < π/2 the ball B̂ in B̃ is convex. Thus the convex function
x →

∑
i d(x, p̃i)

2 has a unique minimum point q ∈ B̂, and the point q is necessarily fixed
by τ , contrary to the fact that τ is a nontrivial element of the deck group.

Using this lower bound on the order of [γ] we can obtain an upper bound on vol(Br(p)).
Let U ⊂ B1/2(p) be the intersection with the complement of the cut locus to p, so that U
is star shaped, and every point in U is joined to p by a radial geodesic of length ≤ 1/2.
Lift U to Ũ ⊂ B̂ ⊂ B̃ containing p̃. Then the translates τ kŨ for −b1/2`c ≤ k < b1/2`c
are all distinct and contained in B̃ so

vol(B1/2(p)) = vol(U) ≤ vol(B̂)/2b1/2`c

≤ vol−1
1 /2b1/2`c = vol−1

1/2

vol−1
1

(vol−1
1/2)(2b1/2`c)

where remember volκs denotes the volume of a ball of radius s in the n-dimensional space of
constant curvature κ, and the inequality Rm ≥ −1 plus Bishop–Gromov implies vol(B̂) ≤
vol−1

1 . Finally, the monotonicity property of Bishop–Gromov gives vol(B1(p)) ≤ C.` for
some uniform constant C at least when ` < 1/2. Thus a lower bound on volume gives a
lower bound on ` and hence injectivity radius at p. �
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4.3. Geometric limits. Let (Mi, gi, pi) be a sequence of pointed complete Riemannian
manifolds of fixed dimension; i.e. for each i we have a point pi in the manifold Mi with
metric gi. We say that this sequence converges in the sense of Cheeger–Gromov to (M, g, p)
(of the same dimension) if there is an exhaustion of M by compact sets Ki containing p
and a sequence of maps φi : Ki → Mi taking p to pi that are diffeomorphisms onto their
image, and such that the pullback metrics φ∗i gi converge smoothly to g on compact subsets.

It is a fundamental fact that any sequence of pointed complete Riemannian manifolds of
fixed dimension has a convergent subsequence providing the following two conditions are
satisfied:

(1) Uniform control on derivatives of curvature on compact sets: for every radius r and
every m there is a constant C(r,m) so that |∇mRm| ≤ C(r,m) on the ball Br(pi)
of radius r about pi in Mi; and

(2) Uniform lower bound on injectivity radius at the basepoint: there is a positive
constant C so that the injectivity radius of Mi at pi is at least C.

The only thing that is not clear is that control on the injectivity radius at pi gives
uniform control throughout the ball Br(pi) for any fixed r. But, because we have a lower
bound on Rm on Br(pi) for any r, if there were points qi ∈ Br(pi) where inj(qi)→ 0 then
by Bishop–Gromov we would have vol(Br(pi)) → 0. Because we have an upper bound on
Rm this would imply also inj(pi) → 0, contrary to hypothesis. Thus: for any fixed radius
r, there is a uniform positive lower bound on injectivity radius everywhere in Br(pi). From
this the existence of a convergent subsequence easily follows.

More generally, suppose we have a family of pointed Riemannian flows (Mi, gi(t), pi) all
defined on a common time interval a < t < b. We say this sequence converges in the sense
of Cheeger–Gromov–Hamilton to a limit (M, g(t), p) if there are Ki and φi as above so that
φ∗i gi(t) converges smoothly to g(t) on compact subsets of M and of (a, b).

Proposition 4.3 (Limit exists). Let (Mi, gi(t), pi) be a sequence of complete pointed Ricci
flows defined for t on a common time interval 0 ∈ (a, b). Suppose

(1) there is a constant C so that |Rm| ≤ C for all i for every point in Mi and all
t ∈ (a, b); and

(2) there is a constant C so that for all i the injectivity radius at pi is at least C at
time 0.

Then some subsequence converges smoothly to a limit Ricci flow (M, g(t), p) defined on the
same time interval.

We give the sketch of a proof.

Proof. Control over |Rm| throughout (a, b) gives control over |∂tg(t)|, so control of injec-
tivity radius at t = 0 gives control at any other time.

For compact manifolds, the derivative estimates in Theorem 3.5 give control on |∇mRm|
in terms of |Rm|; for noncompact manifolds we must use the more general local estimates
due to Shi. �

4.4. κ-solutions. Now let’s suppose M, g(t) satisfies Ricci flow on some maximum time
interval t ∈ [0, T ) and that the curvature blows up as t→ T . Take a sequence of parabolic
rescalings of the flow at points and times approaching the singularity.
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We shall see that this sequence of rescaled flows has a convergent subsequence, and that
the limit enjoys a host of desirable geometric properties which are summarized by saying
that it is a κ-solution for some κ depending only on T and the metric g(0).

First we give the definition of κ-noncollapsed, in the sense of Perelman [26], Def. 4.2.
(Perelman gives another definition [26] Def. 8.1 which is weaker, but better suited to the
analysis of Ricci flow with surgery).

Definition 4.4 (κ-noncollapsed). We say that a metric is κ-noncollapsed at scales ≤ ρ
for some κ > 0 if the following is true. Suppose there is r ≤ ρ and a point p so that
|Rm(q)| ≤ r−2 for all q ∈ Br(p). Then vol(Br(p)) ≥ κrn. A metric is κ-noncollapsed if it
is κ-noncollapsed at every scale.

If g is κ-noncollapsed at scales ≤ ρ then λg is κ-noncollapsed at scales ≤
√
λρ. In

particular, the property of being κ-noncollapsed is scale-invariant.
Now we define a κ-solution.

Definition 4.5 (κ-solution). Ricci flow N, h(t) is a κ-solution for some κ if it satisfies the
following properties:

(1) N is connected, and the metric h(t) is complete for all t;
(2) the flow is ancient — i.e. defined on (−∞, t0) for some positive t0 > 0;
(3) the curvature norms |Rm| are bounded on each time slice;
(4) the metric on each time slice is κ-noncollapsed.
(5) the curvature is non-negative Rm ≥ 0;
(6) the scalar curvature R is strictly positive everywhere;

We shall discuss κ-noncollapsing in § 5, culminating in Perelman’s proof of the ‘No local
collapsing’ Theorem 5.10, using the W-functional. This says that if M, g(t) is Ricci flow
on a compact manifold M defined for time in an interval [0, T ) then there is a κ depending
on g(0) and on T so that each metric g(t) is κ-noncollapsed at scales ≤

√
T .

Modulo this result, we are now in a position to analyze blow-up limits of finite time
singularities:

Theorem 4.6 (Blow-up). Let M, g(t) be a compact 3-manifold satisfying Ricci flow on
some finite maximum time interval t ∈ [0, T ). Choose points pi and times ti → T so that
λi := |Rm|(pi, ti)→∞, and λi ≥ |Rm|(q, s) for all q ∈M and s ≤ ti. Then there is κ > 0
depending on T and g(0) so that the parabolically rescaled flows gi(t) := λig(ti + t/λi) have
a subsequence converging to a κ-solution.

Furthermore this limit solution has the additional property that |Rm| ≤ 1 for t ∈ (−∞, 0].

Proof. Since each gi(t) has |Rm| ≤ 1 on t ≤ 0, none of the gi(t) can become singular too
fast by Proposition 3.4. Thus there is a uniform positive constant t0 > 0 so that each gi(t)
is defined on the time interval (−tiλi, t0), and there are uniform bounds on |Rm| for every
gi(t) on every compact subset of (−∞, t0), where defined.

Theorem 5.10 says that g(t) is κ-noncollapsed at scales ≤
√
T for all t. Therefore gi(t) is

κ-noncollapsed at scales≤
√
λiT . In particular, Theorem 4.2 implies that there is a uniform

lower bound on the injectivity radius of gi(0) at pi. Thus we can apply Proposition 4.3 and
deduce the existence of a limit (N, h(t), p) for some subsequence of the (M, gi(t), pi).
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Since the (M, gi(t), pi) are complete and connected, so is (N, h(t), p). By what we have al-
ready argued, this limit is ancient, |Rm| is bounded on each time slice, and is κ-noncollapsed
on every scale.

Hamilton–Ivey pinching (Theorem 3.14) implies that as |Rm| → ∞ the ratio of the
minimum to the maximum eigenvalue of Rm must go to zero. It follows that for every
ε > 0, we must have Rm ≥ −ε for all t ≤ 0 for sufficiently large i. Thus for any limit we
will have Rm ≥ 0 for t ≤ 0 and therefore Rm ≥ 0 for all t. Since |Rm|(pi, 0) = 1 the same
is true of any limit; thus the limit is not flat, and has R > 0 everywhere. �

Corollary 4.7 (Hamilton’s Uniformization Theorem). A compact 3-manifold M with
Ric > 0 shrinks to a round spherical space form in finite time under Ricci flow.

Proof. Let M, g(t) evolve the initial metric by Ricci flow. Since M is compact and Ric > 0
there must be a finite time singularity. Again by compactness, 0 < α ≤ Ric ≤ β holds
throughoutM for some α, β so we can apply Theorem 3.11. In other words, for any positive
γ there is a constant C so that under Ricci flow, |Ric−Rg/3| ≤ γR+C holds throughout
M . Let gi(t) be parabolically rescaled metrics centered near the singularity where the
curvature blows up. For the gi(t) this inequality becomes |Ric − Rg/3| ≤ γR + C/λi so
the blow-up limit N, h(t) satisfies |Ric − Rg/3| ≤ γR for all γ > 0. In other words, N is
Einstein, and therefore has constant sectional curvature becauseM is 3-dimensional. Since
h(t) has Rm ≥ 0 but is not flat, it has constant positive sectional curvature; i.e. it is a
spherical space form. In particular, N is compact, and the metrics g(t) on M converge
under rescaling in C∞ to a round metric. �

4.5. Nonnegative curvature and the Soul Theorem. Riemannian manifolds with
K ≥ 0 are very special. Non-negative sectional curvature strongly resists noncompactness.
The following theorem is fundamental:

Theorem 4.8 (Cheeger–Gromoll Soul Theorem [5]). Let M be a complete connected Rie-
mannian manifold with sectional curvatures K ≥ 0. Then then there is a compact totally
convex, totally geodesic submanifold S (the ‘soul’) such that M is diffeomorphic to the
normal bundle of S.

We give the idea of the proof.

Proof. A ray is an isometrically embedded copy of R+. IfM is complete and connected but
noncompact, then for any point p it contains at least one ray based at p (just take a limit
of distance-minimizing geodesics from p to points further and further away). For every
ray γ based at p consider the Busemann function bγ(q) := limt→∞ d(γ(t), q)− t. The level
sets of bγ are limits of metric spheres based at points on γ exiting the end. In Euclidean
space, these level sets would be flat hyperplanes; in a manifold of non-negative curvature,
Busemann functions are concave, so the superlevel sets bγ ≥ C are closed and convex. Let
A be the subset of M for which bγ ≥ 0 for every Busemann function associated to a ray
based at p. Since bγ(p) = 0 for all γ, we have p ∈ A. Then A is closed and convex (because
it’s an intersection of closed convex sets). We claim that A is compact. For if not, because
A is convex, we could find a ray γ based at p and contained in A, and then bγ would be
strictly negative on γ.
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Let S1 be the compact subset of A where minγ bγ achieves its maximum. One can show
that S1 has no interior, and is therefore a compact submanifold of M of codimension at
least 1. If ∂S1 is nonempty we define S2 to be the subset of S1 at maximal distance from
∂S1. Evidently S2 is compact, with dimension strictly less than that of S1. By induction,
we form a finite descending chain S1 ⊃ S2 ⊃ · · · ⊃ Sk. Then S := Sk is convex and
compact without boundary, and of dimension strictly less than that of M .

It turns out that S is a soul. To see this, observe that if there are two minimal geodesics
from S to any q ∈ M , these geodesics make an angle of less than π/2 at q or else they
would not be minimal. Thus (e.g. by using a partition of unity) we may form a nonsingular
gradient-like vector field transverse to the foliation of M − S by level sets of the distance
function to S, and witnessing that this foliation is nonsingular. Flowing along this vector
field carries M into S and exhibits a diffeomorphism from M to the normal bundle of
S. �

Let’s apply this to the underlying manifoldM of a κ-solution in the case of a 3-manifold.
Since Rm ≥ 0 the Soul Theorem applies. If M is compact, the theorem tells us nothing.
Otherwise there are three possibilities, depending on the dimension of the soul: S could
be a point (in which case M is diffeomorphic to R3), or S could be a circle or a compact
surface.

To analyze these cases we use the so-called Splitting Theorem:

Theorem 4.9 (Toponogov Splitting Theorem). Let M be a complete connected Riemann-
ian manifold with sectional curvatures K ≥ 0 and suppose M contains a line — i.e. an
isometrically embedded copy of R. Then M splits isometrically as a product M = N × R.

If S is a circle, then M is diffeomorphic to S1 × R2. Any soul S unwraps to a soul in
finite covers, and therefore in the universal cover unwraps to a line. Thus the universal
cover is isometric to a product Σ×R, where Σ is diffeomorphic to R2 and has non-negative
curvature. In particular, the ends of Σ and hence of M are asymptotically flat; but then
M is not non-collapsed. So this case can’t occur as a κ-solution.

If S is a surface, then after passing to a double cover if necessary, it is 2-sided and
M is diffeomorphic to a product S × R. This has two ends, and a sequence of distance-
minimizing geodesics with endpoints exiting either end has a subsequence converging on
compact subsets to a line. Thus M is isometric to a product S × R up to taking double
covers. Since M has Rm ≥ 0 but is not flat, S is a sphere.

We conclude that a noncompact κ-solution is either a shrinking round cylinder up to
finite covers, or is diffeomorphic to R3. It will turn out that compact κ-solutions are
diffeomorphic to spherical space-forms. The proof of this in general is rather indirect, and
will be sketched in Theorem 5.20. However for compact κ-solutions that arise as the limit
of a parabolic blow-up, the proof is much simpler and is given in § 4.6.

4.6. Compact blow-up solutions. Let M, g(t) be Ricci flow on a compact 3-manifold
becoming singular at time T , and let N, h(t) be a limit flow obtained by blow up as in
Theorem 4.6. Suppose N is compact. Then N is a shrinking spherical space form (and is
diffeomorphic to M).

Proposition 4.10 (Compact limit is a spherical space-form). A compact blow-up solution
is a shrinking spherical space form.
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Proof. Suppose Ric > 0 everywhere in N . Because N is compact and gi → h it follows that
Ric > 0 for some g(t). Thus Corollary 4.7 applies and N, h(0) is a spherical space-form.

Otherwise Ric has a zero eigenvalue somewhere and the metric splits locally as a product
by Theorem 3.13 so that N (being compact) is finitely covered by S2×S1 for some metric
of positive curvature on the S2 factor. Ricci flow splits as Ricci flow on the S2 factor and
the identity on the S1 factor. This means that at some very negative time there was a
point in one of the S2 factors where the curvature was very close to zero, and therefore
near that point |Rm| ≤ ε. But if we rescaled near that point to have |Rm| = 1 the S1

factor (whose length is time-independent) would get arbitrarily short, and the normalized
volume would go to zero, contrary to the fact that every h(t) is κ-noncollapsed. So this
case can’t happen for N compact. �

5. Perelman’s monotone functionals

5.1. The F-functional. The total scalar curvature of a compact Riemannian manifold
(M, g) is a functional of g, defined as

S(g) :=

∫
M

Rdvolg

In the sequel we suppress the subscript and just write dvol. Let’s compute the first variation
of S. If vij := vijdx

idxj is a symmetric 2-form, the derivative of S in the direction of vij is

δS := dS(vij) =

∫
M

(δR)dvol +R(δ dvol)

Now, δ dvol = v/2 dvol where v = gijvij is the trace of vij. Using equation 3.2 gives

δR = δ(gijRij) = δgijRij + gijδRij

= −gikgjlvklRij +
1

2
gijgpq(∇q∇ivjp +∇q∇jvip −∇q∇pvij −∇i∇jvpq)

= −gijgpq(∇i∇jvpq −∇i∇pvjq + vipRjq)

so that
δR = −∆v +∇i∇jv

ij − vijRij

Now, −∆v and ∇i∇jv
ij are total divergences, and integrate to zero. Thus

δS =

∫
M

(
−vijRij +

v

2
R
)
dvol

Thus the gradient flow of S is tantalizingly close to Ricci flow (up to a constant), except
for the annoying Rv/2 term coming from the variation of dvol. One can try to fix this by
introducing an auxiliary smooth function f and integrating with respect to a new volume
form dm := e−fdvol, and consider simultaneous variations of g and of f which keep this
volume form fixed. Writing δf = h we get

δe−fdvol =
(v

2
− h
)
e−fdvol

so setting h = v/2 eliminates the Rv/2 term. Of course, the terms −∆v and ∇i∇jv
ij are

no longer total divergences with respect to the measure dm, and we must introduce further
terms in the integrand to deal with these.
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Perhaps with this motivation, Perelman introduces the F-functional in [26], § 1.1:

Definition 5.1 (F-functional). LetM be a smooth manifold. For a metric g and a smooth
function f define the functional

F(g, f) :=

∫
M

(R + |∇f |2)e−fdvol

We compute the first variation of this functional.

Proposition 5.2 (First variation of F). Let v = vijdxidxj be a symmetric 2-form, and h
a smooth function. Also write v = gijvij, the trace of v. Then

δF := dF(vij, h) =

∫
M

(
−vij(Rij +∇i∇jf) +

(v
2
− h
)

(2∆f − |∇f |2 +R)
)
e−fdvol

Proof. We’ve already computed the first order variation of R and e−fdvol, namely

δR = −∆v +∇i∇jv
ij − vijRij and δ(e−fdvol) =

(v
2
− h
)
e−fdvol

Likewise,
δ|∇f |2 = δ(gij∇if∇jf) = −vij∇if∇jf + 2gij∇if∇jh

Putting this together gives

δF =

∫
M

(
−∆v +∇i∇jv

ij − vijRij − vij∇if∇jf + 2〈∇f,∇h〉

+ (R + |∇f |2)
(v

2
− h
))
e−fdvol

Now, ∆e−f = (|∇f |2 −∆f)e−f and so∫
M

(−∆v)e−fdvol =

∫
M

−v(∆e−f )dvol =

∫
M

v(∆f − |∇f |2)e−fdvol

Integrating by parts twice gives∫
M

(∇i∇jv
ij)e−fdvol =

∫
M

vij(∇i∇je
−f )dvol =

∫
M

vij(∇if∇jf −∇i∇jf)e−fdvol

and similarly,∫
M

2〈∇f,∇h〉e−fdvol =

∫
M

〈−2∇e−f ,∇h〉dvol =

∫
M

h(2∆e−f )dvol

=

∫
M

h(2|∇f |2 − 2∆f)e−fdvol

so we get

δF =

∫
M

((v
2
− h
)

(2∆f − 2|∇f |2)− vij(Rij +∇i∇jf) +
(v

2
− h
)

(R + |∇f |2)
)
e−fdvol

as claimed. �
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Recalling our initial discussion, let’s define a measure dm := e−fdvol and notice that
(v/2−h) = 0 exactly for variations that keep dm fixed. Another way to say this is that for
a fixed measure dm, a metric g determines a function f by f = log(dvol/dm), and there is
a functional Fm on smooth metrics, defined by Fm(g) := F(g, f).

If we define a “metric” on the space of Riemannian metrics by the inner product

〈vij, vij〉g :=
1

2

∫
M

vijvijdm

then with this normalization, the gradient flow of the functional Fm is given by the equa-
tions

∂tgij = −2(Ric + Hessf)

and

∂tf = ∂t log

(
dvol
dm

)
=

1

2
tr ∂tgij = −R−∆f

The evolution of g is Ricci flow composed with the (time-dependent) gradient vector flow
by −gradf . On the other hand, the equation ∂tf = −R−∆f is (up to the scalar term R)
a backward heat equation, and is unlikely to admit a solution for a typical initial measure
dm. However, we can solve for Ricci flow of an initial metric g(t1) on some time interval
[t1, t2], specify a final value of f(t2), and solve the heat equation for f in backward time
from t2 to t1 to determine an initial value of f , and thus a measure dm and functional Fm.

Explicitly, after pulling back the metric by the diffeomorphism flow generated by gradf ,
the equations decouple to

∂tgij = −2Ric, ∂tf = −R + |∇f |2 −∆f

Writing u := e−f the latter equation becomes the linear equation ∂tu = −∆u+Ru, which
can be solved in backward time.

5.2. The W-functional. To analyze Ricci flow near a developing singularity, it’s im-
portant to have a scale-invariant version of the F-functional. This is the W-functional,
introduced by Perelman in [26], § 3.1:

Definition 5.3 (W-functional). Let M be a smooth manifold. For a metric g, a smooth
function f and a scale parameter τ define the functional

W(g, f, τ) :=

∫
M

(
τ(R + |∇f |2) + f − n

)
(4πτ)−n/2e−fdvol

for f and τ satisfying
∫
M

(4πτ)−n/2e−fdvol = 1 and τ > 0.

The W-functional is invariant under diffeomorphism W(g, f, τ) = W(φ∗g, φ∗f, τ) and
parabolic rescaling W(g, f, τ) = W(λg, f, λτ), and is therefore constant on gradient shrink-
ing solitons, taking t = −τ for t ∈ (−∞, 0).

As before we can compute
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Proposition 5.4 (First variation of W). With vij and h as in Proposition 5.2 and σ = δτ
we have

δW := dW(vij, h, σ) =

∫
M

(
σ(R + |∇f |2)− τvij(Rij +∇i∇jf) + h

+
(v

2
− h− nσ

2τ

) (
τ(2∆f − |∇f |2 +R) + f − n

))
(4πτ)−n/2e−fdvol

Proof. We have

δ
(
(4πτ)−n/2e−fdvol

)
=
(v

2
− h− nσ

2τ

)
(4πτ)−n/2e−fdvol

and computing the other terms as in Proposition 5.2 gives the result. �

As before, this motivates fixing a smooth measure dm on M with mass 1, and having f
and τ depend on g by forcing

(4πτ)−n/2e−fdvol = dm

This will make v/2− h− nσ/2τ = 0, so that δW reduces to

δW =

∫
M

(
σ(R + |∇f |2)− τvij(Rij +∇i∇jf) + h

)
(4πτ)−n/2e−fdvol

Thus if we consider a family (g, τ) evolving by

∂tgij = −2(Ric + Hess(f)) and ∂tτ = −1

then f evolves by
∂tf = −∆f −R +

n

2τ
Again, by pulling back the metric under the diffeomorphism flow generated by gradf

the evolution equations decouple to

(5.1) ∂tg = −2Ric, ∂tτ = −1, ∂tf = −∆f + |∇f |2 −R +
n

2τ

In any case we can compute
dW

dt
=

∫
M

(
−(R + |∇f |2) + 2τ |Rij +∇i∇jf |2 −∆f −R +

n

2τ

)
(4πτ)−n/2e−fdvol

Recall that ∆e−f = (|∇f |2 − ∆f)e−f so that
∫
M
e−f |∇f |2dvol =

∫
M
e−f∆fdvol. Hence

collecting terms gives
dW

dt
=

∫
M

(
−2(R + |∇f |2) + 2τ |Rij +∇i∇jf |2 +

n

2τ

)
(4πτ)−n/2e−fdvol

=

∫
M

2τ |Rij +∇i∇jf −
1

2τ
gij|2(4πτ)−n/2e−fdvol

which is non-negative, and vanishes identically for a shrinking gradient soliton

Ric + Hess(f) =
1

2τ
g

in which case τ can be interpreted as the time remaining until extinction.
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5.3. Monotone quantities and noncollapsing.

Definition 5.5 (λ-functional). For a metric g, let λ := λ(g) be equal to the infimum of
F(g, f) over all functions f with

∫
M
e−fdvol = 1.

If we write Φ := e−f/2 then

F =

∫
M

(4|∇Φ|2 +RΦ2)dvol =

∫
M

Φ(−4∆Φ +RΦ)dvol

So the infimum is λ, the smallest eigenvalue of −4∆+R, and the infimum is achieved by an
eigenvector. As is well-known from elliptic theory, the smallest eigenspace is 1-dimensional,
and an eigenfunction does not change sign. So there is a unique eigenfunction e−f̄/2 for
some smooth function f̄ satisfying

∫
M
e−f̄dvol = 1.

Lemma 5.6 (Monotonicity of λ). If g(t) evolves by Ricci flow (up to diffeomorphism) then
λ(g(t)) is nondecreasing in t.

Proof. For some time interval [t1, t2] let f̄(t2) be the minimizer for g(t2), and put u(t2) =

e−f̄(t2). Extend u over the domain [t1, t2] solving the backwards heat equation ∂tu =
−∆u+Ru.

Now, if h is any solution to the forward heat equation ∂th = ∆h on any time interval
(t′, t2] then, since ∂tdvol = −Rdvol,

d

dt

∫
M

u(t)h(t)dvol =

∫
M

(∂tu)h+ u(∂th)− uhR dvol

=

∫
M

(
(∂tu+ ∆u−Ru)h+ u(∂th−∆h)

)
dvol = 0

Note that taking h constant implies that
∫
M
u(t)dvol is independent of t.

If we take h so that the limit of h as t→ t′ is a delta function supported at a point x′,
then h(t) > 0 for all t > t′, so that

u(x′, t′) = lim
t→t′

∫
M

u(t)h(t)dvol =

∫
M

u(t2)h(t2)dvol > 0

Thus we can extend f by u(t) = e−f(t) and observe that f solves ∂tf = −∆f + |∇f |2 −R,
so that

λ(t1) ≤ F(g(t1), f(t1)) ≤ F(g(t2), f(t2)) = λ(t2)

�

The analog of λ for the W-functional is the µ-functional:

Definition 5.7 (µ-functional). For a metric g and τ > 0 let µ := µ(g, τ) be equal to the
infimum of W(g, f, τ) over all functions f with

∫
M

(4πτ)−n/2e−fdvol = 1.

If we write Φ = e−f/2 as before, then µ(g, τ) and Φ solve the equation
τ(−4∆ +R)Φ = 2Φ log Φ + (µ(g, τ) + n)Φ

Again, such a normalized Φ is smooth and positive, and f = −2 log Φ is also smooth.

Lemma 5.8 (Monotonicity of µ). If g(t) evolves by Ricci flow (up to diffeomorphism) then
µ(g(t), t0 − t) is nondecreasing in t.
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Proof. As before if we define u(t2) = (4πτ)−n/2e−f̄(t2) and extend u to [t1, t2] solving
∂tu = −∆u + Ru. The same argument as in the proof of Lemma 5.6 shows that u is
strictly positive, so we can extend f̄ to f by u(t) = (4πτ)−n/2e−f(t) and then observe that∫
M
u(t)dvol is independent of t, and f solves ∂tf = −∆f + |∇f |2 −R + n/(2τ).
The remainder of the argument is the same as in the proof of Lemma 5.6. �

5.3.1. No local collapsing. A key application of the monotonicity of the µ functional is to
give lower bounds on volumes of rescaled balls when curvature blows up in finite time.

Definition 5.9 (Local collapsing). A family of metrics g(t) evolving by Ricci flow on a
time interval [0, T ) is said to be locally collapsing at T if there are times tk → T , points pk
and radii rk so that if Bk denotes the ball of radius rk centered at pk in the metric at time
tk, then

(1) r2
k/tk is bounded;

(2) |Rm| ≤ r−2
k on Bk; and

(3) limk→∞ vol(Bk)r
−n
k = 0.

According to Theorem 4.2 this is equivalent to saying that if we rescale the balls Bk to
have radius 1, then (because the curvature is bounded) the injectivity radius goes to zero.
Thus, local collapsing is the condition we want to exclude in order to take geometric limits
of parabolic rescalings near a finite time singularity. In the language of § 4.4, to not locally
collapse is essentially equivalent to being κ-noncollapsed on scales ≤

√
T for some κ.

Notice that we can trade off any fixed finite bound on r2
k|Rm| on Bk against the bound on

r2
k/tk by adjusting the rk, so there is no loss of generality in setting the rescaled curvature
bound to 1.

Perelman [26] Thm. 4.1 uses monotonicity of the µ functional to prove no local collapsing
at finite times:

Theorem 5.10 (No local collapse). Let M be closed and suppose Ricci flow is defined on
[0, T ) where T <∞. Then g(t) is not locally collapsing at T .

Proof. The idea is to show that if g(t) locally collapses at T , we can find suitable test func-
tions fk so that W(g(tk), fk, r

2
k)→ −∞. By the definition of µ this implies µ(g(tk), r

2
k)→

−∞ and by monotonicity of µ, one has µ(g(0), tk+r2
k)→ −∞. But for a fixed metric g(0),

the function µ is continuous in the parameter τ , and therefore limk→∞ µ(g(0), tk + r2
k) is

finite. This contradiction will prove the theorem.
It remains to find suitable test functions. For the sake of legibility we’ll suppress the

subscript k and write f := fk, r := rk and so on. Since r2/t is bounded, it makes sense to
fix τ = r2. Let B denote the ball of radius r about p at time t.

As before we can change variables and write Φ := e−f/2 so that

W(g, f, τ) =

∫
M

(4πτ)−n/2
(
4τ |∇Φ|2 + (τR− 2 log Φ− n)Φ2

)
dvol

and µ is the infimum of this functional over all smooth positive Φ with∫
(4πτ)−n/2Φ2dvol = 1
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In fact, since x2 log x→ 0 as x→ 0 we can take the infimum over non-negative Φ. We will
estimate µ by taking Φ to be a suitable bump function, localized near B.

Let φ be a function on R+ equal to 1 on the interval [0, 1/2] and falling off monotonically
to 0 at 1. Then φ(dist(p, x)/r) is a radial bump function supported near p, and we can
consider Φ of the form Φ(x) := e−c/2φ(dist(p, x)/r) where c is a normalization constant.

Now, since φ ≤ 1 on B and is equal to zero outside, we have∫
M

(4πr2)−n/2Φ2dvol < e−cvol(B)r−n

so to normalize this integral to 1 we must have c → −∞ under the assumption of local
collapse. On the other hand,

W =

∫
M

(4πr2)−n/2
(
4r2|∇Φ|2 + (r2R− 2 log Φ− n)Φ2

)
dvol

Let’s estimate the contributions of each of these terms. By hypothesis, |r2R| is bounded,
so that term contributes at most a constant to W, as does the −n term, when integrated
against the probability measure (4πr2)−n/2Φ2dvol.

The norm of ∇Φ is equal to e−c/2r−1|φ′|, so the 4r2|∇Φ|2 term contributes a bounded
term 4|φ′|2 integrated against the measure (4πr2)−n/2e−cdvol on B. This is not quite a
probability measure, though it agrees with the probability measure (4πr2)−n/2Φ2dvol on
the ball of radius r/2. However the Bishop–Gromov inequality lets us control the volume
on the ball B in terms of the volume of the ball of radius r/2, and the conclusion is that∫
B

(4πr2)−n/2e−cdvol is bounded, independent of k. Thus the 4r2|∇Φ|2 term contributes at
most a constant to W too.

Finally, −2 log Φ = c−2 log φ. We have already observed that φ2 log φ→ 0 where φ→ 0
and is otherwise bounded, so the conclusion is that W ≤ c + const. Since c → −∞ as
k →∞, so does W.

So: µ(g(tk), r
2
k) → −∞ and therefore µ(g(0), tk + r2

k) → −∞ by Lemma 5.8. This
contradicts finiteness of µ for a fixed metric g and bounded τ , and we arrive at the desired
contradiction. �

In fact, controlling the entire curvature norm |Rm|r2
k on Bk is superfluous in the proof of

the theorem (though not for applications to injectivity radius and geometric convergence).
Only an upper bound on scalar curvature Rr2

k is actually necessary. The use of the Bishop–
Gromov inequality appears to require a lower bound on Ric r2

k, but this is only used to
control the integral of φ′ on the outer annulus of Bk — the same control can be obtained
by restricting to a smaller ball if necessary.

5.4. L-length. Let M, g(t) be Ricci flow. We use the notation τ := −t. For points p, q
and times 0 ≤ τ1 < τ2 and a path γ : [τ1, τ2]→ M define the L-length of γ, denoted L(γ)
to be the quantity

L(γ) :=

∫ τ2

τ1

√
τ
(
R(γ(τ)) + |γ′(τ)|2

)
dτ

where R(γ(τ)) and |γ′(τ)|2 are computed for the metric g(τ).
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If we fix (p, 0) then for any (q, τ) we define the L-distance L(q, τ) := infγ L(γ) over all
γ : [0, τ ]→M with γ(0) = p and γ(τ) = q. We also define the reduced length

l(q, τ) := L(q, τ)/2
√
τ

and the reduced volume

Ṽ (τ) :=

∫
M

τ−n/2e−l(q,τ)dvol(g(τ))

Example 5.11. Let M = Rn, with constant Euclidean metric. Take p = 0. Then for
any (q, τ̄) the L-minimizer from (0, 0) to (q, τ̄) is γ(τ) = q

√
τ/τ̄ which satisfies L(q, τ̄) =∫ τ̄

0
(q2/4τ̄)τ−1/2dτ = q2/2

√
τ̄ and l = q2/4τ̄ so Ṽ = (4π)n/2.

If M is complete, and |Rm| is bounded on compact time intervals, then for fixed τ
and q very far away from p an L-minimizing curve will have |γ′|2 � |R| so that l(q, τ) ∼
d(p, q)2/4τ and therefore Ṽ is finite. Note by the way that l and Ṽ are both scale-invariant.

Our goal is to indicate the proof of the following theorem, which is proved in Perelman
[26] 7.1:

Theorem 5.12 (Monotone Reduced Volume). The reduced volume Ṽ is non-increasing in
τ , and is strictly decreasing unless

Ric(τ) + Hess(l(τ)) =
g(τ)

2τ

so that (in particular) M, g(t) is a shrinking Ricci soliton.

With the heuristic l ∼ d(p, q)2/4τ the formula for reduced volume very closely resembles
Huisken’s St functional for mean curvature flow. However, St is non-increasing with t,
whereas Ṽ (τ) is non-increasing in τ = −t so that the monotonicity is in the opposite sense!

Theorem 5.12 gives another proof of κ-noncollapsing. Consider Ricci flow for a manifold
M on a time interval [−τ̄ , 0] Roughly speaking, if we are κ-collapsed near the point (p, 0)
then Ṽ is very small for small τ , and therefore by monotonicity, also for τ̄ (i.e. for the initial
metric). We shall show that there is some point q so that l(q, τ̄) ≤ n/2. A calculation
(Lemma 8.3 in [26]) shows that l can’t grow too quickly on a ball of constant size around
q in the metric at time τ̄ ; thus Ṽ (τ̄) is bounded from below by a constant depending only
on M , and therefore we are κ-noncollapsed at (p, 0).

5.4.1. Sketch of the proof. Here is the idea of the proof. The function L acts rather like
a distance function function from (p, 0) to (q, τ̄), and it makes sense to talk about L-
geodesics, L-Jacobi fields, the L-Index form and so on. Computing the first and second
variation of L-length gives formulae for these objects. Along an L-minimizing geodesic,
the index form is minimized by Jacobi fields, amongst all variations with the same end
values. Thus if we compute the index form along a suitable family of ‘comparison’ vector
fields Vi along γ which have length proportional to

√
τ and are orthonormal at (q, τ̄) we

get an upper bound on ∆l. Using this we can show Ṽ is non-increasing, with equality if
and only if the comparison vector fields Vi are L-Jacobi fields, in which case M, g(t) is a
gradient shrinking soliton.
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This comparison is valid radially along every L-geodesic up to the ‘cut locus’; at or
beyond it each geodesic makes no further contribution to reduced volume, so the inequality
still holds, just as in the proof of the Bishop–Gromov Theorem 4.1.

Here are some of the details of the computation. Compare with the formulae in § 4.1.1:
(1) A path γ is critical for L-length (i.e. it is an L-geodesic) iff X := dγ/dτ satisfies

Geo(X) = 0 where

Geo(X) := ∇XX −
1

2
∇R +

1

2τ
X + 2Ric(X, ·)]

Here ∇R means gradR; i.e. (dR)].
(2) A vector field Y along an L-geodesic γ with X = dγ/dτ is tangent to a variation

through L-geodesics (i.e. it is an L-Jacobi field) iff Jac(Y ) = 0 where

Jac(Y ) := ∇X∇XY + R(Y,X)X − 1

2
∇Y∇R

+
1

2τ
∇XY + 2(∇YRic)(X, ·)] + 2Ric(∇XY, ·)]

(3) The Hessian of L-length on the space of smooth variations of an L-geodesic γ from
(p, 0) to (q, τ̄) has the form

I(Y, Y ) = 2
√
τ〈Y ′, Y 〉|τ̄0 − 2

∫ τ̄

0

√
τ〈Y, Jac(Y )〉dτ

An L-length minimizing γ has L-length equal to L by definition. Thus

Hess(L)(v, v) ≤ I(Y, Y )

for any vector field Y along γ with Y (0) = 0 and Y (τ̄) = v with equality iff Y is
an L-Jacobi field.

(4) By computing ∂τ 〈∇XY, Y 〉 and integrating by parts, the formula for I(Y, Y ) can
be rewritten as

I(Y, Y ) =

∫ τ̄

0

√
τ
(
Hess(R)(Y, Y ) + 2〈R(Y,X)Y,X〉

− 4(∇YRic)(X, Y ) + 2(∇XRic)(Y, Y ) + 2|∇XY |2
)
dτ

(5) A vector field Y along an L-geodesic γ from (p, 0) to (q, τ̄) is said to be adapted if
it is of the form Y =

√
τ/τ̄v where v satisfies ∇Xv = −Ric(v, ·)]. Note that the

length of v(γ(τ)) in the g(τ) metric is constant.
Thus for any vector u ∈ TqM we can form an adapted vector field Y where

v(τ̄) = u is as above. For such a Y , we can compute the Index Form:

I(Y, Y ) =
1√
τ̄
− 2
√
τ̄ Ric(Y, Y )−

∫ τ̄

0

√
τH(X, Y )dτ

where H(X, Y ) is the term arising in Hamilton’s Harnack inequality, and is given
by equation 3.3.
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Summing over an orthonormal basis for TqM at time τ̄ and applying the index
inequality, we obtain the inequality

∆l ≤ n

2τ̄
−R− 1

2τ̄ 3/2

∫ τ̄

0

τ 3/2H(X)dτ

(6) For an L-geodesic γ, define

K τ̄ (γ) :=

∫ τ̄

0

τ 3/2H(X)dτ

Then we can write our inequality as

∆l ≤ n

2τ̄
−R− K τ̄ (γ)

2τ̄ 3/2

(7) Using the equation for an L-geodesic one can directly compute

∂τ l = R− 1

τ
l +

1

2τ 3/2
K and |∇l|2 = −R +

1

τ
l − 1

τ 3/2
K

so that we deduce the pointwise inequality

(5.2) ∂τ l −∆l + |∇l|2 −R +
n

2τ
≥ 0

This is true along each L-geodesic up to the cut locus, and in the barrier sense
thereafter. From this Theorem 5.12 follows.

Compare the inequality in equation 5.2 with the formula for the evolution of f in Equa-
tion 5.1, remembering τ = −t.

5.4.2. Asymptotic solitons. Further geometric inequalities follow from the estimates in
§ 5.4.1. If we denote L̄ := 2

√
τL then from the formula for lτ and the index inequal-

ity for ∆l we obtain the inequality

L̄τ + ∆L̄ ≤ 2n

Since l ∼ d(p, q)2/4τ for q far away from p, it follows that for each fixed time τ slice l and
therefore L̄ is proper. In particular, the spacewise minimum L̄min is defined for all τ , and
the quantity L̄min − 2nτ is nonincreasing with τ . In particular, lmin ≤ n/2 for all τ .

Now let’s supposeM, g(t) is a κ-solution (see Definition 4.5), perhaps obtained as a blow-
up limit of Ricci flow on a compact manifold near a finite time singularity. Since Rm ≥ 0
it follows that l is strictly positive everywhere. Since the solution is ancient, Hamilton’s
Harnack inequality and the formula for |∇l|2 imply an inequality |∇l|2 + R ≤ Cl/τ for a
suitable constant C.

Take a sequence of times τi →∞ and for each i choose qi with l(qi, τi) ≤ n/2. Then from
the estimate on |∇l|2 for any ε we can find a δ so that for d2

τi
(q, qi) ≤ ετi and τ ∈ [τi/2, τi]

we have
l(q, τ) ≤ δ−1 and R(q, τ) ≤ δ−1τ−1

It follows that if we parabolically rescale the flows centered at (qi, τi) by a factor of τ−1
i

some subsequence converges on compact subsets to a limit N, h(t) on the time interval
t ∈ [−1,−1/2]. One can show that the reduced volume Ṽ (τ) for N is finite, and equal to
the limit of the reduced volumes Ṽ (τiτ) for M . Monotonicity of these reduced volumes for
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M imply that Ṽ (τ) is constant. But this implies equality in equation 5.2 applied to N , so
that N is a gradient shrinking soliton.

The reduced volume of N (at any time) is bounded from above by the reduced volume
of M (at any time). Now, since M has Rm ≥ 0 but is not flat, an easy estimate gives
Ṽ (τ) < (4π)n/2 for M for any τ . The same inequality therefore holds for the reduced
volume of N , so that N is not flat either. In short, we have sketched the proof of the
following, which is Perelman [26] Prop. 11.2:
Theorem 5.13 (Asymptotic Soliton). Let M, g(t) be a κ-solution. Then there are (qi, τi)
with τi →∞ so that the sequence of parabolic rescalings of M by factors τ−1

i at the points
(qi, τi) converge to a non-flat gradient shrinking soliton.
5.4.3. The classification of finite time singularities. By analyzing the possible asymptotic
solitons, Perelman was able to give a complete structure theorem for κ-solutions.
Theorem 5.14. Let M, g(t) be a gradient shrinking soliton that arises as the asymptotic
soliton of a κ-solution. If the dimension n = 2 then M, g(t) is a finite quotient of a round
shrinking S2. If the dimension n = 3 then M, g(t) is a finite quotient of a round shrinking
S3 or a round shrinking S2 × R.

Note that although a κ-solution has bounded curvature on compact time intervals, we
cannot assume this a priori for an asymptotic soliton.

We give the outline of a proof.

Proof. The case of dimension 2 was proved by Hamilton. If M is 3-dimensional and does
not have strictly positive Ricci curvature, then it splits locally as a product of a line and
a 2-dimensional gradient shrinking soliton, so that by the 2-dimensional case M, g(t) is a
finite quotient of a shrinking S2 × R. That leaves the case that M is noncompact with
strictly positive Ricci curvature.

Fix a time slice t and a basepoint p. First let’s suppose R is unbounded. Then there are
a sequence of points pi →∞ so that R(pi)→∞. Then certainly also dt(p, pi)2R(pi)→∞.
By adjusting the points pi if necessary we can further insist that R(z) ≤ 4R(pi) whenever
d(pi, z) ≤ CR(pi)

−1/2 for any constant C. Then we can take a limit of a subsequence
(M,R(pi)

−1/2g(t), pi)→ (M∞, g∞, p∞).
Pass to a subsequence so that the distance-minimizing geodesics from p to pi converge,

and make an angle arbitrarily close to π with the geodesics from pi to pi+1. In the limit
we obtain a line in M∞ — i.e. an isometrically embedded copy of R. By the Splitting
Theorem 4.9, M∞ splits as an isometric product of a surface Σ with R.

Since M, g(t) is a gradient shrinking soliton, and R(pi) → ∞, the limit M∞, g∞ is a
non-flat, non-negatively curved gradient steady soliton, and therefore so is Σ. The only 2-
dimensional gradient-steady Ricci soliton with positive curvature is Hamilton’s cigar soliton
[14]; however, the cigar soliton is asymptotically flat with bounded injectivity radius near
infinity, and is therefore κ-collapsed. Thus we obtain a contradiction.

The last possibility is that M is noncompact with strictly positive Ricci curvature, and
R is bounded. As before, we can obtain a limit M∞, g∞ which splits as a product and
is a gradient-shrinking soliton, and is therefore a round shrinking S2 × R, up to a finite
quotient. A comparison of the geometry of the level sets of the gradient functions for M
and for M∞ leads to a contradiction in this case. �
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Example 5.15 (Bryant soliton). Theorem 5.14 implies that every asymptotic soliton of
a non-compact κ-solution is a shrinking round cylinder or a Z/2Z quotient of it. The
Bryant soliton is a κ-solution; this is a gradient steady soliton, so the time slices are all
isometric. On the face of it, this seems to contradict the classification theorem — how can
the asymptotic limit of a ‘stationary’ sequence be different?

The answer of course has to do with basepoints. Near the cap of the Bryant soliton the
curvature R stays bounded away from zero, independent of τ . This means that for any
sequence (pi, τi) centered in the caps we have l(pi, τi) ∼ Cτi. To form an asymptotic soliton
we need to take points (qi, τi) for which l(qi, τi) is bounded. Then necessarily R(qi) has
order 1/τi, and the qi must exit the end of the soliton. The end of the Bryant soliton is
parabolic, and bigger and bigger subsets based at points further and further away converge
(after rescaling) to a cylinder.

5.4.4. Classification of κ-solutions and the structure of high curvature regions. We now
present Perelman’s classification of 3-dimensional κ-solutions. First we make some defini-
tions.

Definition 5.16 (ε-round component). An ε-round component is a compact manifold M
diffeomorphic to a spherical space-form so that the scaled pullback metric is within ε of
the round metric in the C1/ε topology.

Definition 5.17 (ε-neck). An ε-neck centered at a point p ∈ (M, g) is an injective diffeo-
morphism φ : S2 × (−ε−1, ε−1)→ M so that the scaled pullback metric R(p)φ∗g is within
ε of the standard round metric on the cylinder, in the C1/ε topology.

Definition 5.18 (C-component). A C-component is a compact manifold with Rm > 0
diffeomorphic to S3 or RP3 whose diameter, curvature and volume are bounded (after
rescaling) between C−1 and C.

Definition 5.19 (C, ε-cap). A C, ε-cap is a noncompact 3-manifold with Rm > 0 which
is the union of an ε-neck, and a compact core glued along one of the S2 boundaries of the
neck. The core is diffeomorphic to R3 or RP3. Its diameter, curvature and volume are
bounded (after rescaling) between C−1 and C.

An ε-tube is a product S2 × R in which every point is the center of an ε-neck, in such
a way that the S2 foliations of the necks match up with the global product structure. An
ε-tube can be capped or doubly capped if one or both of the ends is replaced with a C, ε-cap.

Theorem 5.20 (Classification of 3-dimensional κ-solutions). Every connected oriented 3-
dimensional κ-solution is one of the following possibilities:

(1) A shrinking round spherical space form;
(2) A shrinking round cylinder or finite quotient;
(3) A C-component;
(4) A C-capped ε-tube: or
(5) A doubly C-capped ε-tube.

We give the sketch of a proof.

Proof. To prove Theorem 5.20 one first shows that the space of pointed 3-dimensional
curvature-normalized κ-solutions is compact; this can be proved by the geometric estimates
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in § 5.4.1. Since the only asymptotic solitons are finite quotients of shrinking round spheres
or cylinders, every κ-solution of sufficiently large normalized diameter is made up of ε-tubes
and regions of uniformly bounded diameter.

A κ-solution which is not already a shrinking cylinder or quotient has strict Rm > 0, so
if it is non-compact, the Cheeger–Gromoll Soul Theorem implies it is diffeomorphic to R3.
Thus a noncompact κ-solution with Rm > 0 is a C-capped ε-tube where the existence of
such a C comes implicitly from the compactness of the space of κ-solutions.

A similar argument shows that a compact κ-solution either has uniformly bounded diam-
eter, or it is a doubly-capped ε-tube. In every case Rm > 0 so Hamilton’s theorem implies
that the manifold is diffeomorphic to a spherical space form. The uniformly bounded
diameter components are either round or C-components, where again C comes from the
compactness of the space of κ-solutions. �

Example 5.21. There are infinitely many diffeomorphism types of lens spaces. These are
all spherical space forms. However most are very highly collapsed: only finitely many
diffeomorphism types can arise as a κ-solution, for any fixed κ.

Example 5.22. The Bryant soliton is an example of a C-capped ε-tube. A C-capped ε-tube
can occur as the parabolic blow up near a degenerate neckpinch singularity.

Example 5.23. A C-component is a kind of degenerate doubly C-capped ε-tube in which
the ‘tube’ part has normalized diameter less than 1/ε. In backwards time the length of
this neck increases indefinitely.

We now state the main theorem on the classification of high curvature regions in finite
time. For applications to surgery, it’s important to control the various constants involved.

We say that a Riemannian manifold M of dimension n is normalized if
(1) |Rm| ≤ 1 everywhere; and
(2) for every p ∈ M we have vol(B1(p)) ≥ ω/2 where ω is the volume of the unit ball

in R3.
Any metric on a compact manifold may be normalized by rescaling it suitably.

Theorem 5.24 (Finite time high curvature region). LetM, g(t) be Ricci flow on a compact
orientable 3-manifold defined on some time interval [0, T ). Suppose that the metric at time
0 is normalized. Then for every ε > 0 there exists C > 0 depending on ε, and K depending
on ε and T so that for every t ∈ [0, T ), the subset of (M, g(t)) with R ≥ K is partitioned
into four subsets:

(1) ε-round components;
(2) C-components;
(3) centers of ε-necks; and
(4) cores of C, ε-caps.

Morally speaking, this theorem is proved by taking parabolic blow-ups to produce κ-
solutions, and analyzing the possibilities for their associated asymptotic gradient-shrinking
solitons.

In the regions covered by ε-necks the foliations by spheres can be matched up topolog-
ically by a small perturbation. Thus a compact component of the part of M, g(t) where
R ≥ K is diffeomorphic to a spherical space form or a finite quotient of S2 × S1.



54 DANNY CALEGARI

6. The Geometrization Conjecture

In the remainder of this chapter we give the barest outline of Perelman’s argument to
prove the Geometrization Conjecture. For details see Perelman [27, 28], Kleiner–Lott [23]
or Morgan–Tian [24, 25].

6.1. Surgery. We have seen that when high curvature regions develop in finite time, they
are either compact components (which are topologically finite quotients of S3 or S2 × S1)
or they are ε-tubes, possibly capped at one end.

Surgery takes the manifold at some fixed time, and modifies it in the high curvature
regions. The compact components are discarded, and the ε-tubes are truncated near their
uncapped ends and replaced with round three-balls with a specially chosen metric, called
the standard solution.

This changes the underlying diffeomorphism type of the manifold. LetM be the manifold
before surgery, and N the manifold after. Then topologically M is obtained from N in
three steps:

(1) certain distinct components of N are connect summed together;
(2) some components of the result are self-connect summed — equivalently, they are

connect summed with copies of S2 × S1; and
(3) finally, we add the disjoint union of finitely many S3 or S2 × S1 quotients.
After surgery, Ricci flow is restarted on N . After a further finite amount of time, more

high curvature regions will develop, and we can perform another surgery operation, and
repeat the process.

6.1.1. The standard solution. The standard solution is a Ricci flow M, g(t) where M is
the 3-ball, and g(0) is a complete metric obtained (roughly speaking) by gluing a round
hemispherical cap to a round S2 × R+ with R = 1. The key properties this should satisfy
are:

(1) SO(3) symmetry;
(2) positive curvature Rm > 0 throughout, for all t;
(3) the solution exists for t ∈ [0, 1);
(4) the end of the solution asymptotically matches the shrinking round unit cylinder

S2 × R; and
(5) there is some r and κ so that the solution is κ-noncollapsed on scales less than r

for all t ∈ [0, 1).
The existence of a standard solution is proved by direct construction. Since M is non-

compact, one needs to check existence and uniqueness of Ricci flow. This can be done
by adapting the DeTurck trick to the noncompact setting, with a careful analysis of the
geometry of the ends.

6.1.2. Estimates beyond surgery. Before surgery we have a substantial amount of geometric
control on the metric including Hamilton-Ivey pinching, κ-noncollapsing, and a structure
theorem for the high-curvature regions. This control is expressed in terms of several con-
stants which in turn depend on the initial metric, and the time elapsed. It’s important to
be able to perform surgery in such a way that this geometric control persists.
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The properties of the standard solution ensure that Hamilton-Ivey pinching persists after
surgery. Likewise, κ-noncollapsing holds within the region where a neck has been replaced
by the standard solution. Away from it, one needs a localized version of κ-noncollapsing. As
explained in § 5.4, κ-noncollapsing can be derived from monotonicity of reduced volume.
Furthermore, the argument proving monotonicity of reduced volume is localized— it follows
from the pointwise inequality equation 5.2, true along each L-geodesic up to the cut locus.
Performing surgery produces ‘holes’ in these L-geodesics, making a comparison argument
a priori difficult. However, it turns out that the holes only occur in L-geodesics for which
the l-length is big, and therefore the argument sketched in § 5.4 deriving κ-noncollapsing
from monotonicity of Ṽ still goes through.

6.1.3. Surgeries do not accumulate. The key point here is to show that if we perform a
surgery on a neck of width h, the volume goes down by a definite constant c(h). If we are
careful, we can ensure that surgeries at time t are all performed on necks of width at least
h(t), in such a way that other quantities (κ, pinching constants etc.) can be controlled
in terms of the original metric and the time t. At non-surgery times, volume satisfies
dvol(t)/dt ≤ −Rmin(t)vol(t), which is to say it grows at most exponentially in time. Thus,
volume can grow by only a bounded amount in any finite time interval, so that there can
be only finitely many surgeries in that time interval.

6.2. Finite time extinction. We have seen that a 3-manifold which becomes extinct in
finite time under Ricci flow with surgery satisfies the geometrization conjecture. More
precisely, such a manifold is necessarily a connect sum of spherical space forms and finite
quotients of S2×S1, and therefore its fundamental group is a free product of finite groups
and infinite cyclic groups.

In fact, it turns out that the converse is true:

Theorem 6.1 (Finite time extinction; Perelman [28]). The following conditions are equiv-
alent for a compact 3-manifold M :

(1) M becomes extinct in finite time under Ricci flow with surgery;
(2) M is a finite connect sum of spherical space forms and finite quotients of S2 × S1;
(3) π1(M) is a finite free product of finite and infinite cyclic groups.

That (1) implies (2) follows from our analysis of surgery. That (2) implies (3) is obvious.
In the rest of this section we shall prove (3) implies (1), following Perelman. The most
significant corollary is:

Corollary 6.2 (Poincaré Conjecture). Let M be a compact 3-manifold with π1(M) trivial.
Then M is homeomorphic to S3.

Proof. By Theorem 6.1, M is a finite connect sum of spherical space forms and finite
quotients of S2 × S1. All of these have nontrivial π1 except for S3. Thus M is a finite
connect sum of S3s and is therefore homeomorphic to S3. �

6.2.1. Nontrivial π2. A nontrivial free decomposition of π1(M) gives rise to a nontrivial
action of π1(M) on a tree with trivial edge stabilizers, which correspond to homotopically
essential S2s. The first step in the proof of Theorem 6.1 is to show that after a finite
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amount of time, the result of Ricci flow with surgery is a finite collection of components
all with trivial π2.

Let’s call a homotopically essential surgery one of the following three operations:
(1) cut along a non-separating S2

(2) cut along a homotopically nontrivial separating S2

(3) a π1-nontrivial spherical space form or quotient of S2 × S1 is discarded
The number of homotopically essential surgeries is bounded by the number of terms in a

free decomposition of π1(M), which (by Grushko’s theorem) is bounded by the number of
generators in any generating set. Thus for any initial compactM there can only be finitely
many homotopically essential surgeries. We now show:

Proposition 6.3. Suppose M is a compact manifold with π2(M) nontrivial. Then under
Ricci flow there must be some essential surgery in finite time. Consequently, for any
compact manifold M , there is some finite time T so that under Ricci flow with surgery,
every component has trivial π2 for all t > T .

To prove Proposition 6.3 we let W2 denote the least area of a map of a sphere in M
representing some nontrivial class in π2(M). Note that this minimum is achieved, and
realized by some (possibly branched) minimal surface F : S2 → M , by the theorem of
Sacks-Uhlenbeck. The function W2 is continuous in time as we evolve M under Ricci
flow until we come to a surgery. If the surgery is homotopically essential we are done. If
the surgery is inessential it splits off finitely many homotopy S3 summands and a unique
component M ′ homotopy equivalent to M . Thus we can consider nontrivial classes in
π2(M ′) and the least area of a sphere representing some such class, so that W2 continues
to be well-defined until the first homotopically essential surgery.

We claim that under Ricci flow with only inessential surgeries, W2 satisfies the following
differential inequality:

dW2

dt
≤ −4π − 1

2
RminW2

in the sense of forward difference quotients. Let’s see how Proposition 6.3 follows from
this.

If we normalize the metric so that |Rm|max = 1 at time 0 then Rmin(0) ≥ −6 so by
Proposition 3.3 we have an inequality Rmin(t) ≥ −6/(4t + 1) under Ricci flow. At a
surgery, regions with R � 0 are cut out and replaced with standard solutions; thus, the
spatial minimum of R is not affected by surgery, and this differential inequality for Rmin(t)
is true under Ricci flow with surgery.

Consequently, if there are no essential surgeries, W2 is bounded above by a solution to
the differential equation

dw2

dt
= −4π +

3w2

(4t+ 1)

This can be solved explicitly; the general solution is

w2(t) = C(4t+ 1)3/4 − 4π(4t+ 1)

so that w2 (and hence W2) must become negative in finite time. This is absurd, and the
claim is proved, modulo the differential inequality for W2.
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We now prove the differential inequality. At every time t there is a minimal immersed
2-sphere F : S2 → M so that W2 = area(F ). First let’s consider the effect on W2 of
an inessential surgery. There is a finite system of inessential 2-spheres Σ = ∪iΣi which
decompose M into M0 ∪ Bi where the Bi are all 3-balls. The effect of surgery is to cut
out all the Bi and insert a collection of rounded 3-balls B′i in their place, modelled on
the standard solution. Each Bi consists of a neck neighborhood of Σi, together with a
manifold Ai which happens to be diffeomorphic to a ball. Evidently there is a 1-Lipschitz
map ψi : Bi → B′i which crushes Ai to a point, and pinches the neck neighborhood down
to a rounded ball. Performing ψi on each Bi produces a 1-Lipschitz map from M to the
result of surgery, and carries F to a new map F ′ representing the same homotopy class
(in the sense we have discussed), but area(F ′) ≤ area(F ). In other words, W2 can only go
down when we perform an inessential surgery.

It remains to prove the differential inequality when M evolves by ordinary Ricci flow.
For any surface F , the area of F evolves under Ricci flow as

d

dt
area(F ) =

∫
F

1

2
tr|F

(
∂g

∂t

)
darea =

∫
F

∑
i

−Ric(ei)darea = −
∫
F

(R− Ric(n))darea

where ei is an orthonormal basis for TF , and n is the unit normal vector to F .
Now, R = 2Ric(n) + 2KM where KM is the sectional curvature of the tangent plane to

F , as measured in M . For a minimal surface KM = K + |A|2/2 where A is the second
fundamental form and K is the sectional curvature of the tangent plane to F as measured
in F . Thus we can rewrite this formula as

d

dt
area(F ) = −

∫
F

Kdarea− 1

2

∫
F

(|A|2 +R)darea

By Gauss-Bonnet the first term is 4π, while of course |A|2 + R ≥ Rmin pointwise. From
this the differential inequality follows, completing the proof of Proposition 6.3.

6.2.2. Nontrivial π3. We now continue the proof of Theorem 6.1. From Proposition 6.3
we conclude that for any compact M , after finite time Ricci flow with surgery results in
a manifold N consisting of finitely many components, each of which has π2 trivial. If our
original manifold had π1(M) equal to the free product of finitely many Zs and finite groups,
then each component of N has finite π1, and is therefore finitely covered by a homotopy
3-sphere. In other words, each component of N has π3 = Z. Thus the proof of the theorem
will follow from:

Proposition 6.4. Suppose N is a compact 3-manifold with π2(M) trivial and π3(N) = Z.
Then under Ricci flow with surgery N vanishes in finite time.

For such an N every future surgery either consists of cutting along a neck whose core
is a homotopically trivial (hence separating) S2, or throwing away a spherical space form.
Let γ be the generator of π3(N). If we decompose N by connect sum into a collection of
pieces, then γ restricts to the generator of π3 of each piece.

Now, if π2(N) = 1 then π3(M) is equal to π2(ΛM) where ΛM denotes the space of
homotopically trivial loops in M . To see this, observe that a map from S2 to ΛM is the
same thing as a map from S2 × S1 to M . If the base point in S2 maps to the trivial loop,
then this map factors through S2 × S1/point× S1 which is homotopic to S3 ∨ S2 so if π2



58 DANNY CALEGARI

is trivial, this is the same (up to homotopy) as a map from S3 to M . We may therefore
think of γ as an element of π2(ΛM).

A representative of γ is a family of contractible loops in M . For each such loop we may
compute the minimum area of a spanning disk, and take the maximum area over all loops
in the family, and then define Wγ to be the minimum of this quantity over all families
representing γ.

We claim that under Ricci flow Wγ satisfies the following differential inequality:

dWγ

dt
≤ −2π − 1

2
RminWγ

in the sense of forward difference quotients. We mean this in the following sense. As we
pass through a surgery, our manifold decomposes into a finite collection of summands, and
the class γ can be ‘continued’ to a class in π3 of each summand. Then we claim that the
differential inequality holds for Wγ as computed in any summand as we pass through the
surgery. As we argued previously, this implies that unless the component we are following
vanishes altogether (which is what we want),Wγ would become zero in finite time (which is
absurd). In other words, there is an a priori estimate of a time after which every component
obtained from N by Ricci flow with surgery becomes extinct. This completes the proof of
the proposition and therefore the theorem, modulo the proof of the differential inequality.

At surgery times the monotonicity of Wγ follows for the same reasons as for the cor-
responding statement for W2; if N is the manifold before surgery and N ′ a component
afterwards, there is a 1-Lipschitz map ψ : N → N ′ taking the class of γ in N to the class
of γ in N ′. A minimax family realizing Wγ in N is taken to a new family in N ′. Since area
can only go down under ψ, the same is true for Wγ.

Thus it remains to verify the differential inequality under ordinary Ricci flow. For each
loop c in a minimax family γ we can span c by a minimal area disk D, and simultaneously
evolve c by curve-shortening. That is, if H is the geodesic curvature vector of c in N (in
the metric at time t) we let dc/dt = H. Note that for any disk D spanned by c, the inner
product H · ν of H with the inner unit normal field ν to ∂D in D is equal to the geodesic
curvature k of ∂D in D.

If c is sufficiently smooth, we can compute as before (since D is minimal)

d

dt
area(D) =

∫
D

1

2
tr|D

(
∂g

∂t

)
darea−

∫
∂D

kdlength

= −
∫
D

Kdarea−
∫
∂D

kdlength− 1

2

∫
D

(|A|2 +R)darea

≤ −2π − 1

2
Rminarea(D)

There is a serious technical problem, that under the curve-shortening flow c might become
singular. This is a nontrivial issue, solved by Perelman using the method of ramps, but we
do not go into it here.

6.3. Infinite time. Now consider a general compact orientable 3-manifold M and evolve
it by Ricci Flow with surgery. By Proposition 6.3 and Proposition 6.4 together with
the Poincaré Conjecture, after a finite amount of time every remaining component is an
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irreducible K(π, 1), at which point every future surgery merely pinches off an inessential
neck bounding a 3-ball.

Bamler has recently shown that if surgeries are performed correctly, only finitely many
surgeries will occur, and after some time there is a constant C so that curvature is bounded
by Ct−1. This confirms a conjecture of Perelman from [27]. Bamler’s work is carried out in
a series of papers, summarized in [3]. Although very nice to know, this fact is technically
unnecessary for applications to Geometrization.

6.3.1. Thick-thin decomposition. In finite time we have seen that there can be no local
volume collapsing under Ricci flow with surgery. However, as t→∞ asymptotic collapsing
is possible, and in fact it must necessarily occur whenever the manifold has a nontrivial
JSJ decomposition.

It turns out that for t � 0 the manifold in the metric g(t) decomposes neatly into two
pieces — a thick part, where the volume is locally non-collapsed on the negative curvature
scale, and a thin part, where it is.

Given w > 0 and a non-negative function ψ on M we say that M is w-locally volume
collapsed on scale ψ if for all x ∈M we have an estimate

vol(B(x, ψ(x))) ≤ wψ(x)n

IfM is complete and connected and has negative sectional curvature somewhere, we defined
the negative curvature scale to be the non-negative function ρ onM such that at each point
x, if we rescale the metric on the ball B(x, ρ(x)) to have radius 1, then the infimum of the
(rescaled) sectional curvature on this ball is equal to −1. In other words, for each x the
value of ρ(x) is such that the infimum of the sectional curvature on the ball B(x, ρ(x)) is
−ρ(x)−2.

With this definition, for each time t and for each w > 0 we define the w-thin part
M−(w, t) to be the subset of points x in M which are w-locally volume collapsed on the
negative curvature scale in the metric g(t); and we define the w-thick part M+(w, t) to be
the complement.

6.3.2. Incompressible tori. Hamilton [18] § 11-12 already more or less analyzed the thick-
thin decomposition, and showed that the thick part is asymptotically hyperbolic, and that
the two pieces meet along a family of incompressible tori. We shall indicate Hamilton’s
proof that the thick part is asymptotically hyperbolic in § 6.3.3.

Incompressibility of the tori is proved by an argument very similar to the argument we
already gave in § 6.2.2, namely: if one of these tori is compressible, one can define A(t)
to be the least area of a compressing disk with boundary on the torus, and show that for
every δ > 0, when t � 0 there is a differential inequality dA/dt ≤ −(2π − δ) in the sense
of forward difference quotients (an additional −(1/2)RminA(t) term can be absorbed in δ
when t is large, since Rmin = O(1/t)). This inequality is valid at nonsurgery times, but
as we argued in § 6.2.2 the area of a minimizing disk can only go down under surgery,
so the inequality is valid more generally. Since A must be positive for all t this gives a
contradiction.
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6.3.3. Hamilton’s Endgame. Recall that if we normalize the metric so that Rmin(0) ≥ −6,
then Rmin(t) ≥ −6/(4t+ 1). Define normalizations

R̂(t) := Rmin(t)vol(t)2/3 and V̂ (t) := vol(t)/(t+ 1/4)3/2

Since dvol(t)/dt = −
∫
M
Rdt ≤ −Rminvol(t) it follows that away from surgery times,

dV̂ (t)

dt
≤ −V̂ (t)

(
Rmin +

3

2(t+ 1/4)

)
and

dR̂(t)

dt
≥ 2

3
R̂(t)vol(t)−1

∫
(Rmin −R)dvol

At a surgery time Rmin does not change, whereas vol(t) goes down. Hence V̂ is monotone
nonincreasing, and R̂ is monotone nondecreasing.

Define V̂ (∞) and R̂(∞) to be the limits of these two quantities. The analysis falls into
two cases.

If V̂ (∞) > 0 then the thick part M+(w, t) is nonempty for all t. After we rescale the
metric by 1/t, for any fixed positive w the geometry of the thick part M+(w, t) becomes
bounded, in the sense that the sectional curvatures and the injectivity radius are bounded
below while the volume is bounded above. In particular, the diameter of the rescaled metric
is bounded above.

Theorem 6.5 (Thick part hyperbolic). Suppose V̂ (∞) > 0. Then for any w > 0, through-
out the thick part M+(w, t) the rescaled metrics converge to a metric of constant sectional
curvature −1/4.

Leaving aside the issue of convergence, we indicate the proof of this theorem, following
Hamilton [18] § 7.

Proof. First we show that Rmin(t) is asymptotic to −3/2t. From the formulae above, we
obtain the estimate for the logarithmic derivative of V̂ :

d(log(V̂ ))

dt
≤ −

(
Rmin(t) +

3

2(t+ 1/4)

)
Since we are in the case V̂ (∞) > 0 it follows that∫ ∞

0

Rmin(t) +
3

2(t+ 1/4)
dt <∞

Now,
R̂(∞)/V̂ (∞)2/3 = lim

t→∞
Rmin(t)(t+ 1/4)

so this limit exists, and by the inequality above it is equal to −3/2.
From the formula for dR̂(t)/dt and the positivity of V̂ (∞) it follows that when t is

very large, |Rmin − R| must be small throughout most of the thick part. Since for any w
the rescaled diameter of the thick part is uniformly bounded, and we can control ∇Rm in
terms of |Rm|, it follows that tR(t) must converge to −3/2 throughoutM+(w, t). From the
evolution equation for normalized R it follows then that the trace-free part of normalized
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Ric must converge to zero, so that the normalized metric has constant sectional curvature
−1/4 as claimed. �

If the thin part is empty, we are done. Otherwise the frontier of the thick part consists
of a nontrivial union of incompressible tori. Since (by Theorem 6.1) M is irreducible, it
is Haken, and therefore already known to be geometric by Thurston. This completes the
proof when V̂ (∞) > 0.

If V̂ (∞) = 0 then for any positive w we eventually have M+(w, t) empty, and the entire
manifold is in the thin part. In this case Perelman simply asserts [28] Thm. 7.4 that M
is either flat or has the structure of a graph manifold, and that the proof will be given
in a separate paper. In fact no such paper ever appeared, but a proof of the assertion
can be deduced in this case from the theory of collapsing with lower curvature bounds as
developed by Shioya–Yamaguchi [29, 30].

The main theorem of the latter paper, i.e. [30] Thm. 1.1 is as follows:

Theorem 6.6 (Shioya–Yamaguchi Volume collapse). There exist ε, δ > 0 so that if M is
an orientable Riemannian 3-manifold with Rm ≥ −1 and vol(M) < ε then either M is
homeomorphic to a graph manifold, or diam(M) < δ and π1(M) is finite.

Now, if V̂ (∞) = 0 then for all sufficiently large times we can rescale the metric on M to
satisfy the hypotheses of this theorem. We have already seen that a prime summand with
finite fundamental group will become extinct in finite time under Ricci flow with surgery.
Thus we conclude that M is a graph manifold in this case, and the proof of geometrization
is complete.
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