Small quotients of surface braid groups

Cindy Tan

Nearly Carbon Neutral Geometric Topology Conference 21 June 2023

What are the smallest nonabelian quotients of braid groups and surface braid groups?

- For the braid group B_n , the answer is (almost always) S_n
- Surface braid groups admit a class of Heisenberg-like quotients which do not have analogues in the B_n story

Braided strands

Braided strands

Relations:

1 $[\sigma_i, \sigma_j] = 1$ for $|i - j| \ge 2$

 $P_n \hookrightarrow B_n \twoheadrightarrow S_n \text{ (permutation of a braid)}$

1) $P_n \hookrightarrow B_n \twoheadrightarrow S_n$ (permutation of a braid)

2 $B'_n \hookrightarrow B_n \xrightarrow{ab} \mathbb{Z}$ (signed crossing number)

• Loops in configuration space of \mathbb{C}

$$Conf_n(\mathbb{C}) = \{(x_1, \dots, x_n) \in \mathbb{C}^n : x_i \neq x_j \text{ if } i \neq j\}$$
$$= \mathbb{C}^n - \text{Diag } \mathbb{C}^n$$
$$UConf_n(\mathbb{C}) = \text{Conf}_n(\mathbb{C}) / S_n$$

 $B_n := \pi_1(\mathrm{UConf}_n(\mathbb{C}))$

► Loops in configuration space of \mathbb{C} $\operatorname{Conf}_{n}(\mathbb{C}) = \{(x_{1}, \dots, x_{n}) \in \mathbb{C}^{n} : x_{i} \neq x_{j} \text{ if } i \neq j\}$ $= \mathbb{C}^{n} - \operatorname{Diag} \mathbb{C}^{n}$ $\operatorname{UConf}_{n}(\mathbb{C}) = \operatorname{Conf}_{n}(\mathbb{C}) / S_{n}$ $B_{n} := \pi_{1}(\operatorname{UConf}_{n}(\mathbb{C}))$

Surface braid groups

• Loops in configuration space of a surface Σ

$$\operatorname{Conf}_{n}(\Sigma) = \{(x_{1}, \dots, x_{n}) \in \Sigma^{n} : x_{i} \neq x_{j} \text{ if } i \neq j\}$$
$$= \Sigma^{n} - \operatorname{Diag} \Sigma^{n}$$
$$\operatorname{UConf}_{n}(\Sigma) = \operatorname{Conf}_{n}(\Sigma) / S_{n}$$

 $B_n(\Sigma) \coloneqq \pi_1(\mathrm{UConf}_n(\Sigma))$

 $\boldsymbol{\Sigma}$ oriented connected finite type

Braids as mapping classes

surface braid

Braids as mapping classes

Braids as mapping classes

This is an isomorphism $B_n(D) \xrightarrow{\cong} Mod(D, n)$.

 $Mod(\Sigma) = \{ \text{oriented homeomorphisms of } \Sigma \text{ fixing } \partial \Sigma \} / \text{ isotopy} \\ (\Sigma, n) = \Sigma - \{ n \text{ points} \}$

Surface braids as mapping classes

For $\Sigma \neq S^2$, T^2 , there is a short exact sequence

$$1 \to B_n(\Sigma) \xrightarrow{\text{push}} \text{Mod}(\Sigma, n) \xrightarrow{\text{forget}} \text{Mod}(\Sigma) \to 1.$$

$$\blacktriangleright B_n \cong \operatorname{Mod}(D, n)$$

1 Regular braids

1 Regular braids

2 Braids from loops

▶ $B_n(\Sigma_g)$ is generated by B_n and a (choice of) homology basis:

Homology basis generators of $B_n(T^2)$

Collapsing map in $B_n(\Sigma_3)$

A commutator in $B_n(T^2)$

A commutator in $B_n(T^2)$

Finite quotients

Quotients of braid groups

 $B_n \xrightarrow{ab} \mathbb{Z} \twoheadrightarrow \mathbb{Z}/(d) \text{ (signed crossing number mod } d)$

Quotients of braid groups

 $B_n \xrightarrow{ab} \mathbb{Z} \twoheadrightarrow \mathbb{Z}/(d) \text{ (signed crossing number mod } d)$

2 $B_n \rightarrow S_n$ (permutation of a braid)

Quotients of braid groups

 $B_n \xrightarrow{ab} \mathbb{Z} \twoheadrightarrow \mathbb{Z}/(d) \text{ (signed crossing number mod } d)$

2 $B_n \rightarrow S_n$ (permutation of a braid)

$$\mathbf{3} \ B_4 \twoheadrightarrow S_4 \twoheadrightarrow S_3$$

Theorem (Kolay, 2021).

Let n = 3 or $n \ge 5$. If G is a noncyclic quotient of B_n then

 $|G| \ge n!$

with equality if and only if $G \cong S_n$ and the quotient map is the standard projection post-composed with an automorphism of S_n .

Quotients of surface braid groups

Quotients of surface braid groups

Is S_n the smallest noncyclic nonabelian quotient of $B_n(\Sigma_g)$?

Claim.

Given an odd divisor d of n, there is a surjection

$$B_n(T^2) \twoheadrightarrow \mathcal{H}_3(d) = \left\{ \begin{bmatrix} 1 & * & * \\ & 1 & * \\ & & 1 \end{bmatrix} : * \in \mathbb{Z}/(d) \right\}$$

Some of these quotients are smaller than S_n , for example

$$B_7(T^2) \twoheadrightarrow \mathcal{H}_3(7)$$

and $|\mathcal{H}_3(7)| = 7^3 < 7! = |S_7|$

Claim.

Given an odd divisor d of n, there is a surjection

$$B_n(T^2) \twoheadrightarrow \mathcal{H}_3(d) = \left\{ \begin{bmatrix} 1 & * & * \\ & 1 & * \\ & & 1 \end{bmatrix} : * \in \mathbb{Z}/(d) \right\}.$$

Some of these quotients are smaller than S_n , for example

$$B_7(T^2) \twoheadrightarrow \mathcal{H}_3(7)$$

and $|\mathcal{H}_3(7)| = 7^3 < 7! = |S_7|$

▶ In general, $B_n(\Sigma_g)$ surjects onto similar nonabelian nilpotent groups, some of which are smaller than S_n

Construction of $B_n(T^2) \twoheadrightarrow \mathcal{H}_3(d)$

Given the presentation

$$\mathcal{H}_3(d) = \langle X, Y, Z \in \mathbb{Z}/(d) : [Z, X] = [Z, Y] = 1, [X, Y] = Z \rangle$$

the map on generators is

$$B_n(T^2) \twoheadrightarrow \mathcal{H}_3(d)$$
$$\alpha \mapsto X$$
$$\beta \mapsto Y$$
$$\sigma_i \mapsto Z^{\frac{d+1}{2}}$$

Is S_n the smallest nonabelian non-nilpotent quotient of $B_n(\Sigma_g)$?

Is S_n the smallest nonabelian non-nilpotent quotient of $B_n(\Sigma_g)$?

Theorem 1 (T, 2023).

Let n = 3 or $n \ge 5$ and $g \ge 0$. The smallest non-nilpotent quotient of $B_n(\Sigma_g)$ is S_n and the quotient map is unique up post-composition with an automorphism of S_n .

Theorem 2 (T, 2023).

Let G be a nonabelian nilpotent quotient. Let p be the smallest prime dividing g + n - 1. Then

- 1. if p = 2 then $|G| \ge 2^{2g+2}$, and
- 2. if p is odd then $|G| \ge p^{2g+1}$.

In each case equality is attained by exactly two nonisomorphic groups.

Corollary.

Let $g \ge 1$ and $n \ge 5$. Then the order of any nonabelian quotient of $B_n(\Sigma_g)$ is at least the smaller of n! and the lower bound in Theorem 2, which depends on g and n.

Conference Discord: June **23rd** - 30th Email: cindy@math.uchicago.edu

Slides: math.uchicago.edu/~cindy/2023-ncngt.pdf