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Summary

What are the smallest nonabelian quotients of braid groups and
surface braid groups?

» For the braid group B, the answer is (almost always) S,

» Surface braid groups admit a class of Heisenberg-like quotients
which do not have analogues in the Bj, story



Braid groups

» Braided strands
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Braid groups

» Braided strands
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» Generators: 01,...,0,—1

Relations:
O [0;,0j]=1for|i—j|=>2

@ 0i0;110; = 0110041



Braid groups

® P, — B, — S, (permutation of a braid)
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Braid groups

® P, — B, — S, (permutation of a braid)
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® B, — B, — Z (signed crossing number)
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Braid groups

> Loops in configuration space of C

Conf, (C) = {(x1,...,x,) € C" 1 x; #£ x; if i # j}
= C" — DiagC"
UConf, (C) = Conf,(C)/S,

B, := m1(UConf, (C))



Braid groups

> Loops in configuration space of C

Conf, (C) = {(x1,...,x,) € C" 1 x; # x; ifi # j}
= C" — DiagC"
UConf, (C) = Conf,(C)/S,

B, := m1(UConf, (C))
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Surface braid groups

» Loops in configuration space of a surface

Conf, (X) = {(X1,....xp) € X" 1 x; # x, ifi # j}
= X" — Diag ©"
UConf, (%) = Conf,(X)/S,

B, (%) := 71 (UConf, (X))

Y S Ul (2)

¥(t)= {7,257

¥ oriented connected finite type



Braids as mapping classes
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Braids as mapping classes
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Braids as mapping classes

]
? Push
i — w
(side ) (fvP)
surface braid mapping class

This is an isomorphism B, (D) il Mod(D, n).

Mod(X) = {oriented homeomorphisms of X fixing dX} / isotopy
(X,n) = X — {n points}



Surface braids as mapping classes

For ¥ # S2, T2, there is a short exact sequence
push forget
1 - By(¥X) — Mod(XZ,n) —— Mod(X) — 1.

> B, =~ Mod(D,n)



Structure of the surface braid group

@ Regular braids
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Structure of the surface braid group

@ Regular braids

® Braids from loops
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Structure of the surface braid group

> B,(X) is generated by B, and a (choice of) homology basis:

2%

Homology basis generators of B, (T?)
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Structure of the surface braid group

P There is a short exact sequence

collapse

1 —— (Bn)) — Bu(Zy) —— H1(Z4.2) —— 1

Collapsing map in B, (X3)
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Structure of the surface braid group
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A commutator in B, (7T?)
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Structure of the surface braid group

oy
bl = 1 - -

A commutator in B, (7T?)

D-.-Z
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Finite quotients
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Quotients of braid groups

ab
©® B, - 7Z — Z/@) (signed crossing number mod d)
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Quotients of braid groups

ab
©® B, - 7Z — Z/@) (signed crossing number mod d)

® B, — S, (permutation of a braid)
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Quotients of braid groups

ab
©® B, - 7Z — Z/@) (signed crossing number mod d)

® B, — S, (permutation of a braid)
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O Bs—» S4— S3
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Theorem (Kolay, 2021).
Letn = 3 orn > 5. If G is a noncyclic quotient of B, then

|G| = n!

with equality if and only if G =~ S, and the quotient map is the
standard projection post-composed with an automorphism of Sj,.
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Quotients of surface braid groups

ab
> Bu(Zg) - Z/o) ® 738

» Bn(Xg) — Sp (permutation of a braid)

> By(Xg) — S3
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Quotients of surface braid groups

ab
> Bu(Zg) - Z/o) ® 738

» Bn(Xg) — Sp (permutation of a braid)

> By(Xg) — S3

Is S), the smallest roneyelie nonabelian quotient of B, (X4)?
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Claim.
Given an odd divisor d of n, there is a surjection

I x =
Bn(T?) — Hs(d) = 1 x|:%x€Z/a
1
> Some of these quotients are smaller than Sy, for example

B7(T?) — H3(7)

and |[H3(7)| =72 < 7! = | S|
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Claim.
Given an odd divisor d of n, there is a surjection

I x =
Bn(T?) — Hs(d) = 1 x|:%x€Z/a
1
> Some of these quotients are smaller than Sy, for example
B(T?) — H3(7)
and |[H3(7)| =72 < 7! = | S|

» In general, B,(Xg) surjects onto similar nonabelian nilpotent
groups, some of which are smaller than S,
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Construction of B, (T?) —» Hs(d)

Given the presentation
Hi(d)=(X,Y,.Z e€Z/a:[Z,X]|=[Z,Y]=1, [X,Y]=2Z)
the map on generators is

Bu(T?) — H3(d)
ar— X

Y

d+1
o> 2/ 2
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i ?
Sy the smallest ronabelian non-nilpotent quotient of B, (Xg)?
Is S, the s
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Is Sy, the smallest ronabelian non-nilpotent quotient of B, (Xg)?

Theorem 1 (T, 2023).

Letn =3 orn > 5and g > 0. The smallest non-nilpotent quotient of
B, (Xg) is S, and the quotient map is unique up post-composition
with an automorphism of Sj.
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Theorem 2 (T, 2023).

Let G be a nonabelian nilpotent quotient. Let p be the smallest prime
dividing g + n — 1. Then

1. if p = 2 then |G| > 2%86%2 and

2. if pis odd then |G| > p2&+1

In each case equality is attained by exactly two nonisomorphic groups.

Corollary.

Let g > 1 and n > 5. Then the order of any nonabelian quotient of
B, (2y) is at least the smaller of n! and the lower bound in Theorem
2, which depends on g and 7.
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More

Conference Discord: June 23rd - 30th

Email: cindy@math.uchicago.edu

Slides: math.uchicago.edu/~cindy/2023-ncngt.pdf
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