Small quotients of surface braid groups

Cindy Tan

Nearly Carbon Neutral Geometric Topology Conference
21 June 2023

Summary

What are the smallest nonabelian quotients of braid groups and surface braid groups?

- For the braid group B_{n}, the answer is (almost always) S_{n}
- Surface braid groups admit a class of Heisenberg-like quotients which do not have analogues in the B_{n} story

Braid groups

- Braided strands

Braid groups

- Braided strands

- Generators: $\sigma_{1}, \ldots, \sigma_{n-1}$

$$
\sigma_{i}={\underset{i}{i} \sum_{i+1}^{i} \ldots}_{\substack{n}}^{j}
$$

Relations:
(1) $\left[\sigma_{i}, \sigma_{j}\right]=1$ for $|i-j| \geq 2$
(2) $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$

(2)

Braid groups

(1) $P_{n} \hookrightarrow B_{n} \rightarrow S_{n}$ (permutation of a braid)

Braid groups

(1) $P_{n} \hookrightarrow B_{n} \rightarrow S_{n}$ (permutation of a braid)

(2) $B_{n}^{\prime} \hookrightarrow B_{n} \xrightarrow{\mathrm{ab}} \mathbb{Z}$ (signed crossing number)

Braid groups

- Loops in configuration space of \mathbb{C}

$$
\begin{aligned}
\operatorname{Conf}_{n}(\mathbb{C}) & =\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}: x_{i} \neq x_{j} \text { if } i \neq j\right\} \\
& =\mathbb{C}^{n}-\operatorname{Diag} \mathbb{C}^{n} \\
\operatorname{UConf}_{n}(\mathbb{C}) & =\operatorname{Conf}_{n}(\mathbb{C}) / S_{n}
\end{aligned}
$$

$$
B_{n}:=\pi_{1}\left(\operatorname{UConf}_{n}(\mathbb{C})\right)
$$

Braid groups

- Loops in configuration space of \mathbb{C}

$$
\begin{aligned}
\operatorname{Conf}_{n}(\mathbb{C}) & =\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}: x_{i} \neq x_{j} \text { if } i \neq j\right\} \\
& =\mathbb{C}^{n}-\operatorname{Diag} \mathbb{C}^{n} \\
\operatorname{UConf}_{n}(\mathbb{C}) & =\operatorname{Conf}_{n}(\mathbb{C}) / S_{n}
\end{aligned}
$$

$$
B_{n}:=\pi_{1}\left(\operatorname{UConf}_{n}(\mathbb{C})\right)
$$

$$
\begin{aligned}
\gamma: S^{\prime} & \rightarrow U \operatorname{Con} f_{n}(\mathbb{C}) \\
\gamma(t) & =\left\{x_{1}, x_{2}, x_{3}\right\}
\end{aligned}
$$

Surface braid groups

- Loops in configuration space of a surface Σ

$$
\begin{aligned}
& \operatorname{Conf}_{n}(\Sigma)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \Sigma^{n}: x_{i} \neq x_{j} \text { if } i \neq j\right\} \\
& =\Sigma^{n}-\operatorname{Diag} \Sigma^{n} \\
& \operatorname{UConf}_{n}(\Sigma)=\operatorname{Conf}_{n}(\Sigma) / S_{n} \\
& B_{n}(\Sigma):=\pi_{1}\left(\operatorname{UConf}_{n}(\Sigma)\right) \\
& \gamma: s^{\prime} \rightarrow \operatorname{Conf}_{n}(\Sigma) \\
& \gamma(t)=\left\{x_{1}, x_{2}, x_{3}\right\} \\
& \Sigma \text { oriented connected finite type }
\end{aligned}
$$

Braids as mapping classes

Braids as mapping classes

Braids as mapping classes

This is an isomorphism $B_{n}(D) \xrightarrow{\cong} \operatorname{Mod}(D, n)$.
$\operatorname{Mod}(\Sigma)=\{$ oriented homeomorphisms of Σ fixing $\partial \Sigma\} /$ isotopy
$(\Sigma, n)=\Sigma-\{n$ points $\}$

Surface braids as mapping classes

For $\Sigma \neq S^{2}, T^{2}$, there is a short exact sequence

$$
1 \rightarrow B_{n}(\Sigma) \xrightarrow{\text { push }} \operatorname{Mod}(\Sigma, n) \xrightarrow{\text { forget }} \operatorname{Mod}(\Sigma) \rightarrow 1 .
$$

- $B_{n} \cong \operatorname{Mod}(D, n)$

Structure of the surface braid group

(1) Regular braids

Structure of the surface braid group

(1) Regular braids

(2) Braids from loops

Structure of the surface braid group

- $B_{n}\left(\Sigma_{g}\right)$ is generated by B_{n} and a (choice of) homology basis:

Homology basis generators of $B_{n}\left(T^{2}\right)$

Structure of the surface braid group

- There is a short exact sequence

$$
1 \longrightarrow\left\langle\left\langle B_{n}\right\rangle\right\rangle \longrightarrow B_{n}\left(\Sigma_{g}\right) \xrightarrow{\text { collapse }} H_{1}\left(\Sigma_{g}, \mathbb{Z}\right) \longrightarrow 1
$$

$$
\epsilon B_{n}\left(\Sigma_{g}\right)
$$

\downarrow collapse

$\in H_{1}\left(\Sigma_{g}\right)$

Collapsing map in $B_{n}\left(\Sigma_{3}\right)$

Structure of the surface braid group

Structure of the surface braid group

A commutator in $B_{n}\left(T^{2}\right)$

Finite quotients

Quotients of braid groups

(1) $B_{n} \xrightarrow{\mathrm{ab}} \mathbb{Z} \rightarrow \mathbb{Z} /(d)($ signed crossing number $\bmod d)$

Quotients of braid groups

(1) $B_{n} \xrightarrow{\mathrm{ab}} \mathbb{Z} \rightarrow \mathbb{Z} /(d)($ signed crossing number $\bmod d)$

(2) $B_{n} \rightarrow S_{n}$ (permutation of a braid)

Quotients of braid groups

(1) $B_{n} \xrightarrow{\mathrm{ab}} \mathbb{Z} \rightarrow \mathbb{Z} /(d)($ signed crossing number $\bmod d)$

(2) $B_{n} \rightarrow S_{n}$ (permutation of a braid)

(3) $B_{4} \rightarrow S_{4} \rightarrow S_{3}$

Theorem (Kolay, 2021).
Let $n=3$ or $n \geq 5$. If G is a noncyclic quotient of B_{n} then

$$
|G| \geq n!
$$

with equality if and only if $G \cong S_{n}$ and the quotient map is the standard projection post-composed with an automorphism of S_{n}.

Quotients of surface braid groups

- $B_{n}\left(\Sigma_{g}\right) \xrightarrow{\mathrm{ab}} \mathbb{Z} /(2) \oplus \mathbb{Z}^{2 g}$
- $B_{n}\left(\Sigma_{g}\right) \rightarrow S_{n}$ (permutation of a braid)
$-B_{4}\left(\Sigma_{g}\right) \rightarrow S_{3}$

Quotients of surface braid groups

- $B_{n}\left(\Sigma_{g}\right) \xrightarrow{\mathrm{ab}} \mathbb{Z} /(2) \oplus \mathbb{Z}^{2 g}$
- $B_{n}\left(\Sigma_{g}\right) \rightarrow S_{n}$ (permutation of a braid)
$-B_{4}\left(\Sigma_{g}\right) \rightarrow S_{3}$

Is S_{n} the smallest noncyclic nonabelian quotient of $B_{n}\left(\Sigma_{g}\right)$?

Claim.
Given an odd divisor d of n, there is a surjection

$$
B_{n}\left(T^{2}\right) \rightarrow \mathcal{H}_{3}(d)=\left\{\left[\begin{array}{ccc}
1 & * & * \\
& 1 & * \\
& & 1
\end{array}\right]: * \in \mathbb{Z} /(d)\right\} .
$$

- Some of these quotients are smaller than S_{n}, for example

$$
\begin{aligned}
& B_{7}\left(T^{2}\right) \rightarrow \mathcal{H}_{3}(7) \\
& \text { and }\left|\mathcal{H}_{3}(7)\right|=7^{3}<7!=\left|S_{7}\right|
\end{aligned}
$$

Claim.
Given an odd divisor d of n, there is a surjection

$$
B_{n}\left(T^{2}\right) \rightarrow \mathcal{H}_{3}(d)=\left\{\left[\begin{array}{ccc}
1 & * & * \\
& 1 & * \\
& & 1
\end{array}\right]: * \in \mathbb{Z} /(d)\right\} .
$$

- Some of these quotients are smaller than S_{n}, for example

$$
B_{7}\left(T^{2}\right) \rightarrow \mathcal{H}_{3}(7)
$$

and $\left|\mathcal{H}_{3}(7)\right|=7^{3}<7!=\left|S_{7}\right|$

- In general, $B_{n}\left(\Sigma_{g}\right)$ surjects onto similar nonabelian nilpotent groups, some of which are smaller than S_{n}

Construction of $B_{n}\left(T^{2}\right) \rightarrow \mathcal{H}_{3}(d)$

Given the presentation

$$
\mathcal{H}_{3}(d)=\langle X, Y, Z \in \mathbb{Z} /(d):[Z, X]=[Z, Y]=1,[X, Y]=Z\rangle
$$

the map on generators is

$$
\begin{aligned}
B_{n}\left(T^{2}\right) & \rightarrow \mathcal{H}_{3}(d) \\
\alpha & \mapsto X \\
\beta & \mapsto Y \\
\sigma_{i} & \mapsto Z^{\frac{d+1}{2}}
\end{aligned}
$$

Is S_{n} the smallest nonabelian non-nilpotent quotient of $B_{n}\left(\Sigma_{g}\right)$?

Is S_{n} the smallest nomabelian non-nilpotent quotient of $B_{n}\left(\Sigma_{g}\right)$?

Theorem 1 (T, 2023).
Let $n=3$ or $n \geq 5$ and $g \geq 0$. The smallest non-nilpotent quotient of $B_{n}\left(\Sigma_{g}\right)$ is S_{n} and the quotient map is unique up post-composition with an automorphism of S_{n}.

Theorem 2 ($\mathrm{T}, 2023$).

Let G be a nonabelian nilpotent quotient. Let p be the smallest prime dividing $g+n-1$. Then

1. if $p=2$ then $|G| \geq 2^{2 g+2}$, and
2. if p is odd then $|G| \geq p^{2 g+1}$.

In each case equality is attained by exactly two nonisomorphic groups.

Corollary.

Let $g \geq 1$ and $n \geq 5$. Then the order of any nonabelian quotient of $B_{n}\left(\Sigma_{g}\right)$ is at least the smaller of $n!$ and the lower bound in Theorem 2 , which depends on g and n.

More

Conference Discord: June 23rd - 30th

Email: cindy@math.uchicago.edu

Slides: math.uchicago.edu/~cindy/2023-ncngt.pdf

