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1. Fatou and Julia Sets

1.1. Schwarz Lemma and Montel’s Theorem.

1.1.1. Schwarz Lemma. The most important theorem in complex analysis is the

Theorem 1.1 (Schwarz Lemma). Let f : D → D be analytic with f(0) = 0. Then
|f ′(0)| ≤ 1 with equality if and only if f is a rotation.

Proof. Since f has a zero at 0, the function g(z) := f(z)/z on D − 0 has a removable
singularity at 0, and therefore extends to an analytic function on D. By the maximum
principle, |g| attains its maximum on ∂D where it is equal to |f |, so |g| ≤ 1 everywhere;
i.e. |f(z)| ≤ |z|. The inequality |f ′(0)| ≤ 1 follows.

On the other hand, also by the maximum principle, if |g| = 1 anywhere in D then |g| = 1
everywhere in D in which case g is constant of norm 1 (i.e. f is a rotation). Otherwise
|f(z)| < |z| on the closed disk of radius 1/2 (say), so that |f(z)| < (1− ε)|z| on that disk
for some positive ε, so that |f ′(0)| < 1. �

1.1.2. Hyperbolic surfaces. If f is a holomorphic automorphism of D fixing 0 then so is f−1;
since the product of the derivatives of f and f−1 at 0 is 1 it follows that f is a rotation.
The group Aut(D) acts transitively on D. For example,

z → z − α
1− ᾱz

is an automorphism taking α ∈ D to 0, with inverse z → (z + α)/(1 + ᾱz).
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Since the point stabilizers are compact and act transitively on the unit tangent circle at
a point, there is a unique Aut(D)-invariant Riemannian metric on D, up to scale — the
hyperbolic metric — usually normalized as

ds =
2|dz|

1− |z|2

We say a Riemann surface X is hyperbolic if its universal cover X̃ is uniformized by D.
Such an X inherits a unique hyperbolic metric from D. By the uniformization theorem, a
surface X is hyperbolic if and only if it is not isomorphic to one of the following:

(1) the Riemann sphere Ĉ := C ∪∞;
(2) C;
(3) C∗ := C− 0;
(4) a torus E := C/Λ for some Λ := {m+ nτ : m,n ∈ Z}, where =(τ) > 0.

Surfaces of type (3) and (4) are not simply-connected; their universal cover is isomorphic
to C.

Lemma 1.2. Any holomorphic map f : X → Y between hyperbolic surfaces is 1-Lipschitz
for their respective hyperbolic metrics, and is strictly contracting on compact subsets unless
it is a covering map (equivalently: a local isometry).

Proof. Lift f : X → Y to f̃ : D → D. For every p ∈ D let α, β ∈ Aut(D) be such that
α(0) = p and β(f̃(p)) = 0. Then g := βf̃α takes 0 to 0 so by the Schwarz Lemma,
|g′(0)| ≤ 1 with equality if and only if g ∈ Aut(D). Since α and β are isometries in the
hyperbolic metric, it follows that f̃ (and therefore also f) is 1-Lipschitz in the hyperbolic
metric, and is uniformly strictly contracting on compact subsets unless it is an isometry. �

Lemma 1.3. Let Y be hyperbolic and X non-hyperbolic Riemann surfaces. Then any
holomorphic f : X → Y is constant.

Proof. Lift f to f̃ : X̃ → D where X̃ is the universal cover of X. Since X is not hyperbolic,
X̃ is either C or Ĉ, so without loss of generality f̃ restricts to a bounded entire function
which is therefore constant. �

1.1.3. Normal families and Montel’s Theorem.

Definition 1.4 (Normal family). Let Ω ⊂ Ĉ be a domain (i.e. an open subset). A family
F of holomorphic functions from Ω to Ĉ is normal in Ω if every sequence fn ∈ F contains
a subsequence that converges uniformly on compact subsets of Ω.

A family F is normal at a point z if it is normal in some neighborhood of z.

Lemma 1.5. A family F is normal in Ω if and only if it is normal at each point of Ω.

Proof. One direction is clear. So suppose F is normal at each point of Ω. Cover Ω by
countably many compact subsets Dj. By compactness we may cover each Dj by finitely
many Uij so that F is normal in each Uij. Any sequence fn ∈ Ω has a subsequence that
converges uniformly on compact subsets of each Uij, so a further subsequence converges
uniformly on Dj. Thus a diagonal subsequence converges uniformly on every compact
subset of Ω, so that F is normal. �



NOTES ON COMPLEX DYNAMICS 3

‘Montel’s Theorem’ can refer to one of several related theorems that give sufficient (and,
sometimes, necessary) conditions for a family to be normal. We shall use the following
formulation:
Theorem 1.6 (Montel’s Theorem). Let Ω ⊂ Ĉ be a domain, let x, y, z ∈ Ĉ be three distinct
values, and let F be a family of holomorphic functions on Ω taking values in Ĉ−{x, y, z}.
Then F is normal.
Proof. The Riemann surface Ĉ−{x, y, z} is hyperbolic. If Ω is non-hyperbolic, then every
holomorphic map from Ω to Ĉ−{x, y, z} is constant, and the theorem is obvious. Otherwise
Ω is hyperbolic, so every holomorphic function to Ĉ−{x, y, z} is 1-Lipschitz in the respective
hyperbolic metrics. Thus F is equicontinuous on Ω so by Arzela–Ascoli F is normal on Ω
and the theorem is proved. �

If U, V are open domains in Ĉ and F is a normal family of holomorphic maps from U to
V , then the limit of a subsequence of F need not map U to V ; however it must map U to
V̄ .

1.2. Fatou and Julia sets.

1.2.1. Fatou and Julia sets. Every holomorphic f : Ĉ→ Ĉ is a rational map, i.e. it can be
written in the form

f(z) =
p(z)

q(z)
for complex polynomials p, q with no common factors. The degree of f is the maximum of
the degrees of p and q, and is equal to the number of preimages of any w ∈ Ĉ that is not
a critical value (i.e. not of the form f(z) for f ′(z) = 0). We shall restrict attention in the
sequel to the case that d ≥ 2.

Let f be a rational map. We denote by fn the map obtained by composing f with itself
n times; thus f 1 = f and if f has degree d, then fn has degree dn.

Definition 1.7 (Fatou and Julia sets). Let f : Ĉ→ Ĉ be a rational map, and let F be the
family consisting of f and all its iterates; i.e. F := {fn : n ∈ N}. The Fatou set F (f) is
the maximal open subset of Ĉ on which F is normal. The Julia set J(f) is the complement
of the Fatou set; i.e. J(f) := Ĉ− F (f).

Thus, a point z is in F (f) if and only if F is normal in some neighborhood of z. Equiv-
alently, z ∈ J(f) if and only if no infinite subsequence of iterates of f converges uniformly
on Ū for any neighborhood U of z.

A set X ⊂ Ĉ is completely invariant if f(X) = X and f−1(X) = X. Such sets can be
characterized in the following way. Given x ∈ Ĉ the grand orbit of x, denoted [x], is the
set of y ∈ Ĉ for which there are integers n and m with fn(x) = fm(y). Equivalently, if
we let ∼ be the smallest equivalence relation for which z ∼ f(z) for every z ∈ Ĉ, then the
grand orbit of x is the equivalence class of x under ∼. One sees immediately that X ⊂ Ĉ
is completely invariant if and only if it is a union of grand orbits. Hence (for instance) X
is completely invariant if and only if Ĉ−X is.

Furthermore, if X is completely invariant, then so is its closure X̄ and its derived set X ′
(i.e. its set of accumulation points).
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Example 1.8 (Exceptional points). A point x is exceptional if [x] is finite (and therefore
every element of [x] is exceptional too). It turns out that there are at most 2 exceptional
points. For, otherwise, let E be a finite set of exceptional orbits of cardinality > 2. Then
X := Ĉ − E is hyperbolic and therefore f : X → X is 1-Lipschitz and therefore area
non-increasing for the hyperbolic metric (which is finite). But this contradicts the fact
that the degree d ≥ 2.

It is rare for f to have any exceptional points. We may always conjugate f by an
automorphism of Ĉ so that one of the exceptional points is ∞ and the other (if it exists)
is at 0. Thus: either f is conjugate to a polynomial, or to a map of the form z → zd for
some d ∈ Z with |d| ≥ 2. Notice in every case that the exceptional points (if any) are in
F (f).

Lemma 1.9. The sets J(f) and F (f) are completely invariant.

Proof. It suffices to prove this for F (f), which amounts to showing that F is normal at z
if and only if it is normal at f(z). But this is obvious: f takes some small neighborhood
U of z to some small neighborhood f(U) of z by a branched cover of some degree, and
evidently F is normal on U if and only if it is normal on f(U). �

Now, because the degree of fn is dn, the family F can’t be equicontinuous on all of CP1;
thus J(f) is nonempty and, since it is completely invariant, it must be infinite.

Lemma 1.10. Let E be a closed completely invariant set. Then either |E| ≤ 2 or J(f) ⊂
E. In other words, J(f) is the minimal closed completely invariant subset with at least 3
points.

Proof. If |E| > 2 the complement Ω := Ĉ− E, which is open and completely invariant, is
also hyperbolic, so F|Ω is normal, and Ω ⊂ F (f). �

Lemma 1.11. J(f) is perfect.

Proof. If X is closed and completely invariant, then so is its derived set X ′ (i.e. the set of
limit points of X). Since J(f) is infinite, its derived set is nonempty. If it were finite, it
would be exceptional and therefore in F (f). Thus J(f) is equal to its derived set; i.e. it is
perfect. �

Lemma 1.12. Let f and g be rational maps that commute. Then J(f) = J(g). In
particular J(fn) = J(f) for all n.

Proof. Let z ∈ F (f). Then F is equicontinuous on some neighborhood U of z so gF is
equicontinuous on U so F is equicontinuous on g(U). Thus F (f) is g-invariant, and since it
is open and its complement contains at least three points, F (f) ⊂ F (g) and by symmetry
we are done. �

1.2.2. Periodic Orbits. A periodic orbit of order n is a finite set of distinct points zi for
i = 0, · · · , n − 1 so that f(zi) = zi+1 for all i, indices taken mod n. For each i the chain
rule says

(fn)′(zi) =
n−1∏
j=0

f ′(zj)
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We call this common value the multiplier, and denote it µ.
We say a periodic orbit is
(1) superattracting if µ = 0 (equivalently if some zi in the orbit is critical for f);
(2) attracting if 0 < |µ| < 1;
(3) indifferent if |µ| = 1; these are further distinguished into those that are

(a) rationally indifferent if µ is a root of unity; and
(b) irrationally indifferent if µ is not a root of unity;
and

(4) repelling if |µ| > 1.

Lemma 1.13. Every attracting and superattracting periodic orbit is in F (f).

Proof. If U is a sufficiently small open neighborhood of z0 (say), then fn(U) ⊂ U and
therefore V := ∪nfn(U) omits at least three points. But then F|U is normal. �

Conversely,

Lemma 1.14. Every repelling periodic orbit is in J(f).

Proof. The derivatives (fmn)′(z0) = µm are unbounded in norm, so F is not equicontinuous
on any neighborhood of z0. �

Indifferent periodic orbits might be in either the Julia or the Fatou set. However, we
have the following:

Lemma 1.15. Every rationally indifferent periodic orbit is in J(f).

Proof. After a change of coordinates we may let 0 be a rationally indifferent periodic point,
and then some power of f can be written near 0 in the form

fn(z) = z + a2z
2 + a3z

3 + · · ·
Since the degree of f is bigger than 1, there is some first non-zero coefficient am; i.e.
fn(z) = z + amz

m + o(zm), and then fkn(z) = z + kamz
m + o(zm) so that the mth

derivatives of fkn are not uniformly bounded near 0, so that 0 is in J(f). �

Lemma 1.16. J(f) is contained in the closure of the set of periodic orbits.

Proof. After replacing f by an iterate of f if necessary, we may assume the degree d ≥ 3.
Let z ∈ J(f) and let U be a small neighborhood of z. Since J(f) is perfect, we may
assume z is not a critical value for f . Thus there are at least three distinct preimages
of z under f , say z1, z2, z3 all distinct from z, contained in neighborhoods U1, U2, U3 with
disjoint closures all mapped homeomorphically to U by f 2.

For each w ∈ U let wi ∈ Ui be the corresponding preimage of w, and let φw : Ĉ → Ĉ
be the unique Möbius transformation taking w1, w2, w3 to ∞, 0, 1. Evidently φw are an
equicontinuous family, depending analytically on w. For each n define gn : U → Ĉ by
gn(w) := φwf

n(w), and let G := {gn}. Then G is normal on U if and only if F is. But by
definition of J(f), the family F is not normal on any neighborhood of any point in J(f),
and therefore G is not normal on U . It follows that there is some gn and some w ∈ U for
which gn(w) ∈ {∞, 0, 1}; equivalently, fn(w) = wi for some i. But then fn+1(w) = w so w
is in a periodic orbit, and J(f) is contained in the closure of the set of periodic orbits as
claimed. �
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1.2.3. Attracting basins. Let O := {z0, · · · , zn−1} be an attracting or superattracting peri-
odic orbit. The attracting basin B(O) of O is the set of points z so that fn(z) is eventually
contained in any open neighborhood U of O. Evidently B(O) is open; the connected com-
ponents containing O form the immediate basin. Note that if O,O′ are distinct periodic
orbits then B(O) and B(O′) are disjoint.

Lemma 1.17. Let B(O) be the attracting basin of a (super)-attracting periodic orbit O.
Then

(1) B(O) is totally invariant;
(2) B(O) ⊂ F (f);
(3) Components of B(O) are components of F (f).

Proof. That B(O) is totally invariant is immediate from the definition.
Let U be a hyperbolic open neighborhood of O with f(U) ⊂ U . Every z ∈ B(O) has a

neighborhood V which is mapped into U by some fn; thus every sufficiently large iterate
of f maps V into U , so V ⊂ F (f) by Montel.

Let A be a component of B(O) contained in a component B of F (f). Sufficiently
big iterates of fn converge uniformly on compact subsets of A to the constant map to
some zj ∈ O. Since B is connected and contained in F (f), these iterates must have a
subsequence that converges uniformly on compact subsets of B to the constant map to zj.
Thus B ⊂ B(O). �

Lemma 1.18. Let O be an attracting or superattracting periodic orbit. Then the immediate
basin of O contains some critical point. Hence there are at most 2d − 2 attracting or
superattracting periodic points.

Proof. If O is superattracting there is nothing to prove, so we suppose O is merely attract-
ing. Further, by replacing f by an iterate if necessary, we may assume O is an attracting
fixed point z of f . Let U be the immediate basin of z. We shall prove that U contains a
critical point.

Since U is equal to the component of F (f) containing z, the map f : U → U is proper.
If U contained no critical points, then f : U → U would be a covering map and therefore
a (local) isometry in the hyperbolic metric. Thus |f ′| would equal 1 at any fixed point,
contrary to the fact that |f ′(z)| < 1 at the attracting fixed point z. �

1.3. Indifferent periodic orbits.

1.3.1. Fatou’s Lemma. Let Na denote the number of attracting or superattracting periodic
orbits, and let Ni denote the number of indifferent periodic orbits. We have shown Na ≤
2d − 2. In fact, Shishikura [14] showed by the method of quasiconformal surgery that
Na + Ni ≤ 2d − 2, but a more elementary argument (due to Fatou, that we shall give
shortly) gives the weaker estimate Na +Ni/2 ≤ 2d− 2. Fatou shows that one may perturb
f to a nearby rational function fw in such a way that at least half of the indifferent periodic
points of f are perturbed to attracting periodic points offw. If the deformation is small
enough, the (super)attracting periodic points of f are approximated by (super)attracting
periodic points of fw, and therefore the estimate follows.

The perturbations Fatou considers are of the form
fw(z) := (1− w)f(z) + w
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where w = ρeiθ for some suitably chosen θ ∈ [0, 2π], and any ρ is real, positive, and
sufficiently small.

Lemma 1.19 (Fatou). For some w as above, at least half the indifferent periodic points of
f are perturbed to attracting periodic points of fw. Consequently Na +Ni/2 ≤ 2d− 2.

Proof. This proof is from Blanchard [8], Thm. 5.12.
Write F (z, w) := fw(z) = (1−w)f(z) +w and for each indifferent periodic point zi with

period ni and multiplier si, write Gi(z, w) := F ni(z, w) = z. Let Vi ⊂ C2 be the variety
defined by Gi(z, w) = 0. This is a variety because Gi is a rational function, so by clearing
denominators, the zero locus of Gi is equal to the zero locus of some polynomial.
Vi is 1-dimensional and not contained in the line w = 0 the projection of any sheet (near

(zi, 0)) to the w-line is locally an mi-fold branched cover. Thus (again, locally) on (some
sheet of) Vi we can write zi as an analytic function of an mith root wi := w1/mi . In other
words, for all sufficiently small wi, the point zi(wi) is a periodic point of F (·, wmii ) with
period ni. Define

si(wi) :=
∂F ni

∂z
(zi(wi), w

mi
i )

i.e. si(wi) is the multiplier of the periodic point zi(wi) of F (·, wmii ).
Choose a finite collection of indifferent periodic orbits (a posteriori we can choose all

of them), and let m be the least common multiple of the mi, and let vm = w so that
vm/mi = wi. Then for each i we can expand si(v) as

si(v) = si + aiv
ki + · · ·

Note that some (least) coefficient ai is nonzero, because as we analytically continue to
w = 1 the map fw converges uniformly (away from the poles of f) to the constant function
f1(z) = 1. We claim we can find an arbitrarily small v for which |si+aiv

ki| < 1 for at least
half the indices i; this will complete the proof.

If we fix θ and let v = ρeiθ for small positive ρ then for each zi we have arg(aiv
ki) =

arg(ai) + kiθ so the set of angles θ for which this argument points strictly inside the unit
circle at si has measure 1/2 (where the circle is normalized to have measure 1). Thus there
is a θ for which at least half these arguments simultaneously point strictly inside the unit
circle at their respective si, and we are done. �

Theorem 1.20 (Periodic Julia). The Julia set J(f) is the closure of the set of repelling
periodic orbits.

Proof. We have shown that J(f) is contained in the closure of the set of all periodic orbits.
Since J(f) is perfect, and there are only finitely many (super)-attracting or indifferent
periodic orbits, it follows that J(f) is contained in the closure of the set of repelling
periodic orbits. But every repelling periodic orbit is in J(f). �

Lemma 1.21. Let U be any open set intersecting J(f). Then Ĉ − ∪fn(U) is contained
in the set of exceptional points. Furthermore, for all sufficiently large n the image fn(U)
contains J(f).

Proof. If V := ∪fn(U) omits three points then F is normal on U , contrary to definition.
Thus Ĉ−V contains at most two points. If either of these points is not exceptional, it has
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an infinite backward orbit which meets V , thus this point is in V after all. This proves the
first claim.

Now let p ∈ U be a periodic repelling point. By replacing U by an even smaller open set
if necessary we may assume U ⊂ fn(U). By the previous argument there is m (a multiple
of n) with J(f) ⊂ fm(U). But then J(f) = fkJ(f) ⊂ fm+k(U) for all k. �

1.3.2. Petals. Let O be a rationally indifferent periodic orbit, and for simplicity, after
conjugating by translation, and replacing f by a power if necessary, we can assume f(0) = 0
and f ′(0) = 1. Thus we can write f(z) = z + azm+1 + · · · for some m ≥ 1. Conjugating
by z → αz for αm = a puts f in the form f(z) = z + zm+1 + · · · . For f in this form we
have the following lemma:

Lemma 1.22. Let 0 be a rationally indifferent fixed point of f with multiplier 1, and
suppose near 0 f has the form z → z(1 + zm + o(zm)). Then there are m petals Πk

homeomorphic to closed disks, each containing 0, and satisfying
(1) the Πk are pairwise disjoint except at 0;
(2) ∂Πk is real analytic except at 0 where it has a corner, and is tangent to the rays

arg(z) = 2πk/m and arg(z) = 2π(k + 1)/m;
(3) f maps each Πk inside itself, and fn converges uniformly to the constant function

to 0 on Πk;
(4) arg(fn(z)) converges to π(2k + 1)/m uniformly on compact subsets of Πk − 0; and
(5) |f(z)| < |z| on a neighborhood of the axis arg(z) = π(2k + 1)/m in Πk.

Proof. We claim that f is analytically conjugate on some neighborhood of 0 to something
of the form

f(z) = z(1 + zm + bz2m + cz2m+1 + · · · )
To see this, observe that the map z → z+bzr+1/(m−r) conjugates z+zm+1 +bzm+r+1 +· · ·
to z + zm+1 + b′zm+r+2 + · · · for some b′, and apply induction.

For each residue k mod m let Sk denote the open sector of the unit disk where arg(z) ∈
(2πk/m, 2π(k + 1)/m) and let σ : Sk → C be the map σ(z) = 1/zm. The image is the
open slit domain W ⊂ C consisting of z with |z| > 1 and z not positive real. Now define
g(z) := σfσ−1 which is well-defined and analytic on W . In terms of a local coordinate w
on W we can write

g(w) = w −m+ a/w + o(w−1)

for a suitable constant a, and where o(w−1) means a term arbitrarily small compared to
|w−1| when |w| is big.

Let Pt ⊂ W be the region y2 > 4t(x + t) bounded by a parabola. For sufficiently large
t, the map g takes Pt properly inside itself. Furthermore, g is topologically conjugate to a
translation on Pt, and in fact converges to the translation w → w −m where |w| � 1.

The preimage of Pt in Sk is the petal Πk. From the properties of g the lemma follows. �

1.3.3. Parabolic components.

Definition 1.23. An f -invariant component U of F (f) is parabolic (or a Leau domain) if
there is a rationally indifferent fixed point z in ∂U and if fn converges on U to the constant
map to z.
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Lemma 1.24. Every petal is contained in a parabolic component. Conversely, if U is a
parabolic component with rationally indifferent fixed point z ∈ ∂U , and Πk are petals for z,
there is a unique Πk in U , and for every z ∈ U we have fn(z) ∈ Πk for sufficiently large n.

Proof. After conjugation and passing to a power of f if necessary we may assume our
rationally indifferent fixed point is 0 and f(z) = z + azm+1 + · · · . Note that f−1(z) =
z − azm+1 + · · · is also rationally indifferent on a neighborhood of 0 (where it is defined).
Let Πk be petals for f , and for sufficiently small t, let S ′k be sectors of the disk Dt(0)
(contained in petals for f−1 and contained in a neighborhood of the axes of these petals)
so that |f−1(z)| < |z| throughout each S ′k and so that Dt(0) ⊂ ∪Πk ∪ S ′k.

If U is the component of F (f) containing Πk then since fn converges to 0 on Πk the
same is true on U (by normality); thus U is parabolic.

Conversely, for any parabolic component containing 0, and for z ∈ U there is some n
so that 0 < |fn+1(z)| < |fn(z)| < t so that fn(z) is not in any S ′j, and is therefore in Πj

for some j. In other words, for every z ∈ U we have fn(z) ∈ Πj for some j and for all
sufficiently large n. But the Πk are disjoint and forward-invariant, so a parabolic domain
can contain at most one of them. �

Parallel to Lemma 1.18 we have

Lemma 1.25. Every parabolic cycle contains a critical point.

Proof. By replacing f by an iterate if necessary we may assume U is an f -invariant parabolic
domain. Since f : U → U is proper, if U contained no critical points, it would be a covering
map hence a local isometry in the hyperbolic metric.

But in fact we claim that for any compact K ⊂ U the hyperbolic diameter of fn(K)
converges to infinity. To see this we fix coordinates and notation as in Lemma 1.22 and
let V ⊂ U by taken by σ to a half-space H := {z : real(z) < C << 0} and such that
σ conjugates f on V to g : w → w − m + a/w + o(w−1) on H. Every compact K ⊂ U
has an iterate that lands in V , and by the Schwarz Lemma the hyperbolic metric on V
dominates the restriction of the hyperbolic metric on U , so we just need to show that
for any compact K ′ ⊂ H the diameter of gn(K) in the hyperbolic metric on H goes to
zero. But g asymptotically preserves the Euclidean metric deep in H, and the ratio of the
Euclidean to the hyperbolic metric in H is equal to the (Euclidean) distance to ∂H. The
claim follows. �

1.4. Siegel disks and Herman rings.

1.4.1. Siegel disks. Let O be an irrationally indifferent periodic orbit, and again after
conjugation and replacing f by an iterate if necessary, let’s suppose f(0) = 0 and f ′(0) = µ
where µ = e2πiα for some irrational α.

Lemma 1.26. The following are equivalent for 0 an irrationally indifferent fixed point of
f with multiplier µ.

(1) 0 is in the Fatou set F (f);
(2) f is linearizable at 0 — i.e. it is analytically conjugate to z → µz on a neighborhood

of 0;
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(3) 0 ∈ F (f), and the component U of F (f) containing 0 is an open disk on which f
is analytically conjugate to z → µz on D.

Proof. Evidently (2) implies (1), and (3) implies both (1) and (2), so we just show that (1)
implies (3).

The map f takes U to itself and lifts to the universal cover f̃ : Ũ → Ũ fixing some lift 0̃
of 0. Since U is hyperbolic, Ũ is isomorphic to D; and since the derivative of f̃ at 0̃ is µ,
by the Schwarz Lemma, f̃ on Ũ is analytically conjugate to an irrational rotation z → µz
on D. In particular, f : U → U is a local isometry in the hyperbolic metric.

We claim U = Ũ ; i.e. U is simply-connected. For if not, there is some finite set of
shortest nontrivial geodesics from 0 to itself, and this set would be taken to itself by f ,
contrary to the fact that α is irrational. �

Definition 1.27. An irrationally indifferent fixed point z is called a Siegel point if f is
linearizable at z, and a Cremer point otherwise. A component of F (f) containing a Siegel
point is called a Siegel disk.

There are some irrational α for which there exist both Siegel and Cremer points (of
different f) with multiplier e2πiα. However, Cremer [10] and Siegel [15] gave sufficient
conditions in terms of α alone to guarantee that the point is a Cremer point resp. a Siegel
point.

Theorem 1.28 (Cremer [10]). Let z be an irrationally indifferent fixed point of f of degree
d with multiplier e2πiα. If there is a sequence of n for which the dnth roots of |1 − µn|
converge to 0 then f is not linearizable at z.

Proof. After conjugation by a Möbius transformation we can put the indifferent fixed point
at 0, and (because this is a simple fixed point) we can arrange for f(∞) = 0. It follows that
we can write f as a rational function p(z)/q(z) where the degree of q is d and the degree
of p is strictly less than d. Conjugation by a dilation z → λz multiplies the zj coefficient
of a polynomial by λj−1 so we can arrange for p and q to be of the form

p(z) = µz + a2z
2 + · · ·+ ad−1z

d−1, q(z) = 1 + b1z + · · ·+ zd

For any n we can write fn in the form fn(z) = pn(z)/qn(z) where

pn(z) = µnz + · · ·+ cnz
dn−1, qn(z) = 1 + · · ·+ zd

n

A periodic point of f of order n is a solution of fn(z) = z which is a root of a polynomial
of the form

zqn(z)− pn(z) = z(zd
n

+ · · ·+ (1− µn))

The product of the nonzero roots of this polynomial is ±(1 − µn); since there are dn of
them, there is at least one root of absolute value less than or equal to the dnth root of
|1 − µn|. Thus under the stated conditions on µ there are periodic points of f arbitrarily
close to z, so that f is not linearizable at z. �

Note that the set of irrational α ∈ [0, 1] satisfying the hypothesis of Cremer’s theorem
is the intersection of a countable collection of open dense sets. Thus it is residual in the
sense of the Baire category theorem.

A much deeper theorem is due to Siegel:
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Theorem 1.29 (Siegel [15]). Let z be an irrationally indifferent fixed point of f with
multiplier e2πiα. Suppose there are positive constants a, b > 0 so that |α − p/q| > a/qb for
all p, q ∈ Z with q ≥ 1. Then f is linearizable at z.

Proof. This proof is due to Carleson and Gamelin [9], Thm. II.6.4. Without loss of gener-
ality we let the fixed point be 0. We want to find an injective holomorphic map φ, defined
in a neighborhood U of 0, with φ(0) = 0 and φ′(0) = 1 and solving

(1.1) φ−1fφ(z)− µz = 0

For any function of the form ξ(z) := λz + O(z2) we will write ξ̄(z) := ξ(z) − λz; i.e. ξ̄
denotes the part of ξ of order ≥ 2. Thus f̄(z) = f(z) − µz, likewise φ̄(z) = φ(z) − z and
so on. With this notation Equation 1.1 becomes

(1.2) f̄(φ(z)) = φ(µz)− µφ(z) = φ̄(µz)− µφ̄(z)

and we are trying to find φ for which the conjugate g := φ−1fφ satisfies ḡ = 0.
We find such a φ iteratively and we will consider that we have made progress if ḡ is

‘smaller than’ f̄ in a suitable sense. The nonlinear term in the argument of f̄ makes it
hard to solve Equation 1.2 directly, so the iteration procedure is to have φ solve the simpler
equation

(1.3) φ̄(µz)− µφ̄(z) = f̄(z)

For such a φ we have

ḡ(z) + φ̄(µz + ḡ(z)) = µφ̄(z) + f̄(z + φ̄(z))

and therefore by Equation 1.3

(1.4) ḡ(z) = φ̄(µz)− φ̄(µz + ḡ(z)) + f̄(z + φ̄(z))− f̄(z)

If we write f(z) = µz +
∑

n>1 bnz
n then the solution to Equation 1.3 is

(1.5) φ̄(z) =
∑
n>1

bn
µn − µ

zn

The diophantine condition |α − p/q| > a/qb is equivalent to |µn − 1| > cn−β for some c
and for β = b− 1. At the cost of changing the constant c, let’s rewrite this as

1

|µn − 1|
<
cnβ

β!

Furthermore, let’s suppose there are constants δ > 0 and r > 0 for which we have
estimates of the form

(1.6) |f̄ ′(z)| ≤ δ for |z| < r

from which it follows by Cauchy’s estimate that |bn| ≤ δ/nrn−1. Note that by choosing
r small enough we can assume δ is as small as we like because f̄(z) = O(z2), so we can
certainly find small ε so that cδ < εβ+2 and δ < ε.

Let’s estimate |ḡ′(z)|. From Equation 1.5 we have

|φ̄′(z)| ≤
∑
n>0

n|bn|
|µn − µ|

|z|n−1 ≤ cδ

β!

∑
nβ(|z|/r)n
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so we have

(1.7) |φ̄′(z)| ≤ cδ

β!

∑
nβ(1− ε)n ≤ cδ

εβ+1
for |z| < (1− ε)r

so if cδ < εβ+2 then |φ̄′| ≤ ε in the disk of radius (1− ε)r. From this and |f̄ ′| ≤ δ < ε one
easily sees that ψ maps the disk of radius (1 − 4ε)r into the disk of radius (1 − 3ε)r, and
g maps the disk of radius (1− 4ε)r into the disk of radius (1− ε)r.

Let D denote the disk of radius (1 − 4ε)r and E the disk of radius (1 − ε)r, and for a
function on either disk denote its maximum by | · |D or | · |E respectively. From Equation 1.4
it follows that

(1.8) |ḡ|D ≤ |φ̄′|E|ḡ|D + |f̄ ′|E|φ̄|D ≤ ε|ḡ|D + δ|φ̄|D
By Equation 1.7 the map φ̄′ takes the disk of radius (1−ε)r to the disk of radius cδ/εβ+1.

Furthermore it vanishes at the origin. Thus by the Schwarz Lemma

|φ̄′(z)| ≤ |z|cδ
(1− ε)rεβ+1

throughout E so integrating gives |φ̄|D ≤ (1/2)cδ(1 − 3ε)r/εβ+1. Substituting in Equa-
tion 1.8 gives |ḡ|D ≤ (1/2)cδ2r/εβ+1 and therefore by Cauchy’s estimate (applied to balls
of radius rε completely contained in D) we obtain the inequality

(1.9) |ḡ′(z)| ≤ 1

2

cδ2

εβ+2
≤ 1

2
δ for |z| < (1− 5ε)r

Comparing this to Equation 1.6 we see that the bound on the derivative has gone down by
a factor of 2 after one iteration, at the cost of reducing the radius by a factor of (1 − 5ε)
subject only to the inequalities cδ < εβ+2 and δ < ε. So we can perform the substitution
δ → δ/2 and ε → ε/21/(β+2) and iterate. Thus we obtain a sequence of (holomorphic)
conjugacies from f to functions gn that converge uniformly to z → µz on some disk of
radius r

∏
(1− 5ε/2n/(β+2)) > 0. �

The α ∈ [0, 1] satisfying the hypothesis of Theorem 1.29 have full measure. We shall
state (but not prove) a sharpening of these results due to Brjuno and Yoccoz in § 3.2.

1.4.2. Herman rings.

Definition 1.30. A Herman ring is an annular component U of F (f) on which f is
holomorphically conjugate to an irrational rotation.

Herman rings can occur; we shall see some examples in the sequel. But not for polyno-
mials:

Lemma 1.31. Let f be a polynomial. Then F (f) contains no Herman rings.

Proof. Let γ be an f -invariant circle which is the core of a Herman ring, on which f acts
as an irrational rotation. Let D be the disk bounded by γ not containing ∞. Since f is a
polynomial, f(D) is bounded, and by the maximum modulus principle f(D) = D. Since
f has degree 1 on ∂D it has degree 1 on D; i.e. f : D → D is an isomorphism. But then
D is contained in a Siegel disk. �
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Siegel disks and Herman rings do not contain critical points, so they admit no direct
analog of Lemma 1.18 or Lemma 1.25. However one does have the following:

Lemma 1.32. If U is a Siegel disk or Herman ring then ∂U is contained in the closure of
the forward images of the critical points.

Proof. The map f is invertible on U . Denote its inverse on U by g := (f |U)−1. Suppose
there is z ∈ ∂U contained in a small disk D that does not contain a forward image of any
critical point. Thus g and (by induction) all its iterates extend to D, and fngn is equal to
the identity on D for all n.

We claim that G := {gn} is normal on D. To see this, let A and B be two disjoint cycles
for f , each with at least 3 points. If z ∈ D − A then no gn(z) ∈ A or else fngn(z) ∈
A ∩ (D − A) = ∅, so G is normal in D − A, and for the same reason in D −B, thus in D.

Now, g|U is an irrational rotation, so there is some sequence of iterates gni that converges
uniformly to the identity on U . It follows that a further subsequence converges uniformly
to the identity on D. Thus there is some smaller disk z ∈ E ⊂ D and a subsequence of
iterates fni(E) ⊂ D. But this contradicts Lemma 1.21. �

1.5. Classification of invariant components.

Theorem 1.33 (Classification of Invariant Components). Let U be an invariant component
of F (f). Then U is one of the following:

(1) a super-attracting component;
(2) an attracting component;
(3) a parabolic component;
(4) a Siegel disk; or
(5) a Herman ring.

All five possibilities can occure for rational maps f . We shall prove this theorem shortly,
but first we prove some lemmas.

Let U be forward invariant, and suppose G is the set of analytic functions on U that are
(locally uniform) limits of subsequences of fn|U .

Lemma 1.34. Suppose g ∈ G is the constant function to some ζ. Then ζ ∈ U and ζ is
fixed by f .

Proof. Since U is f -invariant, any limit must take U to U proving the first claim. By
definition of G, there is convergence fni(z) → ζ for some sequence ni, locally uniform in
U . But then

f(ζ) = f(lim fni(z)) = lim fni(f(z)) = ζ

�

Lemma 1.35. Suppose g ∈ G is the constant function to ζ ∈ U . Then ζ is attracting or
super-attracting and U is an attracting or super-attracting component.

Proof. If ζ ∈ U then there is ζ ∈ V ⊂ U with fni(V ) ⊂ V for some ni. But then by the
Schwarz Lemma |(fni)′(ζ)| < 1. �

Lemma 1.36. Suppose every g ∈ G is constant. Then G consists of exactly one function,
and therefore fn converges locally uniformly in U to some ζ ∈ U .
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Proof. Suppose G consists of the constant functions to some ζj, necessarily all in ∂U (or
we could apply the previous lemma). Note that every ζj is necessarily indifferent, so there
are only finitely many ζj, and we choose finitely many disjoint open neighborhoods Vj of
the ζj.

Let K ⊂ U be compact, and by enlarging it if necessary suppose K ∩ f(K) is nonempty,
so that L := ∪fn(K) is connected. Then fn(L) is eventually contained in ∪Vj or else
we could find an element of G converging on K to some new ζ ′. But L is connected, so
fn(L) ⊂ Vj for some specific j, and therefore fm(K) ⊂ Vj for all m ≥ n. This shows G

consists only of the constant function to a single ζ = ζj, and therefore fn converges locally
uniformly on U to ζ. �

Lemma 1.37. Suppose fn converges locally uniformly on U to ζ ∈ ∂U . Then ζ is rationally
indifferent, and U is a parabolic component.

Proof. By conjugation we can assume ζ = 0, and let µ be the multiplier. Note |µ| = 1.
Let W be the interior of the set fn(L) defined in the previous lemma, so that W ⊂ U

is connected and forward invariant, and contained in a neighborhood V of 0 where f is
injective. Fix w ∈ W and define φn(z) := fn(z)/fn(w) for z ∈ W . We claim {φn} is a
normal family in W . Since f is injective in W , no function φn takes the values 0, 1 or ∞
on W − z, so {φn} is certainly normal on W − w. To show it is normal near w, let D be
a small round disk around w. Then {φn} is normal in a neighborhood of ∂D so there is
a subsequence φnj that converges on ∂D. Thus |φnj | is uniformly bounded on ∂D and by
the maximum principle the same is true on D; this proves the claim.

Thus φn contains some subsequence that converges locally uniformly on W to a limit
φ which evidently satisfies φ(f(z)) = µφ(z). Because the φn are injective, the limit φ is
either injective or constant. Since φ(w) = 1, if φ is constant it is equal to 1 everywhere,
which shows µ = 1.

Otherwise φ is injective, so there is a small round disk D around w for which |φ(z) −
φ(w)| > ε when z ∈ W −D. But φ(fn(w)) = µnφ(w) = µn so because |µ| = 1 there are ni
with φ(fni(z)) → 1. Furthermore, fni(z) → 0 so we obtain a contradiction, and see that
φ is constant after all. �

We now give the proof of Theorem 1.33.

Proof. The theorem is proved (and we are in one of cases (1)–(3)) unless G contains a
non-constant function g. We first show g(U) ⊂ U . To see this, let w ∈ U be arbitrary and
let D ⊂ U be a small closed disk around w for which g(z) − g(w) has no zeroes on ∂D.
By the definition of g there is n for which fn(z)− g(w) is arbitrarily close to g(z)− g(w)
on ∂D and therefore by Rouché’s theorem, fn(z) − g(w) and g(z) − g(w) have the same
(finite, positive) number of zeros on D. Thus there is z ∈ D with fn(z) = g(w) so that
g(U) ⊂ U .

Now suppose ni are such that fni → g, and by passing to a further subsequence if
necessary, we can assume that mi := ni+1 − ni increase without bound. There is a further
subsequence so that fmi → h ∈ G and then

hg(z) = lim fmi(fni(z)) = lim fni+1(z) = g(z)
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Since g is non-constant, h must be the identity on g(U) and therefore on all of U . This
implies that f : U → U is both injective and surjective, or else h couldn’t be.

It follows that f is an isometry of U in its hyperbolic metric, and furthermore that fn
has a subsequence converging to the identity. This implies that U is conformally either an
annulus or a disk, and f is (in either case) conjugate to an irrational rotation. �

2. No Wandering Domains

Let f be a rational map of the Riemann sphere of degree d ≥ 2. A component U of
the Fatou set is said to be eventually periodic if there is a nonnegative integer m so that
fm(U) is periodic (i.e. there is a positive integer n so that fn+m(U) = fm(U)). Eventually
periodic components are essentially classified by Theorem 1.33. A component U which is
not eventually periodic (i.e. such that the components fn(U) are all distinct) is said to be
wandering.

Thus the final piece in the classification theorem for components of F (f) is Sullivan’s
celebrated

Theorem 2.1 (Sullivan; No Wandering Domains). Let f be a rational map of Ĉ. Then
every component of F (f) is eventually periodic.

This is [17], Thm. 1. We give a streamlined proof written down by Zakeri using sub-
stantial simplifications due to Baker and McMullen.

2.1. Reduction to simply-connected domains.

Lemma 2.2 (Baker). Suppose U ⊂ F (f) is a wandering domain. Then fn(U) is simply
connected for n� 1.

Proof. Let Un := fn(U) and for the sake of argument let ∞ ∈ U . Since f has only finitely
many critical points, by replacing U by some Un if necessary, we may assume that each
fn : U → Un is a covering map. Since the Un are disjoint, the spherical areas area(Un)→ 0.
Since F|U is normal, any limit is constant, so the spherical diameters diam(fn(K)) → 0
for all compact K ⊂ U .

Let γ ⊂ U be any loop, and let γn = fn(γ). This might be immersed; let Bn be the subset
of C bounded by γn. Then diam(γn)→ 0 so also diam(Bn)→ 0, and because Ĉ is compact,
diam(f(Bn)) → 0 in the spherical metric. But since ∂f(Bn) ⊂ γn+1 ⊂ Un+1 ⊂ C − U it
follows that f(Bn) does not contain ∞ for big n. Thus eventually f(Bn) ⊂ Bn+1 so F|Bn

have range disjoint from some neighborhood of infinity. But then F|Bn is normal, so
Bn ⊂ F (f) and therefore γn is null-homotopic in Un. Since f : U → Un is a covering map
it follows that γ is null-homotopic in U . Since γ was arbitrary, U is simply-connected and
the lemma is proved. �

2.2. Quasiconformal deformations. Sullivan’s theorem depends on the theory of qua-
siconformal deformations, as developed chiefly by Ahlfors and Bers in the 1960s. We give
a very brief introduction to this subject, as we will use it extensively in the sequel. For
details see e.g. Ahlfors [1].

If z := x + iy is a local holomorphic coordinate on a Riemann surface S then we have
dz := dx + idy and dz̄ := dx − idy. These complex-valued smooth 1-forms are dual to
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(complex valued) vector fields ∂z := (1/2)(∂x− i∂y) and ∂z̄ := (1/2)(∂x+ i∂y). Here ‘vector
fields’ can be interpreted as (complex valued) derivations on smooth functions on S. We
also write ∂ for ∂z and ∂̄ for ∂z̄ and for a smooth complex-valued function ϕ we write
ϕz = ∂zϕ = ∂ϕ and ϕz̄ = ∂z̄ϕ = ∂̄ϕ. The Cauchy-Riemann equations say that ϕ is
holomorphic iff ϕz̄ = 0.

Define the Beltrami differential µϕ (or just µ if ϕ is understood) to be the differential
form

µ := µ(z)
dz̄

dz
=
ϕz̄dz̄

ϕzdz
In terms of a different local holomorphic coordinate w we have

µ(z)
dz̄

dz
= µ(w)

dw̄

dw
so µ(z) = µ(w)e2iθ

where θ is the argument of dz/dw. Thus |µ(z)| is independent of a choice of local holo-
morphic coordinate.

The Jacobian of ϕ satisfies J(f) = |ϕz|2 − |ϕz̄|2. If ϕ is an orientation-preserving diffeo-
morphism on a domain U then |µ| < 1 there.

Example 2.3. Any real linear map from C to C has the form T : z → αz + βz̄ for unique
complex numbers α, β. For such a map µ = β/α so we could alternately write T : z →
α(z + µz̄); i.e. T is the composition of the ‘stretch’ map z → z + µz̄ with a dilation.

For any smooth orientation-preserving diffeomorphism ϕ with Beltrami differential µ,
the image of an infinitesimal round circle at p is an infinitesimal ellipse at ϕ(p) whose
major and minor axes have lengths in the ratio K(p) := (1 + |µ(p)|)/(1 − |µ(p)|). The
function K is also called the dilatation of ϕ.

Definition 2.4 (Quasiconformal Diffeomorphism). If ϕ is an orientation-preserving dif-
feomorphism on some domain with Beltrami differential µ, then if the supremum K of
(1 + |µ|)/(1− |µ|) on the domain is finite, we say ϕ is K-quasiconformal.

It is important to extend this definition to orientation-preserving homeomorphisms which
are not necessarily smooth.

Definition 2.5 (Quasiconformal Homeomorphism). A quadrilateral Q in an open domain
U is a subset homeomorphic to a closed disk, together with a choice of four points in ∂Q
called the vertices. The modulus of Q, denoted K(Q) ≥ 1, is the ratio of the edge lengths
of a Euclidean rectangle R for which there is a homeomorphism Q→ R, conformal in the
interior, and taking vertices to vertices.

An orientation-preserving homeomorphism ϕ : U → C is K-quasiconformal if, for every
quadrilateral Q ⊂ U with modulus 1, the image ϕ(Q) has modulus ≤ K. It is quasicon-
formal on U if it is K-quasiconformal for some K.

Quasiconformal maps enjoy the following properties:
(1) (Locality): A map ϕ is K-quasiconformal on U iff for every p ∈ U it is K-

quasiconformal on some open neighborhood of p in U .
(2) (ACL): A K-quasiconformal map ϕ is absolutely continuous on lines. This means

for every rectangle R ⊂ U , for almost every horizontal (or vertical) line I ⊂ R, the
real and imaginary parts of ϕ = f + ig are absolutely continuous on I; i.e. for all
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ε > 0 there is a δ > 0 so that if [aj, bj] ⊂ I are a finite set of disjoint intervals with
total length < δ, then

∑
|f(bi)− f(ai)| < ε and similarly for g.

(3) (Beltrami differential): If ϕ is K-quasiconformal on U , the derivatives ϕz and
ϕz̄ are defined a.e. in the sense of distribution, and µϕ := ϕz̄/ϕz is a measurable,
essentially bounded complex-valued function on U . Furthermore,

1 + ‖µ‖∞
1− ‖µ‖∞

≤ K

(4) (Regularity): A smooth map is K-quasiconformal in the sense of Definition 2.4
if and only if it is K-quasiconformal in the sense of Definition 2.5. An orientation-
preserving homeomorphism is conformal (and therefore smooth) if and only if it is
1-quasiconformal.

See e.g. Ahlfors [1] or Lehto [12] for proofs.

Definition 2.6. A Beltrami differential is a differential µ := µ(z)dz̄/dz on a domain U ⊂ C
where µ(z) is measurable, and the ess. sup. ‖µ‖∞ is finite.

Since |µ(z)| is independent of the choice of local holomorphic coordinate, we may define
Beltrami differentials on any Riemann surface S. The space of Beltrami differentials on S
is a complex Banach space with respect to the ess. sup. norm, and is denoted B(S).

The measurable Riemann mapping theorem (see [2] for a proof) says the following:

Theorem 2.7 (Measurable Riemann mapping theorem). Let µ ∈ B(Ĉ) be a Beltrami
differential on Ĉ with ‖µ‖∞ < 1. Then there is a unique orientation-preserving quasicon-
formal homeomorphism ϕ : Ĉ → Ĉ with µϕ = µ and fixing 0, 1,∞ (one says such a ϕ is
normalized). Furthermore, for each z the value of ϕ(z) depends holomorphically on µ.

The existence and uniquenss of ϕ is due to Morrey; the holomorphic dependence on
parameters is due to Ahlfors-Bers.

Beltrami differentials pull back under holomorphic maps and push forward under holo-
morphic isomorphisms. Thus, if U is a wandering domain for f , and fn : U → Un is an
isomorphism for all positive n, we may construct an f -invariant Beltrami differential µ (i.e.
f ∗µ = µ) on Ĉ by defining it however we like on U , pulling it back to preimages f−nU and
pushing it forward to Un, and then extending it by 0 on the rest of Ĉ. Let B(Ĉ)f denote
the f -invariant Beltrami differentials on Ĉ.

If µ is f -invariant then so is tµ for all t ∈ [0,∞). For each t for which ‖tµ‖∞ < 1 let ϕt
be the normalized quasiconformal homeomorphism of Ĉ associated to tµ by Theorem 2.7,
and let ft := ϕtfϕ

−1
t . Then by the chain rule, ft is 1-quasiconformal and is therefore a

rational map of the same degree as f . Furthermore, the map t → ft is holomorphic in t
(by Ahlfors-Bers), and its derivative at zero ḟ therefore lies in TfRatd, the (holomorphic)
tangent space at f to the space Ratd of rational maps of degree d. Summarizing, we get a
sequence of linear maps

B(U)→ B(Ĉ)f → TfRatd

2.3. Completion of the proof. The idea of the proof is now rather easy to explain. The
space B(U) is evidently infinite dimensional, whereas TfRatd is finite dimensional (it has
complex dimension 2d − 2). The proof of Theorem 2.1 will therefore be completed if we
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can show that the existence of a wandering domain U implies the existence of a subspace
of B(U) whose image in TfRatd has arbitrarily large dimension.

The first step is to analyze Beltrami differentials for which ḟ = 0. Let v be the vector
field on Ĉ obtained by differentiating ϕt; i.e. v(z) := d/dt|t=0ϕt(z) for all z. Because the
ϕt(z) are normalized, ϕt(z) = z + tv(z) + o(t) and therefore vz̄ = µ.

Lemma 2.8. Suppose ḟ = 0. Then v vanishes on J(f).

Proof. We compute

ḟ =
d

dt
|t=0ft(z) =

d

dt
|t=0ϕtfϕ

−1
t = v(f(z))− f ′(z)v(z)

Therefore ḟ = 0 if and only if v(f(z)) = f ′(z)v(z) for all z. But this implies that v vanishes
on any periodic orbit with multiplier not equal to 1, in particular on any repelling periodic
cycle. Since periodic repelling cycles are dense in J(f), the lemma follows. �

This Lemma is the infinitesimal analog of Sullivan [17], Prop. 5 which says that the group
of homeomorphisms of J(f) commuting with f is totally disconnected (this is obvious
because such a homeomorphism must permute the finite set of points that are periodic
with period diving any fixed n; thus the homeomorphism group injects into an infinite
product of finite permutation groups). A quasiconformal map ϕ conjugating f to itself
must induce a homeomorphism of J(f) to itself, commuting with f ; thus a 1-parameter
family ϕt for which ft = f must fix J(f) pointwise.

Any compactly supported quasiconformal homeomorphism of U extends to an f -equi-
variant homeomorphism of Ĉ that commutes with f ; thus we need to find (families of)
homeomorphism(s) that act nontrivially on ∂U . Now, U is simply-connected, and (because
J(f) has more than two points) is holomorphically isomorphic to the open unit disk D. If
µ ∈ B(D) has ‖µ‖∞ < 1 we may extend µ outside D however we like (without increasing the
norm) and solve the Beltrami equation, obtaining ϕ with ϕz̄/ϕz = µ on D. Postcomposing
with a holomorphic isomorphism ϕ(D)→ D gives rise to a quasiconformal homeomorphism
φ : D → D with φz̄/φz = µ. Any family G of real analytic diffeomorphisms of ∂D are the
boundary values of some family G′ of (real analytic) quasiconformal diffeomorphisms of
D associated in this way to Beltrami differentials in B(D); identifying B(D) with B(U)

therefore gives rise to a family of quasiconformal homeomorphisms of Ĉ that act nontrivially
on ∂U (which may be compared with ∂D via Caratheodory’s theory of prime ends). So
choosing G of dimension > 2d− 2 completes Sullivan’s argument; see [17], § 9.

McMullen gave an elegant infinitesimal version of this argument that avoids the use of
prime ends. Here it is.

Let N ′ ⊂ B(D) be the space of Beltrami differentials on D of the form p(z̄)dz̄/dz for
some polynomial p. The vector field

vk(z) := z̄k+1∂z on D, vk(z) = z−(k+1)∂z on Ĉ− D

is quasiconformal on Ĉ with (vk)z̄ = (k+ 1)z̄kdz̄/dz on D and zero on Ĉ−D. Therefore, if
V denotes the linear span of the vk, for any µ ∈ N ′ there is a unique v ∈ V with vz̄ = µ on
D. On the other hand, if w is any other vector field on D with wz̄ = µ on D and w|∂D = 0
then v − w is holomorphic on D and agrees with v on ∂D. But from the form of the vk,
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the unique meromorphic extension to D of v|∂D has a pole at zero unless v = 0 in which
case also µ = 0.

Now let N ⊂ B(D) be the space of Beltrami differentials that agree with some element
of N ′ on the disk of radius 1/2 and are zero elsewhere. If vz̄ = µ on D and v|∂D = 0 for
µ ∈ N then v is holomorphic on the annulus 1/2 < |z| ≤ 1 and since v|∂D = 0 we must
have v identically zero on this annulus, and hence v = 0 on |z| = 1/2. Reasoning as above,
µ = 0. In short:

Lemma 2.9. There is an infinite dimensional space N ⊂ B(D) of Beltrami differentials µ
compactly supported in the interior of D so that if vz̄ = µ on D and v|∂D = 0 then µ = 0.

Now let ψ : U → D be a conformal isomorphism, and define N(U) := ψ∗N for N as
above. Let µ ∈ N(U) and let v be a quasiconformal vector field on Ĉ with vz̄ = µ on U and
v|∂U = 0. Then ψ(v) is a vector field on D which is holomorphic near ∂D and converges
to 0 as |z| → 1; thus by the reflection principle, ψ(v) is identically zero near ∂D. But
(ψ(v))z̄ = (ψ−1)∗µ ∈ N so (ψ−1)∗µ = 0 so µ = 0.

It follows that N(U) maps injectively to TfRatd, which is absurd. This completes the
proof.

3. Examples

3.1. Attracting and Super-attracting fixed points.

Example 3.1. The simplest rational map (of degree d > 1) is z → zd. The points 0 and ∞
are superattracting, with (totally invariant) attracting basins equal to the open unit disk,
and the exterior of the closed unit disk respectively. The Julia set is the unit circle, and
z → zd takes J to itself by an expanding d-fold covering map.

Example 3.2. Let f be a perturbation of the previous example: f : z → zd + p(z) where
p(z) is a polynomial of degree < d with coefficients of size o(1). Then f and z → zd are
very close away from a small neighborhood of 0. The point ∞ is still superattracting,
but (at least for generic p(z)) the superattracting point 0 is perturbed into an ordinary
attracting point z0, the unique root of zd + p(z)− z near zero.

Because z → zd is uniformly expanding on S1, the dynamics there is structurally stable,
so the Julia set J(f) is a topological circle on which f is conjugate to z → zd. Another
way to see this is to use quasiconformal surgery.

Let α be the circle |z| = 2−1. Let β be its preimage under z → zd and let βf be its
preimage under f . Thus β is the circle |z| = 2−1/d and βf is a real analytic simple closed
curve very near to β. Let D be the disk bounded by β and let Df be the disk bounded by
βf . Let φ : Df → D be a diffeomorphism which is the identity on the (common) subdisk
bounded by α, and such that (φ(z))d = φ(f(z)) = f(z) for z ∈ βf . Now define a new map
G : Ĉ→ Ĉ as follows:

G(z) =

{
f(z) for z ∈ Ĉ−Df

(φ(z))d for z ∈ Df

The map G agrees with f outside Df , agrees with z → zd inside α, and is smooth (and
therefore K-quasiconformal for some K) on the annulus Af between βf and α. Let µ0 be
the Beltrami differential fz̄dz̄/fzdz on Af , and let µ be the Beltrami differential which is
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equal to µ0 on Af , and to (fn)∗µ0 on the annulus f−n(Af ). These annuli are disjoint, and
each is taken to the next by a d-fold cover under f . If ϕ solves the Beltrami equation for
µ, then ϕ conjugates G to a degree d rational map with two superattracting fixed points of
order d; in other words, ϕ conjugates G (up to a Möbius transformation) to z → zd. Since
G and f are holomorphically conjugate on a neighborhood of J(f), it follows that J(f)
is a quasicircle — the image of a round circle under a quasiconformal map; and that f is
conjugate to z → zd on S1 there. This construction is essentially due to Douady–Hubbard.

3.2. Indifferent fixed points.

Example 3.3. The map f : z → z2 + e2πiθz for θ real has an indifferent fixed point at 0.
When θ = p/q is rational, this is a rationally indifferent fixed point, so it is in J(f) on the
boundary of a cycle of q petals, each contained in parabolic components.

For example, the map z → z2 + z is conjugate to z → z2 + 1/4 which has an indifferent
fixed point at 1/2. Real numbers (slightly) less than 1/2 are in the parabolic component,
and converge to 1/2; real numbers greater than 1/2 are in the basin of infinity and diverge
away from it. The petal has a ‘cusp’ at 1/2, so that for any w which is not real and positive,
1/2 + εw is in the petal and converges to 1/2 for ε > 0 real and sufficiently small.

Recall that an irrationally indifferent fixed point z for f is called a Siegel point if f is
(holomorphically) linearizable near z, and a Cremer point if not.

Example 3.4. When θ is an irrational number satisfying Siegel’s criterion, f : z → z2+e2πiθz
is linearizable at 0, so there is a Siegel disk around 0 on which f is (holomorphically)
conjugate to an irrational rotation through angle θ. Any irrational which is not too well
approximated by rational numbers satisfies Siegel’s criterion; for example θ equal to the
golden ratio (1 +

√
5)/2.

Example 3.5. If pn/qn are the successive continued fraction approximations to θ, then
Cremer’s theorem says that f : z → e2πiθ+O(z2) is not linearizable if sup log qn+1/qn =∞.
Brjuno improved Siegel’s theorem to show that if

∑
log qn+1/qn <∞ then f is linearizable,

and Yoccoz [18] showed that Brjuno’s condition is sharp: the quadratic map f : z →
z2 + e2πiθz is linearizable at zero if and only if Brjuno’s condition holds.

3.3. Herman rings. Polynomial maps cannot have Herman rings. Examples of rational
maps with Herman rings may be constructed by quasiconformal surgery.

Example 3.6. Let f be a map with an invariant Siegel disk D and rotation number θ. Let
B be an f -invariant closed subdisk of D, and let A ⊂ D be an f -invariant closed annular
neighborhood of ∂B that is split by ∂B into A+ outside B and A− inside B.

Let φ : Ĉ→ Ĉ be a quasiconformal homeomorphism, conformal outside A−, taking Ĉ−B
conformally to the upper half plane H+ and B quasiconformally to the lower half plane
H−, and so that φ(A−) is contained in the image under complex conjugation of φ(A+).
Let E be the annulus φ(A+) together with its complex conjugate.

Now define a new map G : Ĉ→ Ĉ by setting G(z) = φfφ−1(z) for z ∈ H+, and defining
G in H− to be the reflection of F in H+; i.e. G(z̄) is defined to be the complex conjugate
of G(z) for z ∈ H+.

Notice that the annulus E is G-invariant, and G acts holomorphically on E, conjugate to
rotation by θ. Define E1 := F−1(E)−E. Then G is quasiconformal on E1, and conformal
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on Ĉ − E1. Inductively define En := G−1(En−1). Then the En are disjoint, and each (for
n > 1) is the full G-preimage of En−1. Let µ0 be the Beltrami differential of G on E1

and let µ be the Beltrami differential on Ĉ that is (G−(n−1))∗µ0 on each En and 0 outside
∪nEn. The solution ϕ to the Beltrami equation with differential µ is holomorphic on E and
conjugates G to a rational map g of degree 2 deg(f) − 1. The annulus ϕ(E) is contained
in a Herman ring for g.

This construction is essentially due to Shishikura [14], § 9. He showed moreover that a
rational map with a Herman ring must have degree at least 3.

Example 3.7. The rational map f : z → (e2πiθz2(z − 4))/(1− 4z) where θ = 0.6151732 . . .
has a Herman ring on which f acts as rotation by the golden ratio. This example was
found by Shishikura, by computer experiment.

3.4. Smooth curves in J(f).

Example 3.8. The map z → z2 has J = S1. The map z → 2z2 − 1 has J = [−1, 1]. These
maps are actually semiconjugate: the map ϕ : z → (z + 1/z)/2 takes Ĉ− [−1, 1] to Ĉ−D
and (semi)conjugates z → 2z2 − 1 to z → z2.

Example 3.9 (Blaschke Products). By the Schwarz Lemma, every analytic automorphism
of the unit disk is of the form

z → eiθ
z − a
1− āz

where a ∈ D is the (unique) preimage of 0. Any such automorphism takes S1 to itself with
degree 1. The product (not the composition!) of finitely many automorphisms therefore
takes D properly to itself by a degree n map. Such a product is called a Blaschke Product;
for a := a1, · · · , an an unordered collection of n (not necessarily distinct) points in D, and
for θ ∈ R/2πZ, the associated Blaschke product is the function

B : z → eiθ
n∏
j=1

z − aj
1− ājz

Conversely, if f : D→ D is proper of degree n with zeros at a the ratio B/f is holomorphic
and nowhere zero on D̄, and has absolute value 1 on S1 and is therefore equal to the
constant function to eiθ for some θ.

Not every Blaschke product fixes a point in the interior of D. A degree n rational map
has n+1 fixed points (counted with multiplicity). The map B : S1 → S1 has degree n so if
|B′(z)| > 1 on S1 then B has exactly n−1 fixed points on S1 and one each in D and Ĉ−D
(if B is uniformly expanding on S1 then it takes a sufficiently large compact round subdisk
of D properly inside itself and thus has a fixed point there). The unique fixed point z ∈ D
is necessarily (super)-attracting; thus D is precisely equal to the basin of attraction of z.

If |B′(z)| < 1 somewhere on S1 then eiθB has n+ 1 fixed points on S1 for suitable θ and
therefore none in D. If |B′(z)| ≥ 1 on S1 and |B′(z)| = 1 at some z ∈ S1 then etθB has
a (rationally indifferent) parabolic fixed point on S1 for suitable θ, and D is a parabolic
component.

Example 3.10. If f has an invariant component U ⊂ F (f) homeomorphic to D, and φ :
U → D is a uniformizing map, then B := φfφ−1 is a Blaschke product on D. Suppose U
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is a (super)-attracting component, so that after conjugacy we may assume 0 is a (super)-
attracting fixed point for B.

Let C be any other Blaschke product of the same degree as B, also with a fixed point in
D. Then B and C are quasiconformally conjugate on suitable neighborhoods of ∂D so if
ψ : D→ D is such a quasiconformal conjugacy, we may define fC to be equal to φψ−1Cψφ
on U and to f elsewhere. There is a Beltrami differential µU on U so that if ϕU solves the
Beltrami equation for µU on U , then ϕU conjugates fC to a holomorphic map on U (which
is holomorphically conjugate to C on D). Let µ be obtained by iteratively pulling back µU
to f−n(U)− U and extending by 0 elsewhere, and let ϕ solve the Beltrami equation for µ
on Ĉ. Then ϕ conjugates f to a new rational map with an invariant component ϕ(U) on
which the new map is holomorphically conjugate to C.

3.5. Examples with J(f) = Ĉ. The following classical example is due to Lattès (1918).

Example 3.11 (Lattès example). Let E be an elliptic curve, which may be uniformized as
C/Λ for some lattice Λ. Let η ∈ C∗ be such that ηΛ ⊂ Λ; for example, we could take
η to be any nonzero integer. The map η : z → ηz on C descends to a degree d := |η|2
self-covering map g : E → E so that if d > 1, repelling periodic orbits for g are dense
in E. On the other hand, multiplication by η on E commutes with multiplication by −1,
which is an involution ι of E with fixed points at the four points (1/2)Λ/Λ. The quotient
E/ι is a genus 0 Riemann surface, so that multiplication by η on E descends to a degree
d endomorphism of E/ι, still with the property that repelling periodic orbits are dense.
The Weierstrass ℘ function is even, and uniformizes E/ι as the Riemann sphere. Thus
℘ semi-conjugates g to a degree d rational map f with J(f) equal to the whole Riemann
sphere. Such an f is known as a Lattès map.

Notice that for any lattice Λ and any n ∈ Z we have nΛ ⊂ Λ. Thus Lattès maps of
this kind (which have degree n2) come in (one complex dimensional) families. Real affine
linear automorphisms of C take any Λ to any other, and commute with multiplication by
n and −1; thus these flexible Lattès families are all quasiconformally conjugate, and the
conjugating maps have f -invariant Beltrami differentials, necessarily supported on J(f).
This is in contrast to the case of Kleinian groups, for which Sullivan [16] famously proved
that quasiconformal deformations of Kleinian groups are quasiconformally rigid on their
limit sets.

Let’s write down an explicit example of f . Let E be the ‘square’ elliptic curve C/(Z+iZ)
and let η = 1 + i. A fundamental domain for ι is the rectangle R with real part in [0, 1/2]
and imaginary part in [−1/2, 1/2]. The four fixed points of ι are 0, 1/2, ±i/2 and 1/2±i/2.
There are two (simple) critical points of g, at (1± i)/4. Thus E/ι may be made by gluing
two squares (of side length 1/2) along their boundaries in such a way that the fixed point
of ι are the vertices, and the critical points of g are the centers of the two squares. In other
words, conformally the fixed points of ι and the critical points of g are the vertices of a
regular octahedron. By composing ℘ with a Möbius map we may obtain φ uniformizing
this Riemann surface as the Riemann sphere in such a way that

φ : 0, (1 + i)/2, i/2, 1/2→∞, 0, i,−i and φ : (1 + i)/4, (1− i)/4→ −1, 1

This conjugates g to a degree 2 rational map f with critical points at 1,−1 that map by
1,−1→ −i, i→ 0→∞→∞
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Thus f(z) = (z2 + 1)/(2iz).

Notice that for this example, the critical points are preperiodic but not periodic. It turns
out that this condition alone implies J(f) = Ĉ:

Lemma 3.12. Suppose every critical point of f is preperiodic but not periodic. Then
J(f) = Ĉ.

Proof. A superattracting cycle has a periodic critical point. Every attracting or parabolic
cycle contains the forward image of a critical point which is not preperiodic. The boundary
of every Siegel disk or Herman ring is contained in the closure of the set of forward iterates
of (necessarily non-preperiodic) critical points. There are no wandering domains. Thus
F (f) is empty. �

3.6. Dendrites. A dendrite is a subset of Ĉ that is closed and connected with connected
complement and empty interior. Parallel to Lemma 3.12 we have

Lemma 3.13. Let f be a polynomial so that every critical point of f except ∞ is strictly
preperiodic. Then J(f) is a dendrite.

Proof. Arguing as in Lemma 3.12 we have that F (f) is equal to the immediate basin U of
∞. We claim U is a disk (this will prove the lemma since then J(f) = ∂F (f) = ∂U will
be connected). The map f is a d-fold cover of U −∞ to itself, and is therefore injective on
π1. Furthermore, for any compact K ⊂ U −∞ the iterates fn(K) are eventually contained
in any neighborhood of ∞. It follows that π1 is abelian, so that U −∞ is an annulus so
that U is a disk. �

Example 3.14. For the map z → z2 + i the unique finite critical point 0 has orbit

0→ i→ i− 1↔ −i

3.7. Wandering domains.

Example 3.15. A rational map does not have a wandering domain, by Sullivan’s theorem.
But an entire holomorphic map f : C → C can have one. The entire function g(z) :=
z − λ sin(2πz) for small real positive λ has attracting fixed points at every integer n. Let
Un be the Fatou component containing n. A Fatou component (even for a transcendental
function) certainly can’t contain more than one attracting fixed point; thus the Un are
disjoint.

Now consider f(z) := z−λ sin(2πz)+1. This is the composition of g with the translation
τ(z) := z + 1. Since g commutes with τ , both g and f commute with τ and with each
other. The following Lemma is due to Baker [4] Lemma 4.5:

Lemma 3.16. If f and g are entire with g = f + c for some constant c, and if f and g
commute, then J(f) = J(g).

Proof. Baker shows [3] (by a careful analysis of the argument of Lemma 1.16) that for f
entire, J(f) is equal to the closure of the set of repelling periodic orbits. Since f and g
commute, g takes an f -periodic orbit to an f -periodic orbit of the same or smaller period.
Since f ′ = g′ such an orbit has the same f -multiplier as its g-image. Thus g(J(f)) ⊂ J(f).
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Let z ∈ F (f) and suppose the iterates of f have a subsequence that converges uniformly
on a neighborhood U of z to some function h. Since g(fn(U)) = fn(g(U)) it follows that
if h(U) is bounded, some sequence of iterates of f are bounded on g(U), so g(U) ⊂ F (f).

If there is no neighborhood U of z on which fn has a subsequence which is bounded,
then actually there is convergence fn(z) → ∞ and because z ∈ F (f), we can find a
neighborhood U of z and an n0 so that |fn(w)| � 1 for all w ∈ U and all n ≥ n0. But
then fn(g(U)) = g(fn(U)) = fn+1(U) + c avoids a neighborhood of 0 for all sufficiently
large n so by Montel’s theorem, g(U) ⊂ F (f). Thus we have shown g(F (f)) ⊂ F (f) so in
fact g(J(f)) = J(f).

But then J(f) is totally invariant for g, so J(g) ⊂ J(f) and by symmetry J(g) =
J(f). �

Hence for our example the Un are distinct components of the Fatou set of f . Since
f(Un) = Un+1, it follows that each Un is wandering for f . Baker attributes this kind of
example to Herman.

4. Post-critically finite maps

Let f : S2 → S2 be an orientation-preserving branched covering, that is, f is locally
a diffeomorphism away from finitely many points (the critical points C(f)) where f is
smoothly conjugate to z → zq for some q > 1 (the local degree of f at the given critical
point).

Definition 4.1. An orientation-preserving branched covering f is post-critically finite if
every critical point has a finite orbit. In other words, if the set P (f) := ∪c∈C ∪n>0 f

n(c) is
finite.

The degree d of f is defined in the usual way.

Definition 4.2. Two post-critically finite maps f, g are equivalent if there are homeomor-
phisms θ, θ′ : (S2, P (f)) → (S2, P (g)) isotopic rel. P (f), so that θf = gθ′ as maps from
(S2, P (f)) to (S2, P (g)).

The goal of this section is to give a necessary and sufficient criterion, due to Thurston, for
a post-critically finite f to be equivalent to a rational map (Theorem 4.6). Such a rational
map will necessarily be unique up to (holomorphic) conjugacy, with one exceptional family
to be explained in the sequel. In fact, Thurston’s argument does more than prove the
existence of an equivalent rational map — it gives a (convergent) algorithm to find it.

The basic idea is rather simple. An isotopy class of conformal structure on S2 rel. P (f)
pulls back under f to an isotopy class of conformal structure on S2 rel. f−1P (f), and
thereby (since P (f) ⊂ f−1P (f)) an isotopy class of conformal structure on S2 rel. P (f).
Thus, pullback under f defines a holomorphic map σf from a certain Teichmüller space Tf
to itself, and a rational map equivalent to f is the same thing as a fixed point for this map.

Any holomorphic endomorphism of a Teichmüller space is distance non-increasing in
the Teichmüller metric, and is strictly distance decreasing except under rather special
circumstances, and therefore uniformly distance contracting on compact subsets (morally,
this is a manifestation of the Schwarz Lemma). The special circumstances are ruled out
whenever P is sufficiently complicated (f has a ‘hyperbolic orbifold’) and then the orbit of
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σf stays in a compact subset of Teichmüller space and consequently has a (unique) fixed
point unless a topological condition holds, known as a ‘Thurston obstruction’.

Thurston’s account of his theorem is mostly unwritten; a detailed exposition was given
by Douady–Hubbard [11] and we follow their paper.

Example 4.3. Suppose f of degree 2 has one totally invariant point (which we can take to
be∞) and one finite critical point c which is periodic of order 3. Without loss of generality
let’s take c = 0 and then f(0) = v, f ′(0) = 0, f(v) = 1, f(1) = 0. To specify f topologically
we must make some choices, so let’s suppose v is real and negative, and f takes the interval
[v, 1] to itself by the piecewise linear map that takes [0, 1] to [v, 0] preserving orientation
and [v, 0] to [v, w] reversing orientation.

The point v is the unique finite critical value, so f−1 is defined on a 2-fold cover of Ĉ
branched at ∞ and v, i.e. on the Riemann surface of z → λ

√
z − v for any λ ∈ C∗. If we

normalize by the choice λ := 1/
√
−v then f−1 pulls back

v, 0, 1→ 0, 1,
−
√

1− v√
−v

We can interpret this pullback as a map on Teichmüller space Tf . With respect to the
normalization that f leaves ∞ totally invariant, that 0 is the unique finite critical point
with image v, and that f(v) = 1 and f(1) = 0, the space Tf is parameterized by a lift of v
to the universal cover of C− {0, 1}. Thus the map σf acts on the negative real axis by

v → −
√

1− v√
−v

and extends to all of Tf by analytic continuation. Notice that σf actually takes (−∞, 0)
to itself and has a unique attracting fixed point at v ≈ −1.3247, the real negative root of
v − v3 − 1. Thus the unique rational map (up to holomorphic conjugacy) equivalent to f
is z → 1.3247z2 − 1.3247. Note that this map is more usually conjugated to the ‘airplane’
z → z2 − 1.7549.

4.1. Statement of the Theorem.

Definition 4.4 (Orbifold). Define ν : S2 → N ∪∞ to be the smallest function for which
ν(x) = 1 when x is not in P (f), and ν(x) is a multiple of ν(y) degy(f) whenever f(y) = x.
Then O(f) is the orbifold with underlying space S2 and a cone point of order ν(x) at each
x ∈ P (f).

Note that ν is finite if each critical point is strictly preperiodic (i.e. preperiodic but not
periodic), and is infinite on each periodic orbit that contains a critical point. An orbifold
has an Euler characteristic χ(O(f)) ∈ Q, where a cone point of order n counts as 1/n of a
point. It is hyperbolic if χ < 0.

Definition 4.5 (Multicurve). A multicurve Γ is a finite disjoint union of non-parallel non-
peripheral isotopy classes of simple closed curves in S2−P (f). It is f -stable if for all γ ∈ Γ,
every non-peripheral component of f−1(γ) is isotopic in S2 − P (f) into Γ.

If γi,j,α is a component of f−1(γj) isotopic to γi then f maps γi,j,α to γi with degree di,j,α.
Let RΓ be the space of weights on Γ and let fΓ : RΓ → RΓ be the matrix with coefficients
fΓ(γj) =

∑
i,α d

−1
i,j,αγi. Let λ(Γ, f) denote the Perron-Frobenius eigenvalue of fΓ.
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With these definitions, Thurston’s criterion may be stated as follows:

Theorem 4.6 (Thurston). A post-critically finite branched cover f : S2 → S2 with hyper-
bolic orbifold is equivalent to a rational function if and only if for any f -stable multicurve
Γ we have λ(Γ, f) < 1. Moreover, such a rational function is unique up to (holomorphic)
conjugacy.

An f -stable multicurve Γ with λ ≥ 1 is called a (Thurston) obstruction and an f that
admits one is said to be obstructed.

4.2. Teichmüller Space. The Teichmüller Space Tf is the space of isotopy classes rel.
P (f) of conformal structures on S2. Formally:

Definition 4.7 (Teichmüller Space). The Teichmüller space Tf is the space of equiva-
lence classes of diffeomorphisms φ : (S2, P (f)) → Ĉ where φ1 ∼ φ2 if there is a Möbius
transformation h : Ĉ→ Ĉ for which φ2 and hφ1 are isotopic rel. P (f).

Of course, Tf is isomorphic to the Teichmüller space of the sphere with |P (f)| marked
points.

Now suppose we are given τ ∈ Tf represented by φ : S2 → Ĉ. The map f determines
a branched cover of Ĉ; if we pull back the conformal structure on Ĉ under this map and
uniformize the result, we may realize this by a holomorphic branched cover fτ : Ĉ → Ĉ,
and pulling back φ under f gives φ′ : (S2, P (f)) → Ĉ for which φf = fτφ

′. Define the
skinning map σf : Tf → Tf to be the map that takes the class of φ to the class of φ′.

Lemma 4.8. The map f is equivalent to a rational map if and only if σf has a fixed point
φ.

Proof. That a rational map equivalent to f gives a fixed point follows essentially from
definitions. Conversely if φ ∼ φ′ with notation as above, there is a Möbius map h for
which φ2 and hφ1 are isotopic rel. P (f), and then fτh is a rational map equivalent to
f . �

Different marked conformal structures on a Riemann surface are related by quasiconfor-
mal homeomorphisms represented by Beltrami differentials. Thus, the tangent space to Tf

at φ is represented by Beltrami fields µdz̄/dz ∈ B(Ĉ) modulo those whose tangent vector
field v preserves the (marked) conformal structure. This holds if and only if v vanishes on
P := φ(P (f)).

The dual of B(Ĉ) is the space of L1 quadratic forms q(z)dz2. For such a quadratic form,
consider what it would mean for

∫
qvz̄ = 0 for all v vanishing on P . Approximating q by

convolution with a bump function and applying integration by parts, we obtain qz̄ = 0
weakly on Ĉ−P ; by Weyl’s Lemma, q is holomorphic on Ĉ−P , and by a local calculation
one finds that q can have at worst a simple pole at points of P . Thus:

Lemma 4.9. The cotangent space to Tf at τ represented by φ is isomorphic to the space
Q(P ) of holomorphic quadratic differentials on Ĉ − P with at worst simple poles on P ,
where P = φ(P (f)).

Furthermore, we have



NOTES ON COMPLEX DYNAMICS 27

Lemma 4.10. The dimension of Q(P ) is equal to |P | − 3.

In particular, Q(P ) = 0 unless |P | ≥ 4.

Proof. This follows from Riemann-Roch, but it is elementary to show directly. WLOG we
may assume ∞ is not in P . The ratio of any two quadratic meromorphic differentials on
Ĉ is meromorphic, and therefore rational. So Q(P ) consists precisely of functions of the
form (p(z)dz2)/(

∏
zi∈P (z − zi)) where p(z) is a polynomial of degree at most |P | − 4. �

Beltrami differentials pull back under holomorphic maps. The adjoint of the pullback
map is to push forward holomorphic quadratic differentials under transfer: if F : (Ĉ, P ′)→
(Ĉ, P ) is a holomorphic branched map and q ∈ Q(P ′), then the value of F∗q at a point
is the sum of the pullbacks of q under the (finitely many) local branches of F−1. If q is
integrable, so is F∗q, and if q has at worst simple poles at P ′, then F∗q has at worst simple
poles on F (P ′) ⊂ P .

As above, let τ ∈ Tf be represented by φ, let φ′ represent the class of σfτ and let
P ′ := φ′(P (f)). Then fτ : Ĉ → Ĉ takes P ′ into P . The derivative dτσf : TτTf → Tσf τTf
has adjoint (dτσf )

∗ : Q(P ′)→ Q(P ) and evidently (dτσf )
∗ = (fτ )∗.

Let F : Ĉ→ Ĉ be any rational map of degree d, and q a nonzero meromorphic quadratic
differential with at worst simple poles at Z ⊂ Ĉ. Transfer F∗q cannot increase the mass
of q, and can only reduce it unless the arguments of q at the various points of F−1(z) are
equal for all z. In this case, the ratio of F ∗F∗q and q is real; since it is meromorphic, it
is constant, and (a posteriori) therefore equal to the degree d. Hence ‖F∗q‖ = ‖q‖ implies
that (d−1)F ∗F∗q = q and therefore F−1(F (Z)) ⊂ Z ∪ C(F ).

Lemma 4.11. If f has hyperbolic orbifold O(f) then dσ2
f has norm strictly < 1.

Proof. If ‖(fτ )∗‖ = 1 then there is nontrivial q with simple poles at Z ⊂ P ′ for which
f−1
τ (fτ (Z)) ⊂ P ′ ∪ C(fτ ). Since q is nontrivial, |Z| ≥ 4. If we pull back Zf := (φ′)−1(Z)
then Zf ⊂ P (f) and

f−1(f(Zf )) = ((φ′)−1f−1
τ φ)(φ−1(fτ (Z)))

= (φ′)−1(f−1
τ (fτ (Z))) ⊂ (φ′)−1(P ′ ∪ C(fτ )) = P (f) ∪ C(f)

In other words, there is a subset W := f(Zf ) ⊂ P (f) for which f−1(W ) ⊂ P (f) ∪ C(f).
For each vertex z of P (f)∪C(f) define the indegree ι(z) to be the sum of degf (w) over

all w ∈ f−1(z) in P (f) ∪ C(f). Then
∑

z degf (z) =
∑

z ι(z). Furthermore,∑
z

degf (z) ≤ |P (f)|+ |C(f)|+ 2d− 2 and
∑
z

ι(z) ≥ |W |(d− 1) + |P (f)|

It follows that
|W |(d− 1) ≤ |C(f)|+ 2d− 2 ≤ 4(d− 1)

and if equality holds, then every critical point is simple, f(C(f)) ⊂ W , and W ∩ C(f) is
empty.

In this last case, either f(W ) ⊂ W in which case W = P (f) and O(f) is a Euclidean
orbifold with 4 cone points of order 2, or else W ′ := f−1(W ) − C(f) does not satisfy
f−1(W ′) ⊂ P (f) ∪ C(f), in which case (repeating the argument above with fσf τ in place
of fτ ) we have ‖(fσf τ )∗‖ < 1. �
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This lemma shows if O(f) is hyperbolic then a rational map equivalent to f is unique
up to holomorphic conjugacy.

4.3. Projection to moduli space. The Teichmüller space Tf projects to the moduli
space Mf of injections i : P (f) → Ĉ up to composition with a Möbius transformation.
The skinning map σf does not descend to Mf , but it does descend to a finite intermediate
cover σf : M̃f →Mf .

Given P := i(P (f)) there are only finitely many degree d connected branched coverings
g : X → Ĉ branched over P , up to isomorphism; they are determined by (transitive)
conjugacy classes of actions of π1(Ĉ − P ) on a d element set. For such a g with X
homeomorphic to S2, choose an injection i′ : P (f) → g−1(P ) ⊂ X and consider the finite
set of pairs (g, i′) for which there are homeomorphisms φ : S2 → Ĉ and φ′ : S2 → X with
φ|P (f) = i and φ′|P (f) = i′, and such that φf = gφ′.

The set of pairs (g, i′) is the fiber over i of a finite covering M̃f → Mf . If τ ∈ Tf
represented by φ maps to the class of i, then σfτ represented by φ′ maps to the class of
ψi′ : P (f) → Ĉ where ψ : X → Ĉ is a holomorphic isomorphism. Thus σf : M̃f → Mf

sending (g, i′) to ψi′ is the desired map.

Lemma 4.12. Suppose O(f) is hyperbolic, and τi := σif (τ) projects to π(τi) ∈ Mf . Then
τi converges in Tf if and only if π(τi) lie in a compact subset of Mf .

Proof. One direction is obvious, so suppose π(τi) lie in a compact subset of Mf ; or equiv-
alently, their lifts π̃(τi) ∈ M̃f lie in a compact subset of M̃f .

Let δ0 be a curve in Tf from τ0 to τ1 and let δi := σif (δ0). let π̃(δi) be the projection of δi
to M̃f . The length of each δi is no more than that of δ0, so because π̃(τi) lie in a compact
region of M̃f , so do the π̃(δi).

But σf is uniformly strictly contracting on compact subsets of M̃f , and therefore the
lengths of the δi form a geometric series and τi converge in Tf . �

4.4. Moduli of Annuli. We are thus reduced to showing for f with hyperbolic orbifold
O(f), that the iterates of the skinning map σif (τ) project to a compact region in moduli
space if and only if there is no f -stable multicurve with λ(Γ, f) ≥ 1.

A sequence diverges in moduli space if and only if the associated Riemann surfaces
develop thin ‘necks’ — conformally speaking, if there are essential embedded annuli A ⊂
Ĉ− P whose moduli goes to infinity.

For a Euclidean annulus A with circumference cA and height hA the modulus µ(A) is
hA/cA. Any annulus is conformally equivalent to a Euclidean annulus (double it and uni-
formize the result as a rectangular torus), and its modulus is the modulus of its Euclidean
uniformizer. One may estimate the modulus in any conformal metric by the method of
extremal length.

If X is any collection of rectifiable curves in a Riemann surface, and ρ is any metric in
the conformal class, define `ρ(X) to be the minimal length of a curve in X and αρ the area
of the surface. Then

E(X) := sup
ρ

`ρ(X)2

αρ
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is called the extremal length of X.

Lemma 4.13. For an annulus A, if X denotes the collection of essential simple closed
curves in A, the extremal length E(X) is equal to 1/µ(A).

Proof. In the Euclidean metric, `ρ(X) = cA and αρ = cAhA so E(X) ≥ cA/hA = 1/µ(A).
On the other hand, if we scale the metric by ρ then in Euclidean coordinates x+ iy on A,
where x ∈ [0, cA] and y ∈ [0, hA], for any y

`ρ(X) ≤
∫ cA

0

ρ(x+ iy)dx so that `ρ(X)hA ≤
∫ hA

0

∫ cA

0

ρ(x+ iy)dxdy

But then by Cauchy–Schwarz,(∫ hA

0

∫ cA

0

ρ(x+ iy)dxdy

)2

≤ cAhA

∫ hA

0

∫ cA

0

ρ(x+ iy)2dxdy = cAhAαρ

so `ρ(X)2/αρ ≤ cA/hA = 1/µ(A). �

Using this estimate we may now prove one direction of the desired result.

Lemma 4.14. If f is a rational map then for every f -stable multicurve Γ one has λ(Γ, f) ≤
1. Furthermore, if O(f) is hyperbolic then λ(Γ, f) < 1.

Proof. Let Γ be an f -stable multicurve, and let v be a Perron-Frobenius eigenvector for fΓ

with eigenvalue λ. Then there exists a quadratic holomorphic differential q ∈ Q(P ) of norm
1 with annuli of closed trajectories A1, · · · , An in the homotopy classes of γ1, · · · , γn and
with moduli hi/ci proportional to the coefficients of v. The differential q gives Ĉ a branched
Euclidean structure in which |q| becomes the area form (thus Ĉ has total area 1). In this
metric, the closed trajectories winding around each Aj are the unique length-minimizing
geodesics of length cj (the circumference of Aj) in their isotopy class. Furthermore, each
Aj has area hici, so

∑
i hici = 1.

For any other annulus A ⊂ Ĉ − P homotopic to some Aj, if ` is the minimal q-length
of an essential simple closed curve in A, we have ` ≥ cj, the circumference of Aj. Thus by
the method of extremal length,

∫
A
|q| ≥ c2

jµ(A) = c2
jhA/cA.

For each annulus Aj the preimage f−1(Aj) consists of a union of annuli Ai,j,α with core
isotopic to Ai, and where f : Ai,j,α → Aj has degree di,j,α. Thus the modulus of Ai,j,α is
µ(Aj)/di,j,α = hj/(cjdi,j,α).

But now we may estimate

1 =

∫
Ĉ
|q| =

∑
i,j,α

∫
Ai,j,α

|q| ≥
∑
i,j,α

c2
iµ(Ai,j,α) =

∑
i,j,α

c2
i

hj
cjdi,j,α

=
∑
i

λ
hi
ci
c2
i = λ

Equality holds if and only if it holds for every application of the extremal length estimate.
But this holds if and only if every Ai,j,α is a horizontal Euclidean annulus in the branched
Euclidean structure, in which case f ∗q = ±q which is impossible for O(f) hyperbolic. �
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4.5. Geometry of thin tubes. Comparisons between hyperbolic and conformal geometry
of Riemann surfaces are difficult in general, but simplify asymptotically where surfaces are
thin. Such regions correspond on the hyperbolic side to Margulis tubes around short
geodesics, and on the conformal side to annuli of large moduli.

The following lemma gives an elementary relation between conformal modulus and hy-
perbolic length.

Lemma 4.15. Let A be a Margulis tube around a geodesic of length `. Then the modulus
of A is π/`−O(1).

Proof. Let R ⊂ C be the Euclidean rectangle consisting of z with real part in [0, `] and
imaginary part in [0, π]. Let eR in the upper half-plane be the image of R under exponen-
tiation. If A′ is the Euclidean annulus obtained from R by gluing the left and right sides
by translation, then µ(A′) = π/`; this translation exponentiates to a hyperbolic isome-
try identifying edges of eR whose quotient has a core geodesic of length `. The Margulis
tube A is obtained from A′ by cutting off subannuli of the ends of (uniformly) bounded
modulus. �

From this we may deduce the following estimate:

Lemma 4.16. Let X be a complete hyperbolic surface, and P ⊂ X a finite set. Let
X ′ = X − P and give X ′ its complete hyperbolic metric. Let γ be a simple closed geodesic
on X and let γi be the (necessarily simple) closed geodesics on X ′ which are homotopic to
γ in X and which have length in X ′ less than a Margulis constant. Let ` be the hyperbolic
length of γ in X, and `i the hyperbolic lengths of γi in X ′. Then

1

`
−
∑ 1

`i
= O(|P |)

Proof. Notice first that every `i > ` since inclusion X ′ → X is necessarily 1-Lipschitz with
respect to the hyperbolic metrics. So if ` is bigger than the Margulis constant, there are
no γi.

Let A ⊂ X be a Margulis tube for γ. The Margulis tubes Ai ⊂ X ′ around the γi are
disjoint, and inject into A. If we give A a flat Euclidean structure with circumference 1
and height π/` then A−∪Ai is contained in a union of subannuli, each of bounded height,
one around each point of P ∩A and one around each cuff. Thus µ(A)−

∑
µ(Ai) = O(|P |)

and the lemma is proved. �

4.6. Conclusion of the argument. Let τ ∈ Tf and define τn = σnf τ . We suppose that
O(f) is hyperbolic, so that τn converges to a fixed point unless the images in Mf are
unbounded. The only way that the sequence of Riemann surfaces (Ĉ, Pn) may diverge in
Mf is if the hyperbolic structures on Xn := Ĉ− Pn develop arbitrarily thin necks.

We have rational maps fτn : Ĉ → Ĉ. Let X ′n ⊂ Xn be f−1
τn (Xn−1), so that fτn : X ′n →

Xn−1 is a degree d cover. Thus, for every geodesic γ of Xn−1 of hyperbolic length `, the
hyperbolic length of every preimage in X ′n has length at most d`, and the same is true of
its image in Xn.

By definition of the Teichmüller distance, there are K-quasiconformal homeomorphisms
ψn : Xn → Xn−1, where log(K) is (twice) the Teichmüller distance from τn to τn−1, which
may be bounded independent of n because σf is distance non-increasing.
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A K-quasiconformal map distorts the moduli of annuli by at most a factor of K, so it
stretches the lengths of short geodesics by at most a factor of K. Thus if ` is sufficiently
small, and β ⊂ X ′n is a curve of length ≤ d`, the hyperbolic length of the geodesic repre-
sentative of ψn(β) in Xn−1 is at most Kd`. It follows that if Γ ⊂ S2 − P is a multicurve
whose image in Xn−1 consists of a maximal collection of geodesics of length less ε, then if
ε is small enough and there are no geodesics with length in the interval [ε,Kdε], we may
deduce that Γ is f -stable and conversely any sufficiently short geodesic on X ′n is in the
preimage of some curve in Γ.

Now, if λ < 1, then because the cardinality of |Γ| is bounded, there are only finitely
many possible matrices fΓ, and therefore after replacing f by an iterate fm if necessary
where m is independent of Γ, we may assume that fΓ has operator norm at most 1/2 (say).

Let γi be the curves of Γ, and let vn−1 be the vector with coefficients 1/`i where `i is the
length of the geodesic representative of γi in Xn−1. Pull back these geodesics under fτn to
geodesics on X ′n; this gives a family of geodesics γi,j,α with lengths `i,j,α = di,j,α`i.

If `′i is the length of the geodesic representative of γi in Xn, then by Lemma 4.16 we have∑
i,α

1

`i,j,α
=

1

`′j
+O(|C(f)|)

Thus if vn is the vector with coefficients 1/`′i we have vn = fΓvn−1 +o(|vn−1|). In particular,
if |vn−1| is sufficiently large, then |vn| ≤ (1/2)|vn−1| + o(|vn−1|) < |vn−1|. Thus, the |vn|
are uniformly bounded, so that no geodesic in Xn can get too short, and therefore the
projection of τn stays in a bounded region of moduli space. It follows that τn converge in
Teichmüller space and Theorem 4.6 is proved.

4.7. Topological polynomials. Unfortunately the criterion in Theorem 4.6 is rather hard
to check directly, since an obstructing multicurve might be rather complicated. For certain
classes of branched maps there is more structure that can be exploited to simplify the
search for such an obstruction.

A branched map f : S2 → S2 is a topological polynomial if there is a critical point
(which we may call ∞) that maps to itself with degree equal to deg(f). In other words,
f−1(∞) = ∞. Note that this implies νf (∞) = ∞. If the postcritical orbit (not counting
∞) contains at least three points, Of is hyperbolic.

The existence of a totally invariant point ∞ has the following corollary:

Lemma 4.17. Let f be a topological polynomial. Then for every open disk D ⊂ S2 −∞,
every component of f−1(D) is an open disk.

Proof. Let X := S2 − D̄. Then f maps each component of f−1(X) properly onto X. But
X contains ∞ which is totally invariant, so f−1(X) is connected. The lemma follows. �

Definition 4.18. Let f : S2 → S2 be a post-critically finite branched map. A Levy cycle
Λ is a cyclically ordered collection of essential non-boundary parallel curves γ1, · · · , γk for
which

(1) Λ is a subset of some f -stable multicurve Γ; and
(2) for each i the curve γi is isotopic rel. P (f) to exactly one component γ′ of f−1(γi+1),

and f : γ′ → γi+1 has degree 1.
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Note that the existence of a Levy cycle implies λ(Γ, f) ≥ 1 so a branched map with a
Levy cycle is obstructed. Actually, it is easy to see that the existence of a Levy cycle is
an obstruction, since γ′ has the same length in the hyperbolic metric on Ĉ− f−1(P (f)) as
γi+1 in Ĉ − P (f), so that the geodesic representative of γi in Ĉ − P (f) is strictly shorter
than the geodesic representative of γi+1 in Ĉ − P (f), which (by induction on i) gives a
contradiction.

Conversely, Bielefeld–Fisher–Hubbard [7] Thm. 5.5 show that an obstructed topological
polynomial has a Levy cycle:

Theorem 4.19 (Obstructed polynomial has Levy cycle). If the topological polynomial f
has an obstruction Γ then f has a Levy cycle Λ ⊂ Γ.

Proof. We assume without loss of generality that Γ is minimal. This implies that every
γ ∈ Γ is isotopic rel. P (f) to a component of f−1(γ′) for some γ′ ∈ Γ.

A curve γ ∈ Γ is negligible if ‖fnΓ (γ)‖ → 0 as n → ∞, and essential otherwise. Since
fΓ has non-negative entries, if γ is negligible then so is every nonperipheral component
of f−1(γ). Conversely, if γ is essential then some component of f−1(γ) is essential. Let
Γe ⊂ Γ denote the essential curves.

A component γ ∈ Γe is innermost if the disk D(γ) bounded by γ and disjoint from ∞
contains no curves isotopic to any γ′ ∈ Γe − γ. Let Γi ⊂ Γe denote the (nonempty) set
of innermost curves. The key point is this: if γ ∈ Γi then exactly one component of the
isotopy class of f−1(γ) is essential, and this component is innermost.

To see why, let γ′ ∈ Γe be isotopic rel. P (f) to a component of f−1(γ). The components
of f−1(D(γ)) are all disks by Lemma 4.17 and γ′ bounds a disk U isotopic rel. P (f) to a
component of f−1(D(γ)). Any essential β ∈ Γe in U is isotopic rel. P (f) to a preimage of
some essential δ. But δ must lie outside D(γ) since γ is innermost by hypothesis. Thus β
is isotopic rel. P (f) outside U which implies β is trivial rel. P (f) which is absurd. This
contradiction shows that every essential component of f−1(γ) is innermost.

Now suppose γ1, γ2 ∈ Γi have preimages γ′j ⊂ f−1(γj) that are both isotopic rel. P (f)
to some η ∈ Γi. If X = P (f)∩D(η) then f(X) is contained in both D(γ1) and D(γ2). But
these disks are disjoint because both γj are innermost.

It follows that distinct innermost curves in Γi have essential preimages that are distinct
and innermost. Since there are only finitely many innermost curves, it follows that each
γ ∈ Γi has a unique preimage isotopic to some γ′ ∈ Γi. Hence there is a cycle ΓL :=
γ1, · · · , γk of innermost essential curves so that f−1(γi+1) contains exactly one component
γ′ isotopic to γi rel. P (f). Since ΓL is fΓ-invariant modulo negligible curves, by minimality
we have ΓL = Γi = Γe.

It remains to show that γ′ → γi+1 has degree 1 for all i. But the Perron–Frobenius
eigenvalue of fΓ on the subspace spanned by ΓL is equal to the reciprocal of the product
of these degrees. Since the eigenvalues are strictly less than 1 on the negligible curves, and
since (by definition) λ ≥ 1, it follows that every degree is 1 so that ΓL forms a Levy cycle
as claimed. �

Corollary 4.20. Suppose that f is a topological polynomial. If every critical point is
periodic (or more generally lands in a periodic cycle that contains a possibly different critial
point) then f is not obstructed.
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Proof. For each γi in a Levy cycle isotopic rel. P (f) to a component γ′ of f−1(γi+1) the
disk D(γ′) maps to D(γi+1) with degree 1 and therefore D(γ′) (and, consequently, D(γi))
can contain no critical points. �

4.8. Hubbard’s Rabbit problem. A quadratic polynomial fc : z → z2 + c has two
critical points — ∞ (which is completely invariant) and 0. The critical point 0 is periodic
with period dividing 3 if and only if (c2 + c)2 + c = 0 and has period exactly 3 if and
only if c3 + 2c2 + c + 1 = 0. The three solutions give rise to Douady’s ‘rabbit’ fR(z) :≈
z2 +(−0.1226+0.7449i), the ‘corabbit’ fC(z) :≈ z2 +(−0.1226−0.7449i) and the ‘airplane’
fA(z) :≈ z2 − 1.7549.

Let fR be the rabbit polynomial, and let γ be a simple loop in C enclosing c and c2 + c
(for c ≈ −0.1226 + 0.7449i) but not 0. Let τ be a (right-handed) Dehn twist about γ. For
each integer m the composition τmfR is a post-critically finite branched covering of S2 of
degree 2 for which one critical point (∞) is fixed, and the other (0) is periodic of period 3.

By Corollary 4.20 these branched coverings are all unobstructed, and therefore each
τmfR is equivalent to exactly one of fR, fC , fA. Hubbard’s Rabbit problem asks: which
one?

The answer was given by Bartholdi–Nekrashevych [5]:

Theorem 4.21 (Bartholdi–Nekrashevych). Let mi ∈ {0, 1, 2, 3} be the 4-adic digits of m
(so that almost all mi = 3 if m is negative). If one of the mi is 1 or 2 then τmfR is
equivalent to fA. Otherwise it is equivalent to fR if m ≥ 0 and to fC if m < 0.

5. The Mandelbrot Set

For c ∈ C the quadratic polynomial fc : z → z2 + c has a unique critical point at 0.

Definition 5.1. The Mandelbrot set M ⊂ C is the set of c ∈ C for which 0 is not in the
basin of attraction of ∞ for the map fc.

Lemma 5.2. The set M is compact and contained in the closed disk of radius 2.

Proof. The property of 0 being in the basin of attraction of ∞ for fc is evidently open in
c, so M is closed.

If |z| > |c| > 2 then |z2 + c| − |z| > |z| − |c| and by induction |fnc (0)| increases without
bound so 0 is in the basin of ∞. �

Example 5.3. The point −2 ∈M. For, the orbit of 0 under f−2 is

0→ −2→ −2

Lemma 5.4. If c ∈M then |fnc (0)| ≤ 2. Consequently Ĉ−M is connected.

Proof. We have shown |c| ≤ 2. So if |fnc (0)| > 2 for some n then as before |fnc (0)| increases
without bound and we would have c ∈ Ĉ−M.

If Ĉ −M contained a bounded component U we would have |fnc (0)| → ∞ in U but
|fnc (0)| ≤ 2 in ∂U which would violate the maximum principle. �

Lemma 5.5. If c ∈M then J(fc) is connected. Otherwise J(fc) is a Cantor set on which
fc is topologically conjugate to the 1-sided shift on a 2-letter alphabet.
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Proof. Let U be the basin of∞, which is also the immediate basin because∞ is completely
invariant. If c ∈ M then the Böttcher map extends to a global conjugacy of fc on U to
z → z2 on C − D̄. In particular, ∂U is connected. Since it is closed and fc-invariant and
contained in J(fc) it is equal to J(fc).

Otherwise let φ be a Böttcher map from a neighborhood of ∞ to a neighborhood of ∞
conjugating fc to z → z2. Let E be a maximal open round disk neighborhood of ∞ on
which φ−1 is defined. Then actually φ−1 extends continuously to ∂E, and φ−1(∂E) is a
symmetric figure 8 in C whose double point is at 0. In other words, D := Ĉ − φ−1(Ē)
consists of two disjoint open disks D = D0∪D1. Since E is forward invariant under z → z2,
it follows that f−1

c (D) ⊂ D. By symmetry f−1
c has two branches on each Dj, one whose

image is contained in D0 and one whose image is contained in D1. By induction, f−nc (D)
has 2n+1 components that we may denote DI for I a string of length (n+1) in the alphabet
{0, 1}, where DI0 and DI1 have closures contained in the interior of DI . Each branch of
f−1
c is strictly contracting in the hyperbolic metric on D by the Schwarz Lemma, and
therefore uniformly contracting on compact subsets (such as the closure of f−1

c (D)). Thus
the hyperbolic diameters of the components DI go to zero geometrically as a function of
|I| and the intersection ∩I ∪|I|=n D̄I is an fc-invariant Cantor set on which fc is conjugate
to the 1-sided shift.

This Cantor set is precisely equal to J(fc). One way to see this is to observe firstly that
its complement is contained in the basin of infinity, and secondly that it contains a dense
subset of repelling periodic orbits. �

5.1. Hyperbolic Components. If J(fc) is connected, every component of F (fc) is a disk.
If F (fc) contains an attracting cycle (other than the basin of infinity) the immediate basin
of the attracting orbit must contain 0, the unique critical point. Thus such an attracting
cycle, if it exists, is unique.

Lemma 5.6. Let a ∈M be a value for which fa has an attracting periodic cycle of period
m. Then a is in the interior of M, and if W ⊂ M is the component of the interior of M
containing a, then for every c ∈ W there is an attracting periodic cycle z1(c), · · · , zm(c)
for fc where the zj(c) depend analytically on c.

Proof. Attracting periodic orbits are stable, so there is certainly an open neighborhood U
of a consisting of c for which fc have an attracting periodic cycle of period m that varies
analytically with c. Of course U ⊂ M so it is contained in some component W of the
interior of M. Now for each j let gj(c) := f jmc (0) be a function of c ∈ W . Since c ∈ M

we have |gj(c)| ≤ 2 so G := {gj} is normal in W . By definition, gj(a) → z(a), a periodic
attracting point for fa, and on U we have gj(c)→ z(c), a periodic attracting point for fc.
By normality, some subsequence of gj converges on all W to g where g(c) = z(c) on U .

Now let Vm ⊂ C2 be the variety of pairs (c, z) for which z is a fixed point of fmc . We
have shown (c, g(c)) ∈ Vm for c ∈ U and since g is analytic, (c, g(c)) ∈ Vm on all of W .
Furthermore, the multiplier µ of fmc at g(c) is evidently analytic in W and |µ| < 1 in U .
If |µ| ≥ 1 anywhere in W then we would have |µ| > 1 on some open subset of W . But if
|µ| > 1 at c then g(c) is a repelling periodic point for fc. So if fmjc (0)→ g(c) we must have
fmjc (0) = g(c) for some j. There are only countably many c with this property, so only
countably many c ∈ W where |µ| > 1, thus actually |µ| < 1 in W so in fact z(c) := g(c)
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is an attracting periodic point of fc of period dividing m for all c ∈ W . If the period were
< m for any c in W then reasoning exactly as above it would be < m for all c in W hence
also for a, contrary to assumption. �

Definition 5.7. A component W of the interior of M is a hyperbolic component if for
some (and hence every) a ∈ W the map fa has an (analytically varying, unique) attracting
periodic cycle of some fixed period m.

Theorem 5.8. If W is a hyperbolic component, then ∂W is piecewise real analytic. Fur-
thermore, if µ(c) is the multiplier of fmc at its (unique) attracting periodic orbit of period
m, the map µ : W → D is a holomorphic isomorphism which extends continuously to a
homeomorphism W → D.

Proof. The multiplier µ is an analytic function on the variety Vm ⊂ C2 so the subset
where |µ| < 1 consists of a finite union of bounded open regions bounded by piecewise real
analytic arcs. One such region W̃ projects to W , so ∂W is piecwise real analytic. Since W
is a component of the interior of M, the closure of the exterior Ĉ−M contains ∂W . Thus
∂W is a Jordan curve, and W is a topological disk. It remains to prove that µ : W → D
is an isomorphism.

Let U(c) be the component of F (fc) containing z(c). Thus fmc maps U(c) to itself with
degree 2. Because J(fc) is connected, U(c) is a disk, so fmc |U(c) is conjugate to a unique
Blaschke product of the form z → z(z + a)/(1 + āz) where a = µ ∈ D is the multiplier.
Conversely, for any a ∈ D as in Example 3.10 we can perform quasiconformal surgery
on fc to obtain a new quadratic map with an attracting periodic orbit of period m with
multiplier a. This operation is analytic in a, and inverts the map µ : W → D which is
therefore an isomorphism. �

It follows that each hyperbolic component contains a unique c (namely µ−1(0)) for which
fc has a superattracting cycle. In other words: there is a bijection between the hyperbolic
components of M and the set of c for which 0 is periodic for fc.

5.2. The Mandelbrot Set is connected.

Theorem 5.9 (Böttcher). Let z be a superattracting fixed point for f and thus also a critical
point of some degree (m− 1). Then there is a neighborhood of z on which f is analytically
conjugate to z → zm. Furthermore the conjugating map is unique up to multiplication by
an (m− 1)st root of unity.

Proof. Böttcher’s proof proceeds by writing down a power series for the conjugating map
and showing that it converges on some neighborhood of the fixed point. This proof may
be found in Milnor’s book [13]. We give another proof using uniformization.

After conjugation by a Möbius transformation we may assume that z = 0 and f is of
the form z → zm + O(zm+1). Thus there is a small disk D about 0 with boundary α so
that f−1(α) contains a curve β enclosing a disk E with D contained in the interior of E,
and f : β → α an m-fold covering. Let A be the annulus E− int(D) and let Ω be obtained
from E by gluing on countably many copies An, n ∈ N of A, where the inner boundary of
An is glued to the outer boundary of An−1 by f : β → α. Then Ω is isomorphic to D, and
f extends to f : Ω → Ω conjugate to a proper degree m map g : D → D with a single
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critical point of degree (m − 1) (which may be put at 0). Reflecting g along ∂D shows
g(z) = zm. �

If f is a polynomial (of degree d > 1),∞ is always a superattracting fixed point, and it is
more natural to choose a Böttcher map φ that fixes∞ and conjugates f near∞ to z → zd

near∞. If f is a depressed monic polynomial — i.e. of the form f(z) = zd+a2z
d−2+· · ·+ad

— then φ may be chosen uniquely to be tangent to the identity at ∞ to (at least) second
order.

Let c ∈ C−M and let φ conjugate fc : z → z2+c near∞ to z → z2. We may analytically
continue φ−1 along radial lines from infinity all the way to the critical point, so certainly
to the critical value c. Let α = φ(c) and let Φ : C−M→ C− D be the map that takes c
to α. Douady–Hubbard showed:

Theorem 5.10 (The Mandelbrot Set is connected). The Böttcher map Φ : C−M→ C−D
is an isomorphism. Thus M is connected.

Proof. It suffices to construct an inverse Ψ : C− D → C−M. Given v ∈ C− D we want
to find c so that the Böttcher map φ for fc : z → z2 + c takes c to v. The dynamics of
z → z2 on C− D are conjugate to those of the unknown fc near infinity, and we can pull
back the conjugacy under iteration until the critical point: the point v has two preimages
under z → z2 whereas c has only one preimage (i.e. 0) under fc.

We will build a new Riemann surface Ω out of C − D by cut-and-paste so that z → z2

descends to a degree 2 proper map F : Ω → Ω, and so that v ∈ Ω will have only one
(critical) preimage. Here is how to do this. Let u0, u1 be the two preimages of v under
z → z2 (i.e. u0, u1 = ±

√
v). Let σ0, σ1 be the two radial segments in C− D from the unit

circle to u0, u1 respectively. If we cut along the σj and reglue edges in pairs (so that the
left side of σ0 glues to the right side of σ1 and vice versa) we will obtain a new Riemann
surface Ω1 from C−D, topologically a pair of pants, for which v ‘has exactly one preimage’
under z → z2. The two points u0, u1 in C− D are identified to a single point p in Ω1.

However, the map z → z2 does not yet descend to Ω1 and we must perform more
modification. Let σ00, · · · , σ11 be the four preimages of the two segments σ0, σ1 under
z → z2. Cut these four segments and reglue (as before) so that the sides of each preimage
of σ0 are glued to the sides of some preimage of σ1. There is a unique way to choose which
preimages to match up so that the result of the gluing is a planar surface Ω2, topologically
a disk with four holes. Iterating this procedure we get a sequence of Riemann surfaces Ωn,
topologically a disk with 2n holes, so that Ωn is obtained from Ωn−1 by cut-and-paste. The
limit Ω is a disk minus a Cantor set, and z → z2 descends to the desired map F : Ω→ Ω
with a unique critical point at p.

Any planar Riemann surface Ω is conformally isomorphic to a subset of Ĉ. By estimating
the modulus of annuli converging to the ends of Ω one sees that Ĉ− Ω is the union of an
isolated point (which we may take to be ∞) and a Cantor set K of Hausdorff dimension
strictly less than 2. The map F on Ω extends continuously to Ĉ and since it is conformal
on a subset of full measure (and quasiconformal everywhere) it is actually conformal, hence
a degree 2 polynomial. This is the desired inverse. �
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