
CHAPTER 6: FLOER THEORIES

DANNY CALEGARI

Abstract. These are notes on Floer theories on 3-manifolds, which are being trans-
formed into Chapter 6 of a book on 3-Manifolds. These notes follow a course given at the
University of Chicago in Winter 2020.

Contents

1. Classical Invariants 1
2. The Casson Invariant 9
3. Instanton homology 20
4. Heegaard Floer Homology 25
5. Proofs 34
6. Computation and Examples 41
7. Acknowledgments 41
References 41

1. Classical Invariants

1.1. Homology, linking, surgery.

1.1.1. Alexander duality. If X is a compact locally contractible subspace of the sphere Sn
(for example, if X is a submanifold), Alexander duality is an isomorphism H̃q(S

n −X) ∼=
H̃n−q−1(X).

Suppose n = 3 and X is a knot K. Then H1(S3 − K) = H1(K) = Z. It’s convenient
to replace S3 −K by the homotopy equivalent manifold M := S3 −N(K) where N(K) is
an open neighborhood of K. Then Lefschetz duality gives a chain of isomorphisms from
H1(K) = H1(M) = H2(M,∂M). An orientation for K gives a preferred generator for
H1(M), represented by a homotopy class of map M → S1. If we make this map smooth,
the preimage of a regular value is an oriented proper surface F in M whose boundary
wraps once around the knot K, and by throwing away (necessarily homologically trivial)
closed components if necessary, we can arrange for the surface to be connected. Such a
surface — oriented, embedded, connected and with boundary equal to K — is called a
Seifert surface for the knot. In § 1.2.6 we shall give an algorithm (Seifert’s algorithm) to
construct a Seifert surface from a knot projection.

If K ′ is any oriented knot in M the algebraic intersection of homology classes [K ′]∩ [F ]
is called the linking number of K ′ with K, and denoted lk(K ′, K). Linking number with
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K realizes the chain of isomorphisms H1(M) = H1(K) = Hom(H1(K);Z) = Z. Linking
number is symmetric, and changes sign when either orientation is reversed.

If n = 3 and X is a genus g surface F with one or zero boundary components, then
H1(S3−F ) = H1(F ) = Z2g. Alexander duality is compatible with restriction to subspaces,
so the pairing is given as before by linking number: if a1 · · · a2g is a basis for H1(F ), there
is a dual basis α1 · · ·α2g for H1(S3 − F ) given by the formula lk(αi, aj) = δij.

Alexander duality works just as above in any manifold with the homology of Sn. A
3-manifold Y with the same homology as S3 is called a homology 3-sphere. Thus, (for
example) a knot in Y has a Seifert surface, oriented knots in Y have a well-defined linking
number, and so on.

1.1.2. Homology of the boundary. If M is a compact manifold obtained from S3 by remov-
ing a tubular neighborhood of a knot, then ∂M is a torus, and the inclusion ∂M → M
induces a map on homology H1(∂M) → H1(M) whose kernel is the primitive Z subspace
generated by the class of the longitude; in particular, it has half dimension in H1(∂M).

This is a special case of a more general fact:

Proposition 1.1. Let M be a compact oriented 3-manifold with boundary ∂M . Then
the kernel of H1(∂M) → H1(M) is a Lagrangian subspace of H1(∂M) with respect to the
intersection pairing; in particular, it is half dimensional in H1(∂M).

Proof. This is an algebraic fact, and can be proved easily from Lefschetz duality and the
long exact sequence, but it is illuminating to give a geometric proof. Let L denote the
kernel of H1(∂M)→ H1(M). We show first that L is isotropic: the intersection pairing is
trivial on L.

Let α, β be elements in L. To be in the kernel of the map on homology is to bound
oriented immersed surfaces Fα, Fβ in M . If we make these surfaces transverse, their
intersection is a 1-manifold, consisting of closed loops, and intervals that run between
pairs of intersection points of α with β of opposite sign. Thus [α] ∩ [β] = 0.

To show that L is half dimensional (i.e. Lagrangian), let αi be a collection of loops in
M that are a basis for the image of H1(∂M). Each αi is homologous to some βi in ∂M ,
and the homology is realized by a surface Fi. Let Gi be a collection of proper surfaces
in M representing classes in H2(M,∂M) dual to the αi, so that [αi] ∩ [Gj] = δij. Then
by making Fi and Gj transverse, we see as before that [βi] ∩ [∂Gj] = δij. By definition
the classes [∂Gj] are in L, so this gives a pairing between L and the image of H1(∂M) in
H1(M) and we are done. �

1.1.3. Dehn surgery. If Y is an oriented 3-manifold and K is a knot in Y , we may build
a new 3-manifold by removing a solid torus neighborhood N(K) of K and gluing it back
by some diffeomorphism of the boundary. The result depends only on the (unoriented)
isotopy class of the loop γ ⊂ ∂N(K) (called a slope) that bounds a disk in the new solid
torus, and is called the result of Dehn surgery along K with slope γ.

Oriented essential simple closed curves on ∂N(K) up to isotopy are in bijection with
primitive homology classes in H1(∂N(K)). If we choose a basis m, l for homology, we have
[γ] = p[m] + q[l] for coprime (p, q). Thus slopes are parameterized by p/q ∈ Q ∪∞, once
we have chosen the basis (m, l).
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The usual convention is to choose m to be a meridian for K; i.e. an essential loop
bounding a disk in N(K). The curve l is called a longitude, and intersects m in one point.
Since Y is oriented, so is ∂N(K) and we can choose orientations on m and l so that
[m] ∩ [l] = 1.

There are Z possibilities for l, and in general there is no canonical way to make a choice.
However, if Y is a homology sphere we can choose l to be the boundary of a Seifert surface
F for K. Thus if Y is a homology sphere, there is a canonical parameterization of slopes
on ∂N(K) by Q ∪∞, and we can speak unambiguously about (p/q)-Dehn surgery along
K, denoted YK(p/q). If Y is a homology sphere, then H1(YK(p/q)) = Z/pZ.

Example 1.2. If K is the unknot, then S3
K(p/q) is the Lens space L(p, q), which is S2 × S1

if p = 0 and S3 if p = ±1.

Example 1.3. If K is the right-handed trefoil, then 1 surgery on K is called the Poincaré
homology sphere. The fundamental group of this sphere is a group of order 120 called the
binary icosahedral group, and as we shall see in § 2.8.1 is the preimage in the group SU(2)
of the group of orientation-preserving symmetries of the regular icosahedron, thought of as
a subgroup of SO(3).

Theorem 1.4 (Dehn surgery presentation). Every oriented 3-manifold Y is obtained by
integer Dehn surgery on some link L in S3.

Proof. Choose a Heegaard splitting of Y . There is a (unique) Heegaard splitting H1∪ΣH2of
S3 of the same genus, and Y is obtained from this splitting by cutting along Σ and regluing
H2 by some mapping class ϕ of Σ. Express ϕ as a product of Dehn twists or their inverses
ϕ = τ±1

1 · · · τ±1
n where τi is a Dehn twist along a curve γi ⊂ Σ.

Parameterize a collar neighborhood of Σ as Σ × [0, 1] and push γi to the level surface
Σ× i/n. The γi become in this way the components of an n-component link L in S3. Let
l′ be the framing of γi coming from its embedding in Σ. Then doing m± l′ surgery on γi
has the effect at the level of handlebodies of changing the gluing by the Dehn twist τ±1

i .
Note if γi is separating in Σ then l′ = l, a longitude for γi, so that we are doing ±1 surgery.
Otherwise l′ differs from l by some multiple of the meridian, and all we know is that the
surgery coefficient is an integer. �

1.1.4. Integer surgery and handlebodies. Suppose K is a knot in an oriented 3-manifold
Y . A framing for K is a trivialization of the normal bundle; equivalently, a framing is an
identification of a neighborhood N(K) with D2 × S1. The data of a framing is the same
thing as a section of ∂N(K) thought of as an oriented S1 bundle over K; i.e. a choice of a
longitude l. If Y is a homology 3-sphere, there is a canonical longitude (the one bounding
a Seifert surface for K), so if we orient K the framings are canonically parameterized by
Z, the coefficient of m when we express the framing longitude in terms of the canonical
m, l basis. Otherwise, the set of framings is in bijection with Z but not canonically.

Suppose Y = ∂W for some 4-manifold W . Let L be a link in Y , and for each component
Li choose some framing li ∈ ∂N(Li). We may build a new 4-manifold W ′ by attaching
2-handles toW along L. That is, for each i we glue a D2×D2 along S1×D2 by identifying
the solid torus with N(Li) via the given framing. Evidently ∂W ′ is equal to the result of
Dehn surgery on Y along L with slopes equal to the framing.
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Now, let L be an n-component link in S3, and for each component Li choose an integer
ni. Let Y be the result of ni surgery along each component Li. If we think of S3 = ∂B4

then we have exhibited Y = ∂W where W is obtained from B4 by attaching 2-handles as
above. Since by Theorem 1.4 every oriented 3-manifold is obtained by integer surgery on a
link in S3, it follows that every oriented 3-manifold bounds a simply-connected 4-manifold.

Attaching a 2-handle to B4 is the same as wedging with a 2-sphere at the level of
homotopy. Thus H1(W ) = 0 and H2(W ) = Zn, where there is a bijection between the
Z factors and the components Li, and an orientation of Li determines a generator of the
associated Z in H2(W ).

There is a fundamental relationship between the intersection pairing of H2(W ) and
linking between the components of L.

Lemma 1.5 (Intersection pairing is linking matrix). With notation as above, let A denote
the (symmetric) matrix whose ij entry equals lk(Li, Lj) and whose ii entry is ni. Then A
is the intersection matrix for H2(W ) with the given basis.

Proof. For each oriented Li choose a Seifert surface Fi in S3, and let F ′i ⊂ W be obtained
by attaching the core D2 of the 2-handle. Then the [F ′i ] are a basis for H2(W ). By pushing
Fi slightly into B4 we see that [F ′i ] ∩ [F ′j ] is equal to the signed intersection of Li with Fj,
which is precisely lk(Li, Lj).

The surface Fi and the core D2 on F ′i can both be pushed off themselves, and the
difference on their boundary is given by the difference of the given framing of Li and the
canonical longitude framing. Thus [F ′i ] ∩ [F ′i ] = ni. �

In particular, if Y is a homology sphere, then Y bounds a simply-connected 4-manifold
W with definite intersection pairing.

1.1.5. Kirby moves. Suppose we have a presentation of Y as integer surgery on a link L in
S3. We may obtain new presentations by combinations of the following two moves:

(1) (stabilization): add an isolated unknot with framing ±1; or
(2) (handle slide): band connect sum Li to a framed pushoff of Lj to produce a new

component L′i and replace Li by L′i with framing ni + nj + 2 lk(Li, Lj).

These moves are sometimes abbreviated to K1 and K2 for short.
If we think of the surgery diagram as a handlebody description of a 4-manifold W that

Y bounds, then the first move connect sums W with CP2 or CP2 and the second move
slides the attaching circle associated to the ith handle over the jth handle. Thus neither
operation changes the homeomorphism type of the result of surgery.

At the level of the linking matrix, K1 sums with the matrix (±1), while K2 adds the jth
row and column to the ith row and column.

One corollary is the following:

Theorem 1.6 (Homology sphere presentation). Let Y be an integer homology sphere. Then
Y is obtained by Dehn surgery on a link L where the components are pairwise unlinked and
the coefficients are all ±1.
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Proof. Start with any integral surgery presentation. Apply K1 twice to add two isolated
unknots with framings 1 and −1. Now the linking matrix A is odd, indefinite and uni-
modular, and is therefore isomorphic over Z to a diagonal matrix with ±1s. Achieve this
diagonalization by a sequence of K2 moves. �

Let L be a link as promised by Theorem 1.6. Doing the surgeries one by one gives a
sequence of homology 3-spheres

S3 = Y0 → Y1 → Y2 → · · · → Yn = Y

where each Yi+1 is obtained from Yi by doing ±1 surgery on some knot Ki+1 ⊂ Yi. Here Yi
is obtained from S3 by performing the surgeries on components L1 through Li, and Ki+1

is the image of the component Li+1 in Yi. Said another way: ±1 surgery on a knot in a
homology sphere produces a new homology sphere, and any homology 3-sphere may be
obtained from S3 by finitely many such operations.

A more elaborate procedure shows:

Theorem 1.7 (Even presentation). Let Y be any oriented 3-manifold. Then Y is obtained
by integral Dehn surgery on a link L with all coefficients even.

1.2. The Alexander Polynomial. Alexander [2] introduced a polynomial invariant of
knots in the 3-sphere.

1.2.1. Alexander module. Let K be a knot in S3, and letM be S3 minus an open neighbor-
hoodN(K) ofK. By Mayer–Vietoris,M has the homology of a solid torus; i.e. H1(M) = Z
and H2 = H3 = 0. It follows that there is a unique Z cover M̂ .

Let t denote the generator of the deck group Z of the covering π : M̂ → M . Then the
deck group action makes the homology H1(M̂) into a module over the ring Z[t, t−1], called
the Alexander module of K.

1.2.2. Seifert matrix and a presentation for the Alexander module. Let’s examine the struc-
ture of this module more closely. Let F be a Seifert surface for K, and let N be obtained
from M by cutting along F . Then N is a sutured manifold with a single annulus suture
whose core is a longitude for K, and whose boundary consists of two copies F± of F . We
can think of the cover M̂ as being obtained from Z copies of N stacked end to end, where
F+
n is glued to F−n−1 compatibly with their identification to F . We identify N with one of

these copies, so that every other copy is tnN for some nonzero n.
Since F is connected, by Mayer-Vietoris H1(M̂) is generated as a module by H1(N).

Further, the map M̂ →M induces zero on H1, so for every loop α in N there is a surface
f : S →M which bounds π(α). The surface S has a cyclic cover Ŝ that bounds α togther
with its translates by tn. The restriction of Ŝ to N witnesses a homology from α to the
difference of two classes in F+ and F− respectively. Thus in fact H1(M̂) is generated as a
module by H1(F ).

To obtain a presentation for this module, we need to understand homologies inN between
classes in F+ and F−. We use Alexander duality to obtain a linking pairing between H1(N)
and H1(R): if a1 · · · a2g is a basis for H1(F ) there is a dual basis α1 · · ·α2g of H1(N) for
which lk(αi, aj) = δij. The inclusion of F± into N induces two maps H1(F ) → H1(N):
geometrically, a class ai may be pushed off F to the positive or negative side to obtain
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loops a+
i and a−i in N representing homology classes

∑
lk(a+

i , aj)αj and
∑

lk(a−i , aj)αj in
H1(N) respectively.

On the other hand, as thought of as homology classes in M̂ , the class ai in R− and the
same class ai in F+ differ by the action of the generator t of the deck group. Thus we
obtain relations ∑

lk(a+
i , aj)αj = t

∑
lk(a−i , aj)αj

By Mayer–Vietoris all relations in H1(M̂) arise in this way, from equalities between classes
under the inclusions H1(F±) → H1(N). Finally, observe that lk(a−i , aj) = lk(ai, a

+
j ) =

−lk(a+
j , ai) so if we define the Seifert matrix V to have ij entry Vij := lk(a+

i , aj) we obtain
a Z[t, t−1]-module presentation

H1(M̂) = H1(F )/(tV − V T )

1.2.3. The Alexander Polynomial. Now it’s an algebraic fact that if M is a module over a
commutative ring A with unit which has an s×r presentation matrix P , the ideal generated
by all r× r minors of A is an invariant of M called the order ideal. If P is a square matrix,
the order ideal is principal and generated by det(P ). Any other generator will differ by
multiplication by a monomial ±tn, so we may normalize the generator (if we like, and
following Alexander) to have no powers of t−1, and to have a positive constant term.

This evidently applies in our case, so the polynomial det(tV −V T ) (suitably normalized)
is an invariant of K, called the Alexander polynomial, and denoted ∆K(t) or just ∆(t) if
K is understood.

From the construction we can derive several useful properties of this polynomial

Theorem 1.8 (Alexander polynomial). Let K be a knot in S3, and ∆(t) its Alexander
polynomial. Let genus(K) denote the least genus of a Seifert surface for K.

(1) homology: ∆(1) = ±1;
(2) symmetry: ∆(t−1) = t−2g∆(t) up to units;
(3) genus: deg(∆(t)) ≤ 2 genus(K);
(4) fibered: if K is a fibered knot, ∆(t) is monic, and deg(∆(t)) = 2 genus(K).

Proof. We prove each bullet in turn.
(1): The Seifert form V and the intersection form ι on H1(R) are evidently related by

ι = V −V T . Since ι is a nondegenerate symplectic form, this implies that ∆(1) = det(ι) = 1
up to units.

(2): We compute

∆(t−1) = det(t−1V − V T ) = t−2g det(V − tV T ) = t−2g det((tV − V T )T ) = t−2g∆(t)

(3): Obvious
(4): If K is fibered then N is a product and ∆(t) is the characteristic polynomial of the

monodromy matrix. �

Because of bullets (1) and (2) it follows that there is a unique normalized Alexander
Laurent polynomial satisfying ∆(1) = 1 and ∆(t−1) = ∆(t). In terms of a Seifert matrix
with a symplectic basis this is given by ∆K(t) = det(t1/2V −t−1/2V T ) where V is the Seifert
form. We call this the symmetric normalization if we need to be specific. Note that for
this normalization, ∆′′(1) is even.
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1.2.4. Examples. The trivial knot has ∆ = 1. The trefoil (of either handedness) has
∆ = t − 1 + t−1. The figure 8 knot has ∆ = −t + 3 − t−1. These two knots are both
fibered, with fiber of genus 1 and monodromy ( 0 1

−1 1 ) and ( 2 1
1 1 ) respectively, and ∆ is the

characteristic polynomial of the mondromy matrices in each case.
The knot 52 in Rolfsen’s tables has ∆ = 2t− 3 + 2t−1. Since this is not monic, the knot

is not fibered.

1.2.5. Slice knots. A knot K in S3 is slice (one also says topologically slice) if it bounds an
embedded tame (i.e. locally flat) disk in B4. It is smoothly slice if the disk can be taken to
be smooth. Smoothly slice implies topologically slice but not vice versa. Note that every
knot K bounds an embedded disk in B4, simply by coning to 0; but such a knot is not
locally flat at 0 unless K is the unknot.

The Alexander polynomial can be used to show that certain knots are not slice.

Theorem 1.9 (Fox–Milnor). Suppose K is slice. Then ∆k(t) = p(t)p(t−1) for some poly-
nomial p.

Proof. We give a proof that works for smoothly slice knots.
Let F be a Seifert surface for K of genus g. If K is smoothly slice, we can complete

F to a closed embedded surface F ′ of the same genus in B4. By Alexander duality and
general position, F ′ bounds a 3-manifold M in B4. Linking number of knots in S3 is equal
to algebraic intersection number of surfaces they bound in B4. Since F ′ = ∂M it follows
from Proposition 1.1 that the kernel of H1(F ′) → H1(M) is a Lagrangian subspace W of
H1(F ′); in particular it has dimension g. If α, β are in W , we can span them by surfaces
S, T in W . Then the pushoff α+ bounds a surface S+ obtained by pushing off M , and
therefore is disjoint from T .

It follows that by choosing a suitable basis, the Seifert matrix V has a block diagonal
form

V =

(
0 A
B C

)
so that ∆ = det(t1/2A− t−1/2BT ) det(t1/2B − t−1/2AT ) = p(t)p(t−1) for some p.

If K is merely topologically slice the same argument works, but one needs to know
topological transversality in dimension 4; see e.g. the book by Freedman–Quinn [8] Chap-
ter 9. �

Example 1.10. Let K be the figure 8 knot. Then ∆K(−1) = 5. Since 5 is not square, K is
not slice.

1.2.6. Seifert’s Algorithm and Link Polynomial. Seifert gave an algorithm to produce a
Seifert surface F for an oriented knot K from a knot projection. The algorithm is as
follows: first, resolve each of the crossings compatibly with the orientation to produce a
family of oriented circles with disjoint embedded projections to the plane. Bound each
circle with a disk, oriented compatibly, and connect up the disks with a twisted band for
each crossing. The result is a Seifert surface; see Figure 1.

If L is a link, then for any orientation of the components and a suitable projection, the
same algorithm produces a Seifert surface F compatible with the given orientation (note
that a Seifert surface must be connected; thus one needs to choose a projection in which
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Figure 1. Seifert’s algorithm: resolve crossings compatible with orienta-
tion, bound oriented loops by oriented disks, and attach a twisted band for
each crossing.

the various components cross themselves). Such a surface gives rise to a Seifert linking
matrix V , and we can define ∆L(t) = det(t1/2V − t−1/2V T ), the Alexander polynomial of
the oriented link L.

If L has more than one component then the intersection form on H1(F ) is degenerate,
so ∆L(1) = 0. Note that with this normalization, ∆L will have terms with half-integral
powers of t when L has an even number of components.

1.2.7. Skein relation. Let L+ and L− be two oriented links whose projections are related
only by changing one specific crossing. Let L0 be the oriented link obtained by resolving
the crossing compatibly with the orientations.

Seifert’s algorithm relates Seifert surfaces for the three oriented links in a simple way;
analyzing the effect on the linking matrix, one obtains a relation between the Alexander
polynomials of the links, called the skein relation, and first discovered by Alexander. For
the symmetric normalization this has the form

∆L+ −∆L− = (t1/2 − t−1/2)∆L0

In Alexander’s normalization the right hand side is (t − 1)∆L0 . This skein relation gives
an inductive algorithm to compute ∆.

To prove the Skein relation, simply apply Seifert’s algorithm to obtain three Seifert
surfaces F+, F− and F0 for the three links in question. Then F± are each obtained from F0

by adding a band, and the two bands differ only by a twist. The core of the band together
with any arc in F0 between the endpoints gives the new generator a for H1(F±); for any
b ∈ H1(F0) the linking numbers lk(a+, b) are the same for F+ as for F−, while the values
of lk(a+, a) for F+ and F− differ by 1. Thus the Seifert forms V± for F± are obtained from
V by adding the same row and column, differing only by 1 in the upper left entry, from
which the Skein relation follows immediately.

1.2.8. Reducible representations. de Rham showed that non-abelian reducible represen-
tations of π1(S3 − K) into SL(2,C) correspond to the roots of ∆K(t). The number of
representations associated to each root is determined by a refinement of ∆ coming from
the ideals generated by the minors of a presentation matrix of various sizes. One clean
statement of de Rham’s theorem is the following:
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Theorem 1.11 (de Rham). Let K be a knot in S3, let M be the complement of a tubu-
lar neighborhood of K, and let µ ∈ π1(M) represent a meridian of K. Then there is
a nonabelian upper-triangular representation ρ : π1(M) → SL(2,C) for which the upper
off-diagonal entry of ρ(µ) is m if and only if m2 is a root of ∆K(t).

This is proved by thinking of H1(M̂) as the abelianization of the commutator subgroup
of π1(M), and recovering its structure via 2-step solvable representations to SL(2,C).

1.2.9. Knots in Homology Spheres. The only properties of S3 used in the definition of the
Alexander polynomial are those coming from Alexander duality. Thus for any homology
3-sphere Y and any knot K in Y there is an Alexander polynomial ∆K(t) with symmetric
normalization equal to det(t1/2V − t−1/2V T ) for Seifert matrix V defined using linking
numbers exactly as above, and this polynomial satisfies all the properties of Theorem 1.8.

2. The Casson Invariant

In 1985 Casson gave a series of lectures introducing a new invariant of homology 3-
spheres. The invariant is defined from a Heegaard decomposition, and behaves in a pre-
dictable way under Dehn surgery, in which regards it bears a close family resemblance to
the theory of Heegaard Floer Homology that we shall take up in § 4.

A basic reference for the Casson invariant is Akbulut–McCarthy [1] or Saveliev [18].

2.1. Spin structures and Parallelizability. In each dimension n the group Spin(n) is
the connected double cover of SO(n). For n = 3 we have Spin(3) = SU(2). Any oriented
Rn bundle E over a reasonable space X can by given a fiberwise metric, reducing its
structure group to SO(n). A Spin structure on E is a lift of its structure group from SO(n)
to Spin(n). A Spin structure on an oriented manifold is (by abuse of notation) a Spin
structure on its tangent bundle.

Since π1(SO(n)) = Z/2Z) (when n ≥ 3), we have π2(BSO(n)) = Z/2Z and therefore
also H2(BSO(n);Z/2Z) = Z/2Z. The pullback of the generator of this Z/2Z under a
classifying map X → BSO(n) associated to a principal SO(n) bundle E → X is called
the second Stiefel-Whitney class w2(E) ∈ H2(X;Z/2Z). The oriented double covering
Spin(n) → SO(n) induces a map on classifying spaces BSpin(n) → BSO(n) which is an
isomorphism on πi for i 6= 2, so w2(E) precisely measures the obstruction to the existence
of a lift.

Hence: the obstruction to the existence of a Spin structure on an oriented bundle E → X
is the second Stiefel-Whitney class w2(E) ∈ H2(X;Z/2Z), and if such a structure exists,
the set of structures up to isomorphism is in bijection with H1(X;Z/2Z).

Proposition 2.1 (Oriented 3-Manifolds are spin). Let M be an oriented 3-manifold. Then
w2(M) := w2(TM) = 0. In other words, M admits a Spin structure.

The following proof is from Kirby [11] Ch. VII Thm. 1:

Proof. It suffices to prove this when M is compact, since nontriviality of a bundle may
be detected on some compact piece. Further, we may assume M is closed, since we may
reduce to this case by doubling.

Let X ⊂ M denote the Poincaré dual to w2. If w2 is nonzero, X is a 1-manifold,
which may be taken to be connected. Since any nonzero class is primitive in homology
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(with Z/2Z coefficients) we may find a closed embedded surface S (possibly non-orientable)
which intersects X transversely in a single point x. By the definition of X, there is a Spin
structure s on M −X which does not extend over X.

Now, TM |S = TS ⊕ ν where ν is the normal bundle. Since M is orientable, if S is
orientable ν is trivial, and otherwise ν is non-orientable, precisely around non-orientable
loops on S. Thus TM |S is trivial, and therefore Spin.

The set of Spin structures on TM |S is parameterized by H1(S;Z/2Z), which also param-
eterizes the set of Spin structures on H1(S−x;Z/2Z). Now, s restricts to a spin structure
on TM |(S − x). Since restriction H1(S;Z/2Z) → H1(S − x;Z/2Z) is an isomorphism, it
follows that s extends to a Spin structure on TM |S; in other words, it extends over x,
contrary to the definition of X. This contradiction shows that w2 = 0 after all. �

Corollary 2.2 (Oriented 3-Manifolds are parallelizable). Every oriented 3-manifold M is
parallelizable. I.e. TM is isomorphic to a trivial bundle M × R3.

Proof. Since M is oriented and spin, TM admits a Spin structure, classified up to isomor-
phism by the homotopy class of a map from M to BSpin(3). Since Spin(3) = S3, the
classifying space BSpin(3) has π4 = Z and πi = 0 for i < 4. Thus every map from a
3-manifold to BSpin(3) is homotopically trivial. �

Here’s how to explicitly construct a trivialization. Since the dimension of M is odd, the
Euler characteristic is zero by duality. ThusM admits a nowhere zero vector field v, and v⊥
is an oriented R2 bundle whose Euler class (i.e. first Chern class) satisfies c1(v⊥) = w2 = 0
mod 2. For any knot X we can trivialize TM along a neighborhood NX so that v is a
constant section. Relative to this trivialization, any other section w of TM |NX is a map
from NX to S2 in such a way that v is the constant map to the north pole. Define a
map φ : NX → S2 so that on each D2 × point it maps ∂D to the north pole, and so
that the induced map from D2/∂D2 → S2 has degree n. Let w be the vector field on NX
associated with φ, and observe that w agrees with v on ∂NX so we can extend it by w = v
on M −NX. Now c1(w⊥) = c1(v⊥) + 2nXD where XD is the Poincaré dual of X so after
finitely many operations of this kind we can find a nowhere zero vector field v for which
c1(v⊥) = 0. Thus v⊥ is a trivial R2 bundle, and admits a nowhere zero section u, and once
we have two nowhere zero linearly independent sections v and u we can find a third.

2.2. Rokhlin’s Theorem. Now supposeW is a smooth oriented 4-manifold. A class A in
H2(W ) is represented by a smooth oriented embedded surface S. There is a decomposition
TW |S = TS ⊕ ν where ν is the normal bundle. Evidently w2(TW )[S] = w2(TS)[S] +
w2(ν)[S] mod 2. Since S is oriented, χ(S) is even, so w2(TS)[S] = 0, and w2(A) is equal
to the self-intersection number of S mod 2.

If W is simply-connected, or more generally has no 2-torsion in its homology, then
H2(W ;Z/2Z) = H2(W )⊗Z/2Z and thereforeW is spin if and only if the intersection form
on (integer) homology is even.

The signature σ of an even unimodular symmetric form (i.e. the difference of the number
of positive and negative eigenvalues) is always a multiple of 8. However it turns out that
not all such forms are realized as the intersection form on the homology of a smooth
4-manifold. Famously, one has Rokhlin’s theorem:
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Theorem 2.3 (Rokhlin). Let W be a smooth, closed, oriented spin 4-manifold. Then the
signature σ(W ) is divisible by 16.

One way to prove this is to use the Dirac operator. This is an elliptic differential operator
mapping between sections of a certain bundle (the bundle of spinors) that can be defined
from a spin structure. The index of this operator can be computed from the Atiyah–Singer
index theorem, and is equal to −p1(W )/24. The index is a difference of dimensions of
complex vector spaces, and is therefore an integer. However, in dimension 4, it turns out
that the kernel and cokernel of the Dirac operator are quaternionic vector spaces, so that
their complex dimensions are even. Hence p1 is divisible by 48, and since σ(W ) = p1(W )/3
Rokhlin’s theorem follows.

2.3. The Rokhlin Invariant. Every homology 3-sphere M is spin in a unique way, and
bounds a smooth spin 4-manifold W . Because M is a homology sphere, the intersection
pairing on H2(W ) is nondegenerate, and because W is spin, it is even. Thus for algebraic
reasons the signature is divisible by 8. The Rokhlin invariant of M , denoted µ(M), is
σ(W )/8 mod 2. This is well-defined, because if W ′ is another smooth spin 4-manifold
bounding M , then W ∪−W ′ is a closed smooth spin 4-manifold, and therefore has σ(W ∪
−W ′) divisible by 16, by Rokhlin’s Theorem 2.3. But σ(W ∪ −W ′) = σ(W )− σ(W ′); the
claim follows.

Example 2.4. The three-sphere bounds B4 so µ(S3) = 0. If M is the Poincaré homology
3-sphere then M bounds a 4-manifold with intersection form equal to the E8 lattice, thus
µ(M) = 1.

2.4. Arf Invariant and behavior under surgery. LetW be a smooth closed oriented 4-
manifold, simply-connected for simplicity. A characteristic surface is an oriented embedded
surface F Poincaré dual to w2; i.e. such that [F ] ∩ x = x ∩ x mod 2 for every homology
class x. Because F is characteristic, σ(W ) is congruent to [F ] ∩ [F ] mod 8.

Associated to the pair (W,F ) is a quadratic form on H1(F ;Z/2Z). A quadratic form on
a Z/2Z-vector space has a mod 2 invariant, called the Arf invariant, and we obtain in this
way a mod 2 invariant Arf(W,F ).

Rokhlin’s theorem generalizes to the following formula:

Arf(W,F ) =
σ(W )− [F ] ∩ [F ]

8
mod 2

If M is an integral homology sphere embedded in W and separating F into F ′∪D2 then
F ∩M is a knot K ⊂M , and the quadratic form on H1(F ;Z/2Z) is isomorphic to the mod
2 reduction of the Seifert form of K. In this case the Arf invariant may be calculated from
the Seifert matrix, and is equal to ∆′′K(1) where the Alexander polynomial is normalized
so that ∆K(t−1) = ∆K(t) (i.e. it is a Laurent polynomial symmetric about the constant
term) and ∆K(1) = 1.

Using this property one obtains a surgery formula for the Rokhlin invariant: if K is a
knot in an integer homology sphere M , and ∆K is the (normalized) Alexander polynomial
of K, Then

µ(MK(1/n)) = µ(M) + (n/2)∆′′K(1) mod 2
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2.5. Representation Varieties. The Casson Invariant of a homology 3-sphere is an in-
teger lift of the Rokhlin invariant. It can be defined informally as half the number of
conjugacy classes of representations from π1(M) into SU(2), counted with multiplicity and
with sign.

For a finitely generated group π, we define R(π) := Hom(π, SU(2)). This is a real
algebraic variety, and contains an open subvariety R∗(π) := Homirr(π, SU(2)) of irreducible
representations. Note that a representation is reducible if and only if it is conjugate to a
diagonal one.

The group SU(2) acts on R(π) by conjugation. This action factors through ±Id so
descends to an action of SO(3). This action of SO(3) is free on R∗(π).

At a nontrivial reducible representation the stabilizer is a circle subgroup, and at the
trivial representation the stabilizer is all of SO(3). Denote by X(π) the quotient X(π) :=
R(π)/SU(2) and also denote X∗(π) := R∗(π)/SU(2).

2.6. Group Cohomology. We can interpret the tangent spaces to R(π) and X(π) in
terms of group cohomology. Fix a finitely presented group π and a representation ρ : π →
SU(2). Let ρt be a smooth deformation of ρ. There is a map u : π → su(2) defined by

u(g) =
d

dt

∣∣∣
t=0
ρt(g)ρ(g−1)

Differentiating the equation ρt(gh) = ρt(g)ρt(h) at t = 0 gives the relation

u(gh) = u(g) + ad(ρ(g))u(h)

In other words, u is a 1-cocycle with values in su(2). We denote the space of 1-cocycles by
Z1
ρ(π, su(2)), where the subscript ρ indicates the π-module structure on su(2).
Suppose we choose a presentation π = 〈S | L〉. In this way we can think of π as a

quotient of a free group FS. Points in R(FS) are parameterized by SU(2)|S| and R(π) is
the preimage of (id)|L| under the evaluation map Φ : SU(2)|S| → SU(2)|L|.

The Zariski tangent space to R(π) at ρ is the kernel of the map dΦ at ρ, and is evidently
isomorphic to Z1

ρ(π, su(2)). If ρ ∈ Φ−1(id)|L| and Φ is a submersion at ρ, this kernel may
be identified with the ordinary (smooth) tangent space TρR(π). Informally, we call such a
ρ a smooth point of R(π).

For π free of rank n, we have R(π) = SU(2)n and evidently every point is smooth, so
TρR(π) = Z1

ρ(π, su(2)).
For π a surface group, we have the presentation

π = 〈a1, b1, · · · , ag, bg |
∏
i

[ai, bi]〉

In this case we have the following:

Lemma 2.5 (Smooth submanifold). Let Φ : SU(2)2g → SU(2) be defined by

Φ(A1, B1, · · · , Ag, Bg) =
∏
i

[Ai, Bi]

If ρ ∈ SU(2)2g = R(F2g) is irreducible, then dΦ|ρ surjects onto su(2).
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This can be proved by a direct calculation. Thus for π a surface group, the tangent
space to R(π) is smooth at every irreducible representation.

If ξ ∈ su(2), conjugating by exp(tξ) produces a family of deformations with u(g) =
ad(ρ(g))ξ − ξ; i.e. u is a 1-coboundary, an element of B1

ρ(π, su(2)). This exactly parame-
terizes the tangent vectors to the conjugation action of SU(2). Since this action is free (mod
the discrete center ±Id) at an irreducible representation, it follows that at a smooth point
ρ of R∗(π) we may identify TρX∗(π) with H1

ρ(π, su(2)). In particular, this identification is
valid throughout X∗ for π a free or surface group.

2.7. Heegaard Splittings. Now, let M be a homology 3-sphere, and fix a Heegaard
splitting of M ; i.e. a decomposition into handlebodies H1, H2 of genus g glued along their
common boundary surface Σ. Let Σ∗ be the result of removing a small disk from Σ.

By abuse of notation, for a topological space Y we denote R(Y ) := R(π1(Y )) and
analogously R∗(Y ), X(Y ), X∗(Y ). The diagram of inclusions

Σ∗ → Σ→ Hi →M

induces diagrams of inclusions the other way

R(M)→ R(Hi)→ R(Σ)→ R(Σ∗)

Since each inclusion of spaces is surjective on π1, the maps on representation varieties are
inclusions.

Since π1(Σ∗) and π1(Hi) are free, each R(Hi) is just SU(2)g and R(Σ∗) is SU(2)2g. In
particular, the R(Hi) are submanifolds of complementary dimension in R(Σ∗), and we
can compute their intersection number (which is well-defined up to sign, depending on an
orientation). For an arbitrary three manifold, the intersection number is 0 if β1(M) > 0
and otherwise it has absolute value equal to |H1(M ;Z)|. Thus if M is a homology sphere,
the intersection number is ±1 and we may choose an orientation on R(Σ∗) for which the
intersection is 1.

By Lemma 2.5, the subspace R∗(Σ) is a smooth submanifold of R∗(Σ∗) of codimension
3, and since the conjugation action of SU(2) at an irreducible representation is free mod
the (discrete) center, it follows that X∗(Σ∗) and X∗(Σ) are smooth oriented manifolds of
dimension 6g−3 and 6g−6 respectively, and the X∗(Hi) are smooth oriented submanifolds
of X∗(Σ) of dimension 3g − 3.

Now, although X∗(Σ) is noncompact, it may be compactified by adding back the con-
jugacy classes of reducible representations. Since M is a homology sphere, every reducible
representation of π1(M) is trivial. Furthermore the trivial representation is isolated in
R(M) = R(H1)∩R(H2), or else a nontrivial tangent vector to R(M) at the identity would
give a nontrivial homomorphism from H1(M) to the Lie algebra su(2). Thus the intersec-
tion of the X∗(Hi) in X∗(Σ) is compact, and there is a well-defined algebraic intersection
X∗(H1)∩X∗(H2) that can be computed by perturbing X∗(H1) (say) by a compactly sup-
ported perturbation so that it’s transverse to X∗(H2), and then computing intersection
numbers in the obvious way.

The Casson Invariant λ(M) is (up to multiplication by some universal constant ±1 to
be determined in § 2.8.1) defined to be (−1)g/2 times the algebraic intersection number of
the X∗(Hi) in X∗(Σ).
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2.8. Invariance under stabilization. To show this is well-defined one must show that it
doesn’t depend on the choice of Heegaard splitting. By the Reidemeister–Singer theorem,
any two Heegaard splittings of a given 3-manifold have a common stabilization. So we just
need to check that the invariant doesn’t change under stabilization.

Let M = H ′1 ∪Σ′ H
′
2 be the result of stabilization. Σ′∗ is obtained from Σ∗ by boundary

connect summing a once-punctured torus, whose meridian and longitude curves α, β bound
disks in H ′2 and H ′1 respectively. Thus R(Σ′∗) is equal to R(Σ∗) × SU(2)2, where the two
extra SU(2) factors parameterize the images under a representation of α and β respectively,
and similarly we have X∗(Σ′∗) = X∗(Σ∗) × SU(2)2. With these coordinates, X∗(H ′1) =
X∗(H1)× SU(2)× 1 and X∗(H ′2) = X∗(H2)× 1× SU(2), and if we perturb X∗(H1) (say)
to be transverse to X∗(H2), the product of the perturbation with SU(2)× 1 is transverse
to X∗(H ′2). Thus after perturbation, there is a bijection between the points of X∗(H1) ∩
X∗(H2) and X∗(H ′1) ∩ X∗(H ′2), and one can check that the sign of the intersection is
reversed. It follows that our formula for λ(M) is invariant under stabilization, and is
therefore an invariant of M .

2.8.1. Example: the Poincaré homology sphere. We shall now compute λ(M) for M the
Poincaré homology sphere. It will turn out that λ(M) = ±1. By convention, we normalize
the definition of the Casson invariant by multiplying by a universal constant so that λ(M) =
1.

Let’s denote π1(M) = Γ. If K is the right-hand trefoil, Seifert van-Kampen gives a
presentation

π1(S3 −K) = 〈x, y | xyx = yxy〉
Doing +1 surgery adds a relation

Γ = 〈x, y | xyx = yxy, yx2y = x3〉

Making the substitution z = xy reduces this to

Γ = 〈x, z | zx = x−1z2, z−1zxz = x3〉 = 〈x, z | (zx)2 = z3 = x5〉

Evidently Γ has a trivial abelianization. Furthermore, the element I = z3 = x5 is central,
so we deduce that Γ is a central extension of the alternating group A5:

A5 := 〈x, z | (zx)2 = z3 = x5 = 1〉

which has H2(A5;Z/2Z) = Z/2Z, and exhibits Γ as the nontrivial central Z/2Z extension
of A5.

Now, A5 may be realized as a subgroup of SO(3) as follows. The elements z and x both
normally generate, so their image in any nontrivial representation must have order 3 and
5 respectively. There is only one conjugacy class in SO(3) of order 3, namely a rotation of
order 2π/3 fixing the north and south pole ±p. There are two nontrivial conjugacy classes
of elements of order 5, namely rotations of order 2π/5 and 4π/5 fixing antipodal points ±q
where we may take q to lie on the Greenwich meridian. For each fixed choice of 2π/5 or
4π/5 the product xz is a rotation through an angle α that depends only on the latitude of
q, and there is a unique latitude for which α = π.

We thus obtain precisely two nontrivial representations of A5 in SO(3) up to conjugacy,
and their preimages in SU(2) give the two nontrivial conjugacy classes of representations
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of Γ to SU(2). One may check that the character varieties are transverse at these repre-
sentations, and that the intersection numbers have the same sign. Thus λ(M) = ±1 as
claimed.

2.9. A symplectic structure on X∗(Σ). Proposition 1.1 dualizes to show that for any
compact oriented M , the image H1(M ;R) → H1(∂M ;R) is a Lagrangian subspace with
respect to the cup product pairing. Because R is abelian, we may think of H1(M ;R) as
the character variety of homomorphisms from π1(M) to R up to conjugacy (conjugation
acts trivially).

It turns out that character varieties of surface groups are symplectic in great generality.
We follow the discussion in Goldman [9]. Recall that for Σ a closed oriented surface of
genus g that the tangent space TρX∗(Σ) is identified with H1

ρ(Σ, su(2)).
There is a nondegenerate form (the Killing form) on su(2) given by 〈A,B〉 := tr(AB).

Composing with cup product defines a pairing

H1
ρ(Σ, su(2))×H1

ρ(Σ, su(2))
∪−→ H2

ρ(Σ, su(2)⊗ su(2))
〈·,·〉−−→ H2(Σ,R)

∫
−→ R

where the mapH2(Σ,R)→ R is obtained by integrating over a fundamental class. Poincaré
duality implies that this pairing is nondegenerate; i.e. it defines a nondegenerate 2-form
ω on X∗(Σ). It turns out that this 2-form is closed, and therefore defines a symplectic
structure on X∗(Σ).

If M is any compact oriented 3-manifold with ∂M = Σ then (evidently) the class of Σ
becomes trivial inH2(M). Dually, this implies that the symplectic form vanishes identically
on the image of X∗(M) in X∗(Σ). For M = Hi, a handlebody of genus g, the map
X∗(Hi)→ X∗(Σ) is an inclusion of half dimension, and the image is therefore a Lagrangian
submanifold.

2.10. Behavior under surgery. To actually calculate λ in practice it turns out to be
very useful to understand how it varies under surgery. If M is a homology 3-sphere and K
is a knot, there is a well-defined meridian and longitude (up to sign), and for any integer n
the result of 1/n surgery onK produces a new homology 3-sphere that we denoteMK(1/n).

Theorem 2.6 (Casson invariant surgery formula). Let K be a knot in an integer homology
sphere M . Then there is a formula

λ′(M,K) := λ(MK(1/(n+ 1)))− λ(MK(1/n)) =
1

2
∆′′K(1)

where ∆K is the Alexander polynomial of K, normalized to satisfy ∆(t) = ∆(t−1) and
∆(1) = 1.

In particular, λ(MK(1/n)) = λ(M) + (n/2)∆′′K(1).
By Theorem 1.6, any homology sphere may be obtained from S3 by a sequence of ±1

surgeries, and therefore by the surgery formula in Theorem 2.6, the value of λ is completely
determined from the Alexander polynomials of the surgery knots. It follows that λ is the
unique invariant of homology 3-spheres satisfying λ(S3) = 0 and satisfying the surgery
formula.

By the surgery formula for the Rokhlin invariant, we deduce:
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Corollary 2.7. The mod 2 reduction of the Casson invariant λ(M) is equal to the Rokhlin
invariant µ(M).

2.11. Proof of Theorem 2.6, part I. Theorem 2.6 will be proved in a sequence of steps.
First we prove a preliminary combinatorial lemma.

Lemma 2.8 (Seifert surface gives Heegaard splitting). Let K be a knot in a homology
sphereM . Then there is a Seifert surface F for K so that the complement of H1 := F×[0, 1]
is a handlebody H2.

Proof. Choose any Seifert surface F ′ for K. A neighborhood N ′ of F ′ is a handlebody,
with boundary two copies F ′± of F ′ connected along an annulus with core K.

The complement M − N ′ is not necessarily an open handlebody, but if we triangulate
it, the complement of the 1-skeleton is. A neighborhood of this 1-skeleton can be isotoped
to the neighborhood of a homotopic graph Γ ⊂ M − F ′ attached to F ′ at a single vertex
on the positive side (say), and then a neighborhood N of F ′ ∪ Γ is a handlebody with
handlebody complement.

The problem is that N is now no longer a thickened Seifert surface forK; it is a thickened
Seifert surface with a “thickened graph” Γ attached on the positive side. To correct this we
drill out Γ together with an unknotted arc α that runs across N ′ from the vertex where Γ
attaches to the other side. This adds a new thickened copy of Γ to the complement, which
therefore remains a handlebody, while N minus a neighborhood of Γ∪α is homeomorphic to
a product F × [0, 1] where F is a new Seifert surface for K with the desired properties. �

Lemma 2.9 (λ′ is well-defined). Let K be a knot in a homology sphere M . Then for any
n the difference λ(MK(1/(n+1)))−λ(MK(1/n)) does not depend on n and is an invariant
of the pair (M,K), denoted λ′(M,K).

Proof. By Lemma 2.8 the knot K has a Seifert surface F for which H1 := F × [0, 1] is a
handlebody in a Heegaard splitting M = H1 ∪ΣH2. The Heegaard surface Σ is made from
two copies of F that we denote F± joined by an annulus whose core is K. With this setup,
(1/n) surgery on K is accomplished by cutting and regluing H2 by the nth power τn of a
Dehn twist on Σ along K.

The knot K decomposes Σ into F±, and a pair of representations ρ± : π1(F±)→ SU(2)
glue together to give a representation ρ : π1(Σ) → SU(2) if and only if ρ+(K) = ρ−(K)
(here we are implicitly choosing a basepoint for π1 on K, and thinking of K itself as an
element of π1(F±)). The Dehn twist τ acts on representations by

τ ∗ : (ρ+, ρ−)→ (ρ+, ρ(K)ρ−ρ(K)−1)

i.e. it acts by conjugating ρ− by the common element ρ(K).

Every element α in SU(2) except for ±Id has distinct 1-dimensional eigenspaces, with
eigenvalues eiθ, e−iθ for some unique θ ∈ (−π, π). For t ∈ [0, 1] let αt denote the element
with the same eigenspaces and with eigenvalues eitθ, e−itθ. Then (t, α) → αt defines a
deformation retraction of SU(2)− {−Id} to Id. Note that αt commutes with α.

Let R−(Σ) be the subspace of R(Σ) where ρ(K) = −Id and let X−(Σ) ⊂ X∗(Σ) be its
image. Note that τ ∗ fixes R−(Σ). The self-maps Id and τ ∗ of R(Σ)−R−(Σ) are isotopic, by
an isotopy that drags each representation ρ along the path t → (ρ+, ρ(K)tρ

−ρ(K)−1
t ) for
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t ∈ [0, 1], where ρ(K)t is the 1-parameter family associated to ρ(K) as above. This isotopy
is compatible with the conjugation action, and descends to an isotopy of X∗(Σ)−X−(Σ).

Applying this isotopy to X∗(H1)−X−(Σ) we see that X∗(H1) and τ ∗X∗(H1) are homol-
ogous, modulo a cycle δ supported in a neighborhood of X−(Σ) and therefore the quan-
tity λ(Mk(1/(n + 1))) − λ(Mk(1/n)) is equal to half the algebraic intersection of δ with
(τn+1)∗X∗(H2) up to sign (one needs to check that the isotopy preserves transversality of
R(H1) and R(H2) near the trivial representation). But δ is supported near X−(Σ) which
is fixed pointwise by τ , so this algebraic intersection is independent of n, as claimed. �

In fact, one can give an explicit description of the difference cycle δ. The Seifert surface
Σ is made from two copies of the Seifert surface F , and either inclusion of F into H1 is
a homotopy equivalence. A representation ρ of π1(H1) is therefore the same thing as a
representation (ρ+, ρ−) of π1(Σ) for which ρ+ = ρ−.

If we choose standard free generators α1, β1, · · · , αh, βh for π1(H1) = π1(F ), then K
is the representative of

∏
i[αi, βi], and in Lemma 2.5 we defined the map B : R(F ) →

SU(2) by B(ρ) = ρ(K), and asserted that the differential of B is surjective at irreducible
representations. In particular, −Id is a regular value, so that X∗(H1) is transverse to
X−(Σ).

Let ρ+ be any representation of π1(H1) with ρ+(K) = −Id. Then ρ+ can be perturbed
to a nearby representation with ρ+

α (K) = α for any α near −Id in SU(2). The track of ρ+
α

under the isotopy conjugates ρ− by the αt in SU(2), and the union over all α close to −Id
together fills up SU(2). Thus the cycle δ is parameterized by pairs (ρ, g) up to conjugacy,
where ρ : π1(H1)→ SU(2) has ρ(K) = −Id.

Here is another way to say this. Restriction to subsurfaces defines a map p : X−(Σ) →
X−(F )×X−(F ) and the preimage of the diagonal p−1(∆) is the set of pairs of representa-
tions (ρ+, ρ−) that differ by conjugation, up to simultaneous conjugacy. From an element
of p−1(∆) we can recover (ρ+, g) in δ by ρ− = gρ+g−1 up to the ambiguity of multiplying
g by −Id. In other words, homologically speaking, δ = 2p−1(∆). For the reader who is
uncomfortable with pulling back homology classes, note that we can express this dually in
terms of cohomology: the Poincaré dual of δ is equal to 2 times the pullback under p∗ of
the Poincaré dual of ∆. Note that since ∆ is an integral cycle, this implies that λ′ (and
therefore also λ) is an integer.

Now, if M is a homology sphere, and K1, K2 are knots in M with lk(K1, K2) = 0 then
for any integers m,n the result of (1/m, 1/n) surgery on K1, K2 is also a homology sphere.
We denote the result by M(1/m, 1/n).

For any integers m,n define

λ′′(M,K1, K2) := λ(M(1/(m+ 1), 1/(n+ 1)))− λ(M(1/m, 1/(n+ 1)))

− λ(M(1/(m+ 1), 1/n)) + λ(M(1/m, 1/n))

Since the right hand is equal both to λ′(MK2(1/(n+1)), K1) and to λ′(MK1(1/(m+1)), K2)
its value is in fact independent of both m and n, and depends only on K1, K2.

A 2-component link L = K1 ∪ K2 in a homology sphere is a boundary link if the Ki

bound disjoint Seifert surfaces. This implies that lk(K1, K2) = 0, but the converse is false.
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Lemma 2.10 (λ′′ = 0 for boundary links). Let M be a homology sphere, and let L :=
K1 ∪K2 be a boundary link in M . Then λ′′(M,K1, K2) = 0.

Proof. We first claim that we can find a Seifert surface F for K1 so that the complement
of H1 := F × [−1, 1] is a handlebody H2, and such that K2 is a separating curve on F × 1.
To see this, first choose disjoint Seifert surfaces F1, F2 for K1, K2. Then thicken F2 to a
handlebody with boundary G so that K2 is a separating curve on G, and tube F1 to G
to produce a new Seifert surface F ′ for K1 that contains K2 as a separating curve. Now
proceed as in the proof of Lemma 2.8 to obtain the desired F .

Let δ be the difference cycle associated to K1, so that λ′(M,K1) is half the intersection
of δ with X∗(H2) up to sign. If τ denotes the Dehn twist along K2, then λ′′(M,K1, K2)
is half the intersection of X∗(H2) with δ − τ ∗(δ) up to sign. So it suffices to show that τ ∗
acts trivially on the homology of X−(Σ).

From our description of the Poincaré dual of δ as 2 times the pullback of the Poincaré
dual of ∆ it follows that the homology class of δ depends only on the action of τ on the
(co)-homology of X−(F ). Now, it can be shown directly that the action of the mapping
class group Mod(F ) on the homology of X−(F ) factors through its action on the homology
of F ; a detailed exposition of this fact can be found in Akbulut-McCarthy [1] Theorem
VI.2.4. Since K2 is separating in F × 1, the Dehn twist τ acts trivially on H1(F × 1), and
we are done. �

2.12. Proof of Theorem 2.6, part II. We now show that Theorem 2.6 follows formally
from Lemma 2.9 and Lemma 2.10.

If K∪K ′ is a boundary link in a homology sphereM , Lemma 2.10 says that λ′(K ′,M) =
λ′(K ′,MK(1)). We claim that the same is true for the Alexander polynomial of K:

Lemma 2.11. Let K∪K ′ be a boundary link in a homology sphere M . Then the Alexander
polynomials of K ′ as computed in M or in MK(1) are equal.

Proof. Let F and F ′ be disjoint Seifert surfaces for K and K ′. If α is any loop on F ′ then
α is disjoint from F , so that lk(α,K) = 0. This implies that we can find a Seifert surface
Fα for α disjoint from K. But for any β the matrix entry lk(β+, α) of the Seifert form
of K ′ is the algebraic intersection of β+ with Fα, and since both are disjoint from K the
intersection is the same whether computed in M or MK(1). �

Now if M is a homology sphere, we can obtain S3 by a sequence of ±1 surgeries on
a succession of knots K1, · · · , Km. If K is a knot in M we can move each of K and
K1 individually by isotopy until K ∪ K1 is a boundary link. It follows by induction and
Lemma 2.11 that to prove Theorem 2.6 it suffices to prove it for knots in S3.

Since λ′(K) and (1/2)∆′′K(1) both vanish on the unknot, it suffices to show that these
quantities both change in the same way under a crossing change for a knot in S3. Orient
K, and let c be a small unknotted circle linking a crossing in such a way that lk(K, c) = 0.
Performing ±1 surgery on c (as appropriate) takes S3 to itself, and takes K to a knot
Kc obtained from K by changing the crossing. We want to understand the difference
λ′′(S3, K, c) = λ′(S3, K)− λ′(S3, Kc).

A pair of linking circles c, c′ for K is called a crossing pair if they bound disjoint disks
D,D′ that each intersect K in two points, in such a way that these two pairs of points are
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unlinked in K. Note that this implies that c, c′ are a boundary link in S3−K and hence in
S3
K(±1), since we can tube D,D′ with cylindrical neighborhoods of disjoint arcs on K to

make disjoint genus one Seifert surfaces for c, c′ in the complement of K. By Lemma 2.10
it follows that λ′′(S3, K, c) = λ′′(S3, Kc′ , c).

Let Kc′ be the result of the crossing change at c′, and Kcc′ the result of the crossing
change at both c and c′.

Lemma 2.12. With notation as above, there is an identity

∆′′K(1)−∆′′Kc(1) = ∆′′K′c(1)−∆′′Kcc′ (1)

Proof. Denote by K0 and K0c′ the results of resolving the crossings of K and Kc′ at c, and
by K00 the result of resolving the crossings of K at both c and c′. Note that the condition
on c, c′ implies that K00 has 3 components; the other two links each have two components.

The Skein formula for the normalized Alexander polynomial gives formulae

∆Kc −∆K = ±(t1/2 − t−1/2)∆K0 , ∆Kcc′
−∆Kc′

= ±(t1/2 − t−1/2)∆K0c′
,

∆K0 −∆K0c′
= ±(t1/2 − t−1/2)∆K00

depending on the sign of the crossing change, and therefore the difference of the first two
left hand sides is equal to ±(t1/2 − t−1/2)2∆K00 . Since K00 is a link with more than one
component, its Alexander polynomial vanishes at 1, so this expression has a zero of at least
3rd order at 1, and therefore its second derivative vanishes at 1. �

Thus the change in both λ′(S3, K) and (1/2)∆′′K(1) under a crossing change at c is the
same for K as for any knot obtained from K by a crossing change in any c′ for which c, c′
is a crossing pair.

Start with any knot K and any crossing c. The disk D cuts K into two strands. By
suitable choices of c′ we may move each strand arbitrarily through itself but not through
the other strand. After finitely many such moves, we may reduce to a knot K ′ of a very
simple form, as illustrated in Figure 2.

Figure 2. The unknot K ′ and linking circle c; the knot K ′c = K(n) for
n = 2; and the knot K(n) with linking circle c′.

In other words, we may arrange for K ′ to be an unknot, and for K ′c to be of the form
K(n) where the two strands of K on either side of D have linking number n. Thus we
always have an identity of the form

λ′′(S3, K, c) = λ′(K ′c)− λ′(K ′) = λ′(K(n))
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On the other hand, if c′ is an unknot as in the figure, twisting across a disk D′ bounded
by c′ takes K(n) to K(n+ 1). So

λ′′(S3, K(n), c) = λ′(K(n+ 1))− λ′(K(n))

is independent of n, and we must simply check that λ′(K(n)) = (1/2)∆′′K(n)(1) for n = 1.
Now, K(1) is the trefoil, and (1/2)∆′′(1) = 1. On the other hand, +1 surgery on the right
handed trefoil gives rise to the Poincaré homology sphereM , and as we computed in § 2.8.1
one also has λ(M) = 1. This completes the proof of Theorem 2.6.

3. Instanton homology

Shortly after Casson introduced his invariant, Floer [5, 6] building on work of Taubes
[20] managed to interpret it as the Euler characteristic of a homology theory. In fact Floer
gave two homology theories with this property; the equivalence between these two theories
is still open, and known as the Atiyah-Floer conjecture. Both are defined via Morse theory
on certain infinite dimensional spaces. Before introducing these theories we recall the
relationship between Morse theory and homology on finite dimensional manifolds.

3.1. Morse Theory and homology. LetM be a compact smooth n-manifold. A smooth
function f : M → R is Morse if the critical points df = 0 are nondegenerate; i.e. near each
such point p there are smooth local coordinates xi vanishing at p such that

f(x) = f(p)− x2
1 − · · · − x2

i + x2
i+1 + · · ·+ x2

n

for some i, the index of the critical point.
It is often convenient to assume f is self-indexing: i.e. that f(p) = i for every criti-

cal point of index i. Every compact smooth manifold admits many self-indexing Morse
functions.

For each t ∈ R define Mt := f−1(−∞, t]. Then Mt is empty for t < 0, and is equal to
all of M for t > n. Furthermore, Mt is a smooth manifold with boundary ∂Mt := f−1(t)
whenever t 6= 0, 1, · · · , n. If we choose a Riemannian metric on M , we can define the
gradient vector field grad(f). The flowlines of grad(f) provide a diffeomorphism from Ms

to Mt whenever i < s < t < i + 1 for some integer i, and if i − 1 < s < i < t < i + 1 we
obtain Mt from Ms by attaching i-handles, one for each critical point of index i. Thus at
the level of homotopy, M has the homotopy type of a CW complex with one i-cell for each
critical point of index i.

The critical points freely generate the cellular chain groups for this structure. To compute
the homology of M from f we need to be able to see differentials between chain groups in
adjacent dimension. For each pair of critical points p, q of indexes i and j we can consider
the space F (p, q) of flowlines of grad(f) that are asymptotic to p and q in the positive
and negative direction respectively. For generic f , the space F (p, q) has the structure of
the interior of a compact oriented manifold with corners of dimension i − j − 1. The
space F (p, q) can be compactified by adding products F (p, r1)×F (r1, r2)× · · ·F (rk, q) for
intermediate collections of critical points r1, · · · , rk.

Thus when i− j = 1, the space F (p, q) is a finite set of points, and when i = j = 2 the
space F (p, q) is a finite union of circles, and open intervals compactified by points of the
form F (p, r)× F (r, q) where the index of r is i− 1 = j + 1.
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The manifolds F (p, q) can be oriented by thinking of them as intersections of the (ori-
ented) manifolds of all flowlines asymptotic to p (resp. q) in the future (resp. past). So:
for i− j = 1 the space F (p, q) is a finite set of signed points, and we can count this space
with sign to get an integer n(p, q).

Now: think of an index i critical point p as a generator in the (cellular) chain group in
dimension i. We define

∂p =
∑

index(q)=i−1

n(p, q)q

Then
∂∂p =

∑
index(q)=i−2

∑
index(r)=i−1

n(p, r)n(r, q)q

But for each q, the sum
∑
n(p, r)n(r, q) is equal to the number of boundary points of the

1-manifold F (p, q), counted with sign, which is evidently zero. Thus ∂ is the differential of
a chain complex, and the homology of this complex is H∗(M).

3.2. Gauge theory. C2 bundles over 3-manifolds are classified by c1; thus a C2 bundle E
over an integral homology sphere M is trivial, and we can pick a trivialization.

The trivialization identifies sections of E with smooth C2-valued functions on M . Exte-
rior d acting on such functions can be thought of as an su(2)-connection on E and every
other su(2)-connection differs from this by a unique 1-form with coefficients in su(2); in
other words, we may identify the space A of su(2) connections on E with Ω1(M, su(2)),
and the notation A ∈ A means both the connection, and the associated matrix of 1-forms.

We let dA denote the covariant derivative associated to a connection A. It acts on
sections of E by dAσ = dσ + Aσ, and on su(2)-valued functions (i.e. Ω0(M, su(2))) by
essentially the same formula dAB = dB+A ·B where now A ·B denotes the adjoint action;
i.e. dAB = dB + AB − BA. We extend this action to all of Ω∗(M, su(2)) by the Leibniz
rule; thus in general dAB = dB + A ∧B − (−1)deg(B)B ∧ A.

Any two trivializations of E are related by an element of G := C∞(M, SU(2)), also called
the gauge group. It acts on connections by g ·A := gAg−1 + gdg−1. The tangent space to G

at the identity is Ω0(M, su(2)), and under the action, a tangent vector B pushes forward
to a tangent vector −dAB ∈ TAA = A.

We denote the quotient by this action B = A/G. Let A∗ denote the space of irreducible
connections (those for which the holonomy is an irreducible subgroup of SU(2)), and define
B∗ := A∗/G. The group G acts freely (mod ±Id) on A∗, and the quotient B∗ is a smooth,
infinite dimensional manifold whose tangent space at each point may be identified with
Ω1(M, su(2))/dAΩ0(M, su(2)).

3.3. Curvature. The curvature of a connection A is FA := dA + A ∧ A, an algebraic
operator on sections of E and on Ω∗(M, su(2)). As operators, dAdA = FA since

dAdAB = dA(dB + A ·B)

= ddB + A · dB + dA ·B − A · dB + A ∧ A ·B
= FA ·B

The (differential) Bianchi identity is the identity dAFA = 0. The gauge group acts on
curvature by g · FA = Fg·A = gFAg

−1, as it should because FA is a tensor.
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A connection is flat if FA = 0. At a flat connection, Ω∗(M, su(2)) becomes a complex
with respect to dA, with de Rham homology H∗dR(M, su(2)).

For any a,A ∈ A we have FA+ta = FA + tdAa+ t2a ∧ a. Therefore the tangent space to
the space of flat connections at A is ker dA, and we may identify H1

dR(M, su(2)) with the
tangent space to the the space of flat connections modulo gauge equivalence.

A connection is flat if and only if holonomy transport is invariant under homotopy. In
this case one obtains a representation ρ : π1(M) → SU(2) by parallel transporting a fiber
around loops in the base. The gauge group acts on this representation by conjugating
the fiber, which gives a conjugate representation. In other words: flat connections mod
G are in natural bijection with SU(2) representations mod conjugacy. At the level of
tangent spaces, this is reflected in the (de Rham) isomorphism of cohomology groups
H1
dR(M, su(2)) = H1

ρ(π1(M), su(2)).
If we write M as a Heegaard splitting M = H1 ∪Σ H2 then H1

ρ(π1(M), su(2)) = 0 if the
X∗(Hi) intersect transversely at ρ. Informally we call such a ρ a smooth point on X∗(M).

3.4. Chern–Simons functional. The Chern–Simons functional is a function cs : A→ R,
defined by

cs(A) :=
1

4π

∫
M

tr(A ∧ dA+
2

3
A ∧ A ∧ A)

Let A be a connection, and let a ∈ TAA = A be a tangent vector at A. Then

dcs(a) =
1

4π

∫
M

tr(a ∧ dA+ A ∧ da+ 2a ∧ A ∧ A)

=
1

4π

∫
M

2 tr(a ∧ (dA+ A ∧ A)) +
1

4π

∫
M

d tr(a ∧ A)

=
1

2π

∫
M

tr(a ∧ FA)

In particular, A is a critical point for cs if and only if FA = 0; i.e. if and only if A is a flat
connection.

Recall that the tangents to the action of the gauge group are of the form −dAB for
B ∈ Ω0(M, su(2)). For vectors of this form,

dcs(−dAB) =
1

4π

∫
M

tr(−dB ∧ FA − AB ∧ FA +BA ∧ FA)

=
1

4π

∫
M

tr(BdFA +B(A ∧ FA − FA ∧ A)) +
1

4π

∫
M

d tr(−BFA)

=
1

4π

∫
M

tr(BdAFA) = 0 by the Bianchi identity

Thus cs is invariant under the connected component of the identity of G. It is not quite
invariant under the whole gauge group; there is an identification π0(G) = Z where the map
is given by thinking of an element g ∈ G as a map between closed oriented 3-manifolds
M → SU(2), which has a degree deg(g) ∈ Z. The function cs transforms under the full
gauge group by cs(g · A) = cs(A) + 2π deg(g). Thus, cs is well-defined as a function on
B with values in the circle R/2πZ, and with critical points precisely at gauge equivalence
classes of flat connections.
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Now suppose we fix a metric on M . Hodge star acts on forms on M , and we can extend
it trivially to the su(2) factor to define

∗ : Ωp(M, su(2))→ Ω3−p(M, su(2))

Thus we obtain an inner product on A by

〈A,B〉 :=

∫
M

tr(A ∧ ∗B)

If we think of this inner product as a kind of formal Riemannian metric on A, the ‘gra-
dient vector field’ grad(cs) is (up to a constant) just ∗FA. Since the gauge group acts on
Ω∗(M, su(2)) just by conjugation on the su(2) factor, and since trace is invariant under
conjugation, this metric is invariant under the gauge group and grad(cs) descends to a flow
on B∗.

3.5. Instanton Homology. Instanton Homology I∗(M) is the homology theory obtained
by thinking of cs as a Morse function on the space B∗ of irreducible connections up to
gauge equivalence. Thus — morally speaking — the chain groups are freely generated
by conjugacy classes of irreducible flat connections, and the differentials are computed by
counting flowlines of grad(cs) that run between critical points of adjacent index.

The most serious obstacle to making this idea meaningful is that the critical points of cs
do not have a well-defined index. Let’s suppose for simplicity that A is an irreducible flat
connection whose class [A] in B∗ is a critical point for cs, and let’s determine the Hessian
of cs at [A].

Define As,t := A+ sa+ tb and compute

Hess(cs)(a, b) =
∂2

∂s∂t

∣∣∣
s=t=0

1

4π

∫
M

tr(As,t ∧ dAs,t +
2

3
As,t ∧ As,t ∧ As,t)

=
1

2π

∫
M

tr(a ∧ dAb)

Using the inner product and the identification TAA = A we can therefore identify the
Hessian (up to a constant) with the operator ∗dA. Thus at a flat connection [A] ∈ B∗ the
Hessian is degenerate on T[A]B

∗ precisely on the quotient space H1
dR(M, su(2)), which is

zero when the holonomy representation is a smooth point of X∗(M).
The operator ∗dA is formally self-adjoint on Ω1/dAΩ0 and has discrete spectrum, with

eigenspaces of finite multiplicity. However, there are infinitely many eigenvalues of either
sign, and no straightforward way to define an index.

Nevertheless it is possible to make sense of the difference of the index of two critical
points, or at least to understand when this difference is equal to 1. By analogy with the
finite dimensional story, and at least when critical points are nondegenerate, we expect
that two equivalence classes of flat connections A, B have an index differing by 1 if the
dimension of the space of flowlines of grad(cs) joining B to A is zero dimensional.

3.6. Self-duality equation. A flowline of grad(cs) joining B to A is an equivalence class
of map a : R→ A satisfying da/dt = ∗Fa(t) with a(t) converging to A or B as t goes to ±∞,
up to the ambiguity of the action of the gauge group, and translation t→ t+ constant.



24 DANNY CALEGARI

Such a flowline has a natural interpretation in terms of gauge theory on the 4-manifold
M × R with the product metric. Let t be the coordinate in the R direction. Let E be a
trivial C2 bundle overM×R, and let ā be an su(2)-connection on this bundle. Suppose we
write ā = fdt+aM where f is a function taking values in su(2), and aM has no component
in the R direction. Let g : M×R→ SU(2) solve the equation (∂g/∂t)g−1 = −gfg−1. Then
by applying g as a gauge transformation we can replace ā by a gauge-equivalent connection
with f = 0.

The self-duality equation for an su(2)-connection A on a Riemannian 4-manifold W is
the equation ∗FA = FA. ForW = M×R and ā = aM as above, then if α = ∂ā/∂t, we have
on each fixed t0 slice the equation dā = dt∧α+ d(ā(t0)) and therefore Fā = dt∧α+Fā(t0)

where the second term can be thought of as the curvature of the connection ā(t0) on the
3-manifold M × t0. For any form β on M ×R with no component in the t direction, we let
∗3 denote the result of applying (3-dimensional) Hodge star to the restriction of β to each
M × t0 slice. Then ∗β = dt ∧ ∗3β and therefore

∗Fā = ∗3α + dt ∧ ∗3Fā(t0)

Thus ā solves the self-duality equation if and only if ∂ā/∂t = ∗3Fā(t0), which is precisely
the statement that ā(t) is a flowline of grad(cs).

Donaldson [4] famously showed used the space of solutions to the self-duality equation
to obtain constraints on the topology of smooth 4-manifolds. On a noncompact 4-manifold
it is important to add the constraint that the curvature Fā has finite energy (as measured
by the L2 norm). This implies that the connection ā is asymptotically flat, and in fact
must converge (up to gauge equivalence) to flat connections A and B at infinity.

In words: flowlines of grad(cs) joining equivalence classes of flat connections A and B
correspond to finite energy solutions to the self-duality equations on M × R up to gauge
equivalence and translation. Gauge equivalence classes of solutions are called instantons,
and their moduli space M decomposes into spaces M(A,B) for A, B as above. If A and
B are nondegenerate and nontrivial and a further technical transversality condition holds,
then M(A,B) is a smooth manifold on which R acts freely by translations.

It turns out that different components of M(A,B) can have different dimensions — but
that these dimensions agree mod 8(!) and therefore we can define the relative index of A
and B to be this dimension (counted mod 8).

Still assuming nondegeneracy, we can define a chain complex freely generated by nontriv-
ial flat connections up to gauge equivalence, so that the coefficient of B in the differential
∂A is the number of one-dimensional components of M(A,B), counted with sign. The
homology of this complex is I∗(M). It does not depend on the choice of metric on M , and
its Euler characteristic is equal to 2λ(M).

Making sense of this construction without assuming nondegeneracy is highly technically
involved, and is carried out in the papers of Floer and Taubes cited above.

3.7. The meaning of 8. Where does 8 come from? The simplest nontrivial example of an
su(2) connection with self-dual curvature is as follows. If we think of R8 as the quaternionic
plane, there is a ‘Hopf map’ from the unit sphere S7 to the quaternionic projective line
S4 with fibers the unit quaternions S3 = SU(2). In other words, we can think of S7 as a
principal SU(2) bundle over S4 with c2 = 1.
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If we give S7 its standard Riemannian metric, the orthogonal complements to the fibers
gives a connection on S7, thought of as an SU(2) bundle over S4, and the curvature of this
connection is self-dual.

The self-dual equations are conformally invariant, so we can push this solution around
by the conformal group SO(5, 1) of S4. The stabilizer of a solution is the compact sub-
group SO(5), and therefore we get a 5-dimensional space of solutions parameterized by
SO(5, 1)/SO(5), which may be identified with 5-dimensional hyperbolic space (topologi-
cally an open 5-ball). This space may be compactified by gluing back S4 itself; these extra
points parameterize limits of instantons whose curvature is concentrated closer and closer
to a point.

Now, on any smooth closed 4-manifold W with a principal SU(2) bundle E, and for any
instanton, Taubes [19] shows how to ‘insert’ one of these ‘limit’ instantons near any point
and perturb the result to get an honest new self-dual connection. The insertion changes
the bundle E to E ′ with c2(E ′) = c2(E) + 1, and depends on 8 parameters — 4 parameters
for the point of insertion, 1 parameter for a ‘scale’ factor (from the conformal invariance),
and an extra 3 parameters for an element of SU(2) measuring the difference in gauge at the
gluing. This ‘explains’ why dimM(E ′) = dimM(E)+8 (a formal justification follows from
the Atiyah-Singer index theorem which gives a formula dimM(E) = 8c2− 3(1− b1 + b+

2 )).
If W = M ×R the Chern class c2 vanishes, and the components of M(A,B) of different

dimensions correspond to paths of connections in B∗ in different homotopy classes rel.
endpoints.

4. Heegaard Floer Homology

4.1. Lagrangian Intersection Homology. Floer’s second construction [6] of a homology
theory whose Euler characteristic is 2λ makes use of the symplectic structure on X∗(Σ),
and is really a homology theory for pairs of Lagrangians in a symplectic manifold in general.

Let P, ω denote a symplectic manifold, and let L1, L2 denote Lagrangian submanifolds.
Thus if the dimension of P is 2n, the Li are smooth submanifolds of dimension n. Let
Ω denote the space of smooth maps z : I → P from L1 to L2. In any sufficiently small
neighborhood z0 ∈ U ⊂ Ω of a point z0 we can define a function a : U → R as follows.
For any other z ∈ U we can join z0 to z by a path zt in Ω, which sweeps out a rectangle
F ⊂ P with left and right edges on L1 and L2 respectively. Then set a(z) :=

∫
F
ω. This

is well-defined on a sufficiently small neighborhood U since if z′t is another path sweeping
out another rectangle F ′, then F ∪ F is a cylinder whose ends can be capped off by small
disks Di in Li to make a sphere S, and∫

F

ω −
∫
F ′
ω =

∫
S

ω = 0

because ω is closed, and S is null-homotopic for sufficiently small U .
In general the indeterminacy in a is generated by the periods of ω on cylinders interpo-

lating between L1 and L2. Such cylinders are given by intersections of conjugacy classes
π1(L1)∩ gπ1(L2)g−1 up to the action of π2(P ). Thus (for example) if H1(L1)∩H1(L2) = 0
and π2(P ) is trivial, we may define a globally.
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In any case, the differential da is well-defined. The tangent space TzΩ is just the space
of vector fields ξ along z, and

da(ξ) =

∫ 1

0

ω(ż(t), ξ)dt

Since ω is nondegenerate, the critical points of a are the constant maps; i.e. the points of
L1 ∩ L2.

4.1.1. Holomorphic Whitney disks. To define a metric on Ω and hence make sense of
grad(a) and gradient flowlines, we choose an almost complex structure — i.e. an en-
domorphism J of the tangent bundle squaring to −Id and preserving the symplectic form
— for which g := ω(·, J ·) is positive definite (i.e. it defines a metric on P ). Then we get a
metric on Ω by integrating: for ξ1, ξ2 vector fields along z,

〈ξ1, ξ2〉 :=

∫ 1

0

ω(ξ1, Jξ2)

Thus

da(ξ) =

∫ 1

0

ω(ż, ξ) =

∫ 1

0

ω(Jż, Jξ) = 〈Jż, ξ〉

so that we may write (formally) grad(a) = Jż. Up to sign, ‘trajectories’ of grad(a) are
maps u : I × I → P where (if we give the I factors coordinates s and t)

∂u

∂s
+ J

∂u

∂t
= 0

which is simply the statement that u is a holomorphic map with respect to the (almost)
complex structure.

If x, y ∈ L1 ∩ L2 then flowlines from x to y are the holomorphic maps of the unit disk
u : D → P sending −i to x and i to y, and such that the arc of ∂D with positive (resp.
negative) real part maps to L1 (resp. L2). We call such a map a holomorphic (Whitney)
disk. The disk admits a real 1-dimensional family of holomorphic automorphisms fixing −i
and i, and acting as a translation of the hyperbolic geodesic joining these points; thus the
space M(x, y) of flowlines between x and y admits a free R action, and has dimension at
least 1 if it is nonempty.

Then (modulo technical difficulties! — see § 5.3) one defines a homology theory whose
chain groups are freely generated by intersections L1∩L2, and whose differentials count 1-
dimensional components of M(x, y) with a certain sign (or with Z/2Z coefficients, ignoring
sign). Specializing to the case that P = X∗(Σ) and Li = X∗(Hi) one recovers 2λ as the
Euler characteristic of the theory.

4.1.2. Maslov Index. As with the case of Instanton homology, the moduli space M(x, y)
can have components of different dimension in general. This dimension is a relative index
called the Maslov Index, and depends on a choice of a path in Ω (i.e. a homotopy class of
Whitney disk u) joining x to y. Somewhat informally, we denote the homotopy classes of
such maps by π2(x, y).

Associated to the real vector space Rn one has the cotangent bundle T ∗Rn and the
complexification Cn. The former has a natural symplectic structure, and the latter a nat-
ural complex structure. The standard Euclidean inner product on Rn extends to the
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standard Hermitian inner product on Cn, and we may choose an identification of Cn

with T ∗Rn as real vector spaces compatibly with these metrics. Under this identification,
Sp(2n,R)∩O(2n) = U(n). The group U(n) acts transitively on the set Λ(n) of Lagrangian
subspaces of R2n, and the stabilizers are conjugates of the subgroup O(n). Thus we have an
identification Λ(n) = U(n)/O(n). Taking the square of the (complex) determinant defines
a fibration det2 : U(n)/O(n)→ S1. If we pull back the (oriented) generator of H1(S1) we
get a generator µ of H1(Λ(n)) = Z.

If V is a linear Lagrangian subspace of R2n, Arnol’d [3] defines the train T (V ) to be the
set of Lagrangian subspaces whose intersection with V is nontrivial. Each train is Poincaré
dual to µ, and the complement Λ(n) − T (V ) is simply-connected. Thus, if V1, V2 are any
two linear Lagrangian subspaces of R2n, there is a canonical homotopy class of path in
Λ(n) from V1 to V2 that does not cross T (V ).

Explicitly, we can find a unitary matrix U ∈ U(n) with U(V1) = V2, and by multiplying
by a suitable element of O(n) if necessary we can assume the eigenvalues of U are of the
form eiθj for n numbers θj ∈ [0, π). Thus normalized, we can think of U as the endpoint
of a path of unitary matrices Ut with the same eigenspaces, and eigenvalues eitθj .

We are now in a position to define the Maslov index, following Viterbo [22]. Let u :
D → P be a Whitney disk joining x to y. Since D is contractible, the pullback u∗TP has
a (symplectic) trivialization as D×R2n. The circle S1 = ∂D factorizes as the union of two
arcs α1 ∪ α2 where u : αi → Li, and where we orient the arcs so that each u(αi) runs from
x to y. Using the trivialization of u∗TP we can think of each α∗iTLi as a path in Λ(n).
Join the endpoints of α∗1TL1 to the endpoints of α∗2TL2 by the procedure above to get a
quadrilateral γu : S1 → Λ(n). The Maslov Index, is equal to µ(γu) where µ is the oriented
generator of H1(Λ(n)). By abuse of notation we denote this µ(u). Evidently µ(u) depends
only on the class of u in π2(x, y).

Here is an equivalent procedure. Since the inclusion of α1 into D is a homotopy equiva-
lence, we may choose a symplectic trivialization of our bundle which restricts to a trivial-
ization over α1 for which TL1|α1 is constant, and TL2 is the same (perpendicular) subspace
at x and y. Then relative to this trivialization, TL2|α2 is a closed loop in Λ(n), whose
winding number is µ(u).

If classes u, u′ ∈ π2(x, y) have homotopic boundary values, they glue together (up to
homotopy) to make a map φ := u ∪ −u′ : S2 → P .

Proposition 4.1. With notation as above, there is a formula

µ(u)− µ(u′) = 2c1(P )[φ]

Proof. The pullback φ∗TP is a symplectic bundle over S2, which is classified by c1. Thus
the difference of µ(u) and µ(u′) is proportional to c1(P )[φ], where [φ] denotes the image
of φ under the Hurewicz map. To compute c1 we look at the winding number of det on
a clutching function for the trivializations of φ∗TP over u and −u. Since the fibration
Λ(n) → S1 is given by the square of the determinant, the constant of proportionality is
2. �

Viterbo [22] shows that the index so defined is the formal dimension of the moduli
space M(x, y) of pseudo-holomorphic curves in the homotopy class of u. We shall give
a justification for this fact in § 5.2. Further work is necessary to show that for suitable
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perturbations of the complex structure (see § 5.3) these moduli spaces are smooth manifolds
of the desired dimension.

4.2. Definition of Heegaard Floer Homology. Heegaard Floer Homology as defined
by Ozsváth–Szabó [13, 14] is a version of Lagrangian Intersection Homology in the sense
of § 4.1 adapted to a symplectic manifold (P, ω) and a pair of transverse Lagrangian
submanifolds L1, L2 associated to a decorated Heegaard splitting of a 3-manifold. It is
very similar to the setup for the Casson invariant, in that P is (very nearly) the character
variety of π1(Σ), except that we take representations into the abelian group U(1) instead
of SU(2).

If we give Σ the structure of a Riemann surface, then the Jacobian variety JΣ is topolog-
ically equivalent to Hom(π1(Σ),U(1)). For Heegaard Floer Homology one works not with
JΣ, but with a birationally equivalent space SgΣ.

4.2.1. Heegaard diagrams. Let H be a genus g handlebody. An attaching set α is a collec-
tion of g essential simple closed curves αi in Σ := ∂H satisfying

(1) the αi are disjoint;
(2) the complement Σ− α is connected; and
(3) the αi bound disjoint embedded disks Di in H.
The handlebody H can be recovered from the pair (Σ, α) by thickening Σ, attaching

2-handles along the αi, and capping off the spherical boundary that results with a 3-ball.
We should therefore think of an attaching set as a presentation for H.

If we fix a handlebody, any two attaching sets α, α′ presenting H are related up to
isotopy by a finite sequence of handle slides: choose a pair αi, αj and an embedded arc
δ ⊂ Σ running from αi to αj and interior disjoint from α, and slide αi along δ and push
it over the disk Dj. This replaces αi by α′i, where the triple αi, αj, α′i bound an embedded
pair of pants in the complement of the other αk.

Let M be a 3-manifold. A Heegaard diagram for M is a surface Σ together with two
attaching sets α, β presenting handlebodies H1, H2 so that H1∪ΣH2 is a Heegaard splitting
of M . Usually we insist that α and β intersect in general position.

Any two Heegaard splittings ofM have a common stabilization. At the level of Heegaard
diagrams, stabilization is achieved by taking a torus T with basis curves m, l, connect
summing Σ to T , and adding m to the collection α and l to the collection β.

Proposition 4.2 (Heegaard diagram). Any two Heegaard diagrams of the same 3-manifold
are related by a sequence of one of three basic moves:

(1) isotopy of one of α or β;
(2) handle slide of one of α or β; and
(3) stabilization or its inverse.

Geometrically, a genus g Heegaard diagram for M corresponds to a self-indexing Morse
function f on M with one minimum, one maximum, and Σ a level set between the index 1
and 2 critical points. The index 1 points are all in H1, the index 2 points are in H2, the α
are the intersection of the ascending manifolds of the index 1 points with Σ, and the β are
the intersection of the descending manifolds of the index 2 points with Σ. Proposition 4.2
is thus a restatement of some standard facts from Morse theory.
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4.2.2. Pointed Heegaard diagrams. A pointed Heegaard diagram is a Heegaard diagram
(Σ, α, β) together with the choice of a basepoint z ∈ Σ − (α ∪ β). A pointed isotopy of α
or β is one in which the curves stay disjoint from the basepoint. A pointed handle slide is
a handle slide for which the pair of pants region cobounding the sliding circles is disjoint
from the basepoint.

It is not hard to show that any two pointed Heegaard diagrams representing the same
3-manifold are related by pointed isotopy, pointed handle slides and stabilization.

4.2.3. Symmetric Products. When we defined the Casson invariant, we associated three
spaces X∗(Σ), X∗(H1), X∗(H2) to a Heegaard diagram, and derived the invariant from the
configuration of the X∗(Hi) in X∗(Σ).

Heegaard Floer Homology is defined analogously. If Σ has genus g, the spaces that take
the analog of the character varieties X∗ are, roughly speaking, configuration spaces of g
unordered points.

Given a smooth surface Σ of genus g, define the symmetric product SgΣ to be the
quotient of the g-fold product Σg by the full symmetry group of the factors. This is a
smooth manifold; in fact, if we give Σ the structure of an algebraic curve, then SgΣ is a
complex projective variety. As a complex projective variety, the complex structure depends
on that of Σ, but as a symplectic manifold, it is independent of choices.

The symmetric product is important in algebraic geometry: SgΣ is birationally equiva-
lent to the Jacobian variety JΣ of Σ. If we fix g linearly independent holomorphic 1-forms
ω1, · · · , ωg and a basepoint z ∈ Σ then there is the Abel-Jacobi map u : Σ→ JΣ obtained
by taking each point p ∈ Σ to the vector of integrals

∫ p
z
ωi, which is well-defined modulo

the period lattice. The map u extends to symmetric powers by using the additive group
structure on JΣ; i.e. for (p1, · · · , pk) ∈ SkΣ define u(p1, · · · , pk) =

∑
u(pi).

It can be shown that at a generic point, the map u : SgΣ → JΣ is a submersion, and
is therefore a birational isomorphism. The preimage of any point in JΣ is a complete
linear system, and therefore a projective space of some dimension (generically 0). Since
topologically, JΣ is a complex torus of dimension g, it follows that π1(SgΣ) is abelian, and
equal to H1(SgΣ) = H1(Σ) = Z2g (this is easy to see directly, since π1S

nX is abelian for
any topological space X and any n > 1).

The homology of Σg can be computed from the Künneth formula, and the homology
of SgΣ is the part invariant under the symmetric group. Thus H2(SgΣ) has dimension(

2g
2

)
+ 1, freely generated by Λ2H1 and the image of H2(Σ) included as a factor. Since

H2(π1) = Λ2H1 it follows that the image of π2 under the Hurewicz map is Z.

Example 4.3 (Low genus examples). For g = 1, S1Σ = JΣ = Σ, a complex 1-torus.
For g = 2, S2Σ is a blow-up of JΣ at one point. The exceptional curve of the blow-up

is the image of S := (y, τ(y)) where τ is the hyperelliptic involution of Σ. Thus π1 = Z4

and π2 is freely generated by S as a π1-module. By decomposing the tangent bundle along
S into the tangent and normal parts, we get the formula

c1(S2Σ)[S] = χ(S) + [S] ∩ [S] = 2− 1 = 1

For g = 3, if Σ is canonical, the exceptional locus in JΣ is a copy of Σ itself. Each point
in this copy is blown up to a 2-sphere S. The blow-up locus is surjective on π1, so π2 = Z
and is trivial as a π1-module. We have c1(S3Σ)[S] = 1 as before.
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In algebraic geometry, the blowup locus in JΣ (i.e. the locus of ‘special divisors’) de-
pends on Σ, and is studied by Brill–Noether theory. However, the topological picture is
substantially simpler, at least in low dimensions. For g > 2 one has π2(S) = Z generated by
S := (y, τ(y), z, · · · , z) where τ is a hyperelliptic involution, and satisfies c1(SgΣ)[S] = 1
(by essentially the same calculation as above, since the extra z coordinates give trivial
summands of the tangent bundle along S). The involution τ always exists topologically,
but not holomorphically unless Σ is hyperelliptic.

4.2.4. Lagrangian tori. If α is an attaching set of curves in Σ, we define the torus Tα ⊂ SgΣ
to be the (unordered) product α1 × · · · × αg. Evidently this is a Lagrangian subspace of
SgΣ.

Now suppose (Σ, α, β, z) is a pointed Heegaard diagram for M . Since α and β are in
general position, so are the tori Tα and Tβ; i.e. they meet transversely in finitely many
points.

The basepoint z determines a subspace Vz := z × Sg−1Σg. Under the Abel-Jacobi map,
Vz is the preimage of the Theta divisor Θ. It is evidently disjoint from Tα and Tβ.

Now, H1(M) is the quotient of H1(Σ) by the subspaces spanned by α and β. Under
the identification of H1(Σ) with H1(SgΣ) these are the subspaces H1(Tα) and H1(Tβ)
respectively. Thus H1(SgΣ)/(H1(Tα) +H1(Tβ)) = H1(M).

For any two points x, y ∈ Tα ∩ Tβ we can choose paths a ⊂ Tα and b ⊂ Tβ from x to y.
Then a − b is a 1-cycle, and the image of its homology class ε(x, y) in H1(M) (under the
identification above) is well-defined and independent of the paths a and b. The points of
Tα ∩ Tβ fall into equivalence classes with a ∼ b if ε(a, b) = 0.

4.2.5. Whitney disks. Fix two points x, y ∈ Tα ∩ Tβ. A Whitney disk for the pair x, y is
a map u : D → SgΣ with u(−i) = x and u(i) = y, and such that the arc of ∂D with
positive (resp. negative) real part maps under u to Tα (resp. Tβ). The set of homotopy
classes of Whitney disks for x, y is denoted π2(x, y). It is a module over π2(SgΣ) = Z when
g ≥ 3 and over π′2(SgΣ) := π2(SgΣ)/π1(SgΣ) = Z if g ≥ 2. Note that π2(x, y) is empty if
ε(x, y) 6= 0.

Proposition 4.4. If ε(x, y) = 0 then π2(x, y) is not empty, and if g ≥ 3 it’s isomorphic
to Z⊕H1(M ;Z).

Proof. A pair of arcs γi ⊂ Ti from x to y whose union is null-homologous bounds a map
from a surface to SgΣ. Since π1(SgΣ) is abelian, this surface can be compressed to a
(Whitney) disk. Thus if ε(x, y) = 0 then π2(x, y) is nonempty.

Now let φ1, φ2 ∈ π2(x, y) be two classes. If we glue the domain disks Di of φi along x∪ y
we obtain a (pinched) cylinder A together with a map Φ : A→ SgΣ interpolating between
φ1 and φ2. The difference in homotopy classes φ1, φ2 is measured by the homotopy class
of (A, ∂+A, ∂−A)→ (SgΣ, Tα, Tβ).

The homotopy class of the boundary terms are determined by their homology, because
the π1(Ti) are abelian. The images of ∂±A are loops `i ∈ Ti which define homology classes
[`i] ∈ H1(Ti) with the same image in H1(SgΣ). Using H1(SgΣ) = H1(Σ) we identify

[`i] ∈ ker : H1(Σ)→ H1(Hi)
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Using the following fragment of the Mayer-Vietoris sequence

0→ H2(M)→ H1(Σ)→ H1(H1)⊕H1(H2)

the pair of classes [`i] together determine a class β ∈ H1(M) = H2(M). Every such class
arises, since a homology between loops in the Ti is realized by a map of a surface to SgΣ,
and π1(SgΣ) is abelian so any such surface may be compressed to a cylinder. Thus we
obtain a surjection π2(x, y)→ H1(M ;Z).

Any two annuli A,A′ with the same boundary differ by an element of π2(SgΣ) = Z if
g ≥ 3, and the action of π2 is free, because the generator is nontrivial in homology. �

When g = 2 there is still a surjective map π2(x, y)→ Z⊕H1(M ;Z) where we just record
the (relative) homology class of a Whitney disk.

4.2.6. Spinc structures. In each dimension n the group Spinc(n) is the connected double
cover of SO(n)×S1 that unwraps each factor. A Spinc structure on an oriented manifold is
a lift of an SO(n) structure on the tangent bundle to a principal Spinc(n) bundle compatible
with the quotient map SO(n) = Spinc(n)/S1.

Since every oriented 3-manifold M is parallelizable, every M admits a Spinc structure.
Spinc(3) = U(2), and SO(3) can be thought of as the quotient of U(2) by the center.
The subgroup U(1) ⊕ 1 sits in U(2) as diagonal matrices of the form ( eiθ 0

0 1 ). If M has a
Spinc-structure, then after choosing a trivialization this circle subgroup acts by positively
oriented rotations around some oriented axis in the tangent space at each point. The field
of oriented axes is (up to scale) a nowhere zero vector field v on M .

An automorphism of a spin structure is a map from M to U(2) and the stabilizer of the
field of U(1)⊕1 subgroups is a map from M to U(1). Thus the ambiguity in the map from
Spinc structures to vector fields is parameterized by maps from M to U(2)/U(1)⊕ 1 which
is homeomorphic to S3. Two nowhere zero vector fields are related via this equivalence
if and only if they are homotopic outside of a ball. This is because maps from M to S3

are classified by degree, and therefore any two such maps are homotopic outside of a small
ball.

Two nowhere zero vector fields homotopic outside a ball are said to be homologous, and
the equivalence classes are called Euler structures. On a 3-manifold they are in natural
bijection with Spinc classes, as we have just shown. This observation is due to Turaev [21].

Since M is oriented, a nowhere zero vector field v determines a complex line bundle v⊥
(well-defined up to homotopy). Changing v by a homology does not affect the isomorphism
class of v⊥, because the difference in the clutching maps is determined by a homotopy
class of map from ∂B3 = S2 to U(1), which is necessarily trivial. This complex line
bundle is naturally identified with the determinant line bundle of the U(2) bundle, since
det : U(1)⊕1→ S1 is an isomorphism; in particular, it is naturally associated to the Spinc

structure s, and we denote its first Chern class by c1(s).
If we choose a trivialization of M , a nowhere zero vector field v determines a map

φv : M → S2 relative to this trivialization. The pullback of the generator e of H2(S2)
is a class φv(e) ∈ H2(M) Poincaré dual to the 1-manifold X ⊂ M where v points to the
north pole (relative to the trivialization). Changing the trivialization changes the class of
φv by 2-torsion, but for any two vector fields v, w the difference φv(e)− φw(e) ∈ H2(M) is
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well-defined independent of the trivialization. Thus the set of Spinc structures has a free
transitive H2(M) action, so that this set is in bijection with H2(M) but not canonically.

In any trivialization, we can take the field of cross products of v with the north pole to
obtain a section of v⊥ zero exactly where v is vertical. Thus we obtain the formula

c1(s) = c1(v⊥) = φv(e)− φ−v(e)

Ozsváth-Szabó associate a Spinc class s(x) to every x ∈ Tα ∩ Tβ in such a way that
s(x) = s(y) iff ε(x, y) = 0. Think of a Heegaard surface as a level set of a Morse function
f separating the index 0, 1 from the index 2, 3 points. The α curves are the boundaries of
ascending manifolds of the 1-handles, and the β curves are the boundaries of the descending
manifolds of the 2-handles. Thus a point x ∈ Tα ∩ Tβ is a g-tuple of flowlines pairing the
index 1 and index 2 critical points. The marked point z likewise can be thought of as
a flowline pairing the index 0 and 3 critical points. Outside these flowlines, gradf is a
nowhere zero vector field, and because the flowlines run between critical points of opposite
parity, gradf may be extended to a nonsingular vector field over neighborhoods of these
flowlines, thereby determining a unique Euler structure, which is to say a Spinc class s(x).

4.2.7. The definition of ĤF .

Definition 4.5 (M and M̂). For φ ∈ π2(x, y), denote by M(φ) the space of holomorphic
Whitney disks in the homotopy class of φ. The group R acts on M(φ) by reparameteriza-
tions of the disk, and this action is free unless φ is the trivial element of π2(x, x). Denote
by M̂(φ) the quotient M(φ)/R or the empty set if φ is trivial.

Under a suitable transversality condition, M(φ) is a manifold of dimension equal to the
Maslov index µ(φ). Unfortunately, to achieve this transversality we need to work not with
the given complex structure on SgΣ, but with a generic almost complex structure. We
ignore this issue for the moment, and return to it in § ??. Thus dim(M̂(φ)) = µ(φ)− 1.

The moduli spaces M and M̂ may be oriented. If µ(φ) = 1 then M̂(φ) is compact — i.e.
it consists of finitely many (oriented) points, and we denote by c(φ) the signed count of
these points. When µ(φ) = 2 the M̂(φ) are 1-dimensional though not typically compact,
but they can be compactified by products of lower dimensional M̂(φ′) as one expects from
Morse theory.

Let S denote the holomorphic sphere that generates π2(SgΣ) (up to the action of π1 if
g = 2). Then by Proposition 4.1 we have

µ(φ+ kS) = µ(φ) + 2kc1(SgΣ)[S] = µ(φ) + 2k

Definition 4.6. For a homotopy class φ ∈ π2(x, y) denote by nz(φ) the algebraic intersec-
tion number of φ(D) with Vz.

IfM(φ) is nonempty, φ has holomorphic representatives, and since Vz is also holomorphic,
necessarily nz ≥ 0 in this case. Note that Vz will not necessarily stay holomorphic for a
generic almost complex structure, but we may choose such a structure sufficiently close to
the integrable structure so that nz ≥ 0 still holds.

Furthermore, for S the holomorphic sphere as above, S ∩ Vz = 1 so that nz(φ + kS) =
nz(φ) + k.
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We’re now ready to give the definition of (the hat version of) Heegaard Floer Homology.
To a pointed Heegaard diagram (Σ, α, β, z), associate a free abelian group ĈF generated
by the points of Tα ∩ Tβ, and let ĈF (s) be the summand generated by x with s(x) = s.
Thus ĈF = ⊕sĈF (s). For each s define a boundary map ∂ : ĈF (s) → ĈF (s) by the
formula

∂x :=
∑

s(y)=s(x)

∑
φ∈π2(x,y):µ(φ)=1,nz(φ)=0

c(φ)y

Then ∂2 = 0, and the homology of the resulting complex is denoted ĤF = ⊕sĤF (s).
If M is a rational homology sphere, there is at most one class in each π2(x, y) with

µ(φ) = 1, so this sum is finite. When M has nontrivial H1 one must arrange somehow
(e.g. by restricting the class of admissible Heegaard diagrams) that there are only finitely
many classes φ ∈ π2(x, y) with µ(φ) = 1 and M̂(φ) nonempty; we defer a discussion of this
point to § ??.

IfM is a rational homology sphere there is also a relative grading on the set of x ∈ Tα∩Tβ
with s(x) = s, namely

gr(x, y) := µ(φ)− 2nz(φ)

Equivalently, gr(x, y) is the value of the Maslov index µ(φ) for the unique class φ ∈ π2(x, y)
with nz(φ) = 0.

The homology groups ĤF depend on many choices. The chain groups depend on a
choice of pointed Heegaard diagram, and the differentials depend on a generic choice of
almost complex structure on SgΣ. Nevertheless, it turns out that the homology ĤF does
not depend on these choices. In other words:

Theorem 4.7 (Oszváth–Szabó [13]). The homology groups ĤF (s) are independent of
choices, and are therefore an invariant of M .

We shall sketch the proof of this in the sequel.

4.2.8. The definitions of HF ∗. A refinement of the hat version of homology considers all
holomorphic disks (not just those with nz = 0). Define CF∞(s) to be the free abelian
group generated by pairs [x, i] where s(x) = s and i is an integer. Define a relative grading

gr([x, i], [y, j]) = gr(x, y) + 2i− 2j

(this makes sense if M is a rational homology sphere). Define a boundary map

∂[x, i] :=
∑

s(y)=s(x)

∑
φ∈π2(x,y):µ(φ)=1

c(φ)[y, i− nz(φ)]

Then ∂2 = 0 and the homology of the complex is denoted HF∞ = ⊕sHF
∞(s).

Again, the formula for ∂ is manifestly a finite sum whenM is a rational homology sphere,
since there is still at most one class in each π2(x, y) with µ = 1. Nevertheless as before it
turns out one can arrange for general M for the sums to be finite, so that the homology
groups are defined.

The chain groups CF∞ admit an automorphism U of degree −2

U : [x, i]→ [x, i− 1]
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compatible with the boundary operator; thus HF∞ admits the structure of a Z[U,U−1]-
module. It turns out (for rational homology spheres) it is always isomorphic to Z[U,U−1].
More subtle structure comes from the filtration arising from nz.

Define CF− to be the subgroup of CF∞ freely generated by [x, i] with i < 0, and let
CF+ denote the quotient CF+ := CF∞/CF−. Since nz(φ) ≥ 0 for any φ with M̂(φ)
nonempty, it follows that the coefficient of [y, j] in ∂[x, i] is zero unless i ≥ j. Thus CF−
is a subcomplex of CF∞ and we get a short exact sequence of complexes

0→ CF− → CF∞ → CF+ → 0

The automorphism U takes CF− into itself, and therefore induces an endomorphism of
CF+. With this notation, there is another short exact sequence of chain groups

0→ ĈF → CF+ U−→ CF+ → 0

Theorem 4.8 (Oszváth–Szabó [13]). The homology groups HF±(s) are independent of
choices, and are therefore an invariant of M .

5. Proofs

In this section we sketch the proofs of Theorems 4.7 and 4.8. We emphasize that these
are just sketches. Furthermore, at several points we restrict attention to the hat-version
of HF , and to the situation where b1(M) = 0 where this makes the arguments materially
simpler. For full details see [?] (and, at some places, Floer [6, 7]).

5.1. Gromov’s compactness theorem.

Example 5.1. For ε ∈ C let Cε be the curve z1z2 = ε in C2. When ε 6= 0 the curve Cε is an
annulus foliated by circles |z| = constant. But as ε → 0 the Cε degenerate to C0, a pair
of transverse complex lines. This is a model for the way in which a family of Riemann
surfaces in a complex manifold can degenerate to a singular Riemann surface.

Ignoring the embedding, C0 is obtained topologically from an annulus by collapsing the
meridian circle to a point. If C is a smooth surface and γi is a collection of disjoint simple
loops, we can obtain a singular surface C̄ by collapsing each γi to a point pi. Let Ĉ be
obtained from C̄ − ∪pi by adding one point for each end. Then Ĉ is a closed surface, and
there is a map Ĉ → C̄ which is 2–1 on the preimages of the pi, and is 1–1 elsewhere. A
complex structure on C̄ is simply a complex structure on Ĉ. Equivalently, it is a complex
structure on C̄ − ∪pi for which the modulus of every annular end is infinite.

By abuse of notation, we refer to the components of C̄, by which we mean the components
of Ĉ. These are Riemann surfaces with marked points (i.e. the preimages of the pi).

Let P be a smooth manifold with an almost-complex structure J and a compatible
metric g (i.e one for which J preserves lengths and has Jv perpendicular to v). A (pseudo)-
holomorphic curve is a Riemann surface C and a smooth map u : C → P whose differential
du is complex linear for all vectors v ∈ TC; i.e. du(iv) = Jdu(v). A cusp curve is a singular
Riemann surface C̄ together with a map u : C̄ → P whose differential is complex linear
away from the pi.

A sequence of holomorphic curves un : Cn → P converges weakly to a cusp curve u :
C̄ → P if
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(1) the areas of the un(Cn) converge to the area of u(C̄); and
(2) there are families of disjoint loops γn,i ⊂ Cn and diffeomorphisms φn : C̄ − ∪pi →

Cn − ∪γn,i so that the maps unφn converge uniformly to u on compact subsets of
C̄ − ∪pi.

Degenerations of pseudo-holomorphic curves are controlled by:

Theorem 5.2 (Gromov’s compactness Theorem [10], Thm. 1.5.B). Let P be a smooth
manifold with an almost-complex structure J and a compatible metric g. Then any sequence
of holomorphic curves of fixed genus and uniformly bounded area has a subsequence which
converges weakly to a cusp curve.

If P, ω is a symplectic manifold and J is an almost-complex structure compatible with
ω then the area of a curve depends only on its homology class; thus pseudo-holomorphic
curves in a fixed homology class all have bounded area, and we can ‘compactify’ the space
M of such curves by adding cusp curves. The word ‘compactify’ is in quotes because cusp
curves (or ordinary curves for that matter) may admit noncompact families of automor-
phisms, e.g. if some component has genus 0 and fewer than 3 marked points. Dividing out
by such automorphisms, the quotient space M̂ is compactified by cusp curves.

Gromov’s proof of Theorem 5.2 has the following key ingredients. We treat the case
when we have compatible J, g, ω for simplicity.

(1) Minimal surfaces: The symplectic form ω calibrates complex subspaces of the
tangent space; thus every holomorphic curve is a minimal surface, so its Gauss
curvature is uniformly bounded above by some constantK, and it satisfies a uniform
isoperimetric inequality (by comparison with a surface of constant curvature K).

(2) Gromov–Schwarz Lemma: For every conformal u : D → P Cauchy–Schwarz
gives

∂

∂r
area(u(Dr)) =

∫
∂Dr
|du|2 ≥ 1

2πr

(∫
∂Dr
|du|

)2

=
1

2πr
length(u(∂Dr))

2

Thus the isoperimetric inequality implies (by integrating) that for every conformal
map D → P the area of the image controls the derivative at 0, at least for areas
< 2π/K if K is positive. A bootstrap argument in the jet space gives inductive
control on all higher derivatives at 0.

(3) Extension over punctures: By the Gromov–Schwarz Lemma, a holomorphic
map u : D∗ → P of small area is uniformly Lipschitz in the hyperbolic metric, so
concentric circles around the puncture have very small image. In a minimal surface,
a very thin tube can’t be very long, so these circles must converge, and u fills in
over the puncture.

(4) Extracting a limit: Fix small constants A < 2π/K and ε > 0 so that every
minimal surface in P intersects every ball of radius at least ε in a subsurface of area
at least A. If u : C → P is a holomorphic curve we can find a maximal subset of
points Q ⊂ C so that the ε balls about the points of u(Q) are disjoint. Then the
cardinality of |Q| is bounded above by the area of u(C), and below by 3 if we take ε
small enough. Thus C−Q is conformally hyperbolic with bounded complexity, and
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by Gromov–Schwarz, the norm of du in the hyperbolic metric is uniformly bounded
on C −Q.

If un : Cn → P is a sequence of curves and Qn ⊂ Cn points as above, either
the hyperbolic metrics on Cn − Qn have a convergent subsequence, or there is a
subsequence for which these metrics degenerate by stretching necks centered at
finitely many essential simple closed loops, in which case Cn − Qn converges to a
singular C̄ − Q. Since the un are equicontinuous in the hyperbolic metrics, some
subsequence of the un|Cn−Qn → P converges on compact subsets to a holomorphic
map u|C̄ −Q→ P , which extends to u : C̄ → P by step (3).

5.2. Formal dimension of the Moduli space. Let u : C → P be a holomorphic curve
of genus g. A smooth variation of u (keeping the domain fixed) is tangent to a section
of u∗TP , and a variation through holomorphic maps is tangent to a holomorphic section,
where we think of u∗TP as a complex vector bundle, of complex dimension n if P has real
dimension 2n.

Suppose for the moment that the complex structure on P is integrable. Then E := u∗TP
is a holomorphic vector bundle, and the Euler characteristic χ(E) := dimCH

0(C;E) −
dimCH

1(C;E) can be calculated by the Riemann–Roch formula χ(E) = ch(E)Td(TC)[C]
where ch(E) is the Chern character

ch(E) = rank(E) + c1(E) +
1

2
(c1(E)2 − 2c2(E)) + · · ·

and Td is the Todd class of the (holomorphic) tangent bundle TC

Td(TC) = 1 +
1

2
c1(TC) +

1

12
(c1(TC)2 + c2(TC)) + · · ·

Since C is 1 (complex) dimensional, the only relevant numbers are rank(E) = n and the
Chern numbers c1(E)[C] and c1(TC)[C] = χ(C) = 2− 2g.

If E were a trivial Cn bundle, we would have χ(E) = n(1− g). The correction term for
a nontrivial bundle over a curve is the first chern class, so

χ(E) = c1(E)[C] + n(1− g)

This is the formal dimension of the (Zariski tangent) space of holomorphic maps from C
to P at u. Of course this is a complex dimension; the real dimension is twice this number.

For an almost-complex structure we can still define an operator ∂̄J on smooth (real) vari-
ations u(t) of u as follows. For any smooth u(t) the differential du(t) is a section of the real
bundle Ω1(C, u(t)∗TP ), and we denote by ∂̄u(t) the projection of du to Ω0,1

J (C, u(t)∗TP )
where the subscript J denotes the dependence on the almost-complex structure. If we fix a
holomorphic connection ∇ on M , then for small t we may parallel transport ∂̄u(t) via the
connection along nearby geodesics to a section of Ω0,1

J (C, u(0)∗TP ); denote the result by
∂̄Ju(t). Thus, the operator ∂̄J vanishes precisely on (pseudo)-holomorphic variations. This
operator is quasi-linear and elliptic, and its linearization has the same symbol as the usual
Cauchy–Riemann operator ∂̄. Because index is a homotopy invariant, we may compute it
as in the integrable case.

To compute the formal dimension of the moduli space M of all genus g holomorphic
curves in the homotopy class φ of u we want to allow the complex structure on C to vary.
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To compute the formal dimension of M̂ we must quotient by the automorphism group of
C. For g ≥ 2 the (complex) dimension of the space of complex structures on a genus g
curve is 3g − 3, whereas for g = 0, 1 the dimension is 0, 1 respectively. On the other hand,
the (complex) dimension of Aut(C) for C a genus g curve is 3, 1 when g = 0, 1 and is
otherwise 0. Thus the difference is 3g − 3 for any g, and the formal dimension of M̂ is

dimR M̂ = 2c1(u∗TP )[C] + 2(n− 3)(1− g)

If L ⊂ P is a Lagrangian submanifold, we can consider holomorphic curves with bound-
ary on L. For compatible J, g, ω holomorphic curves are perpendicular to the boundary,
so by doubling we get closed holomorphic curves, and we are interested in subspaces of
the moduli spaces of the double invariant under the symmetry. This subspace has half the
dimension; i.e.

dimR M̂ = cD1 + (n− 3)(1− g)

where cD1 is the first Chern number of the bundle over the double. If C is a disk, g = 0
and cD1 is equal to the Maslov index µ of ∂C, as defined in § 4.1.2. To see this, observe
that the effect of adding 1 to c1 in the interior of C adds 2 both to cD1 and to µ; compare
Proposition 4.1. Thus dimR M = µ+ n and dimR M̂ = µ+ n− 3. If we pick a point x ∈ L
and ask for holomorphic disks with u(i) = x this cuts the real dimension down by n; thus
dimR M = µ and dimR M̂ = µ− 2.

For a pair of transverse Lagrangians L1, L2 ⊂ P and holomorphic disks with corners
passing through points of L1 ∩ L2 we can obtain the correct index by doubling along the
restriction to L2 (say). Then we obtain a disk with boundary on L1 whose index as we have
just seen is µD (the Maslov index of the doubled free boundary). Thus dimR M = µD/2 = µ
as computed in § 4.1.2.

Suppose we have a pair of Lagrangians L1, L2 and points x, y ∈ L1∩L2. Let φ ∈ π2(x, y)
be a homotopy class of Whitney disk. Let θ ∈ π2(P,L1, x) be a homotopy class of disk with
boundary on L1 and basepoint at x, and let S ∈ π2(P, x) be a homotopy class of 2-sphere.
It makes sense to consider the homotopy classes θ+φ and S+φ. By the discussion above,
the indices (and therefore the formal dimensions of M) are related by

µ(θ + φ) = µ(θ) + µ(φ) and µ(S + φ) = 2c1[S] + µ(φ)

5.3. Smoothness of the Moduli space. One would like to say that for a generic choice
of almost complex structure J zero is a regular value of ∂̄J so that the moduli spaces M

and M̂ are smooth manifolds of the correct dimension. This is morally true, and follows
from Sard–Smale (once we have set up the proper function spaces so that the operator is
Fredholm) with a substantial caveat.

If we fix a smooth surface S, we denote by T the Teichmüller space of marked holomorphic
structures on S, by P a suitable Sobolev completion of the space of smooth maps from S
to P in a homology class φ, and by J the Banach space of almost-complex structures on P
compatible with ω which are Cr for some fixed r > 0. Let E be the bundle over T × P× J

whose fiber over (u : C → P, J) is (a suitable Sobolev completion of) Ω0,1
J (C, u∗TP ).

Then ∂̄J defines a section of this bundle, and the ‘universal Teichmüller space’ TJ(φ) is the
preimage of the zero section.
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One would like to argue that TJ(φ) is a smooth Banach manifold and that the projection
TJ → J is Fredholm, and therefore that the fibers of this map TJ(φ) := TJ ∩ T ×P× J are
smooth of the correct dimension for a Baire set of J ∈ J.

In fact, this is false. The most serious issue has to do with multiple covers. For example,
a genus 0 curve admits a 2d + 1 complex dimensional family of holomorphic self-maps
R (rational functions) of any positive degree d, so every nonconstant holomorphic map
u : CP1 → P in a homology class φ gives rise to a 2d+ 1 dimensional family of maps of the
form uR : CP1 → P in the homology class dφ. But if c1(φ) ≤ 0 the formal dimension of
M(dφ) will be less than that of M(φ) and thus we can never achieve transversality under
such circumstances.

Away from multiply-covered curves the optimistic picture holds: TJ is a smooth Banach
manifold, and the slices TJ are generically smooth manifolds of the correct dimension.

For holomorphic disks with boundary or corners the same issue arises whenever u : D→
P factors as u = fg for some g : D→ S where f : S → P is nonconstant, and g maps over
every point of S with degree at least 2.

For holomorphic Whitney disks with boundary on a pair L1, L2 of Lagrangians this
problem can be solved by considering 1-parameter families Jt of almost complex structures
compatible with ω. Given Jt and a pair of points x, y ∈ L1 ∩ L2 we consider maps u :
R × [0, 1] → P with u(·, j) : R → Lj running from x to y for j = 0, 1, and for which
du(iv) = Jtdu(v) for v a tangent vector at the point (s, t). The time-dependence breaks
the symmetry of a multiple cover, and lets us achieve transversality; see Floer [7]. We will
essentially ignore this issue going forward.

Quotienting by the (discrete!) action of the mapping class group gives universal moduli
space MJ; quotienting further by holomorphic reparameterizations of the domain gives M̂J.
When g > 0 the action of the mapping class group on T(S) is not free, so that the quotient
MJ and its slices MJ may acquire orbifold singularities even if TJ and TJ are manifolds;
however, this is not an issue for genus 0 curves (or disks) and it does not come up in our
context.

5.4. Orientations of the moduli spaces.

5.5. Compactification and ∂2 = 0. Let’s now specialize to the case of P = SgΣ and a
pair Tα, Tβ of Lagrangians, and study the moduli spaces M(φ) and M̂(φ) for φ ∈ π2(x, y)
where x, y ∈ Tα ∩ Tβ. These moduli spaces have dimension µ(φ) and µ(φ)− 1 respectively,
ignoring the degenerate case of x = y and φ the constant map. The moduli spaces are
smooth of the correct dimension for generic (paths of) almost-complex structures Jt. When
µ(φ) = 1 so that dim M̂(φ) = 0, Gromov compactness implies that M̂ is compact; i.e. it
consists of a finite set of points.

When µ(φ) = 2 we must compactify M̂ with cusp curves. A priori there are three kinds
of degeneration to consider:

(1) sphere bubbling: a circle in D pinches and bubbles off a holomorphic sphere S;
(2) disk bubbling: an interval in D not separating i,−i pinches and bubbles off a

holomorphic disk D with boundary on Tα (say); or
(3) strip breaking: an interval in D separating i,−i pinches and D degenerates to a

pair of holomorphic disks in π2(x, z)× π2(z, y) for some intermediate z.
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For sufficiently large µ these degenerations may all occur, possibly multiple times.
However for µ(φ) = 2 we are in better shape. If a holomorphic sphere S pinches off we

have φ = S + φ′. Since S is holomorphic, it’s a positive multiple of the generator of π2,
and therefore c1[S] > 0, so that dim M̂(φ′) = µ(φ′)− 1 < 0, so this case will not occur.

Likewise, if a holomorphic disk D pinches off we have φ = θ + φ′ for θ ∈ π2(SgΣ, Tα)
(say). Since the inclusion of Tα in SgΣ is injective on π1, the loop ∂θ is homotopically trivial
in Tα, so we can cap off D with a disk E → Tα to make a sphere S. Since D is holomorphic
and E is Lagrangian, it’s still true that S is a positive multiple of the generator of π2, so
this case won’t occur either.

Finally, if φ degenerates to φ′ + φ′′ for φ′ ∈ π2(x, z) and φ′′ ∈ π2(z, y) then µ(φ) =

µ(φ′) + µ(φ′′), and since each of these must be at least 1 for M̂ to be nonempty, the only
possibility is that µ(φ′) = µ(φ′′) = 1 and the multiplicity of the degeneration is 1.

The conclusion is that M̂(φ) can be compactified to a 1-manifold with boundary, and that
the boundary points correspond to products of M̂ for classes φ′, φ′′ with µ(φ′) = µ(φ′′) = 1.

To prove that ∂2 = 0 one must argue the converse — that a pair of disks joining x to z
and z to y can be glued and then perturbed to produce a smooth disk joining x to y. This
is proved by Floer [6] Prop. 4.1 by modifying Taubes’ gluing construction for instantons
[19].

5.6. Dependence on Jt. We have now shown (modulo analytic details!) that the homol-
ogy groups ĤF (and for similar reasons the HF ∗) make sense, at least for a generic choice
of path Jt of compatible almost complex structures on SgΣ, and at least for b1(M) = 0.
The next step is to show that different generic choices of Jt produce isomorphic homology
groups.

Suppose Ji,t for i = 0, 1 are two paths of almost complex structures, giving rise to chain
complexes ĈF i, ∂i for i = 0, 1, and let Js,t be a 1-parameter family of paths interpolating
between them. For convenience we extend this to s ∈ R by Js,t = J0,t for s ≤ 0 and
Js,t = J1,t for s ≥ 1.

We can define a chain homotopy from the complex ĈF 0, ∂0 to ĈF 1, ∂1 by counting
holomorphic Whitney disks which are holomorphic with respect to Js,t; i.e. that satisfy
du(iv) = Js,tdu(v) for v a tangent vector at the point (s, t). For a class φ ∈ π2(x, y) let
M∗(φ) denote the space of Js,t-holomorphic Whitney disks from x to y, and let c∗(φ) denote
the signed count of points in M∗(φ) when µ(φ) = 0. Note that the s-dependence of Js,t
breaks the translational symmetry of M∗ so that M∗ = M̂∗.

Then we can define a chain map Φ : ĈF 0 → ĈF 1 by

Φ(x) :=
∑
y

∑
φ∈π2(x,y):µ(φ)=0,nz(φ)=0

c∗(φ)y

To see this is a chain map, consider moduli spaces M∗(φ) with µ(φ) = 1. These are 1-
dimensional, and their noncompactness arises only for families in which area escapes to
±∞. In either case a suitable sequence of translates converges to a nontrivial (translation-
invariant!) curve which is Ji,t holomorphic for one of i = 0, 1. In other words, M̂∗(φ)

(which is equal to M∗(φ)) is compactified by products of the form M̂0(φ1) ×M∗(φ2) and
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M∗(φ1)×M̂1(φ2) for factorizations φ1+φ2 = φ where each moduli space in the product is 0-
dimensional. The signed count of these boundary points gives the coefficients of ∂1Φ−Φ∂0

which are therefore zero.
To see that Φ induces an isomorphism in homology, define Φ̄ to be the chain map induced

by J1−s,t. Then the concatenation of Js,t and J1−s,t is a family of time-dependent almost
complex structures from J0,t to itself, and by interpolating between this family and the
constant family we obtain (as above) moduli spaces that induce a chain homotopy between
Φ̄Φ and the identity map on ĈF 0.

Analogous chain homotopies can be defined between CF∞i . These restrict to chain ho-
motopies between CF−i and induce chain homotopies between CF+

i , in every case inducing
isomorphisms on homology.

5.7. Exact Hamiltonian isotopies. If P is a symplectic manifold, the pairing on TP
induced by the symplectic form lets us canonically identify 1-forms with vector fields.
Thus a smooth function f determines a smooth vector field X := Xf by the identity
ω(Xf , ·) = df , and a family ft, t ∈ [0, 1] of smooth functions determines a family Xt := Xft

of smooth vector fields. This family defines a flow φ by dφ/dt = Xt, called an exact
Hamiltonian isotopy.

If L1, L2 are a pair of Lagrangians, it turns out under suitable circumstances that the
Intersection Floer homologies of the pairs L1, L2 and φ(L1), L2 are isomorphic when φ = φ1

for an exact Hamiltonian isotopy as above.
Let C∗(L1, L2) and C∗(φ(L1), L2) denote the Floer complexes generated by intersections

x ∈ L1 ∩ L2 and y ∈ φ(L1) ∩ L2 respectively. We want to count holomorphic disks from x
to y of a certain kind.

Extend the domain of φ to all of R by making it constant on t ≤ 0 and t ≥ 1. Let
ψ : [0, 1] × R → D − ±i be a conformal parameterization. Let M denote the space of
holomorphic disks u : D → P with u(−i) = x and u(i) = y, where uψ(0, t) ∈ L2 and
uψ(1, t) ∈ φt(L1).

These disks fall into subsets parameterized by their homotopy class, and we can define
the Maslov index µ of a homotopy class in the usual way, and the space of disks in a
homotopy class is a manifold of dimension µ.

The main new technical issue is to prove Gromov compactness. Since area is not constant
in a homotopy class, this is not automatic as before. Let u0 and u1 be two holomorphic
maps in the same homotopy class, and let U : D× [0, 1]→ P be a homotopy between them
through smooth maps with uψ(0, t) ∈ L2 and uψ(1, t) ∈ φt(L1). Since L2 is Lagrangian,
the difference in the areas of u0 and u1 is equal to the integral of ω over a map F : R× [0, 1]
where F (t, s) ∈ φt(L1).

Now, dF (∂s) is tangent to φt(L1) and dF (∂t) = Xt(F )+V where V is tangent to φt(L1).
Thus∫
R×[0,1]

F ∗ω =

∫
ω(Xt, dF (∂s))dt ds =

∫
〈dft, dF (∂s)〉dt ds =

∫
R
ft(F (t, 1))− ft(F (t, 0))dt

and therefore the difference in areas is bounded by
∫
t
sup ft− inf ft, which is finite because

f = 0 outside t ∈ [0, 1].
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It follows that the signed count of disks with µ = 0 is finite, and defines a map from
C∗(L1, L2) to C∗(φ(L1), L2). One shows under suitable circumstances (roughly as in § 5.6)
that this map is a chain map inducing an isomorphism in homology.

5.8. Stabilization. Invariance under stabilization of Heegaard splittings is much easier in
the hat version of HF .

5.9. Handle slides.

6. Computation and Examples

6.1. Knot Floer Homology.

6.2. Sutured Floer Homology.

6.3. Contact Floer Homology.

6.4. L-spaces.
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