Splitting Fields of Generalized Rikuna Polynomials

SMALL REU - Algebraic Number Theory

January 7, 2011

Zev Chonoles, John Cullinan, Hannah Hausman, Allison M. Pacelli, Sean Pegado, Fan Wei

Our Picture

L to R: John Cullinan, Hannah Hausman, Allison Pacelli, Fan Wei, Sean Pegado, Zev Chonoles

SMALL REU - Algebraic Number Theory Splitting Fields of Generalized Rikuna Polynomials

Definition

A **number field** *K* is a finite extension of \mathbb{Q} .

Definition

A **number field** *K* is a finite extension of \mathbb{Q} .

Definition

An **algebraic integer** is a complex number that is a root of some monic polynomial with coefficients in \mathbb{Z} .

Definition

A **number field** *K* is a finite extension of \mathbb{Q} .

Definition

An **algebraic integer** is a complex number that is a root of some monic polynomial with coefficients in \mathbb{Z} .

Definition

The **ring of integers** of a number field *K*, denoted \mathcal{O}_K , is the set of all algebraic integers in *K*.

Definition

A **number field** *K* is a finite extension of \mathbb{Q} .

Definition

An **algebraic integer** is a complex number that is a root of some monic polynomial with coefficients in \mathbb{Z} .

Definition

The **ring of integers** of a number field *K*, denoted \mathcal{O}_K , is the set of all algebraic integers in *K*.

$$egin{array}{ccc} \mathcal{O}_K &\subset & K \ ert & & ert \ \end{array}$$

$$K = \mathbb{Q}(\sqrt{-6})$$

Example $K = \mathbb{Q}(\sqrt{-6})$

• All elements of *K* are of the form $a + b\sqrt{-6}$ where $a, b \in \mathbb{Q}$.

$$K = \mathbb{Q}(\sqrt{-6})$$

- All elements of *K* are of the form $a + b\sqrt{-6}$ where $a, b \in \mathbb{Q}$.
- The algebraic integers in *K* are $a + b\sqrt{-6}$ where $a, b \in \mathbb{Z}$.

$$K = \mathbb{Q}(\sqrt{-6})$$

- All elements of *K* are of the form $a + b\sqrt{-6}$ where $a, b \in \mathbb{Q}$.
- The algebraic integers in *K* are $a + b\sqrt{-6}$ where $a, b \in \mathbb{Z}$.
- We write $\mathcal{O}_K = \mathbb{Z}[\sqrt{-6}].$

$$K = \mathbb{Q}(\sqrt{-6})$$

- All elements of *K* are of the form $a + b\sqrt{-6}$ where $a, b \in \mathbb{Q}$.
- The algebraic integers in *K* are $a + b\sqrt{-6}$ where $a, b \in \mathbb{Z}$.
- We write $\mathcal{O}_K = \mathbb{Z}[\sqrt{-6}].$

$$egin{array}{rcl} \mathbb{Z}[\sqrt{-6}] &\subset & \mathbb{Q}(\sqrt{-6}) \ & & \mid \ & & \mid \ \mathbb{Z} &\subset & \mathbb{Q} \end{array}$$

In \mathbb{Z} , there is unique factorization of integers into primes.

In \mathbb{Z} , there is unique factorization of integers into primes.

However, in \mathcal{O}_K , there is not necessarily unique factorization of algebraic integers into irreducibles.

In $\ensuremath{\mathbb{Z}},$ there is unique factorization of integers into primes.

However, in \mathcal{O}_K , there is not necessarily unique factorization of algebraic integers into irreducibles.

Let
$$K = \mathbb{Q}[\sqrt{-6}]$$
, so that $\mathcal{O}_K = \mathbb{Z}[\sqrt{-6}]$.

In $\ensuremath{\mathbb{Z}},$ there is unique factorization of integers into primes.

However, in \mathcal{O}_K , there is not necessarily unique factorization of algebraic integers into irreducibles.

Example

Let
$$K = \mathbb{Q}[\sqrt{-6}]$$
, so that $\mathcal{O}_K = \mathbb{Z}[\sqrt{-6}]$.

$$-2 \cdot 3 = -6 = (\sqrt{-6})^2$$

Because -2, 3, and $\sqrt{-6}$ are irreducible in $\mathbb{Z}[\sqrt{-6}]$, these are two distinct factorizations of -6.

Therefore, $\mathcal{O}_K = \mathbb{Z}[\sqrt{-6}]$ is not a UFD.

Define an equivalence relation \sim on non-zero ideals of \mathcal{O}_K by:

 $I \sim J$ if $\alpha I = \beta J$ for some non-zero $\alpha, \beta \in \mathcal{O}_K$

Define an equivalence relation \sim on non-zero ideals of \mathcal{O}_K by:

$$I\sim J$$
 if $lpha I=eta J$ for some non-zero $lpha,eta\in\mathcal{O}_K$

Theorem

The equivalence classes [I] of \sim form a finite abelian group.

Define an equivalence relation \sim on non-zero ideals of \mathcal{O}_K by:

 $I \sim J$ if $\alpha I = \beta J$ for some non-zero $\alpha, \beta \in \mathcal{O}_K$

Theorem

The equivalence classes [I] of \sim form a finite abelian group.

The group operation is [I][J] = [IJ], where IJ is the usual product of ideals.

Define an equivalence relation \sim on non-zero ideals of \mathcal{O}_K by:

 $I \sim J$ if $\alpha I = \beta J$ for some non-zero $\alpha, \beta \in \mathcal{O}_K$

Theorem

The equivalence classes [I] of \sim form a finite abelian group.

The group operation is [I][J] = [IJ], where IJ is the usual product of ideals.

The identity is the equivalence class of all principal ideals.

Define an equivalence relation \sim on non-zero ideals of \mathcal{O}_K by:

 $I \sim J$ if $\alpha I = \beta J$ for some non-zero $\alpha, \beta \in \mathcal{O}_K$

Theorem

The equivalence classes [I] of \sim form a finite abelian group.

The group operation is [I][J] = [IJ], where IJ is the usual product of ideals.

The identity is the equivalence class of all principal ideals.

Definition

This group, denoted Cl_K , is called the **class group** of *K*.

The **class number**, denoted h_K , is the size of the class group.

The **class number**, denoted h_K , is the size of the class group.

O_K has class number 1 if and only if every ideal in *O_K* is principal, i.e. *O_K* is a PID.

The **class number**, denoted h_K , is the size of the class group.

- *O_K* has class number 1 if and only if every ideal in *O_K* is principal, i.e. *O_K* is a PID.
- \mathcal{O}_K is a UFD if and only if it is a PID.

The **class number**, denoted h_K , is the size of the class group.

- *O_K* has class number 1 if and only if every ideal in *O_K* is principal, i.e. *O_K* is a PID.
- \mathcal{O}_K is a UFD if and only if it is a PID.

Theorem

 \mathcal{O}_K is a UFD if and only if $h_K = 1$.

The **class number**, denoted h_K , is the size of the class group.

- *O_K* has class number 1 if and only if every ideal in *O_K* is principal, i.e. *O_K* is a PID.
- \mathcal{O}_K is a UFD if and only if it is a PID.

Theorem

 \mathcal{O}_K is a UFD if and only if $h_K = 1$.

Remark

The class number measures the failure of unique factorization in \mathcal{O}_K ; the larger h_K is, the further \mathcal{O}_K is from being a UFD.

For all number fields *K*, there is unique factorization of ideals into prime ideals in \mathcal{O}_K .

For all number fields *K*, there is unique factorization of ideals into prime ideals in \mathcal{O}_K .

Let *K* and *L* be number fields where *L* is an extension of *K*.

For all number fields *K*, there is unique factorization of ideals into prime ideals in \mathcal{O}_K .

Let *K* and *L* be number fields where *L* is an extension of *K*.

$$egin{array}{rcl} \mathfrak{O}_L &\subset & \mathcal{O}_L &\subset & L \ ert & & ert & ert & ert \ \mathfrak{p} & \subset & \mathcal{O}_K &\subset & K \end{array}$$

Let \mathfrak{p} be a prime ideal in \mathcal{O}_K . Then $\mathfrak{p}\mathcal{O}_L$ is an ideal in \mathcal{O}_L , so it can be uniquely factored into prime ideals in \mathcal{O}_L .

For all number fields *K*, there is unique factorization of ideals into prime ideals in \mathcal{O}_K .

Let *K* and *L* be number fields where *L* is an extension of *K*.

Let \mathfrak{p} be a prime ideal in \mathcal{O}_K . Then $\mathfrak{p}\mathcal{O}_L$ is an ideal in \mathcal{O}_L , so it can be uniquely factored into prime ideals in \mathcal{O}_L .

Definition

As above,
$$\mathfrak{p}\mathcal{O}_L = \mathfrak{q}_1^{e_1}\mathfrak{q}_2^{e_2}\cdots\mathfrak{q}_r^{e_r}$$
.

Definition

- As above, $\mathfrak{p}\mathcal{O}_L = \mathfrak{q}_1^{e_1}\mathfrak{q}_2^{e_2}\cdots\mathfrak{q}_r^{e_r}$.
 - If $\mathfrak{p}\mathcal{O}_L$ is prime, then \mathfrak{p} is **inert** in \mathcal{O}_L .

Definition

As above, $\mathfrak{p}\mathcal{O}_L = \mathfrak{q}_1^{e_1}\mathfrak{q}_2^{e_2}\cdots\mathfrak{q}_r^{e_r}$.

- If $\mathfrak{p}\mathcal{O}_L$ is prime, then \mathfrak{p} is **inert** in \mathcal{O}_L .
- If r = [L : K], then \mathfrak{p} splits completely in \mathcal{O}_L .

Definition

As above, $\mathfrak{p}\mathcal{O}_L = \mathfrak{q}_1^{e_1}\mathfrak{q}_2^{e_2}\cdots\mathfrak{q}_r^{e_r}$.

- If $\mathfrak{p}\mathcal{O}_L$ is prime, then \mathfrak{p} is **inert** in \mathcal{O}_L .
- If r = [L : K], then \mathfrak{p} splits completely in \mathcal{O}_L .
- If $e_i = 1$ for all *i*, then p is **unramified** in \mathcal{O}_L .

Definition

As above, $\mathfrak{p}\mathcal{O}_L = \mathfrak{q}_1^{e_1}\mathfrak{q}_2^{e_2}\cdots\mathfrak{q}_r^{e_r}$.

- If $\mathfrak{p}\mathcal{O}_L$ is prime, then \mathfrak{p} is **inert** in \mathcal{O}_L .
- If r = [L : K], then \mathfrak{p} splits completely in \mathcal{O}_L .
- If $e_i = 1$ for all *i*, then p is **unramified** in \mathcal{O}_L .
- If $\mathfrak{p}\mathcal{O}_L = \mathfrak{q}^{[L:K]}$, then \mathfrak{p} is totally ramified in \mathcal{O}_L .

Definition

As above, $\mathfrak{p}\mathcal{O}_L = \mathfrak{q}_1^{e_1}\mathfrak{q}_2^{e_2}\cdots\mathfrak{q}_r^{e_r}$.

- If $\mathfrak{p}\mathcal{O}_L$ is prime, then \mathfrak{p} is **inert** in \mathcal{O}_L .
- If r = [L : K], then \mathfrak{p} splits completely in \mathcal{O}_L .
- If $e_i = 1$ for all *i*, then p is **unramified** in \mathcal{O}_L .
- If $\mathfrak{p}\mathcal{O}_L = \mathfrak{q}^{[L:K]}$, then \mathfrak{p} is totally ramified in \mathcal{O}_L .

Example

Let $K = \mathbb{Q}$ and $L = \mathbb{Q}(i)$, so that $\mathcal{O}_K = \mathbb{Z}$ and $\mathcal{O}_L = \mathbb{Z}[i]$.

Definition

As above, $\mathfrak{p}\mathcal{O}_L = \mathfrak{q}_1^{e_1}\mathfrak{q}_2^{e_2}\cdots\mathfrak{q}_r^{e_r}$.

- If $\mathfrak{p}\mathcal{O}_L$ is prime, then \mathfrak{p} is **inert** in \mathcal{O}_L .
- If r = [L : K], then \mathfrak{p} splits completely in \mathcal{O}_L .
- If $e_i = 1$ for all *i*, then p is **unramified** in \mathcal{O}_L .
- If $\mathfrak{p}\mathcal{O}_L = \mathfrak{q}^{[L:K]}$, then \mathfrak{p} is totally ramified in \mathcal{O}_L .

Example

Let $K = \mathbb{Q}$ and $L = \mathbb{Q}(i)$, so that $\mathcal{O}_K = \mathbb{Z}$ and $\mathcal{O}_L = \mathbb{Z}[i]$.

$$\langle 2 \rangle \mathcal{O}_L = \langle 1 + i \rangle^2 \qquad \langle 3 \rangle \mathcal{O}_L = \langle 3 \rangle \qquad \langle 5 \rangle \mathcal{O}_L = \langle 2 + i \rangle \langle 2 - i \rangle$$

Splitting, Ramification, Inertia

Definition

As above, $\mathfrak{p}\mathcal{O}_L = \mathfrak{q}_1^{e_1}\mathfrak{q}_2^{e_2}\cdots\mathfrak{q}_r^{e_r}$.

- If $\mathfrak{p}\mathcal{O}_L$ is prime, then \mathfrak{p} is **inert** in \mathcal{O}_L .
- If r = [L : K], then \mathfrak{p} splits completely in \mathcal{O}_L .
- If $e_i = 1$ for all *i*, then p is **unramified** in \mathcal{O}_L .
- If $\mathfrak{p}\mathcal{O}_L = \mathfrak{q}^{[L:K]}$, then \mathfrak{p} is totally ramified in \mathcal{O}_L .

Example

Let $K = \mathbb{Q}$ and $L = \mathbb{Q}(i)$, so that $\mathcal{O}_K = \mathbb{Z}$ and $\mathcal{O}_L = \mathbb{Z}[i]$. $\langle 2 \rangle \mathcal{O}_L = \langle 1 + i \rangle^2 \quad \langle 3 \rangle \mathcal{O}_L = \langle 3 \rangle \quad \langle 5 \rangle \mathcal{O}_L = \langle 2 + i \rangle \langle 2 - i \rangle$ (totally ramified) (inert) (splits completely)

Definition

Suppose the polynomial $f \in \mathbb{Q}[x]$ has roots $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$. Then the **splitting field** of f over \mathbb{Q} is $\mathbb{Q}(\alpha_1, \ldots, \alpha_n)$.

Definition

Suppose the polynomial $f \in \mathbb{Q}[x]$ has roots $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$. Then the **splitting field** of f over \mathbb{Q} is $\mathbb{Q}(\alpha_1, \ldots, \alpha_n)$.

Definition

For any algebraic integer $\alpha \in \mathbb{C}$, we say $\beta \in \mathbb{C}$ is an **algebraic** conjugate of α if there is some irreducible $f \in \mathbb{Q}[x]$ having both α and β as roots.

Definition

Suppose the polynomial $f \in \mathbb{Q}[x]$ has roots $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$. Then the **splitting field** of f over \mathbb{Q} is $\mathbb{Q}(\alpha_1, \ldots, \alpha_n)$.

Definition

For any algebraic integer $\alpha \in \mathbb{C}$, we say $\beta \in \mathbb{C}$ is an **algebraic** conjugate of α if there is some irreducible $f \in \mathbb{Q}[x]$ having both α and β as roots.

Definition

A number field *K* is **Galois** if $\alpha \in K \Rightarrow$ all conjugates of $\alpha \in K$.

Definition

Suppose the polynomial $f \in \mathbb{Q}[x]$ has roots $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$. Then the **splitting field** of f over \mathbb{Q} is $\mathbb{Q}(\alpha_1, \ldots, \alpha_n)$.

Definition

For any algebraic integer $\alpha \in \mathbb{C}$, we say $\beta \in \mathbb{C}$ is an **algebraic** conjugate of α if there is some irreducible $f \in \mathbb{Q}[x]$ having both α and β as roots.

Definition

A number field *K* is **Galois** if $\alpha \in K \Rightarrow$ all conjugates of $\alpha \in K$.

Theorem

A number field *K* is Galois if and only if *K* is the splitting field of some $f \in \mathbb{Q}[x]$.

Example

 $L = \mathbb{Q}(\sqrt[3]{2})$ is not Galois. Because $\sqrt[3]{2}$, $\zeta\sqrt[3]{2}$, and $\zeta^2\sqrt[3]{2} \in \mathbb{C}$ are the roots of $f = x^3 - 2$, they are algebraic conjugates, but $\zeta\sqrt[3]{2}$ and $\zeta^2\sqrt[3]{2}$ are complex, while $L \subset \mathbb{R}$.

Example

 $L = \mathbb{Q}(\sqrt[3]{2})$ is not Galois. Because $\sqrt[3]{2}$, $\zeta\sqrt[3]{2}$, and $\zeta^2\sqrt[3]{2} \in \mathbb{C}$ are the roots of $f = x^3 - 2$, they are algebraic conjugates, but $\zeta\sqrt[3]{2}$ and $\zeta^2\sqrt[3]{2}$ are complex, while $L \subset \mathbb{R}$.

Example

 $F = \mathbb{Q}(\sqrt[3]{2}, \zeta)$ is Galois because it is the splitting field of $x^3 - 2$. Note that *F* contains *L*.

Definition

Given a number field *K*, a bijective homomorphism from *K* to itself is called an **automorphism** of K/\mathbb{Q} .

Given a number field *K*, a bijective homomorphism from *K* to itself is called an **automorphism** of K/\mathbb{Q} .

Theorem

If *K* is Galois, the automorphisms of K/\mathbb{Q} form a finite group.

Given a number field *K*, a bijective homomorphism from *K* to itself is called an **automorphism** of K/\mathbb{Q} .

Theorem

If *K* is Galois, the automorphisms of K/\mathbb{Q} form a finite group. The group operation is $\sigma \tau = \sigma \circ \tau$, where \circ is composition.

Given a number field *K*, a bijective homomorphism from *K* to itself is called an **automorphism** of K/\mathbb{Q} .

Theorem

If *K* is Galois, the automorphisms of K/\mathbb{Q} form a finite group. The group operation is $\sigma \tau = \sigma \circ \tau$, where \circ is composition. The identity is the identity homomorphism from *K* to itself.

Given a number field *K*, a bijective homomorphism from *K* to itself is called an **automorphism** of K/\mathbb{Q} .

Theorem

If *K* is Galois, the automorphisms of K/\mathbb{Q} form a finite group. The group operation is $\sigma \tau = \sigma \circ \tau$, where \circ is composition. The identity is the identity homomorphism from *K* to itself.

Definition

This group, denoted $Gal(K/\mathbb{Q})$, is the **Galois group** of K/\mathbb{Q} .

Given a number field *K*, a bijective homomorphism from *K* to itself is called an **automorphism** of K/\mathbb{Q} .

Theorem

If *K* is Galois, the automorphisms of K/\mathbb{Q} form a finite group. The group operation is $\sigma \tau = \sigma \circ \tau$, where \circ is composition. The identity is the identity homomorphism from *K* to itself.

Definition

This group, denoted $Gal(K/\mathbb{Q})$, is the **Galois group** of K/\mathbb{Q} .

Theorem

If K is Galois, then $|\operatorname{Gal}(K/\mathbb{Q})| = [K : \mathbb{Q}].$

For each prime power $q = p^r$, there is a unique finite field with q elements, denoted \mathbb{F}_q .

For each prime power $q = p^r$, there is a unique finite field with q elements, denoted \mathbb{F}_q .

Definition

A (global) function field *K* is a finite extension of $\mathbb{F}_q(T)$ where *T* is a transcendental element over \mathbb{F}_q .

For each prime power $q = p^r$, there is a unique finite field with q elements, denoted \mathbb{F}_q .

Definition

A (global) function field *K* is a finite extension of $\mathbb{F}_q(T)$ where *T* is a transcendental element over \mathbb{F}_q .

In function fields, the polynomial ring $\mathbb{F}_q[T]$ plays the role of \mathbb{Z} .

For each prime power $q = p^r$, there is a unique finite field with q elements, denoted \mathbb{F}_q .

Definition

A (global) function field *K* is a finite extension of $\mathbb{F}_q(T)$ where *T* is a transcendental element over \mathbb{F}_q .

In function fields, the polynomial ring $\mathbb{F}_q[T]$ plays the role of \mathbb{Z} .

Definition

The **ring of integers** of a function field *K*, also denoted \mathcal{O}_K , is the set of elements of *K* which are a root of some monic polynomial with coefficients in $\mathbb{F}_q[T]$.

For each prime power $q = p^r$, there is a unique finite field with q elements, denoted \mathbb{F}_q .

Definition

A (global) function field *K* is a finite extension of $\mathbb{F}_q(T)$ where *T* is a transcendental element over \mathbb{F}_q .

In function fields, the polynomial ring $\mathbb{F}_q[T]$ plays the role of \mathbb{Z} .

Definition

The **ring of integers** of a function field *K*, also denoted \mathcal{O}_K , is the set of elements of *K* which are a root of some monic polynomial with coefficients in $\mathbb{F}_q[T]$.

$$egin{array}{ccc} \mathcal{O}_K &\subset & K \ ert & & ert \ & er$$

Example

$$K = \mathbb{F}_q(\sqrt{T+1})$$

Example

 $K = \mathbb{F}_q(\sqrt{T+1})$

• All elements of *K* are of the form $a + b\sqrt{T+1}$ where $a, b \in \mathbb{F}_q(T)$.

Example

 $K = \mathbb{F}_q(\sqrt{T+1})$

- All elements of *K* are of the form $a + b\sqrt{T+1}$ where $a, b \in \mathbb{F}_q(T)$.
- The ring of integers in *K* consists of $a + b\sqrt{T+1}$ where $a, b \in \mathbb{F}_q[T]$.

Example

 $K = \mathbb{F}_q(\sqrt{T+1})$

- All elements of *K* are of the form $a + b\sqrt{T+1}$ where $a, b \in \mathbb{F}_q(T)$.
- The ring of integers in *K* consists of $a + b\sqrt{T+1}$ where $a, b \in \mathbb{F}_q[T]$.
- We write $\mathcal{O}_K = \mathbb{F}_q[\sqrt{T+1}]$.

Example

 $K = \mathbb{F}_q(\sqrt{T+1})$

- All elements of *K* are of the form $a + b\sqrt{T+1}$ where $a, b \in \mathbb{F}_q(T)$.
- The ring of integers in *K* consists of $a + b\sqrt{T+1}$ where $a, b \in \mathbb{F}_q[T]$.

• We write $\mathcal{O}_K = \mathbb{F}_q[\sqrt{T+1}]$.

$$\begin{array}{rcl} \mathbb{F}_q[\sqrt{T+1}] & \subset & \mathbb{F}_q(\sqrt{T+1}) \\ & | & & | \\ \mathbb{F}_q[T] & \subset & \mathbb{F}_q(T) \end{array}$$

A function field $K \supseteq \mathbb{F}_q(T)$ can be interpreted as a projective curve over the algebraic closure $\overline{\mathbb{F}_q}$. This curve has a **genus**, which we associate with *K*.

A function field $K \supseteq \mathbb{F}_q(T)$ can be interpreted as a projective curve over the algebraic closure $\overline{\mathbb{F}_q}$. This curve has a **genus**, which we associate with *K*.

Many number theory problems are easier in function fields.

A function field $K \supseteq \mathbb{F}_q(T)$ can be interpreted as a projective curve over the algebraic closure $\overline{\mathbb{F}_q}$. This curve has a **genus**, which we associate with *K*.

Many number theory problems are easier in function fields. Fermat's Last Theorem can be proven in half a page!

A function field $K \supseteq \mathbb{F}_q(T)$ can be interpreted as a projective curve over the algebraic closure $\overline{\mathbb{F}_q}$. This curve has a **genus**, which we associate with *K*.

Many number theory problems are easier in function fields. Fermat's Last Theorem can be proven in half a page!

However, looking at the class number of function fields is still very hard.

There are infinitely many quadratic function fields over $\mathbb{F}_q(T)$ with class number indivisible by 3. [Ichimura 1999]

There are infinitely many quadratic function fields over $\mathbb{F}_q(T)$ with class number indivisible by 3. [Ichimura 1999]

There are infinitely many function fields of any degree *m* over $\mathbb{F}_q(T)$ with class number indivisible by 3. [Pacelli, Rosen]

There are infinitely many quadratic function fields over $\mathbb{F}_q(T)$ with class number indivisible by 3. [Ichimura 1999]

There are infinitely many function fields of any degree *m* over $\mathbb{F}_q(T)$ with class number indivisible by 3. [Pacelli, Rosen]

• These fields were explicity constructed using the properties of the *Shanks polynomials*.

The **Shanks polynomials** are a family of cubic polynomials, with a single parameter $u \in \mathbb{Z}$:

$$f(X) = X^3 - 3uX^2 - (3u + 3)X - 1.$$

The **Shanks polynomials** are a family of cubic polynomials, with a single parameter $u \in \mathbb{Z}$:

$$f(X) = X^3 - 3uX^2 - (3u + 3)X - 1.$$

• These polynomials have several good properties - in fact, their splitting fields are called the *simplest cubic fields*.

The **Shanks polynomials** are a family of cubic polynomials, with a single parameter $u \in \mathbb{Z}$:

$$f(X) = X^3 - 3uX^2 - (3u + 3)X - 1.$$

- These polynomials have several good properties in fact, their splitting fields are called the *simplest cubic fields*.
- They were used by Washington to find infinitely many cubic fields with class number divisible by *n*.

There are infinitely many quadratic function fields over $\mathbb{F}_q(T)$ with class number indivisible by 3. [Ichimura 1999]

There are infinitely many function fields of any degree *m* over $\mathbb{F}_q(T)$ with class number indivisible by 3. [Pacelli, Rosen]

• These fields were explicity constructed using the properties of the *Shanks polynomials*.

There are infinitely many quadratic function fields over $\mathbb{F}_q(T)$ with class number indivisible by 3. [Ichimura 1999]

There are infinitely many function fields of any degree *m* over $\mathbb{F}_q(T)$ with class number indivisible by 3. [Pacelli, Rosen]

• These fields were explicity constructed using the properties of the *Shanks polynomials*.

There are infinitely many function fields of any degree m over $\mathbb{F}_q(T)$ with class number indivisible by ℓ , for **any odd prime** ℓ . [SMALL Algebraic Number Theory 2008]

There are infinitely many quadratic function fields over $\mathbb{F}_q(T)$ with class number indivisible by 3. [Ichimura 1999]

There are infinitely many function fields of any degree *m* over $\mathbb{F}_q(T)$ with class number indivisible by 3. [Pacelli, Rosen]

• These fields were explicity constructed using the properties of the *Shanks polynomials*.

There are infinitely many function fields of any degree m over $\mathbb{F}_q(T)$ with class number indivisible by ℓ , for **any odd prime** ℓ . [SMALL Algebraic Number Theory 2008]

• These fields were also explicitly constructed, but it required more than just the Shanks polynomials.

The Rikuna polynomials generalize the Shanks polynomials.

The Rikuna polynomials generalize the Shanks polynomials.

For a given ℓ , let ζ_{ℓ} be an ℓ -th root of unity, and let *K* be any field with $\zeta_{\ell} + \zeta_{\ell}^{-1} \in K$ and $\zeta_{\ell} \notin K$.

The Rikuna polynomials generalize the Shanks polynomials.

For a given ℓ , let ζ_{ℓ} be an ℓ -th root of unity, and let *K* be any field with $\zeta_{\ell} + \zeta_{\ell}^{-1} \in K$ and $\zeta_{\ell} \notin K$.

Definition

Define the polynomials $p, q \in K[x]$ to be

$$p = \frac{\zeta_{\ell}^{-1}(x - \zeta_{\ell})^{\ell} - \zeta_{\ell}(x - \zeta_{\ell}^{-1})^{\ell}}{\zeta_{\ell}^{-1} - \zeta_{\ell}}, \quad q = \frac{(x - \zeta_{\ell})^{\ell} - (x - \zeta_{\ell}^{-1})^{\ell}}{\zeta_{\ell}^{-1} - \zeta_{\ell}}.$$

The Rikuna polynomials generalize the Shanks polynomials.

For a given ℓ , let ζ_{ℓ} be an ℓ -th root of unity, and let *K* be any field with $\zeta_{\ell} + \zeta_{\ell}^{-1} \in K$ and $\zeta_{\ell} \notin K$.

Definition

Define the polynomials $p, q \in K[x]$ to be

$$p = \frac{\zeta_{\ell}^{-1}(x - \zeta_{\ell})^{\ell} - \zeta_{\ell}(x - \zeta_{\ell}^{-1})^{\ell}}{\zeta_{\ell}^{-1} - \zeta_{\ell}}, \quad q = \frac{(x - \zeta_{\ell})^{\ell} - (x - \zeta_{\ell}^{-1})^{\ell}}{\zeta_{\ell}^{-1} - \zeta_{\ell}}.$$

The Rikuna polynomial is defined to be

$$r = p - Tq \in K(T)[x].$$

The Rikuna polynomials generalize the Shanks polynomials.

For a given ℓ , let ζ_{ℓ} be an ℓ -th root of unity, and let *K* be any field with $\zeta_{\ell} + \zeta_{\ell}^{-1} \in K$ and $\zeta_{\ell} \notin K$.

Definition

Define the polynomials $p, q \in K[x]$ to be

$$p = \frac{\zeta_{\ell}^{-1}(x - \zeta_{\ell})^{\ell} - \zeta_{\ell}(x - \zeta_{\ell}^{-1})^{\ell}}{\zeta_{\ell}^{-1} - \zeta_{\ell}}, \quad q = \frac{(x - \zeta_{\ell})^{\ell} - (x - \zeta_{\ell}^{-1})^{\ell}}{\zeta_{\ell}^{-1} - \zeta_{\ell}}.$$

The Rikuna polynomial is defined to be

$$r = p - Tq \in K(T)[x].$$

Remark

When $\ell = 3$, the Rikuna polynomial reduces to the Shanks polynomial for u = T.

Generalizing Rikuna Polynomials Using Iterations

First, define the rational function $\phi(x) = \frac{p}{q}$.

Generalizing Rikuna Polynomials Using Iterations

First, define the rational function $\phi(x) = \frac{p}{q}$. We can define the polynomials p_m, q_m by writing the *m*-th iterate of ϕ in lowest terms:

$$\phi^{(m)}(x) = \frac{p_m}{q_m},$$

where $gcd(p_m, q_m) = 1$.

First, define the rational function $\phi(x) = \frac{p}{q}$. We can define the polynomials p_m , q_m by writing the *m*-th iterate of ϕ in lowest terms:

$$\phi^{(m)}(x) = \frac{p_m}{q_m},$$

where $gcd(p_m, q_m) = 1$.

Definition

The *m*-th generalized Rikuna polynomial is defined to be

$$r_m = p_m - Tq_m \in K(T)[x].$$

This was our main object of study.

Define K_m to be the splitting field of r_m over K(T).

Splitting Fields of Generalized Rikuna Polynomials

Define K_m to be the splitting field of r_m over K(T).

This gives a tower of fields, each containing K(T).

 K_m

2

Splitting Fields of Generalized Rikuna Polynomials

Km

2

 K_1

K(T)

Define K_m to be the splitting field of r_m over K(T).

This gives a tower of fields, each containing K(T).

One thing to study about such towers is the Galois group $Gal(K_m/K(T))$.

To understand the field K_m , we begin with the roots of the polynomial r_m .

To understand the field K_m , we begin with the roots of the polynomial r_m .

The roots of r_m are the solutions to $\phi^{(m)}(x) = T$:

$$r_m = p_m - Tq_m = 0 \iff \phi^{(m)}(x) = \frac{p_m}{q_m} = T$$

To understand the field K_m , we begin with the roots of the polynomial r_m .

The roots of r_m are the solutions to $\phi^{(m)}(x) = T$:

$$r_m = p_m - Tq_m = 0 \iff \phi^{(m)}(x) = \frac{p_m}{q_m} = T$$

The iterated nature of the roots gives them the following closed form expression:

To understand the field K_m , we begin with the roots of the polynomial r_m .

The roots of r_m are the solutions to $\phi^{(m)}(x) = T$:

$$r_m = p_m - Tq_m = 0 \iff \phi^{(m)}(x) = \frac{p_m}{q_m} = T$$

The iterated nature of the roots gives them the following closed form expression:

Theorem

Define
$$\alpha(T) = \frac{\zeta_{\ell} - T}{\zeta_{\ell}^{-1} - T}$$
. For all $m \ge 1$, the roots of r_m are
 $\theta_c^{(m)} = \frac{\zeta_{\ell} - \zeta_{\ell m}^c \, {}^{\ell m} \sqrt{\alpha(T)}}{1 - \zeta_{\ell} \zeta_{\ell m}^c \, {}^{\ell m} \sqrt{\alpha(T)}}$, for $0 \le c \le \ell^m - 1$.

Instead of finding $Gal(K_m/K(T))$ directly from these roots, we define an additional tower of fields.

Instead of finding $Gal(K_m/K(T))$ directly from these roots, we define an additional tower of fields.

Define the field $L_m = K(T)(\zeta_{\ell^m}, \sqrt[\ell^m]{\alpha(T)})$, which contains K_m .

Instead of finding $Gal(K_m/K(T))$ directly from these roots, we define an additional tower of fields.

Define the field $L_m = K(T)(\zeta_{\ell^m}, \sqrt[\ell^m]{\alpha(T)})$, which contains K_m .

Galois theory tells us how to find $\operatorname{Gal}(K_m/K(T))$ once we know $\operatorname{Gal}(L_m/K(T))$.

Theorem

Two elements of $Gal(L_m/K(T))$ generate the entire group:

Theorem

Two elements of $Gal(L_m/K(T))$ generate the entire group:

$$\rho_{m}: \begin{array}{ccc} \zeta_{\ell^{m}} & \mapsto & \zeta_{\ell^{m}}^{(\ell-1)^{\ell^{\nu-1}}} \\ & & \\ & \ell^{m}_{\sqrt{\alpha(T)}} & \mapsto & \frac{1}{\ell^{m}_{\sqrt{\alpha(T)}}} \end{array} , \qquad \gamma_{m}: \begin{array}{ccc} \zeta_{\ell^{m}} & \mapsto & \zeta_{\ell^{m}} \\ & & \\ & \ell^{m}_{\sqrt{\alpha(T)}} & \mapsto & \zeta_{\ell^{m}} \ell^{m}_{\sqrt{\alpha(T)}} \end{array} ,$$

where $v = \min\{b, m\}$ and b depends only on K.

Having a description of $Gal(L_m/K(T))$, we find $Gal(K_m/K(T))$ by restricting automorphisms of L_m to automorphisms of K_m .

Having a description of $Gal(L_m/K(T))$, we find $Gal(K_m/K(T))$ by restricting automorphisms of L_m to automorphisms of K_m .

Theorem (SMALL 2010)

For all $m \ge 1$,

$$\operatorname{Gal}(K_m/K(T)) \simeq \mathbb{Z}/\ell^m \mathbb{Z} \rtimes_{\phi_m} \mathbb{Z}/\ell^{m-\nu} \mathbb{Z},$$

where \rtimes_{ϕ_m} is a semi-direct product.

Ramification of Primes of K(T)

Let $\omega = \zeta_{\ell} + \zeta_{\ell}^{-1}$. The discriminant of r_m is given by

$$\operatorname{disc}(r_m) = \pm \ell^{m(\ell^m)} \omega^{(\ell^m - 2)(\ell^m - 1)} (T^2 - \omega T + 1)^{\ell^m - 1}$$

Let $\omega = \zeta_{\ell} + \zeta_{\ell}^{-1}$. The discriminant of r_m is given by

$$\operatorname{disc}(r_m) = \pm \ell^{m(\ell^m)} \omega^{(\ell^m - 2)(\ell^m - 1)} (T^2 - \omega T + 1)^{\ell^m - 1}$$

There are only two primes that can ramify in K_m :

Let $\omega = \zeta_{\ell} + \zeta_{\ell}^{-1}$. The discriminant of r_m is given by

$$\operatorname{disc}(r_m) = \pm \ell^{m(\ell^m)} \omega^{(\ell^m - 2)(\ell^m - 1)} (T^2 - \omega T + 1)^{\ell^m - 1}$$

There are only two primes that can ramify in K_m :

• The finite prime $T^2 - \omega T + 1$

Let $\omega = \zeta_{\ell} + \zeta_{\ell}^{-1}$. The discriminant of r_m is given by

$$\operatorname{disc}(r_m) = \pm \ell^{m(\ell^m)} \omega^{(\ell^m - 2)(\ell^m - 1)} (T^2 - \omega T + 1)^{\ell^m - 1}$$

There are only two primes that can ramify in K_m :

- The finite prime $T^2 \omega T + 1$
- The prime at infinity

The prime $T^2 - \omega T + 1$ in K(T) is ramified in K_m .

The prime $T^2 - \omega T + 1$ in K(T) is ramified in K_m .

 $P = T^2 - \omega T + 1, \quad \mathfrak{p}_1 = T - \zeta_\ell, \quad \mathfrak{p}_2 = T - \zeta_\ell^{-1}$

The prime at infinity in K(T) is unramified in K_m .

The prime at infinity in K(T) is unramified in K_m .

The prime at infinity in K(T) is unramified in K_m .

 All primes are unramified in a constant extension, such as K(T)(ζ_ℓm)/K(T).

The prime at infinity in K(T) is unramified in K_m .

- All primes are unramified in a constant extension, such as K(T)(ζ_ℓm)/K(T).
- The prime at infinity splits completely in $L_m/K(T)(\zeta_{\ell^m})$.

The prime at infinity in K(T) is unramified in K_m .

- All primes are unramified in a constant extension, such as K(T)(ζ_ℓm)/K(T).
- The prime at infinity splits completely in $L_m/K(T)(\zeta_{\ell^m})$.

Factor the irreducible polynomial from $K(T)(\zeta_{\ell^m})$ to L_m in $K((\frac{1}{T}))(\zeta_{\ell^m})$, the completion of $K(T)(\zeta_{\ell^m})$ with the valuation of the prime of infinity.

The *Riemann-Hurwitz formula* provides a link between the ramification of an extension field and its genus.

The *Riemann-Hurwitz formula* provides a link between the ramification of an extension field and its genus.

Theorem (Riemann-Hurwitz Formula)

For a finite, separable, geometric extension L/K of function fields, we have:

$$2g_L - 2 \geq [L:K](2g_K - 2) + \sum_{\mathfrak{P}} (e(\mathfrak{P}|P) - 1) \deg_L \mathfrak{P}$$

where the sum is over all primes \mathfrak{P} of *L* which are ramified in *L*/*K*. The inequality is an equality if and only if all ramified primes are tamely ramified.

The *Riemann-Hurwitz formula* provides a link between the ramification of an extension field and its genus.

Theorem (Riemann-Hurwitz Formula)

For a finite, separable, geometric extension L/K of function fields, we have:

$$2g_L - 2 \ge [L:K](2g_K - 2) + \sum_{\mathfrak{P}} (e(\mathfrak{P}|P) - 1) \deg_L \mathfrak{P}$$

where the sum is over all primes \mathfrak{P} of L which are ramified in L/K. The inequality is an equality if and only if all ramified primes are tamely ramified.

Theorem (SMALL 2010)

For all $m \ge 1$, K_m and L_m have genus 0.

Let ℓ be any odd prime and ζ_{ℓ} be a ℓ -th root of unity. Let K be any perfect field with $\zeta_{\ell} + \zeta_{\ell}^{-1} \in K$ and $\zeta_{\ell} \notin K$.

We can construct explicitly an infinite tower of function fields $K(T) = K_0 \subsetneq K_1 \subsetneq K_2 \subsetneq \cdots$ such that

- For all $m \ge 0$, K_{m+1}/K_m is an ℓ -extension.
- Exactly one prime of *K*(*T*) ramifies in the tower.
- For all $m \ge 0$, $h_{K_m} = 1$.

Towers of K_m and L_m

• For any odd integer $\ell \geq 3$,

 $\operatorname{Gal}(K_m/K(T)) \simeq \mathbb{Z}/\ell^m \mathbb{Z} \rtimes \mathbb{Z}/(\ell^m/b_m)\mathbb{Z},$

where b_m is the size of a certain group of roots of unity in K_m .

• For any odd integer $\ell \geq 3$,

 $\operatorname{Gal}(K_m/K(T)) \simeq \mathbb{Z}/\ell^m \mathbb{Z} \rtimes \mathbb{Z}/(\ell^m/b_m)\mathbb{Z},$

where b_m is the size of a certain group of roots of unity in K_m . When ℓ is even, the Galois group can be one of four possibilities - which it is depends on the field K.

• For any odd integer $\ell \geq 3$,

 $\operatorname{Gal}(K_m/K(T)) \simeq \mathbb{Z}/\ell^m \mathbb{Z} \rtimes \mathbb{Z}/(\ell^m/b_m)\mathbb{Z},$

where b_m is the size of a certain group of roots of unity in K_m . When ℓ is even, the Galois group can be one of four possibilities - which it is depends on the field K.

 What can we say about the Galois groups, ramification, genus, and class number when we specialize *T* to some α ∈ K (plug in α for *T*)?

• For any odd integer $\ell \geq 3$,

 $\operatorname{Gal}(K_m/K(T)) \simeq \mathbb{Z}/\ell^m \mathbb{Z} \rtimes \mathbb{Z}/(\ell^m/b_m)\mathbb{Z},$

where b_m is the size of a certain group of roots of unity in K_m . When ℓ is even, the Galois group can be one of four possibilities - which it is depends on the field K.

- What can we say about the Galois groups, ramification, genus, and class number when we specialize *T* to some α ∈ K (plug in α for *T*)?
- What about polynomials other than Rikuna polynomials, i.e. what if we start with different *p* and *q*?

• For any odd integer $\ell \geq 3$,

 $\operatorname{Gal}(K_m/K(T)) \simeq \mathbb{Z}/\ell^m \mathbb{Z} \rtimes \mathbb{Z}/(\ell^m/b_m)\mathbb{Z},$

where b_m is the size of a certain group of roots of unity in K_m . When ℓ is even, the Galois group can be one of four possibilities - which it is depends on the field K.

- What can we say about the Galois groups, ramification, genus, and class number when we specialize *T* to some α ∈ K (plug in α for *T*)?
- What about polynomials other than Rikuna polynomials, i.e. what if we start with different *p* and *q*?

THANK YOU!