Math 20250 - Final Exam
Spring Quarter 2021
Friday, June 4, 2021

Instructions:

• Read each problem carefully.
• Write legibly.
• Show all your work on these sheets. Feel free to use the opposite side.
• This exam has 11 pages, and 8 problems. Please make sure that all pages are included.
• Each problem is worth 10 points.
• You may not use books, notes, calculators, etc. Cite theorems from class or from the texts as appropriate.
• Proofs should be presented clearly (in the style used in lectures) and explained using complete English sentences.
• Throughout $P_n(\mathbb{R}) = \mathbb{P}_n$ for $n \in \mathbb{N}$ will denote the space of polynomials of degree $\leq n$ with real coefficients.

Good luck!
Question 1. (10 points) Clearly circle True or False for each statement.

True or False \(\mathbb{Z} \) is a vector space over \(\mathbb{R} \).

True or False If \(V \) is a vector space with \(\dim V = n \), then any set of \(n+1 \) vectors in \(V \) is linearly dependent.

True or False If \(A \) and \(B \) are row equivalent, then there exists an invertible matrix \(S \) such that \(B = SAS^{-1} \).

True or False Let \(A_e \) be a matrix in echelon form. The number of pivots in \(A_e \) is equal to \(\dim(\text{Ran} A_e) \).

True or False For any matrix \(A \), \(\dim(\text{Ran} A) = \dim(\text{Ker} A^T) \).

True or False If \(U, W \) are subspaces of a vector space \(V \), then \(U + W \) is also a subspace of \(V \).

True or False If \(U, W \) are subspaces of a vector space \(V \), then \(U \cup W \) is also a subspace of \(V \).

True or False A square matrix \(A \) is diagonalizable if and only if it has no zero eigenvalues.

True or False A square matrix \(A \) is invertible if and only if it has no zero eigenvalues.

True or False A matrix \(A : V \to V \) is diagonalizable if it has \(\dim(V) \) distinct eigenvalues.
Question 2. 1. Consider the system of equations

\[
\begin{align*}
 x + 2y + z + 0w &= 4 \\
 0x + y + z + 2w &= 2 \\
 0x + 2y + 2z + 4w &= 4 \\
 x + y + 0z - 2w &= 2.
\end{align*}
\]

(a) Write down the coefficient matrix for the system, call it \(A\), and find the solution set to the system (1) and a basis for \(\text{Ker}(A)\).
(b) Use your work above to find bases for $\text{Ran}(A)$ and $\text{Ran}(A^T)$, and explain how your answer agrees with the Rank Theorem.

(c) State the Rank-nullity Theorem, and explain how your answers above agree with it.

(d) Is there a value of $b \in \mathbb{R}^4$ such that $Ax = b$ has no solution? Is there a value of $b \in \mathbb{R}^4$ such that $Ax = b$ does not have a unique solution?
Question 3.

(10 pts) Let P_2 denote the vector space of polynomials of degree ≤ 2 with real coefficients. Let $\mathcal{E} = \{1, x, x^2\}$ and $\mathcal{B} = \{-1, x + 1, x^2 + 1\}$. Let

$$T(\alpha + \beta x + \gamma x^2) = 3\beta + (\beta + \gamma)x + \alpha x^2.$$

1. Find the matrix for T with respect to the basis \mathcal{E}.

2. Find the change of basis matrix from \mathcal{B} to \mathcal{E} coordinates, and the change of basis matrix from \mathcal{E} to \mathcal{B} coordinates.

3. Find the matrix for T with respect to the basis \mathcal{B}.
Question 4. (a) Let V be a finite dimensional vector space over \mathbb{F} and suppose $U \subseteq V$ is a subspace. Prove that there exists a subspace W such that $V = U \oplus W$.

(b) Let V be a finite dimensional vector space over \mathbb{F} and suppose U and W are subspaces of V. Prove that

$$\dim(U + W) = \dim(U) + \dim(W) - \dim(U \cap W).$$
Question 5. Consider a block matrix

\[T = \begin{pmatrix} A & B \\ C & D \end{pmatrix}. \]

(a) Provided that A is invertible, establish that

\[T = L \begin{pmatrix} A & 0 \\ 0 & D - CA^{-1}B \end{pmatrix} U \]

for L and U certain lower and upper block matrices, respectively. Use this identity to prove that

\[\det(T) = \det(A)\det(D - CA^{-1}B). \]

(b) Prove that if A is a matrix of size $n \times m$ and B is a matrix of size $m \times n$ then

\[\det(I_n + AB) = \det(I_m + BA). \]

Hint: Consider an appropriate block matrix and use the first part of this question.
(c) Generalize your proof from the previous part to show that for any \(\lambda \neq 0 \),

\[
\det(AB - \lambda I_n) = (-\lambda)^{n-m} \det(BA - \lambda I_m)
\]

and conclude that \(AB \) and \(BA \) have the same non-zero eigenvalues.
Question 6.
a) Given a 5×5 square matrix A suppose that the following operations convert A to its echelon form, A_e (note that numbering of rows after a swap is redefined):

- Swap R_1 and R_2
- Replace R_3 by $R_3 - 2R_1$
- Replace R_4 by $R_4 + 3R_1$
- Scale R_2 by $1/2$
- Scale R_4 by $1/3$
- Replace R_5 by $R_5 - 6R_4$.

If A_e is given by

$$
A_e = \begin{pmatrix}
1 & 3 & \ast \\
5 & 0 & -2 \\
\ast & \ast & \ast \\
\end{pmatrix},
$$

compute $\det(A)$.

b) Explain why your answer from the previous part of the question does not depend on the particular sequence of row operations, i.e. why computing the determinant of a matrix using row operations in this way is well-defined.
Question 7. Suppose $A \in \mathcal{L}(\mathbb{R}^3)$ is given by the matrix

$$A = \begin{pmatrix} 2 & 1 & 1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}$$

with respect to the standard basis.

a) Find the characteristic polynomial, $p_A(x)$, and find the eigenvalues of A.

b) For each eigenvalue, find the corresponding eigenspace.

c) Is A diagonalizable? If it is, write its diagonalized version. If it is not, explain why.
Question 8. Let V be a finite-dimensional vector space and suppose $P \in \mathcal{L}(V)$ satisfies $P^2 = P$.

a) Find all possible eigenvalues of P.

b) Prove that P is diagonalizable and determine the diagonal basis for P in terms of the bases of its fundamental subspaces.