HOMEWORK 2 — THE EUCLIDEAN PLANE

DANNY CALEGARI

This homework is due October 6th at the start of class. Recall that $Aff(\mathbb{E}^2)$ denotes the group of *affine transformations* — i.e. transformations preserving straight lines and incidence properties — of \mathbb{E}^2 , $Sym(\mathbb{E}^2)$ denotes the group of *similarities* — i.e. transformations preserving angles and ratios of lengths — and $Isom(\mathbb{E}^2)$ denotes the group of *isometries* — i.e. transformations preserving angles and lengths. For a group $X(\mathbb{E}^2)$, the subgroup of orientation–preserving elements is denoted $X^+(\mathbb{E}^2)$.

Problem 1. Let H denote the subspace of \mathbb{E}^2 consisting of pairs of points (x, y) with $y \ge 0$. Let G be the subgroup of $\operatorname{Sym}^+(\mathbb{E}^2)$ which stabilizes H; that is, which takes $H \to H$ in a 1–1 and invertible fashion. Show that G is isomorphic to $\operatorname{Aff}^+(\mathbb{E}^1)$. In this way identify the "space of (oriented) lines" in \mathbb{E}^2 with the coset space $\operatorname{Sym}^+(\mathbb{E}^2)/\operatorname{Aff}^+(\mathbb{E}^1)$.

Problem 2. Using the fact that G is a group, prove the following geometric theorem: let C_1, C_2, C_3 be three circles of different radii in \mathbb{E}^2 with disjoint interiors, and for each pair C_i, C_j let l_{ij}^k with k = 1, 2, 3, 4 be the 4 lines which are tangent to both C_i and C_j . These intersect in 6 points, but only 2 of these points are on the line joining the centers of C_i and C_j . Call these two special points p_{ij}^1 and p_{ij}^2 . In this way we get 6 points, $p_{12}^1, p_{12}^1, p_{13}^1, p_{13}^2, p_{23}^1$. Call this collection of points P. Show that there are 4 special lines, each of which intersects P in 3 points.

Problem 3. Identifying the group of translations with \mathbb{C} , + and the group of similarities fixing a point p with \mathbb{C}^* , ×, show that exponentiation (i.e. $z \to e^z$) defines a homomorphism \mathbb{C} , + $\to \mathbb{C}^*$, ×. What is the kernel of this homomorphism? Show that it is onto. Use this to show that there are subgroups of \mathbb{C}^* , × which are isomorphic to the group $\mathbb{Z} \times \mathbb{Z}$. What does the orbit of a point $q \in \mathbb{E}^2$ (with $p \neq q$) look like under the action of such a $\mathbb{Z} \times \mathbb{Z}$ in \mathbb{C}^* ?

Problem 4. Fix some point $p \in \mathbb{E}^2$. Show that every element of $\text{Isom}^+(\mathbb{E}^2)$ can be written as a product $t_{x_0,y_0}r_{\theta}$ where r_{θ} denotes the rotation through angle θ about the point $p \in \mathbb{E}^2$, and t_{x_0,y_0} denotes translation through the vector (x_0, y_0) .

Think of \mathbb{E}^2 as the plane z = 1 in \mathbb{R}^3 . Using this identification, show that there is an isomorphism between Isom⁺(\mathbb{E}^2) and the group of 3×3 matrices of the form

$\int \cos(\theta)$	$\sin(\theta)$	x_0
$-\sin(\theta)$	$\cos(\theta)$	y_0
0	0	1

Problem 5. Show that there is a short exact sequence (that is, the image of one homomorphism is the kernel of the next)

$$\stackrel{i}{\longrightarrow} \mathbb{R}^2 \stackrel{j}{\longrightarrow} \operatorname{Aff}(\mathbb{E}^2) \stackrel{\phi}{\longrightarrow} GL(2,\mathbb{R}) \stackrel{\psi}{\longrightarrow} 1$$

where the homomorphisms i, j are inclusions, and ϕ, ψ are quotients.

Show that this short exact sequence splits; that is, there is a homomorphism

$$s: GL(2, \mathbb{R}) \to \operatorname{Aff}(\mathbb{E}^2)$$

DANNY CALEGARI

such that $\phi \circ s = id$, and therefore that $Aff(\mathbb{E}^2)$ is a semi-direct product of $GL(2, \mathbb{R})$ and \mathbb{R}^2 . What is the induced homomorphism $GL(2, \mathbb{R}) \to Aut(\mathbb{R}^2)$?

Problem 6. Show that every translation can be written as a product of 2 reflections. Show that every rotation can be written as a product of 2 reflections.

Problem 7. Show that any two nonzero translations are conjugate in $Aff(\mathbb{E}^2)$. Think of $Sym(\mathbb{E}^2)$ as a subgroup of $Aff(\mathbb{E}^2)$, and therefore think of the rotations in $Sym(\mathbb{E}^2)$ as a particular subset of elements of $Aff(\mathbb{E}^2)$. When are two rotations conjugate in $Aff(\mathbb{E}^2)$? (Hint: the trace of a 2×2 matrix is invariant under conjugation by an element of $GL(2, \mathbb{R})$.)

Problem 8 (Hjelmslev's theorem). A *glide reflection* is the composition of two isometries: a reflection in a line l and a translation in a direction parallel with the line l. l is said to be the *axis* of the glide reflection.

Suppose $i \in \text{Isom}(\mathbb{E}^2)$ is orientation-reversing. Show that *i* is either a reflection or a glide reflection. For any point *x*, show that the midpoint of xi(x) lies on the "axis" of *i* (either the axis of reflection or the axis of the glide reflection). Let pq and p'q' be two line segments of equal length. Show there is a unique orientation-reversing transformation of \mathbb{E}^2 to itself taking $p \to p'$ and $q \to q'$. Deduce that for any pair of line segments pq, p'q' of equal length, and points $r \in pq, r' \in p'q'$ with |pr| = |p'r'| and |rq| = |r'q'|, the midpoints of the segments pp', qq', rr' are collinear (they might be coincident).

Problem 9 (Hard). The function $f_n : z \to (1 + \frac{z}{n})^n$ is a function from \mathbb{C} to itself which is generically $n \to 1$. Let S_n^1 denote the circle of radius n in \mathbb{C} with center -n. Let α_n be the rotation with center -n through an angle of $2\pi/n$. Identifying \mathbb{C} with \mathbb{E}^2 , show that the sequence α_n of isometries has a well-defined limit. That is, show for each point p that the sequence of points $\lim_{n\to\infty} \alpha_n(p)$ limits to some point p_∞ . Moreover, show that the transformation $p \to p_\infty$ is an isometry α_∞ of \mathbb{E}^2 . What is α_∞ ? What does this have to do with the convergence

$$\lim_{n \to \infty} \left(1 + \frac{z}{n} \right)^n \to e^z$$

DEPARTMENT OF MATHEMATICS, HARVARD, CAMBRIDGE, MA 02138 *E-mail address*: dannyc@math.harvard.edu

2