On the Splitting Fields of Generalized Rikuna Polynomials Zev Chonoles, John Cullinan, Hannah Hausman, Allison M. Pacelli, Sean Pegado, Fan Wei

Background

Definition. A *number field* is a finite extension of \mathbb{Q} , the set of rational numbers. A function field is a finite extension of $\mathbb{F}_q(T)$, where T is a transcendental element over the finite field \mathbb{F}_q .

Definition. The ring of integers of a number field K, denoted by \mathcal{O}_K , is the set of all algebraic integers in K. The definition of the ring of integers of a function field is analogous.

lumbe	er Field	F
\mathcal{O}_K	$\subset K$	
\mathbb{Z}	$\subset \mathbb{Q}$	

Function Field $\mathcal{O}_K \subset K$ $\mathbb{F}_q[T] \subset \mathbb{F}_q(T)$

Note that \mathcal{O}_K is not always a unique factorization domain (UFD). **Example.** Let $K = \mathbb{Q}(\sqrt{-6})$. Then $\mathcal{O}_K = \mathbb{Z}[\sqrt{-6}]$, and

$$-2 \cdot 3 = -6 = (\sqrt{-6})^2,$$

but 2, 3, and $\sqrt{-6}$ are irreducible in $\mathbb{Z}[\sqrt{-6}]$. Therefore, $\mathbb{Z}[\sqrt{-6}]$ is not a UFD.

Theorem 1. Every proper ideal in \mathcal{O}_K factors uniquely into a product of prime ideals.

Example. Let $K = \mathbb{Q}(\sqrt{-6})$. Then $\mathcal{O}_K = \mathbb{Z}[\sqrt{-6}]$. $\langle -2 \rangle = \langle 2, \sqrt{-6} \rangle^2$ $\langle 3 \rangle = \langle 3, \sqrt{-6} \rangle^2$ $\langle \sqrt{-6} \rangle = \langle 2, \sqrt{-6} \rangle \langle 3, \sqrt{-6} \rangle$

Note that $\langle -6 \rangle = \langle -2 \rangle \langle 3 \rangle = \langle \sqrt{-6} \rangle^2 = \langle 2, \sqrt{-6} \rangle^2 \langle 3, \sqrt{-6} \rangle^2$.

	\mathbb{Z}	$ \mathbb{F}_q[T] $
UFD	yes	yes
irreducibles	primes	irreducible polynomials
	(infinitely many)	(infinitely many)
units	$\{\pm 1\}$ (finitely many)	$\mathbb{F}_q^{ imes}$ (finitely many)
residue class	$ \mathbb{Z}/n\mathbb{Z} = n $	$\left \mathbb{F}_q[T] / f \mathbb{F}_q[T] \right = q^{\deg f}$

Theorem 2. Define an equivalence relation on the nonzero ideals of \mathcal{O}_K as follows: $I \sim J$ if aI = bJ for some nonzero $a, b \in \mathcal{O}_K$. The equivalence classes form a finite abelian group, called the class **group**, denoted by Cl_K . The cardinality of the class group is called the **class number**, denoted by h_K .

What does the class number tell us?

- \mathcal{O}_K is a UFD if and only if $h_K = 1$.
- $h_K = 1$ or 2 if and only if the number of irreducibles in every factorization of any given element in \mathcal{O}_K is the same.
- In general, the class number roughly measures how close \mathcal{O}_K is to being a UFD.

Remark. All function fields have at least one prime at infinity. The prime at infinity "splits" and "ramifies" in extensions, just like the finite primes.

Remark. A function field $K \supseteq \mathbb{F}_q(T)$ can be interpreted as a projective curve over the algebraic closure $\overline{\mathbb{F}_q}$. This curve has a **genus**, which we associate with K.

Algebraic Number Theory Group - SMALL 2010 - Williams College

Abstract

Fix a positive integer ℓ , and let K be any field containing $\zeta_{\ell} + \zeta_{\ell}^{-1}$ but not ζ_{ℓ} . Rikuna discovered a polynomial F_{ℓ} over the function field K(T) whose Galois group is $\mathbb{Z}/\ell\mathbb{Z}$. Komatsu recently generalized classical Kummer theory to cover cyclic extensions arising from F_{ℓ} .

In our work, for each $m \ge 1$, we introduce the *m*-th generalized *Rikuna polynomial* r_m . Let K_m be the splitting field of r_m over K(T). It is known that the tower of K_m 's ramifies at finitely many primes of K(T).

We study the tower of K_m 's. For any odd $\ell \geq 3$, we show that the Galois group $Gal(K_m/K(T))$ is a semi-direct product $\mathbb{Z}/\ell^m\mathbb{Z}$ × $\mathbb{Z}/(\ell^m/b_m)\mathbb{Z}$, where b_m is the order of a certain group of roots of unity in K_m . For even $\ell \geq 3$, the Galois group is one of four possibilities, depending on the field K. When $\ell \geq 3$ is prime, we also show that only one prime of K(T) ramifies in the tower of K_m 's, and determine this prime explicitly. Then, using the Riemann-Hurwitz formula, we prove that for all $m \ge 1$, K_m is of genus 0, and therefore has class number 1.

Main Results

Fix an integer $\ell \geq 3$, and let K be a field with $char(K) \nmid \ell$. Let \overline{K} be the algebraic closure of K. Let ζ_{ℓ} be a primitive ℓ -th root of unity in \overline{K} . We assume that $\omega = \zeta_{\ell} + \zeta_{\ell}^{-1} \in K$, but $\zeta_{\ell} \notin K$. Write $K_0 = K(T)$ for an indeterminate T. Define the rational function

$$\phi(X) = \frac{p}{q} = \frac{\zeta_{\ell}^{-1} (X - \zeta_{\ell})^{\ell} - \zeta_{\ell} (X - \zeta_{\ell}^{-1})^{\ell}}{(X - \zeta_{\ell})^{\ell} - (X - \zeta_{\ell}^{-1})^{\ell}} \in K(X),$$

and denote the *m*-th iteration of $\phi(X)$ by $\phi^m(X)$. Let $p_m, q_m \in K[X]$ be such that $\phi^m(X) = \frac{p_m}{q_m}$ where $gcd(p_m, q_m) = 1$.

Then we define the *m*-th generalized Rikuna polynomial to be $r_m = p_m - Tq_m \in K_0[X]$. Let K_m be the splitting field of r_m over K_0 . Define $b_m \in \mathbb{N}$ to be

$$b_m = |\{\alpha \in K(\zeta_\ell) \mid \alpha^{\ell^m} = 1\}|.$$

Let $a \in \mathbb{N}$ be such that ζ_{b}^{a} is the conjugate of $\zeta_{b_{m}}$ in $K(\zeta_{\ell})$.

Theorem 3 (SMALL 2010). When ℓ is odd, for each $m \ge 0$ we have that $\operatorname{Gal}(K_m/K(T))$ is generated by $\sigma_m = \rho_m|_{K_m}$ and $\tau_m = \gamma_m|_{K_m}$, where $\rho_m, \gamma_m \in \operatorname{Gal}(L_m/K(T))$ are defined by

$$\rho_{m} : \frac{\zeta_{\ell^{m}}}{\sqrt[\ell^{m}]{\alpha(T)}} \mapsto \frac{\zeta_{\ell^{m}}^{a}}{\frac{1}{\sqrt[\ell^{m}]{\alpha(T)}}}, \qquad \gamma_{m} : \frac{\zeta_{\ell^{m}}}{\sqrt[\ell^{m}]{\alpha(T)}} \mapsto \frac{\zeta_{\ell^{m}}}{\zeta_{\ell^{m}}} \frac{\zeta_{\ell^{m}}}{\sqrt[\ell^{m}]{\alpha(T)}} \mapsto \frac{\zeta_{\ell^{m}}}{\zeta_{\ell^{m}}} \frac{\zeta_{\ell^{m}}}{\sqrt[\ell^{m}]{\alpha(T)}}$$

They satisfy the relations

$$\sigma_m^{\ell^m/b_m} = \mathrm{id}, \quad \tau_m^{\ell^m} = \mathrm{id}, \quad \sigma_m \tau_m = \tau_m^{-a} \sigma_m.$$

Theorem 4 (SMALL 2010). When $\ell \geq 3$ is odd,

 $\operatorname{Gal}(K_m/K(T)) \simeq \mathbb{Z}/\ell^m \mathbb{Z} \rtimes \mathbb{Z}/(\ell^m/b_m)\mathbb{Z}.$

When ℓ is even, $Gal(K_m/K(T))$ is a similar semi-direct product with two, three, or four generators, depending on ℓ and K. We omit the details here.

Theorem 5 (SMALL 2010). When $\ell \geq 3$ is prime and K is a perfect field, we can explicitly construct an infinite tower of function fields $K(T) = K_0 \subsetneq K_1 \subsetneq K_2 \subsetneq \cdots$ such that

• For all $m \ge 0$, K_{m+1}/K_m is an ℓ -extension.

• Exactly one prime of K(T) ramifies in the tower. • For all $m \ge 0$, $h_{K_m} = 1$.

The Proof

Galois Group of $K_m/K(T)$

To understand the splitting fields K_m , we start with the roots of r_m . The iterated nature of the polynomials gives the roots a closed form:

$$\theta_c^{(m)} = \frac{\zeta_\ell - \zeta_{\ell^m}^c \sqrt[\ell^m]{\alpha(T)}}{1 - \zeta_\ell \zeta_{\ell^m}^c \sqrt[\ell^m]{\alpha(T)}}$$

for
$$0 \le c \le \ell^m - 1$$
,

where $\alpha(T) = \frac{\zeta_{\ell} - T}{\zeta_{\ell}^{-1} - T}$.

We define $L_m = K(T)(\zeta_{\ell^m}, \sqrt[\ell^m]{\alpha(T)})$, an auxiliary field whose Galois group is easier to find. Since $L_m \supseteq K_m$, once the Galois group of L_m is known, we can compute the Galois group of K_m . The following figure shows the relations between L_m and K_m , and some important intermediate fields.

Ramification Behavior and Genus

The discriminant of r_m is

where $\omega = \zeta_{\ell} + \zeta_{\ell}^{-1}$. The only primes of K(T) that can ramify in K_m are the ones dividing the discriminant, and the prime at infinity.

Applying the

Riemann-Hurwitz Formula. [1] For a finite, separable, geometric extension L/K of function fields, we have:

where the sum is over all primes \mathfrak{P} of L which are ramified in L/K. The inequality is an equality if and only if all ramified primes are tamely ramified.

we can compute the genus of K_m :

Theorem 7 (SMALL 2010). When $\ell \geq 3$ is prime, the function field K_m has genus 0, which implies that the class number of K_m is 1.

Further Questions

- substitute α for T)?

disc $(r_m) = \pm \ell^{m(\ell^m)} \omega^{(\ell^m - 2)(\ell^m - 1)} (T^2 - \omega T + 1)^{\ell^m - 1},$

Theorem 6 (SMALL 2010). When $\ell \geq 3$ is prime,

• The finite prime $T^2 - \omega T + 1$ ramifies in $K_m/K(T)$.

• The prime at infinity is unramified in $K_m/K(T)$.

 $2g_L - 2 \ge [L:K](2g_K - 2) + \sum (e(\mathfrak{P}|P) - 1) \deg_L \mathfrak{P}$

• What is the ramification behavior of $K_m/K(T)$, and genus and class number of K_m , for composite $\ell \geq 3$?

• What happens when we specialize T to some $\alpha \in \overline{K}$ (that is,

• Will our methods work for other polynomials - e.g., what if we start with different p and q?

References

[1] A. M.Rosen, Number Theory in Function Fields, Springer, New York, 2002.

[2] H. Ichimura, *Quadratic function fields whose class numbers* are not divisible by three, Acta Arith. 91 (1999), 181-190.

[3] D. Marcus, *Number Fields*, Springer-Verlag, New York, 1977.

[4] Y. Rikuna, On simple families of cyclic polynomials, Proceedings of the American Mathematical Society. **130** (2002), 2215-2218.

[5] D. Shanks, *The simplest cubic fields*, Math. Comp., 1974

[6] L. Washington, Class Numbers of the Simplest Cubic Fields, Math. Comp., 1987