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Background

Definition. A number field is a finite extension of Q, the set of ratio-
nal numbers. A function field is a finite extension of Fq(T ), where
T is a transcendental element over the finite field Fq.

Definition. The ring of integers of a number field K, denoted by
OK, is the set of all algebraic integers in K. The definition of the
ring of integers of a function field is analogous.

Number Field Function Field
OK ⊂ K
| |
Z ⊂ Q

OK ⊂ K
| |

Fq[T ] ⊂ Fq(T )

Note that OK is not always a unique factorization domain (UFD).
Example. Let K = Q(

√
−6). Then OK = Z[

√
−6], and

−2 · 3 = −6 = (
√
−6)2,

but 2, 3, and
√
−6 are irreducible in Z[

√
−6]. Therefore, Z[

√
−6] is

not a UFD.
Theorem 1. Every proper ideal in OK factors uniquely into a prod-
uct of prime ideals.
Example. Let K = Q(

√
−6). Then OK = Z[

√
−6].

〈−2〉 = 〈2,
√
−6〉2

〈3〉 = 〈3,
√
−6〉2

〈
√
−6〉 = 〈2,

√
−6〉〈3,

√
−6〉

Note that 〈−6〉 = 〈−2〉〈3〉 = 〈
√
−6〉2 = 〈2,

√
−6〉2〈3,

√
−6〉2.

Z Fq[T ]
UFD yes yes

irreducibles
primes irreducible polynomials

(infinitely many) (infinitely many)
units {±1} (finitely many) F×q (finitely many)
residue class |Z/nZ| = |n|

∣∣Fq[T ]/fFq[T ]∣∣ = qdeg f

Theorem 2. Define an equivalence relation on the nonzero ideals
of OK as follows: I ∼ J if aI = bJ for some nonzero a, b ∈ OK. The
equivalence classes form a finite abelian group, called the class
group, denoted by ClK. The cardinality of the class group is called
the class number, denoted by hK.

What does the class number tell us?
• OK is a UFD if and only if hK = 1.
• hK = 1 or 2 if and only if the number of irreducibles in every

factorization of any given element in OK is the same.
• In general, the class number roughly measures how close OK is

to being a UFD.

Remark. All function fields have at least one prime at infinity. The
prime at infinity “splits” and “ramifies” in extensions, just like the
finite primes.
Remark. A function field K ⊇ Fq(T ) can be interpreted as a projec-
tive curve over the algebraic closure Fq. This curve has a genus,
which we associate with K.

Abstract

Fix a positive integer `, and let K be any field containing ζ` + ζ−1`
but not ζ`. Rikuna discovered a polynomial F` over the function field
K(T ) whose Galois group is Z/`Z. Komatsu recently generalized
classical Kummer theory to cover cyclic extensions arising from F`.

In our work, for each m ≥ 1, we introduce the m-th generalized
Rikuna polynomial rm. Let Km be the splitting field of rm over
K(T ). It is known that the tower of Km’s ramifies at finitely many
primes of K(T ).

We study the tower of Km’s. For any odd ` ≥ 3, we show that
the Galois group Gal(Km/K(T )) is a semi-direct product Z/`mZ o
Z/(`m/bm)Z, where bm is the order of a certain group of roots of
unity in Km. For even ` ≥ 3, the Galois group is one of four pos-
sibilities, depending on the field K. When ` ≥ 3 is prime, we also
show that only one prime of K(T ) ramifies in the tower of Km’s, and
determine this prime explicitly. Then, using the Riemann-Hurwitz
formula, we prove that for all m ≥ 1, Km is of genus 0, and there-
fore has class number 1.

Main Results

Fix an integer ` ≥ 3, and let K be a field with char(K) - `. Let K be
the algebraic closure of K. Let ζ` be a primitive `-th root of unity in
K. We assume that ω = ζ`+ ζ

−1
` ∈ K, but ζ` /∈ K. Write K0 = K(T )

for an indeterminate T . Define the rational function

φ(X) =
p

q
=
ζ−1` (X − ζ`)` − ζ`(X − ζ−1` )`

(X − ζ`)` − (X − ζ−1` )`
∈ K(X),

and denote the m-th iteration of φ(X) by φm(X). Let pm, qm ∈ K[X ]
be such that φm(X) = pm

qm
where gcd(pm, qm) = 1.

Then we define the m-th generalized Rikuna polynomial to be
rm = pm−Tqm ∈ K0[X ]. Let Km be the splitting field of rm over K0.
Define bm ∈ N to be

bm = |{α ∈ K(ζ`) | α`
m
= 1}|.

Let a ∈ N be such that ζabm is the conjugate of ζbm in K(ζ`).

Theorem 3 (SMALL 2010). When ` is odd, for each m ≥ 0 we have
that Gal(Km/K(T )) is generated by σm = ρm|Km

and τm = γm|Km
,

where ρm, γm ∈ Gal(Lm/K(T )) are defined by

ρm :
ζ`m 7→ ζa`m , γm :

ζ`m 7→ ζ`m .
`m
√
α(T ) 7→ 1

`m
√
α(T )

`m
√
α(T ) 7→ ζ`m

`m
√
α(T )

They satisfy the relations

σ
`m/bm
m = id, τ `

m

m = id, σmτm = τ−am σm.

Theorem 4 (SMALL 2010). When ` ≥ 3 is odd,

Gal(Km/K(T )) ' Z/`mZ o Z/(`m/bm)Z.

When ` is even, Gal(Km/K(T )) is a similar semi-direct product with
two, three, or four generators, depending on ` and K. We omit the
details here.
Theorem 5 (SMALL 2010). When ` ≥ 3 is prime and K is a perfect
field, we can explicitly construct an infinite tower of function fields
K(T ) = K0 ( K1 ( K2 ( · · · such that

• For all m ≥ 0, Km+1/Km is an `-extension.
• Exactly one prime of K(T ) ramifies in the tower.
• For all m ≥ 0, hKm

= 1.

The Proof

Galois Group of Km/K(T )

To understand the splitting fields Km, we start with the roots of rm.
The iterated nature of the polynomials gives the roots a closed form:

θ
(m)
c =

ζ` − ζc`m
`m
√
α(T )

1− ζ`ζc`m
`m
√
α(T )

for 0 ≤ c ≤ `m − 1,

where α(T ) = ζ`−T
ζ−1` −T

.

We define Lm = K(T )(ζ`m,
`m
√
α(T )), an auxiliary field whose Galois

group is easier to find. Since Lm ⊇ Km, once the Galois group of
Lm is known, we can compute the Galois group of Km. The fol-
lowing figure shows the relations between Lm and Km, and some
important intermediate fields.

Lm+1 = K0(ζ`m+1, `m+1√
α(T ))
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Km Lb+1 = K0(ζ`b+1, `b+1√
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K0 = K(T )

Ramification Behavior and Genus
The discriminant of rm is

disc(rm) = ±`m(`m)ω(`
m−2)(`m−1)(T 2 − ωT + 1)`

m−1,

where ω = ζ` + ζ
−1
` . The only primes of K(T ) that can ramify in Km

are the ones dividing the discriminant, and the prime at infinity.

Theorem 6 (SMALL 2010). When ` ≥ 3 is prime,

• The finite prime T 2 − ωT + 1 ramifies in Km/K(T ).

• The prime at infinity is unramified in Km/K(T ).

Applying the

Riemann-Hurwitz Formula. [1] For a finite, separable, geometric
extension L/K of function fields, we have:

2gL − 2 ≥ [L : K](2gK − 2) +
∑
P

(e(P|P )− 1)degLP

where the sum is over all primes P of L which are ramified in L/K.
The inequality is an equality if and only if all ramified primes are
tamely ramified.

we can compute the genus of Km:

Theorem 7 (SMALL 2010). When ` ≥ 3 is prime, the function field
Km has genus 0, which implies that the class number of Km is 1.

Further Questions

•What is the ramification behavior of Km/K(T ), and genus and
class number of Km, for composite ` ≥ 3?

•What happens when we specialize T to some α ∈ K (that is,
substitute α for T )?

•Will our methods work for other polynomials - e.g., what if we
start with different p and q?
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