
CHAPTER 5: SYMPLECTIC AND CONTACT GEOMETRY

DANNY CALEGARI

Abstract. These are notes on Symplectic and Contact geometry, mostly in 4 and 3
dimensions, which are being transformed into Chapter 5 of a book on 3-Manifolds.
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1. Symplectic geometry

Symplectic geometry is a vast subject, and we barely scratch the surface here. Our
main interest in symplectic geometry is twofold. Firstly, we are interested in symplectic
4-manifolds insofar as the might bound or contain 3-manifolds in geometrically interesting
ways. Secondly, we are interested in the symplectic geometry of certain parameter spaces
associated to 3-manifolds, and the ways in which the Floer–Gromov theory of pseudoholo-
morphic curves can be used to obtain invariants of 3-manifolds.

An excellent introduction to Symplectic Geometry in [17]. An introduction more focused
on the relationship of symplectic 4-manifolds with 3-manifolds is [6]. The gold standard of
exposition of the analytic foundations of pseudoholomorphic curves is [18]. Gromov’s paper
[13] is inspirational and laconic, and should be read in concert with more sober references.

1.1. Linear algebra.

Definition 1.1. Let V be a real vector space. A symplectic structure on V is a bilinear
2-form ω : V × V → R that is

(1) antisymmetric: ω(u, v) = −ω(v, u) for all u, v ∈ V ; and
(2) nondegenerate: for any nonzero u ∈ V there is v ∈ V with ω(u, v) 6= 0.

With respect to a basis for V , any bilinear 2-form ω is represented by a matrix J so
that ω(u, v) = vTJu. The form is antisymmetric if and only if J is antisymmetric, and
it is nondegenerate if and only if det(J) 6= 0. The symplectic group Sp(V, ω) is the group
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of automorphisms of V that preserve ω. With respect to a basis as above, these are the
matrices A for which ATJA = J .

An odd dimensional antisymmetric matrix has kernel; thus, only even dimensional vector
spaces admit symplectic structures.

Example 1.2 (Standard symplectic R2n). On R2n with coordinates x1, · · · , xn, y1, · · · , yn
define a 2-form ω by

ω(xi, xj) = ω(yi, yj) = 0; ω(xi, yj) =

{
0 if i 6= j

1 if i = j

In this basis ω is represented as above by the block matrix J =
(

0 −In
In 0

)
where In is the

n× n identity matrix.

Definition 1.3. If V, ω is symplectic and U ⊂ V is a linear subspace, define the orthogonal
complement U⊥ to be the subspace

U⊥ := {v ∈ V such that ω(u, v) = 0 for all u ∈ U}
The subspace U is said to be

(1) symplectic if U ∩ U⊥ = 0;
(2) isotropic if U ⊂ U⊥;
(3) coisotropic if U⊥ ⊂ U ; and
(4) Lagrangian if U = U⊥.

There is a map σ : V → V ∗ that takes v ∈ V to αv ∈ V ∗ defined by αv(u) = ω(u, v).
Nondegeneracy of ω implies that σ is an isomorphism. An inclusion U → V is dual to
a surjection V ∗ → U∗ whose kernel is σ(U⊥). Thus dim(U) + dim(U⊥) = dim(V ), and
Lagrangian subspaces all have dimension dim(V )/2.

In the standard symplectic R2n the subspaces X spanned by the xi and the subspace Y
spanned by the yi are Lagrangian.

Lemma 1.4. (1) Any isotropic subspace U ⊂ V, ω is contained in a Lagrangian sub-
space.

(2) Any Lagrangian subspace L ⊂ V, ω has a Lagrangian complement; i.e. a Lagrangian
subspace L′ with L ∩ L′ = 0 and L⊕ L′ = V .

(3) If L ⊂ V, ω is Lagrangian, and L′ is any Lagrangian complement, any isomorphism
L → X ⊂ R2n extends to a unique symplectic isomorphism V → R2n sending
L′ → Y .

(4) If U ⊂ V, ω is symplectic, any symplectic isomorphism U → R2m extends to a
symplectic isomorphism V → R2n.

Proof. If U ⊂ V is isototropic but not Lagrangian then U is properly contained in U⊥. If
v ∈ U⊥ − U is arbitrary, 〈U, v〉 is isotropic. This proves (1).

Suppose L ⊂ V is Lagrangian. Let U be isotropic of dimension less than dim(V )/2
with L ∩ U = 0. The map σ : L → V ∗ → U∗ is surjective, for otherwise there are
distinct u1, u2 ∈ U that pair the same way with every element of L, which implies that
u1 − u2 ∈ L contrary to the definition of U . Thus, if w is any nonzero vector with
dim(〈U,w〉) = dim(U) + 1 and L ∩ 〈U,w〉 = 0 then there is v ∈ L for which v and w have
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the same image in U∗. It follows that 〈U,w−v〉 is isotropic, contains U , and has dimension
equal to dim(U) + 1. This proves (2).

The map σ : R2n → (R2n)∗ takes Y isomorphically to X∗. Likewise, if we choose any
splitting V = L ⊕ L′ the map σ : V → V ∗ takes L′ isomorphically to L∗. Thus there is
a unique isomorphism L′ → Y respecting these maps, and therefore a unique symplectic
isomorphism L⊕ L′ → X ⊕ Y . This proves (3).

(3) implies that any symplectic vector space is isomorphic to the standard symplectic
vector space of the same dimension. If U ⊂ V is symplectic and we have an isomorphism
U → R2m then U⊥ is also symplectic so by (2) there is an isomorphism U⊥ → R2n−2m, and
therefore U ⊕ U⊥ → R2m ⊕ R2n−2m, proving (4). �

Example 1.5 (Standard Hermitian Cn). Let W = Cn with coordinates z1, · · · , zn and the
standard Hermitian form h(u, v) = v∗u where v∗ means conjugate transpose. This is
complex linear in the first argument and complex antilinear in the second argument. Let
V = WR, the underlying real vector space of W . If we write zj = xj + iyj then xj, yj define
coordinates on V making it isomorphic to R2n.

With respect to this isomorphism, the real part of h is the usual Euclidean inner product
on R2n and the imaginary part of h is the standard symplectic structure on R2n.

A real subspace of W is said to be totally real if the restriction of h to W takes real
values. The maximal totally real subspaces of W are precisely the Lagrangian subspaces
of R2n.

Let’s consider Cn with the standard Hermitian form h with real part g and imaginary part
ω. The complex linear automorphisms of Cn are GL(n,C), the real linear automorphisms
preserving g are O(2n,R) and the real linear automorphisms preserving ω are Sp(2n,R).
Finally, the complex linear automorphisms preserving h are U(n). There are isomorphisms

GL(n,C) ∩ Sp(2n,R) = GL(n,C) ∩O(2n,R) = Sp(2n,R) ∩O(2n,R) = U(n)

Example 1.6 (Lagrangian as a coset space). Let Ln denote the space of Lagrangian sub-
spaces of standard symplectic R2n, equivalently the space of maximal totally real sub-
spaces of standard Hermitian Cn. The group U(n) acts transitively on Ln with stabilizers
conugate to O(n;R); thus Ln is isomorphic to the coset space U(n)/O(n). The map
det2 : U(n)/O(n)→ S1 exhibits Ln as a fiber bundle over S1.
L1 is a circle. It may be identified with RP1, the space of lines in R2.
L2 is an S2 bundle over S1. In fact it is the twisted (nonorientable) S2 bundle over S1,

with monodromy the antipodal map on S2.

Definition 1.7. Let V be a real vector space of dimension 2n. A complex structure on V
is an endomorphism J with J2 = −Id. A complex structure and a symplectic structure
ω are compatible if ω(u, v) = ω(Ju, Jv) for all u, v ∈ V and ω(v, Jv) > 0 for all nonzero
v ∈ V .

A compatible complex and symplectic structure ω, J together determine a J-invariant
positive definite inner product g(u, v) = ω(u, Jv), and thereby a J-invariant Hermitian
form with real part g and imaginary part ω. This witnesses GL(n,C)∩ Sp(2n,R) = U(n).

Lemma 1.8. The space of compatible complex structures on the standard symplectic R2n, ω
is the coset space Sp(2n,R)/U(n). This space is contractible.
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Proof. We have already seen that a complex structure compatible with a symplectic struc-
ture determines a Hermitian form, whose stabilizer is a copy of U(n) in Sp(2n,R) conjugate
to the standard one. This proves the first claim. To see that the coset space is contractible,
observe that a symplectic matrix A ∈ Sp(2n,R) has a polar decomposition A = PU where
P is symmetric positive definite and U is orthogonal. A calculation shows that P and U
are both separately symplectic, and therefore the one parameter family P tU as t goes from
1 to 0 defines a deformation retraction of Sp(2n,R) onto U(n). �

1.2. Symplectic manifolds. Let W be an oriented 2n-manifold. A symplectic structure
on W is a 2-form ω which is

(1) closed: dω = 0; and
(2) nondegenerate: ωn is nowhere zero.
Since ωn is nowhere zero, it determines an orientation on W . Since ω is closed, it

determines a cohomology class [ω] ∈ H2(W ;R) and if W is closed, [ω]n 6= 0 in H2n(W ;R).

Remark 1.9. Any nondegenerate 2-form ω induces a symplectic structure on the fibers of
TW (i.e. it gives TW the structure of a symplectic vector bundle).

Example 1.10. Oriented surfaces with area forms are symplectic. Products of symplectic
manifolds are symplectic. Open submanifolds of symplectic manifolds are symplectic.

Example 1.11. Smooth complex projective varieties are symplectic. To see this, first realize
CPn as S2n+1/S1 for S2n+1 the unit sphere in Cn+1. This determines a Hermitian form on
TCPn by identifying tangent vectors to CPn with equivalence classes of vectors in S2n+1

perpendicular to the S1 orbits, and restricting the standard Hermitian form on Cn+1. The
imaginary part of the induced Hermitian form on CPn is closed, and non-degenerate on
complex subspaces of TCPn.

Example 1.12. If Mn is a smooth manifold, there is a ‘tautological’ 1-form α on T ∗M
defined as follows. Let π : T ∗M → M denote projection, inducing dπ : TT ∗M → TM . If
p ∈ M and q ∈ T ∗pM and v ∈ T(p,q)T ∗M then α(v) := q(dπ(v)). If pi are local coordinates
on M , then dpi is a basis for T ∗M locally and we may choose coordinates qi on the fibers
in this basis, so that pi, qi become local coordinates on T ∗M , and then α =

∑
qidpi. Thus

ω := −dα =
∑
dpi ∧ dqi is nondegenerate and therefore symplectic.

1.3. Theorems of Moser and Darboux.

Theorem 1.13 (Moser). Let ω(t) be a 1-parameter family of symplectic forms on a closed
manifold W , and suppose the cohomology classes [ω(t)] are constant. Then the ω(t) are all
pulled back from ω(0) by a 1-parameter isotopy.

Proof. By hypothesis ω̇(t) are all exact, so we can find a smooth 1-parameter family of
1-forms α(t) with dα(t) = ω̇(t). Since each ω(t) is nondegenerate there is a smooth family
of vector fields X(t) so that α(t)(Y ) = ω(t)(X, Y ) for all t; i.e. ιX(t)ω(t) = α(t). By
Cartan’s magic formula

LX(t)ω(t) = ιX(t)dω(t) + dιX(t)ω(t) = ω̇(t)

Thus the ω(t) are all pulled back from ω(0) by the flow generated by X(t). �
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Theorem 1.14 (Darboux). LetW 2n, ω be symplectic. Then every point has a neighborhood
symplectomorphic to an open subset of the standard symplectic R2n.

Proof. For arbitrary p ∈ W choose a smooth embedding φ : U → R2n for some open
neighborhood U of p, and let ω′ be the pullback of the standard symplectic form to U .
After composing φ with a linear automorphism of R2n if necessary we may assume that
ω′ = ω at p; thus there is a smaller open neighborhood V of p for which ω(t) := tω+(1−t)ω′
is symplectic for t ∈ [0, 1].

Using φ we may identify V with its image in R2n and think of ω(t) as a 1-parameter
family of symplectic forms on a neighborhood of 0. Since R2n is contractible we may
write ˙omega(t) = α(t) for some 1-parameter family of 1-forms, and by subtracting a
constant 1-form from each α(t) we may assume α(t) vanishes at the origin. Then as above
α(t) = ιX(t)ω(t) for some family of vector fields X(t) definined in a neighborhood of 0.
Since each X(t) vanishes at 0, the vector fields generate a flow on an open neighborhood
of 0 defined for all [0, 1]. Thus, as in the proof of Moser, ω and ω′ are symplectically
isomorphic on some neighborhoods of 0 (and the same is true at p). �

1.4. Almost complex structures.

Definition 1.15 (Almost complex). If W is a (necessarily even dimensional oriented)
manifold, an almost complex structure on W is a choice of (smoothly varying) complex
structure on the fibers of TW .

An almost complex structure on W is equivalent to the data of a section J of the bundle
of automorphisms of TW with J2 = −Id (the automorphism J acts on each fiber as
multiplication by i). The existence of an almost complex structure on a manifold is a
purely homotopy theoretic condition, that the classifying map of the tangent bundle lifts
to complex Grassmannian.

Definition 1.16 (Tame). Let J be an almost complex structure on W . A closed 2-form
ω on W is said to tame J if ω is strictly positive on the complex lines of TW .

A closed 2-form that tames any J is necessarily symplectic. Furthermore, for a fixed
almost-complex structure, the set of closed 2-forms that tame it form a convex subspace
of Ω2(W ); this fact allows partition of unity arguments in the construction of symplectic
structures, as we shall see in the proof of Theorem 1.18.

Definition 1.17 (Compatible). A closed 2-form ω is compatible with J if the structures
are compatible on each fiber of TW in the sense of Definition 1.7.

A 2-form ω compatible with J necessarily tames it. If W,ω is symplectic, there is always
a J tamed by ω (resp. compatible with ω); in fact the set of J tamed by ω (resp. compatible
with ω) is contractible. This follows from Lemma 1.8. Thus the tangent bundle of any
symplectic manifold is a complex vector bundle in a canonical way (up to isomorphism)
and we may refer to the Chern classes cj ∈ H2j(W ;Z) of this complex structure.

1.5. Lefschetz fibrations. A (4-dimensional) topological Lefschetz fibration is the data of
a closed oriented 4-manifold W and a map π : W → S2 such that
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(1) π is a submersion away from finitely many singular points where there are local
(oriented) complex co-ordinates z1, z2 onW and z on S2 so that in these co-ordinates
π has the form z = z21 + z22 ;

(2) there is at most one singular point on each fiber; and
(3) there is some c ∈ H2(W ) with c[F ] = 1 for every (nonsingular) fiber F .

The adjective ‘topological’ will be sometimes be omitted in the sequel out of laziness. We
make some remarks on this definition.

(1) W as above admits an almost complex structure J for which the tangent space to
the fibers are complex lines. This is obvious near the nonsingular fibers (take J to
preserve an orthogonal splitting TW = TF ⊕ TF⊥ for some Riemannian metric)
and one sees that this structure pieces together with the complex structure given
by hypothesis near the singular points.

(2) Since all nonsingular fibers are homologous, (3) is equivalent to the condition that
the nonsingular fibers F are nontrivial in homology (with real coefficients). Since
[F ] ∩ [F ] = 0 it follows that the first Chern class c1 associated with the almost
complex structure satisfies c1[F ] = χ(F ). Thus (3) is automatically satisfied when
F has genus 6= 0.

(3) Since π is a submersion away from the singular points, a neighborhood of a nonsin-
gular fiber is a product F×D where F is a closed oriented surface, and the fibers are
F ×point. If x ∈ W is a singular point, and p = π(x), and p ∈ D ⊂ S2 is a disk for
which x is the only singular point in π−1(D), then π−1(D− p) is an F bundle with
monodromy (in the positive direction) equal to a right-handed Dehn twist around
some essential simple closed curve γ ⊂ F called a vanishing cycle. As q → p the
curves γq in the fibers Fq degenerate to the point x; i.e. Fp is homeomorphic to the
quotient of F with γ pinched to a point.

(4) One may generalize the definition of a topological Lefschetz fibration by allowing
the base to be any closed oriented surface Σ; by abuse of notation we refer to these
more general structures also as topological Lefschetz fibrations.

Theorem 1.18 (Lefschetz fibration is symplectic). Let W 4 → Σ2 be a (generalized) topo-
logical Lefschetz fibration. Then W is symplectic.

Proof. By (3) there is c ∈ H2(W ) with c[F ] = 1 for every fiber F . We first construct
a closed 2-form η on W 4 which is strictly positive on TF for every fiber, and such that
[η] = c. Fix a representative 2-form ζ of the de Rham class c.

A neighborhood N of a nonsingular fiber F is diffeomorphic to a product F × D2 and
we may therefore project it to F and pull back an area form (of total area 1) to obtain a
form strictly positive on TF |N and of the form ζ + dα where α is a 1-form on N .

If x ∈ F is a singular point, then by (2) near x there are (oriented) local complex
coordinates (z1, z2) ∈ C2 for which π(z1, z2) = z21 + z22 . Choose a closed 2-form in a
neighborhood of x modeled on the standard symplectic form on a ball in C2, and extend
it to a closed 2-form on a neighborhood N of F which is an area form on each fiber. Since
H2(N,R) = R this will be of the form ζ + dα where α is a 1-form on N .

Take a partition of unity ρy on S2 whose supports are contained in small disks Dy for
which each Ny := π−1(Dy) is a neighborhood as above of an ordinary or singular fiber with
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associated 2-form ζ + dαy. Define

η := ζ + d
∑
y

(ρy ◦ π)αy =
∑
y

(ρy ◦ π)(ζ + dαy) +
∑
y

(dρi ◦ dπ) ∧ αy

Each term of
∑

y(dρi ◦ dπ) ∧ αy vanishes on TF , and the remainder is strictly positive on
each TF by construction. Moreover, η as above is closed.

Now let β be an area form on S2 and define ω := η+ tπ∗β. This form is closed; we claim
that for sufficiently large t it is nondegenerate (and therefore symplectic). To see this,
put a complex structure J on TW preserving an orthogonal splitting TW = TF ⊕ TF⊥.
The form π∗β is non-negative on all complex lines, and strictly positive on all except
the vertical lines (those tangent to TF ). The form η is strictly positive on TF and (by
continuity) on some open neighborhood of the vertical complex lines. Furthermore, η tames
J in a neighborhood of the singular points. Thus some η + tπ∗β tames J and is therefore
symplectic. �

1.6. Character varieties.

Definition 1.19. Let G be a (real or complex) matrix Lie group with Lie algebra g and
discrete center Z, and let M be a manifold with finitely generated fundamental group.

The representation variety is the set R(M,G) = Hom(π1(M), G), thought of as an
algebraic variety with coordinates the matrix entries of the ρ(gj) where the gj are generators
of π1(M), and ρ : π1(M) → G is a homomorphism, which is cut out by equations of the
form ρ(w) = Id for all relations w in the generators and their inverses.

Let R∗(M,G) denote the set of irreducible representations. The group G acts on R and
R∗ by conjugation. The conjugation action of G on R∗(M,G) is locally free (it factors
through a free action of G/Z), and we denote the quotient X∗(M,G).

Now let’s specialize to the case that M is a closed oriented surface Σ of genus g, and
let Σ∗ denote Σ minus a point p. The fundamental group of Σ∗ is free on 2g generators
a1, b1, · · · , ag, bg, and the fundamental group of Σ is the quotient of this by the relation∏

i[ai, bi] = 1. For convenience let’s denote c :=
∏

i[ai, bi].

Lemma 1.20. Let Σ have genus g. Then X∗(Σ, G) is a smooth manifold of dimension
(2g − 2) dim(G).

Proof. Evidently R(Σ∗, G) = G2g. The inclusion Σ∗ → Σ induces a surjection on π1 and
therefore an inclusion R(Σ, G) → R(Σ∗, G). Define σ : R(Σ∗, G) → G by σ(ρ) = ρ(c). If
ρ ∈ R(Σ, G) then σ(ρ) = Id and dσ : TρR(Σ, G)→ g. We claim that when ρ is irreducible,
dσ is surjective. By the implicit function theorem this will imply that R∗(Σ, G) is a smooth
manifold of dimension (2g − 1) dim(G), and therefore (since G acts locally freely on the
irreducible representations) X∗(Σ, G) is a smooth manifold of dimension (2g − 2) dim(G)
as claimed.

So, let ρ be irreducible with σ(c) = Id. We may apply an automorphism of Σ∗ (if
necessary) to assume that α := ρ(ag) and β := ρ(bg) are nonzero, and together their
image in G is irreducible. Since the image is irreducible, the only elements of G that
simultaneously commute with α and β are in the center; consequently (Adα−1 − 1)g and
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(Adβ−1 − 1)g together span g. Then if u, v ∈ g are arbitrary,

d

dt

∣∣∣
t=0

[α(1 + tu), β(1 + tv)] =
d

dt

∣∣∣
t=0
α(1 + tu)β(1 + tv)α−1(1− tAdα(u))β−1(1− tAdβ(v))

= αuβα−1β−1 + αβvα−1β−1 − αβuα−1β−1 − αβα−1vβ−1

= [α, β]Adβα (Adβ−1(u) + v − u− Adα−1(v))

and therefore dσ is surjective at ρ. �

Let [ρ] ∈ X∗(Σ, G) and let ρ be a homomorphism in the equivalence class of [ρ]. If ρt
is a 1-parameter family of representations deforming ρ0 = ρ, for any g, h ∈ π1(Σ) we may
differentiate the identity ρt(g)ρt(h) = ρt(gh) at t = 0 to obtain ρ′(g)ρ(h) + ρ(g)ρ′(h) =
ρ′(gh). Setting c(g) := ρ(g)−1ρ′(g) ∈ g this becomes the identity

Adρ(h)−1c(g) + c(h) = c(gh)

Functions c : π1(Σ) → g satisfying this equation are (by definition) group 1-cocycles with
values in the π1(Σ)-module g (with the module structure coming from Adρ).

If the class of [ρt] is constant in X∗(Σ, G) to first order, then there is some smooth
γ : [0, 1] → G with γ(0) = Id so that up to first order, ρt(g) := γ(t)ρ(g)γ(t)−1. For such
a family, with γ′(0) = v we have c(g) = Adρ(g)−1(v) − v. Cocycles of this kind are (by
definition) group 1-coboundaries. The quotient of the space of 1-cocycles by the space
of 1-coboundaries is the cohomology group H1

ρ(Σ, g). Thus we obtain an injective map
TρX

∗(Σ)→ H1
ρ(Σ, g).

Surjectivity is a tricky question for general Σ. If one tries to write down a an honest
deformation ρt (say, as power series in t), 1-cocycles give values for the linear terms for
which ρt(g)ρt(h) = ρt(gh) to first order. In general there is an obstruction in H2

ρ(Σ, g) to
finding compatible quadratic terms for which this formula holds to second order; however,
this obstruction vanishes for surface groups; see Goldman [12] Thm. ??. To see this, observe
firstly that since π1(Σ∗) is free, the obstruction vanishes in this case and therefore

dimTρX
∗(Σ∗) = dimH1

ρ(Σ∗, g) = (2g − 1) dim(g)

Group 1-cocycles on π1(Σ
∗) may take an arbitrary value on c (this is essentially equiva-

lent to Lemma 1.20) so dimH1
ρ(Σ, g) ≤ (2g − 2) dim(g) = dimTρX

∗(Σ) and we conclude
TρX

∗(Σ)→ H1
ρ(Σ, g) is an isomorphism.

Cup product defines an antisymmetric bilinear form onH1
ρ(Σ, g) with values inH2

ρ(Σ, g⊗
g). If G is reductive, the Killing form on g, defined by 〈A,B〉 := tr(AB), is a nondegenerate
symmetric form. One obtains in this way an alternating 2-form ω on X∗(Σ) by

H1
ρ(Σ, g)⊗H1

ρ(Σ, g)→ H2
ρ(Σ, g⊗ g)→ H2

ρ(Σ,R)→ R

Goldman Thm. ?? shows that this form is symplectic. This may be proved by direct
calculation though we do not do it here. A more conceptual (though technically more
complicated) proof identifies X∗ with the Marsden–Weinstein quotient for the action of the
gauge group Map(Σ, G) on the (naturally symplectic) space of irreducible G-connections
on a trivial G bundle over Σ.
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1.7. Symmetric products. Let Σ be a closed oriented surface. A symplectic form on S is
the same thing as an (oriented) area form, and any such form arises from some Riemannian
metric. A Riemannian metric determines a conformal structure with respect to which S is
isomorphic to a smooth complex projective curve.

The nth symmetric product SnΣ is the quotient of Σn = Σ× · · · × Σ by the symmetric
group acting by permutation of the coordinates. Rather surprisingly, this turns out to have
the natural structure of a smooth complex projective variety (of complex dimension n).

Example 1.21. Although it is not closed, we may consider the case Σ = C. Then it turns
out SnC = Cn. To see this, we may think of SnC as the space of unordered n-tuples of
complex numbers, and Cn as the space of ordered n-tuples. The isomorphism is then given
by the (biholomorphic!) map that sends a monic degree n polynomial to its set of roots.

2. Contact structures

Let M be an oriented 3-manifold. A contact structure is a smooth 2-plane field ξ that
is nowhere integrable. If α is a local 1-form with ξ = ker(α), nowhere integrability is
equivalent to α ∧ dα 6= 0 everywhere. The contact structure is positive if some (hence
any) α satisfies α ∧ dα > 0 everywhere, and negative if α ∧ dα < 0. This is well-defined
independent of the choice of α, since multiplying α by a nowhere zero function f multiplies
α ∧ dα by f 2. Changing the orientation on M changes positive contact structures to
negative ones and vice versa.

A contact structure is co-oriented if ξ is co-oriented (equivalently, oriented since M is
oriented). This is equivalent to the existence of a global 1-form α as above. In the sequel
we assume our contact structures are all co-oriented unless we explicitly say otherwise.

Example 2.1 (Standard contact structure on R3). On R3 the standard contact structure is
ξ := ker(α) where α = dz+xdy; see Figure 1. Since α∧dα = dx∧dy∧dz this is a positive
contact structure. Positivity means that ξ rotates anticlockwise as one moves tangent to ξ
in any direction;

Example 2.2 (Connection 1-form). On a surface S with a Riemannian metric the Levi–
Civita connection defines a distribution ξ on the unit tangent bundle M := UTS for which
curves tangent to ξ are parallel. If α is the 1-form with ker(α) = ξ and the restriction of
α to each circle fiber is the signed angular measure (so that the integral of α around each
fiber is 2π) then −dα is the (pullback from S of the) curvature 2-form of the metric on
S. Thus if S is a surface of negative (resp. positive) curvature, M inherits a canonical
positive (resp. negative) contact structure.

If ξ is a contact structure and α an associated 1-form, the contact condition implies that
dα is non-degenerate on ξ. Thus ker(dα) is transverse to ξ, so that there is a unique vector
field X transverse to ξ with X ∈ ker(dα) and α(X) = 1. The vector field X with these
properties is the Reeb vector field associated to ξ. By Cartan’s formula LX(α) = 0; i.e. the
1-parameter family of diffeomorphisms generated by X preserve α.

2.1. Fillings and thickenings. The contact geometry of 3-manifolds is related to the
symplectic geometry of 4-manifolds by filling and thickening.
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Figure 1. The standard contact structure on R3

Definition 2.3. A compact symplectic manifoldW,ω is strongly convex if there is a vector
field X defined in a neighborhood of ∂W satisfying LXω = ω.

If W 4 is strongly convex, the form α := ιXω satisfies dα = LXω = ω so that

α ∧ dα = α ∧ ω = ιXω ∧ ω
which is a positively oriented volume form on M := ∂W with respect to the orientation
induced as the boundary of a symplectic manifold.

Definition 2.4 (Strongly fillable). A (positive) contact structure M, ξ is strongly fillable
(resp. strongly semi-fillable) if there is a strongly convex symplectic manifold W,ω with
M = ∂W (resp. M is one component of ∂W ) inducing ξ on M .

Example 2.5 (Symplectic thickening). Let M, ξ be positive contact with 1-form α. The
symplectization of M is M × R with the symplectic form ω := d(etα) (where t is the
coordinate on R). The vector field X := ∂/∂t satisfies LXω = ω, and therefore ιXω
induces M, ξ on the slice M × 0. However, M × (−∞, 0] does not define a strong filling of
M, ξ because it is non-compact.

Definition 2.6 (Weakly fillable). A (positive) contact structure M, ξ is weakly fillable
(resp. weakly semi-fillable) if there is a compact symplectic manifold W,ω with ∂W = M
so that ω|ξ is everywhere positive (resp. M, ξ is one component of a possibly disconnected
M ′, ξ′ that is weakly fillable).

Since dα is positive on ξ whenever α is a positive contact form, it follows that any
strongly (semi-)fillable contact structure is weakly (semi-)fillable.

Example 2.7 (Standard contact structure on S3). Let W be the closed unit ball in C2 with
the standard complex/symplectic structure ω. The induced contact structure on S3 is
strongly filled by W,ω. If we remove any point from S3, this induces the standard contact
structure on R3.
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Example 2.8 (Overtwisted contact structure on R3). Give R3 cylindrical coordinates r, θ, z
and let ξ be the contact structure with contact form α = r sin(r)dθ+cos(r)dz. The disk D
in the plane z = 0 with radius π is tangent to ξ at the center and along ∂D; see Figure 2.

Figure 2. An overtwisted disk

Definition 2.9 (Overtwisted disk). An overtwisted disk for a contact structure M, ξ is an
embedded closed disk D ⊂M tangent to ξ along ∂D. A contact structure is overtwisted if
it contains an overtwisted disk, and is tight otherwise.

Some (many) authors define an overtwisted disk to be one whose boundary is transverse
to ξ (keeping ∂D tangent to ξ). A disk overtwisted in either sense may be perturbed to be
overtwisted in the other sense, so which definition is used is a matter of convenience. What
is really important is whether the contact structure admits such a disk (of either kind).

2.1.1. Characteristic foliations. Here is how overtwisted disks arise in practice. A compact
embedded surface S may be isotoped to be in general position with respect to ξ; this means
that it has isolated tangencies with ξ, and the boundary (if any) may be made transverse
to ξ. For a surface in general position, the intersection with ξ is a line field with isolated
singularities, that may be integrated to a singular foliation, known as the characteristic
foliation and denoted Sξ. An embedded subdisk whose boundary is a (nonsingular) closed
curve of the characteristic foliation is an overtwisted disk (in the second sense above). The
singularities (i.e. tangencies of S with ξ) are elliptic or hyperbolic depending on whether the
local index of the characteristic foliation near the singularity is 1 or −1, and singularities
are positive or negative depending on whether the (co)-orientations of S and ξ agree or
disagree.

Note that if S and ξ are oriented, the characteristic foliation may also be oriented in
such a way that (ν(ξ), ν(S), S ′ξ) is an oriented basis (where ν(S) and ν(ξ) are the positive
normals to S and ξ respectively). Thus a positive elliptic tangency is a source, whereas a
negative elliptic tangency is a sink.
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Theorem 2.10. Suppose (M, ξ) is weakly semi-filled by W,ω. Then ξ is tight.

Proof. We give a proof due to Gromov ([13], 2.4.D′2). This proof uses the machinery of
pseudoholomorphic curves that will be developed in § 3, and until the reader has absorbed
that section, it may read like science fiction.

Let’s suppose (M, ξ) admits an embedded disk D overtwisted for ξ. Near the center
tangency p the inclusion p ∈ D ⊂M ⊂ W is locally (symplectically) modeled on

(0, 1) ∈ {Im(z2) = 0} ∩ S3 ⊂ S3 ⊂ B4 ⊂ C2

Near p there is a family of disks Et, holomorphic for the standard complex structure on C2

parameterized by 0 < t real. In these local coordinates, for each fixed t

Et := {(z1, t) ∈ C× R such that |z1|2 + (1− t)2 ≤ 1}

The Maslov index (and hence the real dimension) of this family is 1.
Choose a generic J-holomorphic structure compatible with ω (extending the model one in

a neighborhood of the center) regular for the Et, and continue the family for some maximal
open interval t ∈ (0, t0). Since the boundary of W is pseudo-convex (in particular, it is
strictly mean convex in holomorphic directions) the Et may never make an interior tangency
with M ; thus in particular ∂Et is never tangent to ξ (and therefore is strictly contained in
the interior of D). Thus by Gromov’s Compactness Theorem we can extract a limit Et0
which is necessarily singular (or we could continue the family further).

But such a singular curve must be of the form Et0 = E ′∨S2 where S2 is holomorphic, and
therefore the Maslov index of E ′ is −1 which can’t occur for generic J . This contradiction
shows that no overtwisted D exists, so that ξ is tight as claimed. �

2.2. Legendrian knots.

Definition 2.11. Let (M, ξ) be a contact structure. A knot K in M is Legendrian if it is
tangent to ξ.

A Legendrian knot K has a canonical framing, given by the intersection of the contact
structure ξ with the normal bundle. If M is a rational homology sphere, this framing
determines a self-linking number, known for historical reasons as the Thurston–Bennequin
number, and usually denoted tb(K).

If K is an oriented Legendrian knot there is another invariant called the rotation number
r(K) defined with respect to a trivialization of ξ|K as an R2 bundle, that measures how
many times K ′ twists relative to the trivialization. Reversing the orientation of K changes
the sign of r(K).

Theorem 2.12 (Thurston–Bennequin inequality). Let K be a Legendrian knot in S3 with
the standard contact structure, with self-linking (i.e. Thurston–Bennequin) number tb(K).
Let S be any Seifert surface for K, and let r(K) be the rotation number of K with respect
to a trivialization of ξ|S. Then tb(K)± r(K) ≤ −χ(S).

Proof. Orient K, and let v be a section of ξ|K perpendicular to K ′ so that the orientation
given by v,K ′ agrees with the orientation coming from the trivialization of ξ|S. Push K
slightly in the direction of v (so that it is positively transverse to ξ in the given orientation),
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and let K+ be obtained by pushing K off itself slightly further in the direction v, and KS

by pushing K in a direction which is parallel in the given trivialization. By definition

tb(K) = link(K,K+) = link(K,KS) + r(K)

We shall show link(K,KS) ≤ −χ(S); the inequality follows from this.
Let e ∈ H2(S, ∂S) be the Euler class of ξ|S, relative to the trivialization of TS|∂S

coming from K ′. Then link(K,KS) = −e[S]. On the other hand, if we put S in general
position with respect to ξ we may compute e[S] from the characteristic foliation. Let e+
(resp. e−) denote the number of positive (resp. negative) elliptic tangencies, and likewise
define h+ (resp. h−) to be the number of positive (resp. negative) hyperbolic tangencies.
Then χ(S) = e+ + e− − h+ − h− whereas e[S] = e+ − e− − h+ + h− and therefore

link(K,KS) = −χ(S) + 2(e− − h−)

Thus the theorem will be proved if we can arrange for e− = 0.
If an elliptic and hyperbolic pair of the same sign is joined by a trajectory of X we may

eliminate them by a local move. Furthermore, in general position there are no trajectories
between pairs of hyperbolic singular points. A negative elliptic tangency p is a sink of
X; let Ep be the attracting basin of this sink. Then Ep is a disk, whose boundary is a
(possibly singular) Legendrian curve. If ∂Ep contained no tangencies of ξ with S, it would
be an overtwisted disk, contradicting the fact that S3 is tight. Thus there must be some
tangencies of ξ with S in ∂Ep and by what we have said so far these must alternate between
positive elliptic tangencies and negative hyperbolic ones. Thus p is joined by a trajectory
of X to a negative hyperbolic tangency, and therefore a posteriori does not exist. So e− = 0
and the inequality is proved. �

2.3. Confoliations. The purpose of this section is to prove the following theorem:

Theorem 2.13 (Eliashberg–Thurston [5]; foliation to contact structure). Let F be any
C2 foliation other than the product foliation of S2 × S1 by spheres. Then TF may be
approximated by positive and negative contact structures.

The proof is carried out in two steps: first perturb the foliation to an intermediate
structure called a confoliation, and then perturb the confoliation further to a contact
structure.

Here is the definition of a confoliation:

Definition 2.14. A 2-plane field ξ for which there is locally some 1-form α with ker(α) = ξ
and α ∧ dα ≥ 0 (resp. ≤ 0) is a positive (resp. negative) confoliation.

A foliation may not be perturbed to a contact structure locally; if we think of α locally as
a connection 1-form on a line bundle and −dα as its curvature, Stokes’ Theorem prevents
us creating some local positive contact structure without creating an ‘equal amount’ of
negative contact structure. However: such a perturbation exists in a neighborhood of a
loop with suitable holonomy.

Definition 2.15 (Contracting and weakly contracting). Let γ ⊂ λ be a loop in a leaf λ
of F. Say that γ has contracting holonomy if there is a transversal τ parameterized as
[−1, 1] (with 0 = τ ∩ λ) so that holonomy transport around γ restricted to τ is conjugate
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to f : [−1, 1]→ [−1, 1] with x < f(x) < 0 < f(y) < y for all x < 0 < y, and it has weakly
contracting holonomy if xi < f(xi) < 0 < f(yi) < yi for some sequences xi, yi converging
to 0 from either side.

Holonomy which exhibits the behaviour in Definition 2.15 is sometimes said to be two-
sided (weakly) contracting, to distinguish it from holonomy which exhibits the given be-
haviour only on one side of λ.

Lemma 2.16 (Holonomy perturbs). Let F be a foliation of M , and let γ be an essential
simple loop in a leaf λ of F with two-sided weakly contracting holonomy. Let N be a regular
open solid torus neighborhood of γ. Then F may be (C0) perturbed in any neighborhood of
γ to a (positive or negative) confoliation which is contact near γ, and agrees with F near
the boundary.

Proof. First consider the case that γ has contracting holonomy f : [−1, 1]→ [−1, 1]. Note
that any such f is topologically conjugate to any other. Let E be a transverse rectangle
that cuts N into a parallelepiped P . The intersection with F induces a characteristic
foliation F|∂P on ∂P . Perturb F|∂P to a new foliation T on E± by tilting it to the left on
E+ (and therefore on the right on E−) so that it agrees in N (see Figure 3).

Figure 3. A foliated parallelepiped P . If we tilt the characteristic foliation
on E± the integral curves spiral around ∂P .

The result gives a characteristic foliation on ∂P that spirals (positively) from a unique
maximum to a unique minimum, and this characteristic foliation may be filled in over P
with a positive contact structure that is tangent to F on ∂P − E± and to T on E± and
therefore descends to a positive contact structure on N that may be extended by F on
M −N to give a positive confoliation on M .

Now suppose γ has weakly contracting holonomy conjugate to h : [−1, 1] → [−1, 1] on
some transversal τ . Without loss of generality we may assume x < h(x) for all x ∈ [−1, x0]
and y > h(y) for all y ∈ [y0, 1] for some specific −1 < x0 ≤ 0 ≤ y0 < 1. Let g : [−1, 1] →
[−1, 1] be any homeomorphism that takes [x0, y0] to [−ε, ε] for some very small ε, and let
f ′ = ghg−1. Evidently we may choose f ′ to be ε-close (in the C0 topology) to any fixed f
as above, so after isotopy we may assume that the foliation F′ in a neighborhood of γ is C0

close to some F as above and equal to it outside the ε-neighborhood of λ. We perturb the
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characteristic foliation to the T on E± as for F, and observe that the integral curves of this
new foliation are ε-close to the integral curves as above and agree with them outside the
ε-neighborhood of λ. Thus they still spiral from a unique maximum to a unique minimum
so that they may be filled in with a positive contact structure over P . �

Example 2.17 (Linear holonomy). If F is co-oriented C1, the derivative of holonomy de-
termines a representation from π1(λ) (for any leaf λ) to the (multiplicative) group R+. A
loop γ has nontrivial linear holonomy if the image under this representation is not equal to
1. Evidently, nontrivial linear holonomy is two-sided expanding or two-sided contracting
depending on whether the image is greater or less than 1.

For sufficiently smooth foliations, nontrivial linear holonomy may be found along most
minimal sets. Recall that in Chapter 4 we proved Sacksteder’s Theorem that for a C2

foliation, every exceptional minimal set has nontrivial linear holonomy; and if F itself is
minimal, either there is nontrivial linear holonomy or F has no holonomy at all. Recall also
that we showed that a C2 minimal foliation with trivial holonomy is transversely measured,
and may be perturbed to a surface bundle.

If ξ is a confoliation, there is an open submanifold of M where ξ is a positive contact
structure, and a closed complement where ξ is tangent to a foliation. A positive confoliation
is saturated if every point may be joined to a point in the contact region by a path tangent
to ξ.

The following theorem is due to Altschuler [1]

Theorem 2.18 (Altschuler; Saturated splits). Let ξ be a saturated confoliation. Then ξ
may be perturbed to a C∞ close contact structure.

Proof. Altschuler considers a leafwise heat flow �

Using these ingredients we may now give the proof of Theorem 2.13.

Proof. Let F be a foliation of M , and let Λ be a minimal set. By hypothesis and the Reeb
stability theorem there are no spherical leaves, so by perturbing maximal foliated I-bundles
we may assume that there are finitely many minimal sets, and that they are all one of the
following three kinds:

(1) an isolated closed leaf;
(2) all of M (i.e. F is already minimal); or
(3) an exceptional minimal set — one intersecting a transversal in a Cantor set.
Let S be an isolated closed leaf. Since S is isolated, there are simple essential closed

loops γ± with weakly contracting holonomy on the positive resp. negative side. We may
blow up S to S × I, and insert a foliated bundle which is contracting near 1 along γ+
and contracting near 0 along γ− to produce a new C0 close foliation in which S has been
replaced by two isolated closed leaves, each of which has a loop with two-sided weakly
contracting holonomy.

If F is minimal, then by Proposition ?? either some leaf of F has two-sided contracting
holonomy, or else M is T 3 and F is (isotopic to) a linear foliation; in the latter case we
may perturb F to a foliation by closed tori and then perturb again to reduce to the first
case.
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If Λ is an exceptional minimal set, then by Proposition ?? some curve has two-sided
contracting holonomy.

In each case by Lemma 2.16 we may perturb F to a positive contact structure in an
arbitrarily small neighborhood of such a curve, so that the perturbations may be made
disjointly and simultaneously. The result is a saturated (positive) confoliation, which splits
open to a positive contact structure by Theorem 2.18. �

Corollary 2.19. Let M be a closed, oriented 3-manifold and let F be a co-oriented taut
foliation. Then M × (−1, 1) may be given the structure of a symplectic 4-manifold with
pseudoconvex boundary.

Proof. Let ω be a closed 2-form positive on TF and let α± be positive and negative contact
structures close to α with ker(α) = TF. For small ε the form ω + εd(tα) is symplectic on
M × [−1, 1], and is strictly positive on α± which are both positive contact structures on
the boundary components with the induced orientation. �

2.4. Open book decompositions.

Definition 2.20. An open book decomposition of an oriented 3-manifold M is an oriented
1-manifold X (the binding) and a fibration π : M −X → S1 whose fibers (the leaves) are
open oriented surfaces that may be compactified to surfaces with boundary X.

Thus, M admits an open book decomposition with binding X whenever X is a fibered
link (the fibration however may not be unique). We denote the data of an open book
decomposition as (M,X, π).

The data of the open book may be recovered (up to isomorphism) from the mapping
class φ ∈ Mod(Σ, ∂Σ) where Σ is the fiber of π. We let M(Σ, φ) denote the isomorphism
class of open book decomposition associated to this data

Definition 2.21. A positive co-oriented contact structure ξ on an oriented 3-manifold M
is supported by an open book decomposition (M,X, π) if there is a (positive) contact form
α for ξ with α|TX > 0 for the oriented binding X and dα|TΣ > 0 for the oriented fibers
Σ of π.

Theorem 2.22 (Thurston–Winkelnkemper; open book to contact structure). Any open
book decomposition (M,X, π) supports some positive co-oriented contact structure (M, ξ).

Proof. A neighborhood of each component ofX is a solid torusD2×S1. We put coordinates
r, θ on D2 and φ on S1. Let f : [0, 1] → [0, 1] be a smooth increasing diffeomorphism,
tangent to 0 to first order at the endpoints (i.e. a ‘sigmoid function’) and define α :=
(1− f(r))dφ+ f(r)dθ. Then

α ∧ dα = f ′(r)dr ∧ dθ ∧ dφ
Since f ′(r) > 0 in (0, 1) and f ′(r) goes to zero to first order at 0 and 1, the form α ∧ dα
is strictly positive on the interior of the solid torus, and tapers off to 0 at the boundary
where ker(α) becomes tangent to the fibers of θ : (D2− 0)×S1 → S1. Thus ker(α) defines
a positive contact structure on a neighborhood of the binding which extends to a positive
confoliation on M by making it tangent to the fibers of π outside this neighborhood. This
positive confoliation is saturated, and may be perturbed to a positive contact structure as
in § 2.3. �



CHAPTER 5: SYMPLECTIC AND CONTACT GEOMETRY 17

The converse of Theorem 2.22 is a theorem of Giroux:

Theorem 2.23 (Giroux; contact structure to open book). Let (M, ξ) be a positive co-
oriented contact structure. Then there is an open book decomposition (M,X, π) supporting
(M, ξ).

First we give a definition:

Definition 2.24. Let (M, ξ) be a positive contact structure. A contact cell decomposition
for (M, ξ) is a finite CW complex structure on M such that

(1) the 1-skeleton is Legendrian (i.e. tangent to ξ);
(2) every 2-cell D the push off of ∂D given by the framing ξ has intersection number
−1 with D; and

(3) every 3-cell embeds in the standard contact structure on R3.

A contact cell decomposition for (M, ξ) always exists: if we choose a sufficiently small
cellulation, we may embed the 3-cells in the standard contact R3, and then C0 perturb the
1-skeleton to be Legendrian. Each 2-cell D may be thought of as living in the standard
contact R3, and therefore the ξ-framed push off of ∂D intersectsD with intersection number
tb(∂D) ≤ 1. If tb(∂D) < −1 we may decompose D by Legendrian arcs into subcells Di

each with tb(∂Di) = −1.
Now, let R be a ribbon surface with core the 1-skeleton, contained in a sufficiently small

neighborhood so that ∂R is positively transverse to ξ. We claim that ∂R is the binding of
an open book decomposition with R a fiber, and supporting (M, ξ). To see this, cut open
M along R to obtain a sutured handlebody H whose boundary contains two copies R± of
R meeting along ∂R. We claim this sutured handlebody is a product. To see this, observe
that each 2-disk D gives a compressing disk for H whose boundary intersects the sutures
twice. This proves the claim.

2.5. Stabilization.

Definition 2.25. Let Σ be a compact oriented surface with nonempty boundary, and
let φ ∈ Mod(Σ, ∂Σ) be a mapping class. Let Σ′ be obtained from Σ by attaching a 1-
handle, and let γ be an essential simple closed curve in Σ′ intersecting the core of the
1-handle transversely once. We may extend φ by the identity to obtain a mapping class
φ′ ∈ Mod(Σ′, ∂Σ′) and then define the positive (resp. negative) stabilization φγ along γ to
be the composition τγφ′ where τγ denotes a right handed (resp. left handed) Dehn twist.

If M(Σ, φ) = (M,X, π) and Σ, φγ is obtained from Σ, φ by positive stabilization, then
M(Σ′, φγ) = (M,Y, π′) where Y is obtained from X by plumbing with a right handed Hopf
band with core γ. Positive stabilization is compatible with positive contact structures

Lemma 2.26. Suppose M(Σ, φ) = (M,X, π) and M(Σ′, φγ) = (M,Y, π′) where Σ, φγ
is obtained from Σ, φ by positive stabilization. If a positive contact structure (M, ξ) is
supported by (M,X, π) then it is also supported by (M,Y, π′).

Furthermore, one has the following theorem of Giroux:

Theorem 2.27 (Giroux; stabilization). If (M, ξ) is a positive contact structure, any two
open book decompositions (M,X, π), (M,Y, π′) supporting (M, ξ) become equivalent after
sufficiently many positive stabilizations.
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2.6. Right veering diffeomorphisms. The results in this section are due to Honda–
Kazez–Matić [15].

Definition 2.28. A nontrivial mapping class φ ∈ Mod(Σ, ∂Σ) is right veering if for any
p ∈ ∂Σ and any essential embedded arc α with an endpoint at p, the geodesic representative
of φ(α) is to the right of (or is equal to) the geodesic representative of α near p, with respect
to any hyperbolic metric on Σ. If C is a component of ∂Σ then φ is right veering with
respect to C if it is right veering as above for some (equivalently, any) p ∈ C.

Here is an equivalent definition of right veering. Choose a hyperbolic structure on Σ,
and let Σ̃ ⊂ H2 denote the universal cover, and let p̃ ∈ ∂Σ̃ be any lift of p. The union of
the limit set of Σ̃ with ∂Σ̃ is a topological circle S1 compactifying Σ̃. Any representative
of φ lifts to a unique equivariant diffeomorphism of Σ̃ fixing p, that extends continuously
to a homeomorphism of S1. Furthermore, this extension is independent of the choice of
representative, and defines a faithful representation Mod(Σ, ∂Σ) → Homeo+(S1) fixing p̃.
A mapping class φ is right veering with respect to the component C containing p if and
only if for all q ∈ S1 − p̃ either φ(q) = q or p, φ(q), q is positively ordered (in the cyclic
order on S1).

Evidently for each C the mapping classes right veering for C form a monoid VeerC(Σ);
the intersection of these monoids over all components C is therefore also a monoid Veer(Σ).

Example 2.29. A right handed Dehn twist (and therefore any product of right handed Dehn
twists) is in Veer. It follows that no nontrivial product of right handed Dehn twists is ever
trivial in Mod(Σ, ∂Σ); this is in contrast to the case of the mapping class group of a closed
surface, in which every element is a product of right handed Dehn twists.

Example 2.30. Let Σ′, φ′ be obtained from Σ, φ by attaching a 1-handle and extending φ
over the 1-handle as the identity. If φ ∈ Veer(Σ) then φ′ ∈ Veer(Σ′).

Here is the proof. Let p ∈ ∂Σ′ lie also in ∂Σ. The universal cover Σ̃′ is a tree of copies
of Σ̃ plumbed together along arcs covering the 1-handle, and the action of φ′ on S1(Σ′) is
obtained from the action of φ on S1(Σ) by recursively blowing up segments and inserting
actions of φ on the complements of fixed components. Since all the inserted actions of φ
are right veering, the same is recursively true of φ′.

It follows that if the monodromy of an open book is right veering, then so is the mon-
odromy of any positive stabilization.

Theorem 2.31 (Honda–Kazez–Matić; tight implies right veering). LetM(Σ, φ) be an open
book supporting a tight (positive) contact structure (M, ξ). Then the monodromy φ is right
veering.

2.7. Closing symplectic manifolds.

Theorem 2.32 (Eliashberg, Etnyre; pseudoconvex to closed). Let W,ω be a pseudoconvex
symplectic 4-manifold. Then W is an open submanifold of a closed symplectic 4-manifold.

3. J-holomorphic curves

3.1. Holomorphic curves. Let W 2n, ω be a symplectic manifold, and let J be a compat-
ible almost complex structure with associated metric g(X, Y ) := ω(X, JY ).
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Definition 3.1. Let S be a Riemann surface. A smooth map u : S → W is holomorphic
if du(iX) = Jdu(X) for all X ∈ TS.

The terms J-holomorphic and pseudo-holomorphic are also standard; we sometimes use
the term J-holomorphic when we want to emphasize the dependence on the choice of J .

Lemma 3.2 (Calibration). Let ξ be an oriented 2-plane in TpW . Then |ω(ξ)| ≤ areag(ξ)
and ω(ξ) = areag(ξ) if and only if ξ is J-invariant and oriented compatibly with the induced
complex structure.

Proof. Let X, Y ∈ TpW be orthonormal with respect to g. Then ω(X, Y ) = −g(X, JY ) so
|ω(X, Y )| ≤ 1 = ‖X ∧ Y ‖ and ω(X, Y ) = 1 if and only if Y = JX. �

Corollary 3.3. Holomorphic curves are globally least area minimal surfaces in their ho-
mology class (among compactly supported variations).

Proof. Let S be a holomorphic curve, and let S ′ be homologous to S. Then

area(S) =

∫
S

ω =

∫
S′
ω ≤ area(S ′)

�

3.2. Cauchy–Riemann equations. Under suitable circumstances, one may show that
the space of J-holomorphic curves (with fixed domain, and in a suitable homology class) is
a smooth finite dimensional manifold. The proof of this is a routine but technically involved
exercise in the theory of elliptic PDE; for details we refer the reader to McDuff–Salamon
[18], and content ourselves here with a summary.

For a compact Riemann surface S and a smooth map u : S → W , write ∂̄Ju :=
(1/2)(du + J du i). The map u : S → W is holomorphic if and only if ∂̄Ju = 0. We
may choose Darboux local coordinates on W around u(p) for some p ∈ S, symplectically
isomorphic to an open subset of standard symplectic R2n, and after composing with a linear
automorphism we may assume that J acts on T0R2n as J0, sending ∂/∂xj to ∂/∂yj for all
j. At p the equation ∂̄Ju = 0 reduces to the ordinary Cauchy–Riemann equations; thus,
near p, the equation ∂̄Ju = 0 is uniformly elliptic.

Let B denote the space of smooth maps u : S → W in some fixed homology class
A ∈ H2(W ;Z), and let M(S,A, J) (or just M) denote the subspace of B consisting of
J-holomorphic maps. If u : S → W is any smooth map, and ut is a smooth 1-parameter
variation of u, then ξ := u′(0) is a section of u∗TW . The pullback bundles u∗tTW are not
isomorphic; however, using the Levi-Civita connection ∇ on W associated to g we may
trivialize this family and think of ∂̄Jut as a family of 1-forms on S with values in u∗TW .
These forms are complex anti-linear, in the sense that they entwines multiplication by i
and by −J ; thus this family is a section of the complex bundle Λ0,1T ∗S ⊗J u∗TW . Let E
therefore denote the bundle over B whose fiber over u is the space of smooth sections of
Λ0,1T ∗S⊗J u∗TW . The map ∂̄J defines a section B→ E, and we would like to understand
when ∂̄J is transverse to the zero section, whose intersection is precisely M. Via the Levi–
Civita connection we obtain a splitting (locally) of the tangent space to E at ∂̄J(u) as
TuB⊕ Eu.
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The projection of d∂̄J to Eu with respect to this splitting is a linear operator Du from
sections of u∗TW to sections of Λ0,1T ∗S ⊗J u∗TW ; as a formula, one has for any vector
field X on S,

(Duξ)(X) = (1/2)
(
∇du(X)ξ + J∇du(X)ξi+ (∇ξJ)du(iX)

)
Since ∇ξJ is tensorial (i.e. 0th order) in ξ, it follows that Duξ = ∂̄Jξ+ terms 0th order in
ξ. Thus Du is elliptic, and one may show that it induces a Fredholm map between suitable
Banach space completions of TuB and Eu.

Now, let J denote the space of ω-compatible almost complex structures. Each J ∈ J

determines M(S,A, J) as above, and the union is a bundle π : MJ → J. One would like to
argue that suitable completions of MJ and J are smooth Banach manifolds, and therefore
that a residual subset of the completion of J consists of regular values of π. This can
be shown providing one has enough freedom to deform J independently at the image of
different points in S; the key condition is that u should be injective on an open dense set.
This motivates the following definition:

Definition 3.4. A holomorphic curve u : S → W is simple if it is nonconstant, and does
not factor through a (holomorphic) branched cover of Riemann surfaces.

Remark 3.5. Simplicity is automatic under certain homological conditions.
(1) Since area(u(S)) =

∫
S
u∗ω for a holomorphic curve, u ∈ M(S,A, J) is constant if

and only if A = 0.
(2) If u : S → W factors through S → S ′ → W where S → S ′ is a branched cover of

degree n, the homology class A satisfies A = nA′ where A′ is the homology class of
S ′ → W .

It follows that if A is primitive and nonzero, every u ∈M is simple.

Let Ms ⊂ M denote the subspace of simple holomorphic curves. It is evidently open.
Furthermore, any simple u is evidently injective on an open dense subset of S. We may
define MJ

s to be the union of the Ms over all J. One then shows that MJ
s and J admit

completions with respect to which they are both smooth Banach manifolds.

Definition 3.6. An almost-complex structure J is regular if Du is surjective for every
simple u ∈Ms.

Proposition 3.7. If J is regular, then Ms is a smooth almost-complex manifold of dimen-
sion equal to the index of Du.

Proof. An infinite dimensional implicit function (which depends on certain estimates that
may be found e.g. in [18] § 3.3) imply that if J is regular, Ms is a smooth manifold locally
modeled on the kernel of Du. This kernel is not quite J-invariant (because of the first-order
terms) but we may homotop Du (through surjective Fredholm maps) to a nearby operator
whose kernel is J-invariant, and therefore complex. This gives an almost-complex structure
to M. �

One may show that J is regular in this sense precisely when J is a regular value of
π : MJ

s → J. By Sard–Smale the set of regular values of a map between separable Banach
manifolds is residual. A priori these regular J are not smooth, but only lie in a suitable
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completion of the space J. However, Taubes (see [18], § 3.4) shows one may find a residual
subset of regular values in J. Precisely, one has:
Theorem 3.8 (Taubes). For any W,ω, for any closed Riemann surface S and any ho-
mology class A ∈ H2(W ;Z), there is a residual subset of the space of smooth ω-compatible
J that are regular. For such a J the moduli space Ms(S,A, J) of simple J-holomorphic
curves is a smooth oriented manifold of dimension equal to the index of Du at any u.

Furthermore, for any pair J0, J1 of J as above, there is a smooth path Jt interpolating
between J0 and J1 for which the union of the Ms(S,A, Jt) is a smooth oriented cobordism
between Ms(S,A, J0) and Ms(S,A, J1).
3.3. Local structure. Because the operator ∂̄J agrees with the Cauchy–Riemann opera-
tor to leading order, we expect that the local structure of a J-holomorphic curve should
resemble the local structure of an ‘honest’ holomorphic curve in an algebraic variety. This
intuition is realized by the following theorem of Micallef and White [19], Thms. 6.1 and
6.2:
Theorem 3.9 (Micallef–White). Let u : Σ→M2n be a non-constant J-holomorphic curve
for some Riemann surface Σ (not necessarily connected). Then for any point x ∈ u(Σ) and
for all pj ∈ u−1(x) there are neighborhoods pj ∈ Uj ⊂ Σ and x ∈ V ⊂ M and coordinate
charts ψ : V → Cn, φj : Uj → C with ψ(x) = 0 and φj(pj) = 0, and so that

ψuφ−1j (z) = (zQj , fj(z))

where fj(z) ∈ Cn−1 vanishes to order ≥ Qj ≥ 1 at z = 0.
Furthermore, if J is C2, then ψ is C1 and each φj is C2,α for some positive α.
This implies (for instance) that multiple points x in the image of u are isolated unless u

factors through a (branched) cover. It also lets us control the geometry of a singularity.
Theorem 3.9 is actually a corollary of a more general theorem about the local structure of

singularities of minimal surfaces in Riemannian manifolds, and has nothing fundamentally
to do with symplectic or almost-complex geometry per se. We refer the reader to [19] for
the proof.

3.4. Computation of the index. If S is a Riemann surface and L is a holomorphic line
bundle over S, the kernel of ∂̄ is the space of holomorphic sections of L, and the cokernel
is the space of holomorphic sections of K ⊗ L∗ where K is the canonical line bundle (i.e.
T ∗S). The index (as a Fredholm map between complex Banach spaces) may therefore be
computed from the Riemann–Roch formula as deg(L) + 1− g; the real index is twice this,
i.e. 2 deg(L) + 2− 2g. The degree of a line bundle over a Riemann surface is c1(L)[S].

If E is a holomorphic vector bundle, the splitting principle says that the index of ∂̄ may
be computed as though E were a sum of line bundles. Thus the real index in this case is
dimC(E)(2− 2g) + 2c1(E)[S].

If M,ω is a symplectic manifold of dimension 2n and u : S →M is a holomorphic curve
(for some J), the pullback u∗TM is a complex vector bundle of complex dimension n, and
the operator Du is homotopic to ∂̄ and therefore has the same index as above. Thus:
Lemma 3.10 (Index formula). Let M2n, ω be symplectic, and let u : S →M be a holomor-
phic curve of genus g for some compatible J . The index of Du (and therefore the dimension
of M near u if u is simple and J is regular) is nχ(S) + 2c1(M)u∗[S].
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3.5. Curves with boundary. Let W,ω be symplectic and let L ⊂ W be a Lagrangian
submanifold. Let S be a compact oriented surface with nonempty boundary. A smooth
map u : (S, ∂S) → (W,L) is holomorphic if ∂̄Ju = 0. If we fix a relative homology class
A ∈ H2(W,L;Z) we may define M(S,A, J) exactly as before. The Fredholm theory goes
through as in § 3.2 with essentially no modification. The index ...

3.6. Gromov’s compactness theorem. For any Riemann surface S, for any homology
class A ∈ H2(W ;Z) and any J , the group Aut(S) acts on M(S,A, J) by precomposition.
The quotient is denoted M(S,A, J) or just M for short. The action is not typically free,
but is free when restricted to Ms. The group Aut(S) has complex dimension 3 when S is
a sphere, 1 when S is a torus, and it is discrete (and typically trivial of Z/2Z) when S has
higher genus.

For S = S2 the space Ms(S,A, J) is never compact unless it is empty, since the orbit
of the automorphism group Aut(S2) on any simple curve is proper and noncompact. But
even after we quotient out by this action the spaces M and Ms can fail to be compact.
Let’s understand this in some simple examples.

Example 3.11 (Rational maps). A degree d rational map f : Ĉ→ Ĉ has a graph Γf which
is a holomorphic curve in the Kähler manifold Ĉ × Ĉ representing the homology class
A := [Ĉ× point] + d[point× Ĉ].

For simplicity let’s suppose f(∞) = 1 so that f is determined by its divisor divf (sup-
ported in C) which can be written in terms of zeros and poles as Z − P where each of Z
and P is an unordered list of d complex numbers. Repetitions are allowed, but Z and P
are disjoint. Some of the noncompactness of the space of rational maps arises in families
where elements of Z and P collide. Let a ∈ Z and b ∈ P so that f has a factor of the
form (z − a)/(z − b). When |a − b| = ε is very small and |z − a| >

√
ε, this factor differs

from 1 by ∼
√
ε. If we deform f in a family f(t) by adjusting a so that a(t) → b, the

graphs Γf(t) converge in the Hausdorff topology to a nodal curve Γg ∪ b× Ĉ, the union of
the holomorphic graph Γg (where g of degree (d − 1) is obtained from f by canceling the
(z − a)/(z − b) factor) and the ‘vertical’ curve b× Ĉ. One calls this phenomenon bubbling
off, where b× Ĉ is the ‘bubble’.

Here is another way to look at the local picture of the degeneration Γf(t) → Γg ∪ b× Ĉ
near the singular point (b, g(b)). For ε ∈ C let Sε be the curve z1z2 = ε in C2. When ε 6= 0
the curve Sε is an annulus, with a holomorphic isomorphism to C− 0 given by projection
to either the z1 or the z2 axis. As ε → 0 the Sε degenerate to S0 which (ignoring the
embedding) is homeomorphic to the quotient space obtained from an annulus by pinching
a meridian curve to a point.

It will turn out that the space of (unparameterized) holomorphic curves in a fixed homol-
ogy class can be compactified by adding such nodal curves (more commonly called cusp
curves in the symplectic topology literature). Here we may allow curves of any (fixed)
genus, so throughout this section we do not assume that the genus is zero.

If S is a smooth surface and γi is a collection of disjoint simple loops, we obtain a
singular surface S̄ by collapsing each γi to a point pi. Let Ŝ be the end completion of
S̄ −∪pi = S −∪γi. Then Ŝ is a closed surface, and there is a canonical map Ŝ → S̄ which
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is the identity on S̄ − ∪pi, and is 2–1 on the preimage of each pi. A complex structure on
Ŝ makes S̄ into a nodal Riemann surface. Equivalently, a complex structure on S̄ is just a
complex structure on S − ∪γi for which the modulus of every annular end is infinite.

If W is a smooth manifold with almost-complex structure J and if S̄ is a nodal Riemann
surface, then ū : S̄ → W is (J-)holomorphic if it is holomorphic on S̄ − ∪pi in the usual
sense. Such holomorphic curves are called cusp curves.

Definition 3.12. A sequence of holomorphic curves un : Sn → W is said to converge
weakly to a cusp curve ū : S̄ → W if

(1) the areas of un(Sn) converge to the area of ū(S̄); and
(2) there are families of disjoint loops γn,i ⊂ Sn and diffeomorphisms φn : S̄ − ∪pi →

Sn − ∪γn,i so that the maps unφn converge uniformly to ū on compact subsets of
S̄ − ∪pi.

We may now state Gromov’s Compactness Theorem ([13], Thm. 1.5.B):

Theorem 3.13 (Compactness). Let W,ω be a smooth closed symplectic manifold with a
compatible almost-complex structure J (and associated metric g). Then any sequence of
holomorphic curves of uniformly bounded genus and uniformly bounded area has a subse-
quence which converges weakly to a cusp curve.

The proof of this theorem shall take up the rest of this subsection and the next. First
we observe that there is a uniform upper bound on the curvature of a holomorphic curve.

Lemma 3.14. For any holomorphic curve S the sectional curvature KS satisfies KS ≤ K
pointwise where K is the maximum of the sectional curvature of W .

Proof. Holomorphic curves are minimal for a compatible metric. Gauss’s equation for a
minimal surface says KS = KW − |II|2/2 where KW is the sectional curvature of W along
the tangent plane to S, and II is the second fundamental form. �

Surfaces with an upper curvature bound satisfy an isoperimetric inequality that can be
expressed in terms of the geometry of comparison surfaces.

Definition 3.15 (Comparison Surface). Let S be a Riemannian surface. A rotationally
symmetric Riemannian surface S0 is a comparison surface for S if, for any domain E ⊂
S, if E0 ⊂ S0 is a rotationally symmetric disk with the same area, then length(∂E) ≥
length(∂E0).

Example 3.16. If S has curvature bounded above by K and area bounded above by 4π/K,
the sphere S2

K of constant curvature K is a comparison surface for S.

Lemma 3.17. Let S be a holomorphic curve, and Let S0 be a comparison surface for S.
Let u : D → S be an injective holomorphic map with area A and let u0 : D → S0 be a
comparison map — i.e. a conformal map onto a symmetric disk with the same area. Then
|du(0)| ≤ |du0(0)|.

Proof. For any r ≤ 1 let Dr ⊂ D be the disk of radius r. Let A(r) := area(u(Dr)) and
A0(r) := area(u0(Dr)) and likewise L(r) := length(u(∂Dr)) and L0(r) := length(u0(∂Dr)).
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By the Cauchy–Schwarz inequality,

A′(r) =

∫
∂Dr

|du|2 ≥ 1

2πr

(∫
∂Dr

|du|
)2

=
L(r)2

2πr

whereas for u0 we have (by the same calculation) equality: A′0(r) = L2
0(r)/2πr.

Let α : [0, 1] → [0, 1] be the function for which A(r) = A0(α(r)) so that A′(r) =
α′(r)A′0(α(r)) for any r. Then the isoperimetric inequality gives L(r) ≥ L0(α(r)) so

A′(r) ≥ L2
0(α(r))

2πr
=
α(r)

r

L2
0(α(r))

2πα(r)
=
α(r)

r
A′0(α(r)) =

α(r)

rα′(r)
A′(r)

so we get rα′(r) ≥ α(r) and by integrating log(r) − log(ε) ≤ log(α(r)) − log(α(ε)) for
any positive ε. But α(1) = 1 so α(ε) ≤ ε for any ε ≤ 1 and therefore α′(0) ≤ 1. Since
|du(0)| = α′(0)|du0(0)| the lemma follows. �

This Lemma and the isoperimetric inequality in Example 3.16 lets us control the deriv-
ative at 0 of a holomorphic disk with area less than 4π/K. Remarkably, it is possible to
obtain similar control only from a diameter bound. This is the so-called Gromov–Schwarz
Lemma:

Theorem 3.18 (Gromov–Schwarz Lemma). There exist constants ε > 0 and C > 0 so
that any holomorphic map u : D→ W whose image is contained some ball Bε(p) of radius
ε is C-Lipschitz with respect to the hyperbolic metric on D and the g-metric on W .

Proof. By compactness of W , there are positive constants C1 > 0 and ε > 0 so that on
any ball of radius ε we can find a 1-form β with ‖β‖ ≤ C1 for which dβ = ω. For any
u : D→ Bε(p) we have

area(u(D)) =

∫
u(D)

ω =

∫
u(∂D)

β ≤ C1length(u(∂D))

It follows that there is a comparison surface S0 with linear isoperimetric profile; i.e. with the
property that a symmetric subdisk E0 of S0 satisfies area(E0) = C1length(∂E0). Outside
a compact subset, the metric on S0 has curvature arbitrarily close to −1/C2

1 . The surface
S0 typically has a cone point at the origin, but this may be smoothed by inserting a tiny
bubble of positive curvature K (as in Example 3.16) to obtain a smooth surface, which is
still a comparison surface, and for which the (conformal!) uniformizing map S0 → D is
bilipschitz.

By Lemma 3.17 a comparison map u0 : D→ S0 has |du(0)| ≤ |du0(0)|. Composing with
the bilipschitz uniformizing map S0 → D and applying the (usual) Schwarz Lemma we get
a uniform bound on |du(0)| independent of u. �

3.7. Completion of the proof. The Gromov–Schwarz Lemma and a bootstrap argument
allows us to promote C0 convergence of holomorphic curves to C∞ convergence (this is
Lemma 3.19). The bootstrap argument treats the (higher) jets of a holomorphic curve as
holomorphic curves in their own right in the space of bundle maps.

This requires a few words of explanation. If we fix S and W , there is a complex vector
bundle E over S×W with fiber over a point (p, q) equal to HomC(TpS, TqW ). The (almost)-
complex structures on S and W determine an almost complex structure JE on E, and if



CHAPTER 5: SYMPLECTIC AND CONTACT GEOMETRY 25

u : S → W is a holomorphic curve in W then evidently the graph of (u, du) (i.e. the 1-jet
of u) is a holomorphic curve in E with respect to JE. The symplectic structure on W and
an area form on S together give a symplectic structure on S×W ; if we pull this back to E
and add a fiberwise symplectic form compatible with the fiberwise complex structure we
obtain a symplectic structure on E compatible with JE. For details see e.g. [16], Chapter 3.

Lemma 3.19. If un : S → W is a sequence of holomorphic maps converging in the C0

topology to u : S → W then in fact the un converge in the C∞ topology and the limit is a
holomorphic map.

Proof. Let p ∈ S and let D be a neighborhood of p in S for which un(D) is contained in
the ε-neighborhood of u(p). Then the un are uniformly Lipschitz on D in the hyperbolic
metric. Thus the un take a sufficiently small neighborhood of the zero section in TD to a
small neighborhood of the zero section in TBε(u(p)).

Thus the 1-jets of un have relatively compact image in the space of bundle maps. Ap-
plying the Gromov–Schwarz Lemma to the 1-jets of the un gives control on the norms of
the 2-jets, and by induction on all higher derivatives. �

It is also important to be able to extend holomorphic curves over punctures:

Lemma 3.20. Let u : S − p→ W be holomorphic with relatively compact image. If either
(1) area(u(S − p)) is finite; or
(2) u(S − p) is contained in Bε(q) for some q ∈ W

then u extends to a holomorphic map ū : S → W .

Proof. By restricting to a subset of S if necessary we may assume S = D and p = 0.
In the hyperbolic metric on D − 0 a neighborhood of 0 has arbitrarily small area, so by
Gromov–Schwarz the second case reduces to the first.

As in the proof of Lemma 3.17 we use the notation A(r) := area(u(Dr− 0)) and L(r) :=
length(u(∂Dr)). Since area(u(D−0)) is finite and u : S → W is conformal it follows exactly
as in Lemma 3.17 that

∞ > A(r) ≥
∫ r

0

L(s)2

2πs
ds

and therefore there is a sequence of radii rj → 0 with L(rj)→ 0. By relative compactness
of the image in W we may extract a subsequence of radii so that u(∂Drj) → q. Suppose
that there is a sequence of points wj ∈ Drj −Drj+1

with a subsequence converging to q′ 6= q
and let ε = d(q′, q)/2. Then for each index j in the subsequence, u(Drj −Drj+1

) contains a
point u(wj) arbitrarily close to q′, but its boundary lies outside Bε(q

′). By the monotonicity
formula for minimal surfaces there is a uniform positive lower bound on the area of each
u(Drj − Drj+1

). But this implies area(u(D− 0)) is infinite, contrary to assumption.
Thus u extends to a continuous map ū, and by Gromov–Schwarz u is uniformly Lipschitz

in the hyperbolic metric. Thus the map on 1-jets has finite area and relatively compact
image on Dr − 0 and by induction ū has continuous partial derivatives of all orders and is
therefore holomorphic. �

We are now ready to conclude the proof of Theorem 3.13.
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Proof. Fix small constants A < 2π/K and ε > 0 so that every minimal surface F in W
intersects every ball Bε(p) with p ∈ F in a subsurface of area at least A. If u : S → W
is holomorphic we can find a maximal subset of points Q ⊂ S so that the ε-balls about
the points of u(Q) are disjoint (and therefore also the 2ε-balls about u(Q) cover u(S)).
Then |Q| ≤ area(u(S))/A and (if we take ε small enough) also |Q| ≥ 3. Thus under
the assumptions of the theorem S − Q is hyperbolic of uniformly bounded area and by
Gromov–Schwarz, the norm of du in the hyperbolic metric is uniformly bounded on S−Q,
independent of u.

If un : Sn → W is a sequence of holomorphic curves, and Qn ⊂ Sn points as above, then
either the hyperbolic metrics on Sn − Qn have a convergent subsequence in some moduli
space, or there is a subsequence for which these metrics degenerate by stretching necks
centered at boundedly many essential simple closed loops ∪γn,i. Then un : Sn−Qn−∪γn,i
converge on some subsequence to u : S̄−Q−P for some nodal Riemann surface S̄ and for
some finite collections of points Q, P . By Lemma 3.20 this map extends to a cusp curve
ū : S̄ → W , and by the equicontinuity of the un in the hyperbolic metrics on Sn −Qn the
areas of the un(Sn) converge to the area of ū(S̄). �

This completes the proof of the Compactness theorem.
One immediate application is as follows.

Corollary 3.21. Let W,ω be symplectic, and let A ∈ H2(W ) be a spherical class (i.e. a
class in the image of π2(W )). Suppose there is no spherical class B with 0 < ω(B) < ω(A).
Then for any ω-compatible almost-complex structure J , the unparameterized moduli space
M(S2, A, J) is compact.

Proof. Any cusp curve ū : S̄ → W compactifying M(S2, A, J) has domain a nodal Riemann
surface S̄ whose irreducible components Sj (of which there are at least 2) are 2-spheres. But
ω(A) = area(ū(S̄)) =

∑
j area(ū(S̄j)) =

∑
j ω(Aj) where Aj is the (spherical) homology

class represented by ū : Sj → W . Since every ω(Aj) > 0 we violate the hypothesis. �

3.8. Dimension 4. Holomorphic curves in dimension 4 satisfy extra rigidity properties
arising from properties of the intersection form on homology. A compact symplectic 4-
manifold W 4 is oriented, and there is a symmetric nondegenerate unimodular intersection
form on H2(W ) Poincaré dual to the cup product on H2(W ). If A,B ∈ H2(X) are
represented by smooth oriented surfaces SA, SB in general position, then A ·B is equal to
the signed count of intersections of SA with SB.

Holomorphic curves are typically neither nonsingular nor in general position with respect
to each other, and therefore we must invoke Theorem 3.9 which describes the local structure
of (possibly singular) holomorphic curves and their (possibly self-) intersections. Let’s make
the following definitions:

Definition 3.22 (Local intersection number). Let u : Σ → W 4 be holomorphic (not
necessarily connected) with pj ∈ u−1(x) for j = 1, 2. Write ψuφ−1j (z) = (zQj , fj(z)) as in
Theorem 3.9. Let Q be the least common multiple of Q1, Q2 and write Q = mjQj. Then
we may define the local intersection number

δ(p1, p2) :=
1

m1m2

∑
νQ=1

ord0 (f1(νz
m1)− f2(zm2))
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where ord0 means order of vanishing at 0.

Likewise we may define:

Definition 3.23 (Local degree). With notation as above let x be an (isolated) singular
point of u, and p ∈ u−1(x) a preimage. Write ψuφ−1(z) = (zQ, f(z)) for some Q > 1 where
f(z) vanishes at 0 to order Q′ ≥ Q. Define the local degree

δ(p) :=
∑

νQ=1,ν 6=1

ord0

(
f(νz)− f(z)

z

)
Example 3.24. For a single curve u : Σ→ W we may define

δ(u) =
∑

(p1,p2)

δ(p1, p2) +
∑
p

δ(p)

where the sum is taken over all singularities and multiple points. The quantity δ(u) mea-
sures the difference χ(u(Σ))− χ(Σ′) where Σ′ is a suitable ‘desingularization’ of u(Σ).

This is easiest to explain in the integrable case. Consider the (projective) elliptic curve
given in an affine chart by the equation y2 = x(x − a)(x − b). When 0, a, b are distinct,
this elliptic curve is a nonsingular torus and has χ = 0. The curve y2 = x3 + x2 is genus
zero and has a transverse double point at 0. Thus δ(u) = 1 and χ = 1. The curve y2 = x3

is genus zero and embedded (though not smoothly at the cusp point 0) so δ(u) = 0 and
χ = 0.

In every case δ(p1, p2) is a positive integer ≥ Q1Q2. Likewise δ(p) is always ≥ (Q −
1)(Q′ − 1). In fact, since δ(p) counts the contribution to χ from a change of genus, it is
always even.

Using these definitions we may give formulae for the intersection product in terms of
geometry for holomorphic curves.

Lemma 3.25 (Intersection Formula). Let uj : Σj → W be simple holomorphic curves in
homology classes A1, A2 ∈ H2(X). Then either the uj both have the same image, or

A1 · A2 =
∑

(p1,p2)

δ(p1, p2)

In particular, A1 · A2 ≥ 0 with equality if and only if the curves are disjoint.

Proof. If the curves are nonsingular and the intersections are transverse, this is equivalent
to saying that every intersection is positive. This is because the tangent spaces are complex
subspaces of TW . The general case follows from Theorem 3.9. �

Lemma 3.26 (Adjunction Formula). Let u : Σ → W 4 be a simple holomorphic curve in
the homology class A ∈ H2(W ). Then

c1(W )(A) = χ(Σ) + A · A− 2
∑

(p1,p2)

δ(p1, p2)− 2
∑
p

δ(p)

Proof. For simplicity we assume the singularities of u are transverse double points. We
have u∗TW = TΣ ⊕ ν where ν is the normal bundle, so c1(u∗TW ) = c1(TΣ) + c1(ν) in
H2(Σ). Thus c1(W )(A) = χ(Σ) + c1(ν)[Σ].
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Now, c1(ν)[Σ] is the number of intersections of Σ with a push-off of itself in u∗ν, whereas
A is the number of intersections of u(Σ) with a push-off of itself; the difference between
these numbers is twice the number of double points.

The general case follows from Theorem 3.9. �

For brevity in the sequel we denote the contributions δ from all singularities of u by δ(u).
As corollaries of the Adjunction Formula we obtain:

Corollary 3.27 (Dimension count). Let A ·A ≤ −2. Then for regular J the space M(A, J)
is empty. Likewise, if A · A = −1, for regular J the space M(A, J) is 0-dimensional and
its points correspond to embedded smooth curves.

Proof. By the Adjunction Formula, the dimension of M(A, J) for regular J is

dimM(A, J) = 4 + 2c1(X)(A) = 8 + 2A · A− 4δ(u)

where δ(u) > 0 unless u is embedded and nonsingular. Since dimM = dimM−6 the proof
follows. �

Corollary 3.28 (Smooth embeddedness persists). If u, u′ are J, J ′ holomorphic spheres in
the same homology class A, then δ(u) = δ(u′). In particular

(1) if for some J there is some u which is a smooth embedding then for every J ′ every
u′ is a smooth embedding;

(2) if for some J there is some u which is smooth with exactly one transverse double
point then for every J ′ every u is smooth with exactly one transverse double point.

Proof. By the Adjunction Formula δ(u) = δ(u′) because the other terms depend only on
the homology class A. �

Another phenomenon special to dimension 4 is that one can show M(A, J) is a smooth
manifold near a nonsingular embedded curve u under purely homological conditions on A:

Lemma 3.29 (Automatic Regularity). Let u : S2 → W 4 be a smoothly immersed simple
holomorphic curve. Then Du is onto (so that M is a smooth oriented manifold of the
correct dimension near u) if and only if c1(W 4)(A) ≥ 1.

Proof. First let’s suppose that J is integrable. Then u∗WX is a holomorphic C2 bundle
over S2, which splits (because u is nonsingular) as a sum of holomorphic line bundles
TS2 ⊕ ν. The cokernel of Du is therefore isomorphic to the space of holomorphic sections
of ν∗ ⊗ K. But c1(W 4)(A) = c1(TS

2) + c1(ν) so c1(ν) ≥ −1 so c1(ν∗ ⊗ K) ≤ −1 and
therefore Du is onto.

If J is not integrable there is an argument due to Hofer–Lizan–Sikorav [14] that we
summarize. Showing that Du is onto is equivalent to showing that the adjoint D∗u has
trivial kernel. Ignoring the tangential part of u∗TW , we may write D∗u = ∂̄ + a for some
a ∈ Ω0,1(EndRν

∗⊗K) and we want to show that if ∂̄f+af = 0 then (under the homological
condition on c1) we have f = 0.

The operator D∗u is not necessarily complex linear because a isn’t. Thus the first step
is to replace a by some b ∈ Ω0,1 so that Lf = 0 where L = ∂̄ + b. This is elementary:
for z ∈ S2 and v ∈ TzS2 we may just take b(z)v = (a(z)v)f(z)/f(z) where f(z) 6= 0 and
b(z)v = 0 where f(z) = 0. Now the operator L is complex-linear, and therefore defines
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a complex connection on ν∗ ⊗ K. Any complex connection on a bundle over a Riemann
surface is integrable, so L defines a new holomorphic structure on ν∗⊗K. Anything in the
kernel of L would be a holomorphic section of this bundle, which must vanish because the
degree is negative. Thus the kernel of L is trivial and so therefore is the kernel of D∗u. More
work is needed to apply this argument in the weaker regularity in the setting of § ??. �

4. Floer Homology

4.1. Morse Theory. Let M be a smooth compact n-manifold. A smooth function f :
M → R is Morse if the critical points (i.e. points p where df(p) is the zero map from TpM
to Tf(p)R = R) are nondegenerate. This means there is a neighborhood U of p and smooth
local coordinates xi on U vanishing at p such that throughout U ,

f(x) = f(p)− x21 − · · · − x2i + x2i+1 + · · ·+ x2n

for some i, the index of the critical point p.
A Morse function is self-indexing if f(p) = i for every critical point of index i. Local

minima resp. maxima of f are critical points of index 0 resp. n so for a self-indexing Morse
function, f(M) = [0, n]. It is a fact that every smooth compact manifold admits (many)
self-indexing Morse functions.

Let f be such a function. For each t ∈ R define Mt := f−1(−∞, t]. Then Mt is empty
for t < 0 and is equal to M for t > n. Furthermore, for any t not equal to 0, 1, · · · , n, the
space Mt is a smooth manifold with boundary ∂Mt := f−1(t).

Choose a smooth metric g on M . The vector field grad(f) is defined by 〈grad(f), Y 〉 =
df(Y ) for all vectors Y . It is perpendicular to the level sets of f and has magnitude at
every point equal to that of df . Thus, grad(f) vanishes only at the critical points, and the
flow it generates gives a diffeomorphism from Ms to Mt whenever i < s < t < t+ 1.

When we transition fromMs toMt for s < i < t the topology changes in a neighborhood
of each critical point by attaching an i-handle Di ×Dn−i. An i-handle is thought of as a
thickened neighborhood of its core Di × 0, which is attached to ∂Ms along its boundary
∂Di×0. The cocore is 0×Dn−i with boundary 0×∂Dn−i. The core of the i-handle associ-
ated to a critical point p is the closure of the set of flowlines of grad(f) (in a neighborhood
of p) asymptotic to p in the future, while the cocore is the closure of the set of flowlines
asymptotic to p in the past.

Thus each Mi has the homotopy type of an i-dimensional CW complex, which is the
closure of the union of the flowlines of grad(f) asymptotic in the future to some critical
point of index ≤ i. For each pair of critical points p, q of indexes i > j let F (p, q) denote the
space of flowlines of grad(f) whose closures run from q to p. For generic f , the space F (p, q)
is an open oriented manifold of dimension i− j − 1. It may be compactified to a compact
oriented manifold with corners F (p, q) by adding products F (p, r1)×F (r1, r2)×· · ·×F (rk, q)
for intermediate critical points r1, · · · , rk.

When i− j = 1 the space F (p, q) is a finite set of points, and when i− j = 2 the space
F (p, q) is a finite union of circles, and open intervals that may be compactified by points
of the form F (p, r)× F (r, q) where the index of r is i− 1 = j + 1.

The manifolds F (p, q) may be oriented by thinking of them as intersections of the (ori-
ented) manifolds of all flowlines asymptotic to p (resp. q) in the future (resp. past); thus
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for i− j = 1 the set F (p, q) is a finite set of signed points, and counting with sign gives an
integer n(p, q).

We may define a graded chain complex generated in dimension i by critical points of
index i, and differential

∂p :=
∑

index(q)=i−1

n(p, q)q

Thus
∂∂p =

∑
q

∑
r

n(p, r)n(r, q)q

But for each q, this sum
∑
n(p, r)n(r, q) is equal to the number of boundary points of the

compact 1-manifold F (p, q), counted with sign. Thus ∂∂ = 0 and ∂ is the differential of a
chain complex, which by construction has homology isomorphic to H∗(M ;Z).

4.2. Floer Homology. Now let (W 2n, ω) denote a symplectic manifold with Lagrangian
submanifolds L0, L1 and for simplicity let’s suppose they intersect in general position. Let
Ω denote the space of smooth maps z : I →M with z(0) ∈ L0 and z(1) ∈ L1.

The idea of Floer Homology is to define a smooth function a on Ω and compute the
“Morse homology” associated to the critical points of a and the gradient flowlines joining
them. The critical points will be the intersections L0 ∩ L1 and the gradient flowlines will
be holomorphic bigons with edges on L0 ∪ L1 running between two intersection points.

If ω = dλ for some 1-form λ we could define a to be the action a(z) :=
∫
z
−λ (compare

Example ??). In fact to do Morse theory we do not really need the function a as such; rather
we need its derivative da. If we choose a basepoint z0 and a sufficiently small neighborhood
z0 ∈ U ⊂ Ω then for any other z ∈ U we can join z0 to z by a path zt in Ω which sweeps
out a rectangle Z : I × I → W with left and right edges on L0 and L1 respectively. We
may then define a(z) :=

∫
Z
ω. If yt were another path sweeping out another rectangle Y

then we could sew Z and Y together to make an annulus with boundary curves on L0, L1.
If these curves were sufficiently small, we could cap them off with small disks in the Lj to
make a (null-homotopic) sphere S, and then∫

Z

ω −
∫
Y

ω =

∫
S

ω = 0

The global indeterminacy of a comes from the periods of ω on cylinders whose boundaries
are loops in L1 and L2. Such cylinders (homotopically) are determined by intersections
of conjugacy classes π1(L0) ∩ gπ1(L1)g

−1 together with the action of π2(W ). Thus (for
example) if H1(L0) ∩H1(L1) = 0 and π2(W ) = 0 then a is globally defined.

In any case da is well-defined. The tangent space TzΩ is the space of vector fields ξ along
z with ξ(z(j)) ∈ T(z(j))Lj and

da(ξ) =

∫ 1

0

ω(z′(t), ξ)dt

Thus the critical points of a are precisely the constant maps; i.e. the points of L0 ∩ L1.
A compatible almost-complex structure J determines a metric on Ω by

〈ξ1, ξ2〉 :=

∫ 1

0

ω(ξ1, Jξ2)
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and therefore

da(ξ) =

∫ 1

0

ω(z′(t), ξ) =

∫ 1

0

ω(Jz′(t), Jξ) = 〈Jz′, ξ〉

In other words (at least formally) grad(a) = Jz′ and flowlines of grad(a) (up to sign) are
maps u : I × I → W with left and right edges on the Lj, satisfying

∂u

∂s
− J ∂u

∂t
= 0

where the horizontal factor on I × I has coordinate t, and the vertical factor s.
In words: gradient flowlines of a are holomorphic rectangles with edges on the Lj. If

x, y ∈ L0∩L1 are critical points of da, then the flowlines from x to y are holomorphic maps
u : D → M sending −i to x and i to y, and so that the arcs of ∂D with positive (resp.
negative) real part maps to L1 (resp. L0).

Let M(x, y) denote the space of such holomorphic Whitney disks. The automorphism
group of D fixing i and −i is R; this acts freely on M(x, y) (at least when x 6= y so that
M(x, y) contains no constant maps) and we denote the quotient space M(x, y).

The space M(x, y) might have many components, and the disks u in M might lie in
different homology classes. For a residual set of almost complex structures J the space
M(x, y) is a smooth manifold of dimension that may be computed by the index formula.
Since D is contractible the pullback u∗TW has a (symplectic) trivialization as D × R2n.
The circle S1 = ∂D factorizes as the union of two arcs α0 ∪ α1 where u : αj → Lj, each
oriented to run from x to y. Relative to the trivialization each arc α∗jTLj may be thought
of as a path in Ln. Join these two paths at the endpoints by paths that do not cross some
fixed train. The resulting loop in Ln has Maslov index µ(u) and Viterbo [24] shows that
the formal dimension of M(x, y) in the component containing u is µ(u).

We may now define the Floer Homology of the pair L0, L1 as follows. The chain group
is the free abelian group generated by intersections L0 ∩ L1. For each x define

∂x :=
∑
y

n(x, y)y

where n(x, y) is the signed count of points in the components of the unparameterized
moduli spaces M(x, y) of formal dimension 0 (i.e. for which the corresponding components
of M(x, y) are represented by holomorphic Whitney disks u with Maslov index 1).

This satisfies ∂2 = 0; the homology of this complex is the Floer Homology.
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