Splitting Fields of Generalized Rikuna Polynomials

SMALL REU - Algebraic Number Theory

January 7, 2011

Zev Chonoles, John Cullinan, Hannah Hausman, Allison M. Pacelli, Sean Pegado, Fan Wei

Our Picture

L to R: John Cullinan, Hannah Hausman, Allison Pacelli, Fan Wei, Sean Pegado, Zev Chonoles

Number Fields

Definition

A number field K is a finite extension of \mathbb{Q}.

Number Fields

Definition

A number field K is a finite extension of \mathbb{Q}.

Definition

An algebraic integer is a complex number that is a root of some monic polynomial with coefficients in \mathbb{Z}.

Number Fields

Definition

A number field K is a finite extension of \mathbb{Q}.

Definition

An algebraic integer is a complex number that is a root of some monic polynomial with coefficients in \mathbb{Z}.

Definition

The ring of integers of a number field K, denoted \mathcal{O}_{K}, is the set of all algebraic integers in K.

Number Fields

Definition

A number field K is a finite extension of \mathbb{Q}.

Definition

An algebraic integer is a complex number that is a root of some monic polynomial with coefficients in \mathbb{Z}.

Definition

The ring of integers of a number field K, denoted \mathcal{O}_{K}, is the set of all algebraic integers in K.

Number Fields

Example

$$
K=\mathbb{Q}(\sqrt{-6})
$$

Number Fields

Example
 $$
K=\mathbb{Q}(\sqrt{-6})
$$

- All elements of K are of the form $a+b \sqrt{-6}$ where $a, b \in \mathbb{Q}$.

Number Fields

Example
 $$
K=\mathbb{Q}(\sqrt{-6})
$$

- All elements of K are of the form $a+b \sqrt{-6}$ where $a, b \in \mathbb{Q}$.
- The algebraic integers in K are $a+b \sqrt{-6}$ where $a, b \in \mathbb{Z}$.

Number Fields

Example
 $$
K=\mathbb{Q}(\sqrt{-6})
$$

- All elements of K are of the form $a+b \sqrt{-6}$ where $a, b \in \mathbb{Q}$.
- The algebraic integers in K are $a+b \sqrt{-6}$ where $a, b \in \mathbb{Z}$.
- We write $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{-6}]$.

Number Fields

Example

$$
K=\mathbb{Q}(\sqrt{-6})
$$

- All elements of K are of the form $a+b \sqrt{-6}$ where $a, b \in \mathbb{Q}$.
- The algebraic integers in K are $a+b \sqrt{-6}$ where $a, b \in \mathbb{Z}$.
- We write $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{-6}]$.

$$
\begin{array}{ccc}
\mathbb{Z}[\sqrt{-6}] & \subset & \mathbb{Q}(\sqrt{-6}) \\
\mid & & \mid \\
\mathbb{Z} & \subset & \mathbb{Q}
\end{array}
$$

Factorization of Elements of \mathcal{O}_{K}

Remark

In \mathbb{Z}, there is unique factorization of integers into primes.

Factorization of Elements of \mathcal{O}_{K}

Remark

In \mathbb{Z}, there is unique factorization of integers into primes.
However, in \mathcal{O}_{K}, there is not necessarily unique factorization of algebraic integers into irreducibles.

Factorization of Elements of \mathcal{O}_{K}

Remark

In \mathbb{Z}, there is unique factorization of integers into primes.
However, in \mathcal{O}_{K}, there is not necessarily unique factorization of algebraic integers into irreducibles.

Example

Let $K=\mathbb{Q}[\sqrt{-6}]$, so that $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{-6}]$.

Factorization of Elements of \mathcal{O}_{K}

Remark

In \mathbb{Z}, there is unique factorization of integers into primes.
However, in \mathcal{O}_{K}, there is not necessarily unique factorization of algebraic integers into irreducibles.

Example

Let $K=\mathbb{Q}[\sqrt{-6}]$, so that $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{-6}]$.

$$
-2 \cdot 3=-6=(\sqrt{-6})^{2}
$$

Because -2 , 3 , and $\sqrt{-6}$ are irreducible in $\mathbb{Z}[\sqrt{-6}]$, these are two distinct factorizations of -6 .

Therefore, $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{-6}]$ is not a UFD.

Class Group

Definition

Define an equivalence relation \sim on non-zero ideals of \mathcal{O}_{K} by:

$$
I \sim J \text { if } \alpha I=\beta J \text { for some non-zero } \alpha, \beta \in \mathcal{O}_{K}
$$

Class Group

Definition

Define an equivalence relation \sim on non-zero ideals of \mathcal{O}_{K} by:

$$
I \sim J \text { if } \alpha I=\beta J \text { for some non-zero } \alpha, \beta \in \mathcal{O}_{K}
$$

Theorem

The equivalence classes $[I]$ of \sim form a finite abelian group.

Class Group

Definition

Define an equivalence relation \sim on non-zero ideals of \mathcal{O}_{K} by:

$$
I \sim J \text { if } \alpha I=\beta J \text { for some non-zero } \alpha, \beta \in \mathcal{O}_{K}
$$

Theorem

The equivalence classes $[I]$ of \sim form a finite abelian group.
The group operation is $[I][J]=[I J]$, where $I J$ is the usual product of ideals.

Class Group

Definition

Define an equivalence relation \sim on non-zero ideals of \mathcal{O}_{K} by:

$$
I \sim J \text { if } \alpha I=\beta J \text { for some non-zero } \alpha, \beta \in \mathcal{O}_{K}
$$

Theorem

The equivalence classes $[I]$ of \sim form a finite abelian group.
The group operation is $[I][J]=[I J]$, where $I J$ is the usual product of ideals.

The identity is the equivalence class of all principal ideals.

Class Group

Definition

Define an equivalence relation \sim on non-zero ideals of \mathcal{O}_{K} by:

$$
I \sim J \text { if } \alpha I=\beta J \text { for some non-zero } \alpha, \beta \in \mathcal{O}_{K}
$$

Theorem

The equivalence classes $[I]$ of \sim form a finite abelian group.
The group operation is $[I][J]=[I J]$, where $I J$ is the usual product of ideals.

The identity is the equivalence class of all principal ideals.

Definition

This group, denoted Cl_{K}, is called the class group of K.

Class Number

Definition

The class number, denoted h_{K}, is the size of the class group.

Class Number

Definition

The class number, denoted h_{K}, is the size of the class group.

- \mathcal{O}_{K} has class number 1 if and only if every ideal in \mathcal{O}_{K} is principal, i.e. \mathcal{O}_{K} is a PID.

Class Number

Definition

The class number, denoted h_{K}, is the size of the class group.

- \mathcal{O}_{K} has class number 1 if and only if every ideal in \mathcal{O}_{K} is principal, i.e. \mathcal{O}_{K} is a PID.
- \mathcal{O}_{K} is a UFD if and only if it is a PID.

Class Number

Definition

The class number, denoted h_{K}, is the size of the class group.

- \mathcal{O}_{K} has class number 1 if and only if every ideal in \mathcal{O}_{K} is principal, i.e. \mathcal{O}_{K} is a PID.
- \mathcal{O}_{K} is a UFD if and only if it is a PID.

Theorem

\mathcal{O}_{K} is a UFD if and only if $h_{K}=1$.

Class Number

Definition

The class number, denoted h_{K}, is the size of the class group.

- \mathcal{O}_{K} has class number 1 if and only if every ideal in \mathcal{O}_{K} is principal, i.e. \mathcal{O}_{K} is a PID.
- \mathcal{O}_{K} is a UFD if and only if it is a PID.

Theorem

\mathcal{O}_{K} is a UFD if and only if $h_{K}=1$.

Remark

The class number measures the failure of unique factorization in \mathcal{O}_{K}; the larger h_{K} is, the further \mathcal{O}_{K} is from being a UFD.

Prime Decomposition

Theorem

For all number fields K, there is unique factorization of ideals into prime ideals in \mathcal{O}_{K}.

Prime Decomposition

Theorem

For all number fields K, there is unique factorization of ideals into prime ideals in \mathcal{O}_{K}.

Let K and L be number fields where L is an extension of K.

Prime Decomposition

Theorem

For all number fields K, there is unique factorization of ideals into prime ideals in \mathcal{O}_{K}.

Let K and L be number fields where L is an extension of K.

Let \mathfrak{p} be a prime ideal in \mathcal{O}_{K}. Then $\mathfrak{p} \mathcal{O}_{L}$ is an ideal in \mathcal{O}_{L}, so it can be uniquely factored into prime ideals in \mathcal{O}_{L}.

Prime Decomposition

Theorem

For all number fields K, there is unique factorization of ideals into prime ideals in \mathcal{O}_{K}.

Let K and L be number fields where L is an extension of K.

Let \mathfrak{p} be a prime ideal in \mathcal{O}_{K}. Then $\mathfrak{p} \mathcal{O}_{L}$ is an ideal in \mathcal{O}_{L}, so it can be uniquely factored into prime ideals in \mathcal{O}_{L}.

Splitting, Ramification, Inertia

Definition
 As above, $\mathfrak{p} \mathcal{O}_{L}=\mathfrak{q}_{1}{ }^{e_{1}} \mathfrak{q}_{2}{ }^{e_{2}} \cdots \mathfrak{q}_{r}{ }^{e_{r}}$.

Splitting, Ramification, Inertia

Definition

As above, $\mathfrak{p} \mathcal{O}_{L}=\mathfrak{q}_{1}{ }^{e_{1}} \mathfrak{q}_{2}{ }^{e_{2}} \cdots \mathfrak{q}_{r}{ }^{e_{r}}$.

- If $\mathfrak{p} \mathcal{O}_{L}$ is prime, then \mathfrak{p} is inert in \mathcal{O}_{L}.

Splitting, Ramification, Inertia

Definition

As above, $\mathfrak{p} \mathcal{O}_{L}=\mathfrak{q}_{1}{ }^{e_{1}} \mathfrak{q}_{2}{ }^{e_{2}} \cdots \mathfrak{q}_{r}{ }^{e_{r}}$.

- If $\mathfrak{p} \mathcal{O}_{L}$ is prime, then \mathfrak{p} is inert in \mathcal{O}_{L}.
- If $r=[L: K]$, then \mathfrak{p} splits completely in \mathcal{O}_{L}.

Splitting, Ramification, Inertia

Definition

As above, $\mathfrak{p} \mathcal{O}_{L}=\mathfrak{q}_{1}{ }^{e_{1}} \mathfrak{q}_{2}{ }^{e_{2}} \cdots \mathfrak{q}_{r}{ }^{e_{r}}$.

- If $\mathfrak{p} \mathcal{O}_{L}$ is prime, then \mathfrak{p} is inert in \mathcal{O}_{L}.
- If $r=[L: K]$, then \mathfrak{p} splits completely in \mathcal{O}_{L}.
- If $e_{i}=1$ for all i, then \mathfrak{p} is unramified in \mathcal{O}_{L}.

Splitting, Ramification, Inertia

Definition

As above, $\mathfrak{p} \mathcal{O}_{L}=\mathfrak{q}_{1}{ }^{e_{1}} \mathfrak{q}_{2}{ }^{e_{2}} \cdots \mathfrak{q}_{r}{ }^{e_{r}}$.

- If $\mathfrak{p} \mathcal{O}_{L}$ is prime, then \mathfrak{p} is inert in \mathcal{O}_{L}.
- If $r=[L: K]$, then \mathfrak{p} splits completely in \mathcal{O}_{L}.
- If $e_{i}=1$ for all i, then \mathfrak{p} is unramified in \mathcal{O}_{L}.
- If $\mathfrak{p} \mathcal{O}_{L}=\mathfrak{q}^{[L: K]}$, then \mathfrak{p} is totally ramified in \mathcal{O}_{L}.

Splitting, Ramification, Inertia

Definition

As above, $\mathfrak{p} \mathcal{O}_{L}=\mathfrak{q}_{1}{ }^{e_{1}} \mathfrak{q}_{2}{ }^{e_{2}} \cdots \mathfrak{q}_{r}{ }^{e_{r}}$.

- If $\mathfrak{p} \mathcal{O}_{L}$ is prime, then \mathfrak{p} is inert in \mathcal{O}_{L}.
- If $r=[L: K]$, then \mathfrak{p} splits completely in \mathcal{O}_{L}.
- If $e_{i}=1$ for all i, then \mathfrak{p} is unramified in \mathcal{O}_{L}.
- If $\mathfrak{p} \mathcal{O}_{L}=\mathfrak{q}^{[L: K]}$, then \mathfrak{p} is totally ramified in \mathcal{O}_{L}.

Example

Let $K=\mathbb{Q}$ and $L=\mathbb{Q}(i)$, so that $\mathcal{O}_{K}=\mathbb{Z}$ and $\mathcal{O}_{L}=\mathbb{Z}[i]$.

Splitting, Ramification, Inertia

Definition

As above, $\mathfrak{p} \mathcal{O}_{L}=\mathfrak{q}_{1}{ }^{e_{1}} \mathfrak{q}_{2}{ }^{e_{2}} \cdots \mathfrak{q}_{r}{ }^{e_{r}}$.

- If $\mathfrak{p} \mathcal{O}_{L}$ is prime, then \mathfrak{p} is inert in \mathcal{O}_{L}.
- If $r=[L: K]$, then \mathfrak{p} splits completely in \mathcal{O}_{L}.
- If $e_{i}=1$ for all i, then \mathfrak{p} is unramified in \mathcal{O}_{L}.
- If $\mathfrak{p} \mathcal{O}_{L}=\mathfrak{q}^{[L: K]}$, then \mathfrak{p} is totally ramified in \mathcal{O}_{L}.

Example

Let $K=\mathbb{Q}$ and $L=\mathbb{Q}(i)$, so that $\mathcal{O}_{K}=\mathbb{Z}$ and $\mathcal{O}_{L}=\mathbb{Z}[i]$.

$$
\langle 2\rangle \mathcal{O}_{L}=\langle 1+i\rangle^{2} \quad\langle 3\rangle \mathcal{O}_{L}=\langle 3\rangle \quad\langle 5\rangle \mathcal{O}_{L}=\langle 2+i\rangle\langle 2-i\rangle
$$

Splitting, Ramification, Inertia

Definition

As above, $\mathfrak{p} \mathcal{O}_{L}=\mathfrak{q}_{1}{ }^{e_{1}} \mathfrak{q}_{2}{ }^{e_{2}} \cdots \mathfrak{q}_{r}{ }^{e_{r}}$.

- If $\mathfrak{p} \mathcal{O}_{L}$ is prime, then \mathfrak{p} is inert in \mathcal{O}_{L}.
- If $r=[L: K]$, then \mathfrak{p} splits completely in \mathcal{O}_{L}.
- If $e_{i}=1$ for all i, then \mathfrak{p} is unramified in \mathcal{O}_{L}.
- If $\mathfrak{p} \mathcal{O}_{L}=\mathfrak{q}^{[L: K]}$, then \mathfrak{p} is totally ramified in \mathcal{O}_{L}.

Example

Let $K=\mathbb{Q}$ and $L=\mathbb{Q}(i)$, so that $\mathcal{O}_{K}=\mathbb{Z}$ and $\mathcal{O}_{L}=\mathbb{Z}[i]$.
$\langle 2\rangle \mathcal{O}_{L}=\langle 1+i\rangle^{2}$
(totally ramified)
$\langle 3\rangle \mathcal{O}_{L}=\langle 3\rangle$ (inert)
$\langle 5\rangle \mathcal{O}_{L}=\langle 2+i\rangle\langle 2-i\rangle$ (splits completely)

Galois Theory

Definition

Suppose the polynomial $f \in \mathbb{Q}[x]$ has roots $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$. Then the splitting field of f over \mathbb{Q} is $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

Galois Theory

Definition

Suppose the polynomial $f \in \mathbb{Q}[x]$ has roots $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$. Then the splitting field of f over \mathbb{Q} is $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

Definition

For any algebraic integer $\alpha \in \mathbb{C}$, we say $\beta \in \mathbb{C}$ is an algebraic conjugate of α if there is some irreducible $f \in \mathbb{Q}[x]$ having both α and β as roots.

Galois Theory

Definition

Suppose the polynomial $f \in \mathbb{Q}[x]$ has roots $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$. Then the splitting field of f over \mathbb{Q} is $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

Definition

For any algebraic integer $\alpha \in \mathbb{C}$, we say $\beta \in \mathbb{C}$ is an algebraic conjugate of α if there is some irreducible $f \in \mathbb{Q}[x]$ having both α and β as roots.

Definition

A number field K is Galois if $\alpha \in K \Rightarrow$ all conjugates of $\alpha \in K$.

Galois Theory

Definition

Suppose the polynomial $f \in \mathbb{Q}[x]$ has roots $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$. Then the splitting field of f over \mathbb{Q} is $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

Definition

For any algebraic integer $\alpha \in \mathbb{C}$, we say $\beta \in \mathbb{C}$ is an algebraic conjugate of α if there is some irreducible $f \in \mathbb{Q}[x]$ having both α and β as roots.

Definition

A number field K is Galois if $\alpha \in K \Rightarrow$ all conjugates of $\alpha \in K$.

Theorem

A number field K is Galois if and only if K is the splitting field of some $f \in \mathbb{Q}[x]$.

Galois Theory

Example

$L=\mathbb{Q}(\sqrt[3]{2})$ is not Galois. Because $\sqrt[3]{2}, \zeta \sqrt[3]{2}$, and $\zeta^{2} \sqrt[3]{2} \in \mathbb{C}$ are the roots of $f=x^{3}-2$, they are algebraic conjugates, but $\zeta \sqrt[3]{2}$ and $\zeta^{2} \sqrt[3]{2}$ are complex, while $L \subset \mathbb{R}$.

Galois Theory

Example

$L=\mathbb{Q}(\sqrt[3]{2})$ is not Galois. Because $\sqrt[3]{2}, \zeta \sqrt[3]{2}$, and $\zeta^{2} \sqrt[3]{2} \in \mathbb{C}$ are the roots of $f=x^{3}-2$, they are algebraic conjugates, but $\zeta \sqrt[3]{2}$ and $\zeta^{2} \sqrt[3]{2}$ are complex, while $L \subset \mathbb{R}$.

Example

$F=\mathbb{Q}(\sqrt[3]{2}, \zeta)$ is Galois because it is the splitting field of $x^{3}-2$. Note that F contains L.

Galois Theory

Definition

Given a number field K, a bijective homomorphism from K to itself is called an automorphism of K / \mathbb{Q}.

Galois Theory

Definition

Given a number field K, a bijective homomorphism from K to itself is called an automorphism of K / \mathbb{Q}.

Theorem

If K is Galois, the automorphisms of K / \mathbb{Q} form a finite group.

Galois Theory

Definition

Given a number field K, a bijective homomorphism from K to itself is called an automorphism of K / \mathbb{Q}.

Theorem

If K is Galois, the automorphisms of K / \mathbb{Q} form a finite group.
The group operation is $\sigma \tau=\sigma \circ \tau$, where \circ is composition.

Galois Theory

Definition

Given a number field K, a bijective homomorphism from K to itself is called an automorphism of K / \mathbb{Q}.

Theorem

If K is Galois, the automorphisms of K / \mathbb{Q} form a finite group.
The group operation is $\sigma \tau=\sigma \circ \tau$, where \circ is composition.
The identity is the identity homomorphism from K to itself.

Galois Theory

Definition

Given a number field K, a bijective homomorphism from K to itself is called an automorphism of K / \mathbb{Q}.

Theorem

If K is Galois, the automorphisms of K / \mathbb{Q} form a finite group.
The group operation is $\sigma \tau=\sigma \circ \tau$, where \circ is composition.
The identity is the identity homomorphism from K to itself.

Definition

This group, denoted $\operatorname{Gal}(K / \mathbb{Q})$, is the Galois group of K / \mathbb{Q}.

Galois Theory

Definition

Given a number field K, a bijective homomorphism from K to itself is called an automorphism of K / \mathbb{Q}.

Theorem

If K is Galois, the automorphisms of K / \mathbb{Q} form a finite group.
The group operation is $\sigma \tau=\sigma \circ \tau$, where \circ is composition.
The identity is the identity homomorphism from K to itself.

Definition

This group, denoted $\operatorname{Gal}(K / \mathbb{Q})$, is the Galois group of K / \mathbb{Q}.

Theorem

 If K is Galois, then $|\operatorname{Gal}(K / \mathbb{Q})|=[K: \mathbb{Q}]$.
Function Fields

For each prime power $q=p^{r}$, there is a unique finite field with q elements, denoted \mathbb{F}_{q}.

Function Fields

For each prime power $q=p^{r}$, there is a unique finite field with q elements, denoted \mathbb{F}_{q}.

Definition

A (global) function field K is a finite extension of $\mathbb{F}_{q}(T)$ where T is a transcendental element over \mathbb{F}_{q}.

Function Fields

For each prime power $q=p^{r}$, there is a unique finite field with q elements, denoted \mathbb{F}_{q}.

Definition

A (global) function field K is a finite extension of $\mathbb{F}_{q}(T)$ where T is a transcendental element over \mathbb{F}_{q}.

In function fields, the polynomial ring $\mathbb{F}_{q}[T]$ plays the role of \mathbb{Z}.

Function Fields

For each prime power $q=p^{r}$, there is a unique finite field with q elements, denoted \mathbb{F}_{q}.

Definition

A (global) function field K is a finite extension of $\mathbb{F}_{q}(T)$ where T is a transcendental element over \mathbb{F}_{q}.

In function fields, the polynomial ring $\mathbb{F}_{q}[T]$ plays the role of \mathbb{Z}.

Definition

The ring of integers of a function field K, also denoted \mathcal{O}_{K}, is the set of elements of K which are a root of some monic polynomial with coefficients in $\mathbb{F}_{q}[T]$.

Function Fields

For each prime power $q=p^{r}$, there is a unique finite field with q elements, denoted \mathbb{F}_{q}.

Definition

A (global) function field K is a finite extension of $\mathbb{F}_{q}(T)$ where T is a transcendental element over \mathbb{F}_{q}.

In function fields, the polynomial ring $\mathbb{F}_{q}[T]$ plays the role of \mathbb{Z}.

Definition

The ring of integers of a function field K, also denoted \mathcal{O}_{K}, is the set of elements of K which are a root of some monic polynomial with coefficients in $\mathbb{F}_{q}[T]$.

Function Fields

Example
 $K=\mathbb{F}_{q}(\sqrt{T+1})$

Function Fields

Example

$$
K=\mathbb{F}_{q}(\sqrt{T+1})
$$

- All elements of K are of the form $a+b \sqrt{T+1}$ where $a, b \in \mathbb{F}_{q}(T)$.

Function Fields

Example

$$
K=\mathbb{F}_{q}(\sqrt{T+1})
$$

- All elements of K are of the form $a+b \sqrt{T+1}$ where $a, b \in \mathbb{F}_{q}(T)$.
- The ring of integers in K consists of $a+b \sqrt{T+1}$ where $a, b \in \mathbb{F}_{q}[T]$.

Function Fields

Example

$$
K=\mathbb{F}_{q}(\sqrt{T+1})
$$

- All elements of K are of the form $a+b \sqrt{T+1}$ where $a, b \in \mathbb{F}_{q}(T)$.
- The ring of integers in K consists of $a+b \sqrt{T+1}$ where $a, b \in \mathbb{F}_{q}[T]$.
- We write $\mathcal{O}_{K}=\mathbb{F}_{q}[\sqrt{T+1}]$.

Function Fields

Example

$$
K=\mathbb{F}_{q}(\sqrt{T+1})
$$

- All elements of K are of the form $a+b \sqrt{T+1}$ where $a, b \in \mathbb{F}_{q}(T)$.
- The ring of integers in K consists of $a+b \sqrt{T+1}$ where $a, b \in \mathbb{F}_{q}[T]$.
- We write $\mathcal{O}_{K}=\mathbb{F}_{q}[\sqrt{T+1}]$.

Some Concluding Remarks About Function Fields

Function fields have at least one prime at infinity. They "split" and "ramify" in extensions, just like finite primes.

Some Concluding Remarks About Function Fields

Function fields have at least one prime at infinity. They "split" and "ramify" in extensions, just like finite primes.
A function field $K \supseteq \mathbb{F}_{q}(T)$ can be interpreted as a projective curve over the algebraic closure $\overline{\mathbb{F}}_{q}$. This curve has a genus, which we associate with K.

Some Concluding Remarks About Function Fields

Function fields have at least one prime at infinity. They "split" and "ramify" in extensions, just like finite primes.
A function field $K \supseteq \mathbb{F}_{q}(T)$ can be interpreted as a projective curve over the algebraic closure $\overline{\mathbb{F}}_{q}$. This curve has a genus, which we associate with K.

Many number theory problems are easier in function fields.

Some Concluding Remarks About Function Fields

Function fields have at least one prime at infinity. They "split" and "ramify" in extensions, just like finite primes.
A function field $K \supseteq \mathbb{F}_{q}(T)$ can be interpreted as a projective curve over the algebraic closure $\overline{\mathbb{F}_{q}}$. This curve has a genus, which we associate with K.

Many number theory problems are easier in function fields. Fermat's Last Theorem can be proven in half a page!

Some Concluding Remarks About Function Fields

Function fields have at least one prime at infinity. They "split" and "ramify" in extensions, just like finite primes.
A function field $K \supseteq \mathbb{F}_{q}(T)$ can be interpreted as a projective curve over the algebraic closure $\overline{\mathbb{F}_{q}}$. This curve has a genus, which we associate with K.

Many number theory problems are easier in function fields. Fermat's Last Theorem can be proven in half a page!

However, looking at the class number of function fields is still very hard.

Some Recent Results

There are infinitely many quadratic function fields over $\mathbb{F}_{q}(T)$ with class number indivisible by 3. [Ichimura 1999]

Some Recent Results

There are infinitely many quadratic function fields over $\mathbb{F}_{q}(T)$ with class number indivisible by 3. [Ichimura 1999]

There are infinitely many function fields of any degree m over $\mathbb{F}_{q}(T)$ with class number indivisible by 3. [Pacelli, Rosen]

Some Recent Results

There are infinitely many quadratic function fields over $\mathbb{F}_{q}(T)$ with class number indivisible by 3. [Ichimura 1999]

There are infinitely many function fields of any degree m over $\mathbb{F}_{q}(T)$ with class number indivisible by 3. [Pacelli, Rosen]

- These fields were explicity constructed using the properties of the Shanks polynomials.

The Shanks Polynomials

Definition

The Shanks polynomials are a family of cubic polynomials, with a single parameter $u \in \mathbb{Z}$:

$$
f(X)=X^{3}-3 u X^{2}-(3 u+3) X-1
$$

The Shanks Polynomials

Definition

The Shanks polynomials are a family of cubic polynomials, with a single parameter $u \in \mathbb{Z}$:

$$
f(X)=X^{3}-3 u X^{2}-(3 u+3) X-1
$$

- These polynomials have several good properties - in fact, their splitting fields are called the simplest cubic fields.

The Shanks Polynomials

Definition

The Shanks polynomials are a family of cubic polynomials, with a single parameter $u \in \mathbb{Z}$:

$$
f(X)=X^{3}-3 u X^{2}-(3 u+3) X-1
$$

- These polynomials have several good properties - in fact, their splitting fields are called the simplest cubic fields.
- They were used by Washington to find infinitely many cubic fields with class number divisible by n.

Some Recent Results

There are infinitely many quadratic function fields over $\mathbb{F}_{q}(T)$ with class number indivisible by 3. [Ichimura 1999]

There are infinitely many function fields of any degree m over $\mathbb{F}_{q}(T)$ with class number indivisible by 3. [Pacelli, Rosen]

- These fields were explicity constructed using the properties of the Shanks polynomials.

Some Recent Results

There are infinitely many quadratic function fields over $\mathbb{F}_{q}(T)$ with class number indivisible by 3. [Ichimura 1999]

There are infinitely many function fields of any degree m over $\mathbb{F}_{q}(T)$ with class number indivisible by 3. [Pacelli, Rosen]

- These fields were explicity constructed using the properties of the Shanks polynomials.

There are infinitely many function fields of any degree m over $\mathbb{F}_{q}(T)$ with class number indivisible by ℓ, for any odd prime ℓ. [SMALL Algebraic Number Theory 2008]

Some Recent Results

There are infinitely many quadratic function fields over $\mathbb{F}_{q}(T)$ with class number indivisible by 3. [Ichimura 1999]

There are infinitely many function fields of any degree m over $\mathbb{F}_{q}(T)$ with class number indivisible by 3. [Pacelli, Rosen]

- These fields were explicity constructed using the properties of the Shanks polynomials.

There are infinitely many function fields of any degree m over $\mathbb{F}_{q}(T)$ with class number indivisible by ℓ, for any odd prime ℓ. [SMALL Algebraic Number Theory 2008]

- These fields were also explicitly constructed, but it required more than just the Shanks polynomials.

The Rikuna Polynomials

The Rikuna polynomials generalize the Shanks polynomials.

The Rikuna Polynomials

The Rikuna polynomials generalize the Shanks polynomials.
For a given ℓ, let ζ_{ℓ} be an ℓ-th root of unity, and let K be any field with $\zeta_{\ell}+\zeta_{\ell}^{-1} \in K$ and $\zeta_{\ell} \notin K$.

The Rikuna Polynomials

The Rikuna polynomials generalize the Shanks polynomials.
For a given ℓ, let ζ_{ℓ} be an ℓ-th root of unity, and let K be any field with $\zeta_{\ell}+\zeta_{\ell}^{-1} \in K$ and $\zeta_{\ell} \notin K$.

Definition

Define the polynomials $p, q \in K[x]$ to be

$$
p=\frac{\zeta_{\ell}^{-1}\left(x-\zeta_{\ell}\right)^{\ell}-\zeta_{\ell}\left(x-\zeta_{\ell}^{-1}\right)^{\ell}}{\zeta_{\ell}^{-1}-\zeta_{\ell}}, \quad q=\frac{\left(x-\zeta_{\ell}\right)^{\ell}-\left(x-\zeta_{\ell}^{-1}\right)^{\ell}}{\zeta_{\ell}^{-1}-\zeta_{\ell}}
$$

The Rikuna Polynomials

The Rikuna polynomials generalize the Shanks polynomials.
For a given ℓ, let ζ_{ℓ} be an ℓ-th root of unity, and let K be any field with $\zeta_{\ell}+\zeta_{\ell}^{-1} \in K$ and $\zeta_{\ell} \notin K$.

Definition

Define the polynomials $p, \boldsymbol{q} \in K[x]$ to be

$$
p=\frac{\zeta_{\ell}^{-1}\left(x-\zeta_{\ell}\right)^{\ell}-\zeta_{\ell}\left(x-\zeta_{\ell}^{-1}\right)^{\ell}}{\zeta_{\ell}^{-1}-\zeta_{\ell}}, \quad q=\frac{\left(x-\zeta_{\ell}\right)^{\ell}-\left(x-\zeta_{\ell}^{-1}\right)^{\ell}}{\zeta_{\ell}^{-1}-\zeta_{\ell}} .
$$

The Rikuna polynomial is defined to be

$$
r=p-T q \in K(T)[x] .
$$

The Rikuna Polynomials

The Rikuna polynomials generalize the Shanks polynomials.
For a given ℓ, let ζ_{ℓ} be an ℓ-th root of unity, and let K be any field with $\zeta_{\ell}+\zeta_{\ell}^{-1} \in K$ and $\zeta_{\ell} \notin K$.

Definition

Define the polynomials $p, \boldsymbol{q} \in K[x]$ to be

$$
p=\frac{\zeta_{\ell}^{-1}\left(x-\zeta_{\ell}\right)^{\ell}-\zeta_{\ell}\left(x-\zeta_{\ell}^{-1}\right)^{\ell}}{\zeta_{\ell}^{-1}-\zeta_{\ell}}, \quad q=\frac{\left(x-\zeta_{\ell}\right)^{\ell}-\left(x-\zeta_{\ell}^{-1}\right)^{\ell}}{\zeta_{\ell}^{-1}-\zeta_{\ell}} .
$$

The Rikuna polynomial is defined to be

$$
r=p-T q \in K(T)[x] .
$$

Remark

When $\ell=3$, the Rikuna polynomial reduces to the Shanks polynomial for $u=T$.

Generalizing Rikuna Polynomials Using Iterations

First, define the rational function $\phi(x)=\frac{p}{q}$.

Generalizing Rikuna Polynomials Using Iterations

First, define the rational function $\phi(x)=\frac{p}{q}$. We can define the polynomials p_{m}, q_{m} by writing the m-th iterate of ϕ in lowest terms:

$$
\phi^{(m)}(x)=\frac{p_{m}}{q_{m}},
$$

where $\operatorname{gcd}\left(p_{m}, q_{m}\right)=1$.

Generalizing Rikuna Polynomials Using Iterations

First, define the rational function $\phi(x)=\frac{p}{q}$. We can define the polynomials p_{m}, q_{m} by writing the m-th iterate of ϕ in lowest terms:

$$
\phi^{(m)}(x)=\frac{p_{m}}{q_{m}},
$$

where $\operatorname{gcd}\left(p_{m}, q_{m}\right)=1$.

Definition

The m-th generalized Rikuna polynomial is defined to be

$$
r_{m}=p_{m}-T q_{m} \in K(T)[x] .
$$

This was our main object of study.

Splitting Fields of Generalized Rikuna Polynomials

Define K_{m} to be the splitting field of r_{m} over $K(T)$.

Splitting Fields of Generalized Rikuna Polynomials

K_{m}

Define K_{m} to be the splitting field of r_{m} over $K(T)$.

This gives a tower of fields, each containing $K(T)$.

Splitting Fields of Generalized Rikuna Polynomials

K_{m}
Define K_{m} to be the splitting field of r_{m} over $K(T)$.
This gives a tower of fields, each containing $K(T)$.
One thing to study about such towers is the Galois group $\operatorname{Gal}\left(K_{m} / K(T)\right)$.
K_{1}
$K(T)$

The Roots of Generalized Rikuna Polynomials

To understand the field K_{m}, we begin with the roots of the polynomial r_{m}.

The Roots of Generalized Rikuna Polynomials

To understand the field K_{m}, we begin with the roots of the polynomial r_{m}.

The roots of r_{m} are the solutions to $\phi^{(m)}(x)=T$:

$$
r_{m}=p_{m}-T q_{m}=0 \Longleftrightarrow \phi^{(m)}(x)=\frac{p_{m}}{q_{m}}=T
$$

The Roots of Generalized Rikuna Polynomials

To understand the field K_{m}, we begin with the roots of the polynomial r_{m}.
The roots of r_{m} are the solutions to $\phi^{(m)}(x)=T$:

$$
r_{m}=p_{m}-T q_{m}=0 \Longleftrightarrow \phi^{(m)}(x)=\frac{p_{m}}{q_{m}}=T
$$

The iterated nature of the roots gives them the following closed form expression:

The Roots of Generalized Rikuna Polynomials

To understand the field K_{m}, we begin with the roots of the polynomial r_{m}.
The roots of r_{m} are the solutions to $\phi^{(m)}(x)=T$:

$$
r_{m}=p_{m}-T q_{m}=0 \Longleftrightarrow \phi^{(m)}(x)=\frac{p_{m}}{q_{m}}=T
$$

The iterated nature of the roots gives them the following closed form expression:

Theorem

Define $\alpha(T)=\frac{\zeta_{\ell}-T}{\zeta_{\ell}^{-1}-T}$. For all $m \geq 1$, the roots of r_{m} are

$$
\theta_{c}^{(m)}=\frac{\zeta_{\ell}-\zeta_{\ell^{m}}^{c} \ell^{m} \sqrt{\alpha(T)}}{1-\zeta_{\ell} \zeta_{\ell^{m}}^{c} \sqrt[\ell^{m}]{\alpha(T)}}, \quad \text { for } 0 \leq c \leq \ell^{m}-1
$$

Defining a Useful Field

Instead of finding $\operatorname{Gal}\left(K_{m} / K(T)\right)$ directly from these roots, we define an additional tower of fields.

Defining a Useful Field

Instead of finding $\operatorname{Gal}\left(K_{m} / K(T)\right)$ directly from these roots, we define an additional tower of fields.

Define the field $L_{m}=K(T)\left(\zeta_{\ell^{m}}, \sqrt[\ell^{m}]{\alpha(T)}\right)$, which contains K_{m}.

Defining a Useful Field

Instead of finding $\operatorname{Gal}\left(K_{m} / K(T)\right)$ directly from these roots, we define an additional tower of fields.

Define the field $L_{m}=K(T)\left(\zeta_{\ell^{m}}, \sqrt[\ell^{m}]{\alpha(T)}\right)$, which contains K_{m}.

Galois theory tells us how to find $\operatorname{Gal}\left(K_{m} / K(T)\right)$ once we know $\operatorname{Gal}\left(L_{m} / K(T)\right)$.

Describing $\operatorname{Gal}\left(L_{m} / K(T)\right)$

Theorem

Two elements of $\operatorname{Gal}\left(L_{m} / K(T)\right)$ generate the entire group:

Describing $\operatorname{Gal}\left(L_{m} / K(T)\right)$

Theorem

Two elements of $\operatorname{Gal}\left(L_{m} / K(T)\right)$ generate the entire group:

$$
\begin{array}{rllllc}
\rho_{m}: \zeta_{\ell^{m}} & \mapsto \zeta_{\ell^{m}}^{(\ell-1)^{\ell^{\nu-1}}} & , \quad \gamma_{m}: \begin{array}{c}
\zeta_{\ell^{m}} \\
\sqrt[\ell^{m}]{\alpha(T)}
\end{array} & \mapsto & \zeta_{\ell^{m}} \\
\sqrt[\ell^{m}]{\alpha(T)}
\end{array},
$$

where $v=\min \{b, m\}$ and b depends only on K.

Solving for $\operatorname{Gal}\left(K_{m} / K(T)\right)$

Having a description of $\operatorname{Gal}\left(L_{m} / K(T)\right)$, we find $\operatorname{Gal}\left(K_{m} / K(T)\right)$ by restricting automorphisms of L_{m} to automorphisms of K_{m}.

Solving for $\operatorname{Gal}\left(K_{m} / K(T)\right)$

Having a description of $\operatorname{Gal}\left(L_{m} / K(T)\right)$, we find $\operatorname{Gal}\left(K_{m} / K(T)\right)$ by restricting automorphisms of L_{m} to automorphisms of K_{m}.

Theorem (SMALL 2010)

For all $m \geq 1$,

$$
\operatorname{Gal}\left(K_{m} / K(T)\right) \simeq \mathbb{Z} / \ell^{m} \mathbb{Z} \rtimes_{\phi_{m}} \mathbb{Z} / \ell^{m-\nu^{2}} \mathbb{Z}
$$

where $\rtimes_{\phi_{m}}$ is a semi-direct product.

Ramification of Primes of $K(T)$

Ramification of Primes of $K(T)$

Proposition (Cullinan, 2010)

Let $\omega=\zeta_{\ell}+\zeta_{\ell}^{-1}$. The discriminant of r_{m} is given by

$$
\operatorname{disc}\left(r_{m}\right)= \pm \ell^{m\left(\ell^{m}\right)} \omega^{\left(\ell^{m}-2\right)\left(\ell^{m}-1\right)}\left(T^{2}-\omega T+1\right)^{\ell^{m}-1} .
$$

Ramification of Primes of $K(T)$

Proposition (Cullinan, 2010)

Let $\omega=\zeta_{\ell}+\zeta_{\ell}^{-1}$. The discriminant of r_{m} is given by

$$
\operatorname{disc}\left(r_{m}\right)= \pm \ell^{m\left(\ell^{m}\right)} \omega^{\left(\ell^{m}-2\right)\left(\ell^{m}-1\right)}\left(T^{2}-\omega T+1\right)^{\ell^{m}-1} .
$$

There are only two primes that can ramify in K_{m} :

Ramification of Primes of $K(T)$

Proposition (Cullinan, 2010)

Let $\omega=\zeta_{\ell}+\zeta_{\ell}^{-1}$. The discriminant of r_{m} is given by

$$
\operatorname{disc}\left(r_{m}\right)= \pm \ell^{m\left(\ell^{m}\right)} \omega^{\left(\ell^{m}-2\right)\left(\ell^{m}-1\right)}\left(T^{2}-\omega T+1\right)^{\ell^{m}-1}
$$

There are only two primes that can ramify in K_{m} :

- The finite prime $T^{2}-\omega T+1$

Ramification of Primes of $K(T)$

Proposition (Cullinan, 2010)

Let $\omega=\zeta_{\ell}+\zeta_{\ell}^{-1}$. The discriminant of r_{m} is given by

$$
\operatorname{disc}\left(r_{m}\right)= \pm \ell^{m\left(\ell^{m}\right)} \omega^{\left(\ell^{m}-2\right)\left(\ell^{m}-1\right)}\left(T^{2}-\omega T+1\right)^{\ell^{m}-1}
$$

There are only two primes that can ramify in K_{m} :

- The finite prime $T^{2}-\omega T+1$
- The prime at infinity

Ramification of the Finite Prime

Theorem (SMALL 2010)
 The prime $T^{2}-\omega T+1$ in $K(T)$ is ramified in K_{m}.

Ramification of the Finite Prime

Theorem (SMALL 2010)

The prime $T^{2}-\omega T+1$ in $K(T)$ is ramified in K_{m}.

$$
P=T^{2}-\omega T+1, \quad \mathfrak{p}_{1}=T-\zeta_{\ell}, \quad \mathfrak{p}_{2}=T-\zeta_{\ell}^{-1}
$$

Ramification of the Prime at Infinity

Theorem (SMALL 2010)

The prime at infinity in $K(T)$ is unramified in K_{m}.

Ramification of the Prime at Infinity

Theorem (SMALL 2010)

The prime at infinity in $K(T)$ is unramified in K_{m}.

Ramification of the Prime at Infinity

Theorem (SMALL 2010)

The prime at infinity in $K(T)$ is unramified in K_{m}.

- All primes are unramified in a constant extension, such as $K(T)\left(\zeta_{\ell^{m}}\right) / K(T)$.

Ramification of the Prime at Infinity

Theorem (SMALL 2010)

The prime at infinity in $K(T)$ is unramified in K_{m}.

- All primes are unramified in a constant extension, such as $K(T)\left(\zeta_{\ell^{m}}\right) / K(T)$.
- The prime at infinity splits completely in

Ramification of the Prime at Infinity

Theorem (SMALL 2010)

The prime at infinity in $K(T)$ is unramified in K_{m}.

- All primes are unramified in a constant extension, such as $K(T)\left(\zeta_{\ell^{m}}\right) / K(T)$.
- The prime at infinity splits completely in

Riemann-Hurwitz Formula and Genus

The Riemann-Hurwitz formula provides a link between the ramification of an extension field and its genus.

Riemann-Hurwitz Formula and Genus

The Riemann-Hurwitz formula provides a link between the ramification of an extension field and its genus.

Theorem (Riemann-Hurwitz Formula)

For a finite, separable, geometric extension L / K of function fields, we have:

$$
2 g_{L}-2 \geq[L: K]\left(2 g_{K}-2\right)+\sum_{\mathfrak{F}}(e(\mathfrak{P} \mid P)-1) \operatorname{deg}_{L} \mathfrak{P}
$$

where the sum is over all primes \mathfrak{P} of L which are ramified in L / K. The inequality is an equality if and only if all ramified primes are tamely ramified.

Riemann-Hurwitz Formula and Genus

The Riemann-Hurwitz formula provides a link between the ramification of an extension field and its genus.

Theorem (Riemann-Hurwitz Formula)

For a finite, separable, geometric extension L / K of function fields, we have:

$$
2 g_{L}-2 \geq[L: K]\left(2 g_{K}-2\right)+\sum_{\mathfrak{P}}(e(\mathfrak{P} \mid P)-1) \operatorname{deg}_{L} \mathfrak{P}
$$

where the sum is over all primes \mathfrak{P} of L which are ramified in L / K. The inequality is an equality if and only if all ramified primes are tamely ramified.

Theorem (SMALL 2010)

For all $m \geq 1, K_{m}$ and L_{m} have genus 0 .

Main Theorem

Theorem (SMALL 2010)

Let ℓ be any odd prime and ζ_{ℓ} be a ℓ-th root of unity. Let K be any perfect field with $\zeta_{\ell}+\zeta_{\ell}^{-1} \in K$ and $\zeta_{\ell} \notin K$.

We can construct explicitly an infinite tower of function fields $K(T)=K_{0} \subsetneq K_{1} \subsetneq K_{2} \subsetneq \cdots$ such that

- For all $m \geq 0, K_{m+1} / K_{m}$ is an ℓ-extension.
- Exactly one prime of $K(T)$ ramifies in the tower.
- For all $m \geq 0, h_{K_{m}}=1$.

Towers of K_{m} and L_{m}

Ongoing Research, Further Questions

- For any odd integer $\ell \geq 3$,

$$
\operatorname{Gal}\left(K_{m} / K(T)\right) \simeq \mathbb{Z} / \ell^{m} \mathbb{Z} \rtimes \mathbb{Z} /\left(\ell^{m} / b_{m}\right) \mathbb{Z}
$$

where b_{m} is the size of a certain group of roots of unity in K_{m}.

Ongoing Research, Further Questions

- For any odd integer $\ell \geq 3$,

$$
\operatorname{Gal}\left(K_{m} / K(T)\right) \simeq \mathbb{Z} / \ell^{m} \mathbb{Z} \rtimes \mathbb{Z} /\left(\ell^{m} / b_{m}\right) \mathbb{Z}
$$

where b_{m} is the size of a certain group of roots of unity in K_{m}. When ℓ is even, the Galois group can be one of four possibilities - which it is depends on the field K.

Ongoing Research, Further Questions

- For any odd integer $\ell \geq 3$,

$$
\operatorname{Gal}\left(K_{m} / K(T)\right) \simeq \mathbb{Z} / \ell^{m} \mathbb{Z} \rtimes \mathbb{Z} /\left(\ell^{m} / b_{m}\right) \mathbb{Z}
$$

where b_{m} is the size of a certain group of roots of unity in K_{m}. When ℓ is even, the Galois group can be one of four possibilities - which it is depends on the field K.

- What can we say about the Galois groups, ramification, genus, and class number when we specialize T to some $\alpha \in K($ plug in α for $T)$?

Ongoing Research, Further Questions

- For any odd integer $\ell \geq 3$,

$$
\operatorname{Gal}\left(K_{m} / K(T)\right) \simeq \mathbb{Z} / \ell^{m} \mathbb{Z} \rtimes \mathbb{Z} /\left(\ell^{m} / b_{m}\right) \mathbb{Z}
$$

where b_{m} is the size of a certain group of roots of unity in K_{m}. When ℓ is even, the Galois group can be one of four possibilities - which it is depends on the field K.

- What can we say about the Galois groups, ramification, genus, and class number when we specialize T to some $\alpha \in K($ plug in α for $T)$?
- What about polynomials other than Rikuna polynomials, i.e. what if we start with different p and q ?

Ongoing Research, Further Questions

- For any odd integer $\ell \geq 3$,

$$
\operatorname{Gal}\left(K_{m} / K(T)\right) \simeq \mathbb{Z} / \ell^{m} \mathbb{Z} \rtimes \mathbb{Z} /\left(\ell^{m} / b_{m}\right) \mathbb{Z}
$$

where b_{m} is the size of a certain group of roots of unity in K_{m}. When ℓ is even, the Galois group can be one of four possibilities - which it is depends on the field K.

- What can we say about the Galois groups, ramification, genus, and class number when we specialize T to some $\alpha \in K($ plug in α for $T)$?
- What about polynomials other than Rikuna polynomials, i.e. what if we start with different p and q ?

> Thank you!

