LINEAR ALGEBRA, WINTER 2018, MIDTERM

DANNY CALEGARI

This midterm exam was given in class on Thursday, February 7. When a problem asks you to give an example of something you must also explain why the example you give satisfies the demands of the problem.

Problem 1. Let M be an $n \times n$ matrix with real entries. The matrix M determines a linear map $L_{\mathbb{R}}(M)$ from \mathbb{R}^n to \mathbb{R}^n in the usual way. Let's suppose $L_{\mathbb{R}}(M)$ is invertible.

Since every real number is also a complex number, we can think of M as an $n \times n$ matrix with complex entries (which just happen to be real). It determines a linear map $L_{\mathbb{C}}(M)$ from \mathbb{C}^n to \mathbb{C}^n .

Must $L_{\mathbb{C}}(M)$ be invertible? (hint: what could its inverse be?)

Problem 2. Let V denote the vector space of real homogeneous degree 1 polynomials in two variables x and y; i.e. polynomials of the form ax + by where $a, b \in \mathbb{R}$. Let W denote the vector space of homogeneous degree 3 polynomials in two variables x and y; i.e. polynomials of the form $ax^3 + bx^2y + cxy^2 + dy^3$. Let $\phi: V \to W$ be the map that takes a polynomial p to its cube; i.e. $\phi(p) = p^3$. Is ϕ linear?

Problem 3. Let \mathbb{F}_3 denote the field of 'integers modulo 3'; i.e. it consists of the number 0, 1, 2 with addition 0 + x = x, 1 + 1 = 2, 1 + 2 = 0, 2 + 2 = 1 and multiplication 0 * x = 0, 1 * x = x, 2 * 2 = 1.

Just as in problem 1, let V_3 denote the vector space of homogeneous degree 1 polynomials in two variables x and y but with coefficients in \mathbb{F}_3 , and likewise let W_3 denote the vector space of homogeneous degree 3 polynomials in two variables x and y with coefficients in \mathbb{F}_3 . Let $\phi_3 : V_3 \to W_3$ denote the map that takes a polynomial p to its cube. Is ϕ_3 linear?

Problem 4. Let Γ be the directed graph in Figure 1.

FIGURE 1. The directed graph Γ

- (1) write down an adjacency matrix M for Γ
- (2) write down M^{1000} .
- (3) how many directed paths are there in Γ of length 1000?

DANNY CALEGARI

Problem 5. Consider the following system of linear equations in the variables x_1 , x_2 , x_3 , x_4 , x_5 (Note: none of the equations involves x_5 !)

$$7x_1 - x_2 + 7x_4 = 2$$
$$x_1 + 5x_3 = 7$$
$$9x_1 + 9x_2 + 9x_3 + 9x_4 = 9$$

- (1) Without solving the equations, say if it's possible there is a unique solution.
- (2) Without necessarily solving the equations, say if there's at least one solution.
- (3) Find all solutions!

Department of Mathematics, University of Chicago, Chicago, Illinois, 60637 $E\text{-}mail\ address:\ \texttt{dannycQmath.uchicago.edu}$