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Number Fields

Definition
A number field K is a finite extension of Q.

Definition
An algebraic integer is a complex number that is a root of
some monic polynomial with coefficients in Z.

Definition
The ring of integers of a number field K , denoted OK , is the
set of all algebraic integers in K .

OK ⊂ K
| |
Z ⊂ Q
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Number Fields

Example

K = Q(
√
−6)

All elements of K are of the form a+b
√
−6 where a,b ∈ Q.

The algebraic integers in K are a + b
√
−6 where a,b ∈ Z.

We write OK = Z[
√
−6].

Z[
√
−6] ⊂ Q(

√
−6)

| |
Z ⊂ Q
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Factorization of Elements of OK

Remark
In Z, there is unique factorization of integers into primes.

However, in OK , there is not necessarily unique factorization of
algebraic integers into irreducibles.

Example

Let K = Q[
√
−6], so that OK = Z[

√
−6].

−2 · 3 = −6 = (
√
−6)2

Because −2, 3, and
√
−6 are irreducible in Z[

√
−6], these are

two distinct factorizations of −6.

Therefore, OK = Z[
√
−6] is not a UFD.
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Class Group

Definition
Define an equivalence relation ∼ on non-zero ideals of OK by:

I ∼ J if αI = βJ for some non-zero α, β ∈ OK

Theorem
The equivalence classes [I ] of ∼ form a finite abelian group.

The group operation is [I ][J ] = [IJ ], where IJ is the usual
product of ideals.

The identity is the equivalence class of all principal ideals.

Definition
This group, denoted ClK , is called the class group of K .
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Class Number

Definition
The class number, denoted hK , is the size of the class group.

OK has class number 1 if and only if every ideal in OK is
principal, i.e. OK is a PID.
OK is a UFD if and only if it is a PID.

Theorem
OK is a UFD if and only if hK = 1.

Remark
The class number measures the failure of unique factorization
in OK ; the larger hK is, the further OK is from being a UFD.
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Prime Decomposition

Theorem
For all number fields K , there is unique factorization of ideals
into prime ideals in OK .

Let K and L be number fields where L is an extension of K .

pOL ⊂ OL ⊂ L
| | |
p ⊂ OK ⊂ K

Let p be a prime ideal in OK . Then pOL is an ideal in OL, so it
can be uniquely factored into prime ideals in OL.
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Splitting, Ramification, Inertia

Definition
As above, pOL = q1

e1q2
e2 · · · qr

er .

If pOL is prime, then p is inert in OL.
If r = [L : K ], then p splits completely in OL.
If ei = 1 for all i, then p is unramified in OL.
If pOL = q[L:K ], then p is totally ramified in OL.

Example

Let K = Q and L = Q(i), so that OK = Z and OL = Z[i].

〈2〉OL = 〈1 + i〉2 〈3〉OL = 〈3〉 〈5〉OL = 〈2 + i〉〈2− i〉
(totally ramified) (inert) (splits completely)
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Galois Theory

Definition
Suppose the polynomial f ∈ Q[x] has roots α1, . . . , αn ∈ C.
Then the splitting field of f over Q is Q(α1, . . . , αn).

Definition
For any algebraic integer α ∈ C, we say β ∈ C is an algebraic
conjugate of α if there is some irreducible f ∈ Q[x] having both
α and β as roots.

Definition
A number field K is Galois if α ∈ K ⇒ all conjugates of α ∈ K .

Theorem
A number field K is Galois if and only if K is the splitting field of
some f ∈ Q[x].
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Galois Theory

Example

L = Q( 3
√

2) is not Galois. Because 3
√

2, ζ 3
√

2, and ζ2 3
√

2 ∈ C are
the roots of f = x3 − 2, they are algebraic conjugates, but ζ 3

√
2

and ζ2 3
√

2 are complex, while L ⊂ R.

Example

F = Q( 3
√

2, ζ) is Galois because it is the splitting field of x3 − 2.
Note that F contains L.
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Galois Theory

Definition
Given a number field K , a bijective homomorphism from K to
itself is called an automorphism of K /Q.

Theorem
If K is Galois, the automorphisms of K /Q form a finite group.

The group operation is στ = σ ◦ τ , where ◦ is composition.

The identity is the identity homomorphism from K to itself.

Definition
This group, denoted Gal(K /Q), is the Galois group of K /Q.

Theorem
If K is Galois, then |Gal(K /Q)| = [K : Q].
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Function Fields

For each prime power q = pr , there is a unique finite field with
q elements, denoted Fq.

Definition
A (global) function field K is a finite extension of Fq(T ) where
T is a transcendental element over Fq.

In function fields, the polynomial ring Fq[T ] plays the role of Z.

Definition
The ring of integers of a function field K , also denoted OK , is
the set of elements of K which are a root of some monic
polynomial with coefficients in Fq[T ].

OK ⊂ K
| |

Fq[T ] ⊂ Fq(T )
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Function Fields

Example

K = Fq(
√

T + 1)

All elements of K are of the form a + b
√

T + 1 where
a,b ∈ Fq(T ).
The ring of integers in K consists of a + b

√
T + 1 where

a,b ∈ Fq[T ].
We write OK = Fq[

√
T + 1].

Fq[
√

T + 1] ⊂ Fq(
√

T + 1)
| |

Fq[T ] ⊂ Fq(T )
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Some Concluding Remarks About Function Fields

Function fields have at least one prime at infinity. They “split”
and “ramify” in extensions, just like finite primes.

A function field K ⊇ Fq(T ) can be interpreted as a projective
curve over the algebraic closure Fq. This curve has a genus,
which we associate with K .

Many number theory problems are easier in function fields.
Fermat’s Last Theorem can be proven in half a page!

However, looking at the class number of function fields is still
very hard.
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Some Recent Results

There are infinitely many quadratic function fields over Fq(T )
with class number indivisible by 3. [Ichimura 1999]

There are infinitely many function fields of any degree m over
Fq(T ) with class number indivisible by 3. [Pacelli, Rosen]

These fields were explicity constructed using the
properties of the Shanks polynomials.
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The Shanks Polynomials

Definition
The Shanks polynomials are a family of cubic polynomials,
with a single parameter u ∈ Z:

f (X ) = X 3 − 3uX 2 − (3u + 3)X − 1.

These polynomials have several good properties - in fact,
their splitting fields are called the simplest cubic fields.
They were used by Washington to find infinitely many cubic
fields with class number divisible by n.
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There are infinitely many function fields of any degree m over
Fq(T ) with class number indivisible by `, for any odd prime `.
[SMALL Algebraic Number Theory 2008]

These fields were also explicitly constructed, but it required
more than just the Shanks polynomials.
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The Rikuna Polynomials

The Rikuna polynomials generalize the Shanks polynomials.

For a given `, let ζ` be an `-th root of unity, and let K be any
field with ζ` + ζ−1

` ∈ K and ζ` /∈ K .

Definition
Define the polynomials p,q ∈ K [x] to be

p =
ζ−1
` (x − ζ`)` − ζ`(x − ζ−1

` )`

ζ−1
` − ζ`

, q =
(x − ζ`)` − (x − ζ−1

` )`

ζ−1
` − ζ`

.

The Rikuna polynomial is defined to be

r = p − Tq ∈ K (T )[x].

Remark
When ` = 3, the Rikuna polynomial reduces to the Shanks
polynomial for u = T .
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Generalizing Rikuna Polynomials Using Iterations

First, define the rational function φ(x) = p
q .

We can define the

polynomials pm,qm by writing the m-th iterate of φ in lowest
terms:

φ(m)(x) =
pm

qm
,

where gcd(pm,qm) = 1.

Definition
The m-th generalized Rikuna polynomial is defined to be

rm = pm − Tqm ∈ K (T )[x].

This was our main object of study.
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Splitting Fields of Generalized Rikuna Polynomials

Define Km to be the splitting field of rm over K (T ).

This gives a tower of fields, each containing K (T ).

One thing to study about such towers is the Galois
group Gal(Km/K (T )).

Km

...

K1

K (T )
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The Roots of Generalized Rikuna Polynomials

To understand the field Km, we begin with the roots of the
polynomial rm.

The roots of rm are the solutions to φ(m)(x) = T :

rm = pm − Tqm = 0 ⇐⇒ φ(m)(x) =
pm

qm
= T

The iterated nature of the roots gives them the following closed
form expression:

Theorem

Define α(T ) = ζ`−T
ζ−1
` −T

. For all m ≥ 1, the roots of rm are

θ
(m)
c =

ζ` − ζc
`m

`m√
α(T )

1− ζ`ζc
`m

`m√
α(T )

, for 0 ≤ c ≤ `m − 1.
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Defining a Useful Field

Instead of finding Gal(Km/K (T )) directly from these roots, we
define an additional tower of fields.

Define the field Lm = K (T )(ζ`m , `m√
α(T )), which contains Km.

Galois theory tells us how to find Gal(Km/K (T )) once we know
Gal(Lm/K (T )).
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Describing Gal(Lm/K (T ))

Theorem
Two elements of Gal(Lm/K (T )) generate the entire group:

ρm :
ζ`m 7→ ζ

(`−1)`
v−1

`m , γm :
ζ`m 7→ ζ`m

,
`m√
α(T ) 7→ 1

`m√
α(T )

`m√
α(T ) 7→ ζ`m

`m√
α(T )

where v = min{b,m} and b depends only on K .
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Solving for Gal(Km/K (T ))

Having a description of Gal(Lm/K (T )), we find Gal(Km/K (T ))
by restricting automorphisms of Lm to automorphisms of Km.

Theorem (SMALL 2010)
For all m ≥ 1,

Gal(Km/K (T )) ' Z/`mZ oφm Z/`m−vZ,

where oφm is a semi-direct product.
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Ramification of Primes of K (T )

Proposition (Cullinan, 2010)

Let ω = ζ` + ζ−1
` . The discriminant of rm is given by

disc(rm) = ±`m(`m)ω(`m−2)(`m−1)(T 2 − ωT + 1)`
m−1.

There are only two primes that can ramify in Km:

The finite prime T 2 − ωT + 1

The prime at infinity
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Ramification of the Finite Prime

Theorem (SMALL 2010)

The prime T 2 − ωT + 1 in K (T ) is ramified in Km.
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P = T 2 − ωT + 1, p1 = T − ζ`, p2 = T − ζ−1
`
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Ramification of the Prime at Infinity

Theorem (SMALL 2010)

The prime at infinity in K (T ) is unramified in Km.
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Ramification of the Prime at Infinity

Theorem (SMALL 2010)

The prime at infinity in K (T ) is unramified in Km.

All primes are unramified in a constant
extension, such as K (T )(ζ`m)/K (T ).

The prime at infinity splits completely in
Lm/K (T )(ζ`m):

Factor the irreducible polynomial from
K (T )(ζ`m ) to Lm in K (( 1

T ))(ζ`m ), the com-
pletion of K (T )(ζ`m ) with the valuation of
the prime of infinity.
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Riemann-Hurwitz Formula and Genus

The Riemann-Hurwitz formula provides a link between the
ramification of an extension field and its genus.

Theorem (Riemann-Hurwitz Formula)
For a finite, separable, geometric extension L/K of function fields, we have:

2gL − 2 ≥ [L : K ](2gK − 2) +
∑
P

(e(P|P)− 1)degL P

where the sum is over all primes P of L which are ramified in L/K . The
inequality is an equality if and only if all ramified primes are tamely ramified.

Theorem (SMALL 2010)
For all m ≥ 1, Km and Lm have genus 0.
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Main Theorem

Theorem (SMALL 2010)
Let ` be any odd prime and ζ` be a `-th root of unity. Let K be
any perfect field with ζ` + ζ−1

` ∈ K and ζ` /∈ K .

We can construct explicitly an infinite tower of function fields
K (T ) = K0 ( K1 ( K2 ( · · · such that

For all m ≥ 0, Km+1/Km is an `-extension.
Exactly one prime of K (T ) ramifies in the tower.
For all m ≥ 0, hKm = 1.
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Towers of Km and Lm

Lm+1 = K (T )(ζ`m+1 , `m+1√
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Ongoing Research, Further Questions

For any odd integer ` ≥ 3,

Gal(Km/K (T )) ' Z/`mZ o Z/(`m/bm)Z,

where bm is the size of a certain group of roots of unity in
Km.

When ` is even, the Galois group can be one of four
possibilities - which it is depends on the field K .

What can we say about the Galois groups, ramification,
genus, and class number when we specialize T to some
α ∈ K (plug in α for T )?

What about polynomials other than Rikuna polynomials,
i.e. what if we start with different p and q?

THANK YOU!
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