On the Splitting Fields of Generalized Rikuna Polynomials

Zev Chonoles, John Cullinan, Hannah Hausman, Allison M. Pacelli, Sean Pegado, Fan Wei
Algebraic Number Theory Group - SMALL 2010 - Williams College

Background

Definition. A number field is a finite extension of \mathbb{Q}, the set of ratio nal numbers. A function field is a finite extension of $\mathbb{F}_{q}(T)$, wher T is a transcendental element over the finite field $\mathbb{F}_{\text {F }}$

Definition. The ring of integers of a number field K, denoted by O_{K}, is the set of all algebraic integers in K. The definition of the ring of integers of a function field is analogous.

$$
\begin{array}{cc}
\text { Number Field } & \text { Function Field } \\
\mathcal{O}_{K} \subset K & \mathcal{O}_{K} \subset K \\
\mid & \mid \\
\mathbb{Z} \subset \mathbb{Q} & \mathbb{F}_{q}[T] \subset \mathbb{F}_{q}(T)
\end{array}
$$

Note that \mathcal{O}_{K} is not always a unique factorization domain (UFD). Example. Let $K=\mathbb{Q}(\sqrt{-6})$. Then $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{-6}]$, and
but 2 , 3 , and $\sqrt{-6}$ are irreducible in $\mathbb{Z}[\sqrt{-6}]$. Therefore, $\mathbb{Z}[\sqrt{-6}]$ is not a UFD.
heorem 1. Every proper ideal in \mathcal{O}_{K} factors uniquely into a product of prime ideals.
Example. Let $K=\mathbb{Q}(\sqrt{-6})$. Then $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{-6}]$

$$
\begin{aligned}
\langle-2\rangle & =\langle 2, \sqrt{-6}\rangle^{2} \\
\langle 3\rangle & =\langle 3, \sqrt{-6}\rangle^{2} \\
\langle\sqrt{-6\rangle} & =\langle 2, \sqrt{-6}\rangle\langle 3, \sqrt{-6}\rangle
\end{aligned}
$$

Note that $\langle-6\rangle=\langle-2\rangle\langle 3\rangle=\langle\sqrt{-6}\rangle^{2}=\langle 2, \sqrt{-6}\rangle^{2}\langle 3, \sqrt{-6}\rangle^{2}$.

	\mathbb{Z}	$\mathbb{F}_{q}[T]$
UFD	yes	yes
irreducibles	primes (infinitely many)	irreducible polynomials (infinitely many)
units	$\{ \pm 1\}$ (finitely many)	\mathbb{F}_{q}^{\times}(finitely many)
residue class	$\|\mathbb{Z} / n \mathbb{Z}\|=\|n\|$	$\left\|\mathbb{F}_{q}[T] / f \mathbb{F}_{q}[T]\right\|=q^{\operatorname{deg} f}$

Theorem 2. Define an equivalence relation on the nonzero ideals of \mathcal{O}_{K} as follows: $I \sim J$ if $a I=b J$ for some nonzero $a, b \in \mathcal{O}_{K}$. The quivalence classes form a finite abelian group, called the clas roup, denoted by C_{K}. The cardinality of the class group is he class number, denoted by h_{k}

What does the class number tell us?

- \mathcal{O}_{K} is a UFD if and only if $h_{K}=$
- $h_{K}=1$ or 2 if and only if the number of irreducibles in every factorization of any given element in \mathcal{O}_{K} is the same.
- In general, the class number roughly measures how close \mathcal{O}_{K} is
to being a UFD.

Remark. All function fields have at least one prime at infinity. The prime at infinity "splits" and "ramifies" in extensions, just like the inite primes.
Remark. A function field $K \supseteq \mathbb{F}_{q}(T)$ can be interpreted as a projec ve curve over the algebraic closure \mathbb{F}_{q}. This curve has a genus, which we associate with K.

Abstract
Fix a positive integer ℓ, and let K be any field containing $\zeta_{\ell}+\zeta_{\ell}^{-}$ but not ζ_{ℓ}. Rikuna discovered a polynomial F_{ℓ} over the function field $K(1)$ w.

In our work, for each $m \geq 1$, we introduce the m-th generalized Rikuna polynomial r_{m}. Let K_{m} be the spliting field of r_{m} over $K(T)$. It is known that the tower of K_{m} 's ramifies at finitely many primes of $K(T)$
We study the tower of K_{m} 's. For any odd $\ell \geq 3$, we show that the Galois group Gal $\left(K_{m} / K(T)\right)$ is a semi-direct product $\mathbb{Z} / \ell^{m} \mathbb{Z} \rtimes$ unity in K_{m}. For eve b_{m} is the order of a certain group of roots of sibilities, depending on the field K. When $\ell \geq 3$ is prime, we also show that only one prime of $K(T)$ ramifies in the tower of K_{m} 's, and determine this prime explicitly. Then, using the Riemann-Hurwitz formula, we prove that for all $m \geq 1, K_{m}$ is of genus 0 , and there fore has class number 1

Main Results

Fix an integer $\ell \geq 3$, and let K be a field with $\operatorname{char}(K) \nmid \ell$. Let \bar{K} be the algebraic closure of K. Let ζ_{ℓ} be a primitive ℓ-th root of unity in \bar{K}. We assume that $\omega=\zeta_{\ell}+\zeta_{\ell} \in K$, but $\varsigma_{\ell} \notin K$. Write $K_{0}=K(I)$ for an indeterminate T. Define the rational function

$$
\phi(X)=\frac{p}{q}=\frac{\zeta_{\ell}^{-1}\left(X-\zeta_{\ell}\right)^{\ell}-\zeta_{\ell}\left(X-\zeta_{\ell}^{-1}\right)^{\ell}}{\left(X-\zeta_{\ell}\right)^{\ell}-\left(X-\zeta_{\ell}^{-1}\right)^{\ell}} \in K(X),
$$

and denote the m-th iteration of $\phi(X)$ by $\phi^{m}(X)$. Let $p_{m}, q_{m} \in K[X]$ be such that $\phi^{m}(X)=\frac{p_{m}}{q_{m}}$ where $\operatorname{gcd}\left(p_{m}, q_{m}\right)=1$.
Then we define the m-th generalized Rikuna polynomial to be $r_{m}=p_{m}-T q_{m} \in K_{0}[X]$. Let K_{m} be the splitting field of r_{m} over K_{0}. $r_{m}=p_{m}-q_{m} \in K_{0}$
Define $b_{m} \in \mathbb{N}$ to be

$$
b_{m}=\left|\left\{\alpha \in K\left(\zeta_{\ell}\right) \mid \alpha^{\ell^{m}}=1\right\}\right| .
$$

Let $a \in \mathbb{N}$ be such that $\zeta_{b_{m}}^{a}$ is the conjugate of $\zeta_{b_{m}}$ in $K\left(\zeta_{\ell}\right)$. Theorem 3 (SMALL 2010). When ℓ is odd, for each $m \geq 0$ we have that $\operatorname{Gal}\left(K_{m} / K(T)\right)$ is generated by $\sigma_{m}=\left.\rho_{m}\right|_{K_{m}}$ and $\tau_{m}=\left.\gamma_{m}\right|_{K_{m}}$, where $\rho_{m}, \gamma_{m} \in \operatorname{Gal}\left(L_{m} / K(T)\right)$ are defined by

They satisfy the relations

Theorem 4 (SMALL 2010). When $\ell \geq 3$ is odd,

$$
\operatorname{Gal}\left(K_{m} / K(T)\right) \simeq \mathbb{Z} / \ell^{m} \mathbb{Z} \rtimes \mathbb{Z} /\left(\ell^{m} / b_{m}\right) \mathbb{Z} .
$$

When ℓ is even, $\operatorname{Gal}\left(K_{m} / K(T)\right)$ is a similar semi-direct product with wo, three, or four generators, depending on ℓ and K. We omit the details here
heorem 5 (SMALL 2010). When $\ell \geq 3$ is prime and K is a perfect field, we can explicitly construct an infinite tower of function fields $K(T)=K_{0} \subsetneq K_{1} \subsetneq K_{2} \subsetneq \cdots$ such that

- For all $m \geq 0, K_{m+1} / K_{m}$ is an ℓ-extension.
- Exactly one prime of $K(T)$ ramifies in the tower.
- For all $m \geq 0, h_{K_{m}}=1$

The Proof

Galois Group of $K_{m} / K(T)$

To understand the spliting fields K_{m}, we start with the roots of r_{m}. The iterated nature of the polynomials gives the roots a closed form:

$$
\theta_{c}^{(m)}=\frac{\zeta_{\ell}-\zeta_{\ell}^{c} \sqrt{e^{m}} \sqrt{\alpha(T)}}{1-\zeta_{\ell} \zeta_{\ell m}^{c m} \sqrt[m]{\alpha(T)}}
$$

for $0 \leq c \leq \ell^{m}-$

where $\alpha(T)=\frac{\zeta^{\ell-T}}{\zeta_{i}^{-1}-T}$.

We define $L_{m}=K(T)\left(\zeta_{\ell m}, \sqrt[m]{\alpha(T)}\right)$, an auxiliary field whose Galois group is easier to find. Since $L_{m} \supseteq K_{m}$, once the Galois group of L_{m} is known, we can compute the Galois group of K_{m}. The fol important intermediate fields.

$1 \quad 1$

Ramification Behavior and Genus The discriminant of r_{m} is

$$
\operatorname{disc}\left(r_{m}\right)= \pm \ell^{m}\left(\ell^{m}\right) \omega \omega^{\left(\ell^{m}-2\right)\left(\ell^{m}-1\right)}\left(T^{2}-\omega T+1\right)^{\ell^{m}}-
$$

where $\omega=\zeta_{\ell}+\zeta_{\ell}^{-1}$. The only primes of $K(T)$ that can ramify in K_{m} are the ones dividing the discriminant, and the prime at infinity. Theorem 6 (SMALL 2010). When $\ell \geq 3$ is prime,
-The finite prime $T^{2}-\omega T+1$ ramifies in $K_{m} / K(T)$,

- The prime at infinity is unramified in $K_{m} / K(T)$.

Applying the
Riemann-Hurwitz Formula. [1] For a finite, separable, geometric extension L / K of function fields, we have.

$$
2 g_{L}-2 \geq[L: K]\left(2 g_{K}-2\right)+\sum_{\mathfrak{P}}(e(\mathfrak{P} \mid P)-1) \operatorname{deg}_{L} \mathfrak{P}
$$

where the sum is over all primes \mathfrak{F} of L which are ramified in L / K The inequality is an equality if and only if all ramified primes are tamely ramified.
we can compute the genus of K_{m} :
Theorem 7 (SMALL 2010). When $\ell \geq 3$ is prime, the function fiel K_{m} has genus 0 , which implies that the class number of K_{m} is 1 . Further Questions

- What is the ramification behavior of $K_{m} / K(T)$, and genus and class number of K_{m}, for composite $\ell \geq 3$?
-What happens when we specialize T to some $\alpha \in \bar{K}$ (that is, substitute α for T)?
Win our methods work for other polynomials - e.g., what if we start with different p and q ?

References

[1] A. M.Rosen, Number Theory in Function Fields, Springer New York, 2002.
[2] H. Ichimura, Quadratic function fields whose class numbers are not divisible by three, Acta Arith. 91 (1999), 181-190.
[3] D. Marcus, Number Fields, Springer-Verlag, New York, 1977
1]Y Rikuna On sim Peding of the American Mathematical Society 130 (2002) 2215-2218.
[5] D. Shanks, The simplest cubic fields, Math. Comp., 1974
[6] L. Washington, Class Numbers of the Simplest Cubic Fields, Math. Comp., 198

