
Mobius Functions, Legendre Symbols, and
Discriminants

Zev Chonoles, Erick Knight, Tim Kunisky

1 Introduction

Over the integers, there are two key number-theoretic functions that take
on values of 1, −1, and 0: the Mobius function and the Legendre symbol.
While over Z there is no apparent connection between them, we will develop
formulae connecting the two functions over finite fields.

Particularly, we will first relate the two over Zp for p an odd prime, which
is easily generalized to finite fields of characteristic p for odd primes. The
case p = 2 will be a special case that requires modification of the formula
as well as generalization of the method of proof. The formula in both cases
looks like:

µ(f) = (−1)deg(f)

(
disc(f)
p

)
where µ is the Mobius function, disc(f) is the discriminant, and the frac-
tion notation is the Legendre symbol for odd primes p, generalized to the
Kronecker symbol for the case of p = 2.

The discriminant will be the main tool we use to show the connection be-
tween the Legendre symbol and the Mobius function, so many intermediate
propositions will involve its properties.

2 Definitions

Definition Let f(T ) 6= 0 ∈ F[T ] for some finite field F. Then, the Mobius
function µ(f(T )) is defined in a similar manner as in Z:

µ(f(T )) =
{

0 if g(T )2 | f(T ) for some non-constant g(T ),
(−1)r if f(T ) has r distinct monic irreducible factors.

Definition For monic f(T ) ∈ F[T ] for F a field, with roots αk in an exten-
sion K of F, disc(f) is the discriminant of f . If deg f < 2, the discriminant
is one. Otherwise, it is defined as

disc(f) =
∏
i<j

(αi − αj)2.
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This formula matches the familiar formulas for discriminants of degree two
and three monic polynomials, which will be proven in Propositions 3.1 and
3.2. We will also find it useful to define another quantity, denoted δ(f), the
square root of the discriminant:

δ(f) =
∏
i<j

(αi − αj).

Note that based on indexing of the roots, the value of this may vary up to
sign, and therefore δ(f) is only well-defined up to sign. Finally, we define
δ′(f) as a slightly different version of δ(f):

δ′(f) =
∏
i<j

(αi + αj).

Unlike δ(f), this is invariant under reindexing of the roots, so it is well-
defined.

Definition For any x ∈ Z/8, the Kronecker symbol (a generalization of the
Legendre symbol) of x is defined as:

(x
2

)
=


0 if x ≡ 0, 2, 4, 6 (mod 8),
1 if x ≡ 1, 7 (mod 8),
−1 if x ≡ 3, 5 (mod 8).

3 Discriminant Properties and Examples

Proposition 3.1. (Monic Quadratic Discriminants) If f(T ) = T 2 + bT + c,
then disc(f) = b2 − 4c.

Proof. Let the roots of f(T ) = T 2 + bT + c be α1 and α2. Then, in an
extension of Z/p, f(T ) = (T − α1)(T − α2), so α1 + α2 = −b and α1α2 = c.
Thus

disc(f) = (α1 − α2)2 = α2
1 − 2α1α2 + α2

2 = (α1 + α2)2 − 4α1α2 = b2 − 4c.

Proposition 3.2. (Monic Depressed Cubic Discriminants) If f(T ) = T 3 +
aT + b, then disc(f) = −4a3 − 27b2.
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Proof. Let α0, α1, α2 be the roots of f(T ) = T 3 + aT + b. Then

(T − α0)(T − α1)(T − α2) = T 3 + aT + b.

Differentiating both sides with respect to T gives:

(T − α0)(T − α1) + (T − α0)(T − α2) + (T − α1)(T − α2) = 3T 2 + a,

and evaluating the equality at α0, α1, and α2 yields:

(α0 − α1)(α0 − α2) = 3α2
0 + a,

(α1 − α0)(α1 − α2) = 3α2
1 + a,

(α2 − α0)(α2 − α1) = 3α2
2 + a.

Their product will give the negative of the discriminant of T :

−disc(f(T )) = (3α2
0 + a)(3α2

1 + a)(3α2
2 + a).

By manipulating the original polynomial, we can derive a polynomial with
the roots 3α2

k + a:

t3 + at = −b⇒ t6 + 2at4 + a2t2 = b2

Multiplying by −27:

(−3t2)3 − 6a(−3t2)2 + 9a2(−3t2) + 27b2 = 0.

Letting −3x2 = a (with a change of sign) gives an expression for the dis-
criminant:

a3 − 6a3 + 9a3 + 27b2 = 4a3 + 27b2 ⇒ disc(f(T )) = −4a3 − 27b2.

Proposition 3.3. If f is a degree m monic polynomial with roots αk in an
extension of Z/p, then

disc(f) = (−1)m(m−1)/2
∏
i 6=j

(αi − αj).
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Proof. Let f satisfy the hypotheses. Then

disc(f) =
∏
i<j

(αi − αj)2 =
∏
i<j

(αi − αj)
∏
i<j

(αi − αj)

=
∏
i<j

(αi − αj)
∏

(αi − αj)(−1)m(m−1)/2

= (−1)m(m−1)/2
∏
i 6=j

(αi − αj),

as we have m(m−1)
2 terms being negated.

Example Some examples of discriminant evaluation:

disc(T 3 − T − 1) = −23,
disc(T 3 + 3T − 4) = −540,

disc(T 7 + 2T 3 + 9T − 1) = −235718099287,
disc(T 10 + 8T 5 + 4T ) = 110357402604273664.

4 Basic Results

Proposition 4.1. Let p be an odd prime, and f(T ) = T 2 + bT + c be a
monic quadratic polynomial in Z/p. Then µ(f(T )) = (disc(f(T ))

p ), where µ is
the Mobius function on (Z/p)[T ] and discf(T ) = b2 − 4c.

Proof. If f(T + k) factors as g(T )h(T ) in (Z/p)[T ], then f(T ) must factor
as g(T − k)h(T − k), so that adding a constant to the indeterminate T pre-
serves the factorization of f(T ) and therefore the value of µ(f(T )). Thus,
µ(f(T )) = µ(f(T + k)) for all k in Z/p.

Since Z/p is a field, we have that b
2 ∈ Z/p and therefore

µ(f(T )) = µ

(
f

(
T − b

2

))
= µ

(
T 2 − (b2 − 4c)

)
So:
(1) f(T ) is irreducible if and only if b2 − 4c is a quadratic non-residue.
(2) f(T ) has a repeated root if and only if b2 − 4c is 0.
(3) f(T ) has two distinct roots if and only if b2 − 4c is a quadratic residue.

By the casework, µ(f(T )) = ( b
2−4c
p ).
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Proposition 4.2. (Viete’s Formulas) If f(T ) ∈ F[T ] is monic and splits in
a field E, E ⊃ F, where f(T ) = a0+a1T+· · ·+amTm = (T−α1) · · · (T−αm)
in E[T ], then

ak = (−1)m−k
∑

1≤i1<···<im−k≤m
αi1 · · ·αim−k

.

Proof. Let f(T ) = (T − α1)(T − α2) . . . (T − αm). In the expansion, every
Tm−1 term has coefficient of some αk, and each αk is multiplied by m − 1
factors of T . Therefore, the coefficient of Tm−1 is the sum of all αk:

−α1 − α2 − · · · − αm = −(α1 + α2 + · · ·+ αm) = am−1

The constant term of the polynomial is, up to sign, just the product of
all αk, which is:

(−α1)(−α2) · · · (−αm) = (−1)m(α1 · · ·αm) = a0

In general, the coefficient of T k is ak. When the polynomial is expanded,
each instance of T k will have a coefficient of a different product of m − k
roots, and therefore the coefficient of T k, up to sign, is the sum of all possible
products of m − k roots. Each term in the sum will also have a coefficient
of (−1)m−k, so we have the expression:

ak = (−1)m−k
∑

1≤i1<···<im−k≤m
αi1 · · ·αim−k

.

5 Deriving the Formula

Lemma 5.1. For any monic f ∈ (Z/p)[T ], (disc(f))p = disc(f), so disc(f) ∈
Z/p.

Proof. Note that the discriminant is a symmetric polynomial in the roots,
i.e. it is unchanged by any permutation of the roots. By Corollary 2.4,

disc(f) =
∏
i<j

(αi − αj)2 =
∏
i<j

(αpi − α
p
j )

2.

But x 7→ xp is an automorphism of any finite field with characteristic p.
Thus

disc(f) =
∏
i<j

(αi − αj)2p = disc(f)p.

Consequently, disc(f) is in Z/p by Theorem 2.1.
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Lemma 5.2. For degree m monic irreducible π(T ) ∈ (Z/p)[T ], δ(π)p =
(−1)m−1δ(π), where δ(π) is the square root of discπ as defined in Section 1.
Furthermore, for p 6= 2 (

discπ
p

)
= (−1)m−1.

Proof. Let π(T ) be a monic irreducible polynomial of degree m over (Z/p)[T ]
with one root, α, in an appropriate extension field. Then the roots of π(T )
are α, αp, αp

2
, . . . , αp

m−1
, so δ(π) =

∏
0≤i<j≤m−1 (αp

i − αpj
). Consequently,

δ(π)p =
∏

0≤i<j≤m−1

(αp
i+1 − αpj+1

)

=
m∏
j=1

(αp
j − α)

∏
1≤i<j≤m−1

(αp
i − αpj

)

= (−1)m−1
∏

0≤i<j≤m−1

(αp
i − αpj

) = (−1)m−1δ(π).

And, noting that(
discπ
p

)
= 1⇔ δ(π) ∈ Z/p⇔ δ(π)p = δ(π)⇔ (−1)m−1 = 1

yields the second result of (discπ
p ) = (−1)m−1.

Lemma 5.3. (Multiplicativity of Discriminant) For monic f(T ), g(T ) ∈
(Z/p)[T ], disc(fg) = disc(f)disc(g)c2f,g, where cf,g depends on f and g.

Proof. Let f, g be polynomials in (Z/p)[T ] of degree m,n, respectively. Let
the roots of f be αi and the roots of g be βj . Then let cf,g =

∏
i,j (αi − βj).

Since the Frobenius automorphism permutes the roots of both f and g,
and cf,g is symmetric in the roots of f and g, cpf,g =

∏
i,j (αpi − β

p
j ) =∏

i,j (αi − βj) = cf,g, so cf,g ∈ Z/p. Therefore,

disc(fg) =
∏
i<j

(αi − αj)2
∏
i<j

(βi − βj)2
∏
i,j

(αi − βj)2 = disc(f)disc(g)c2f,g.

Note that, if f and g are relatively prime, then none of the αi is a βj because
otherwise f and g share a factor of (x − k) where k is the shared root, so
cf,g 6= 0.
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Theorem 5.4. (Mobius/Legendre Formula) For monic f(T ) ∈ (Z/p)[T ]
where p 6= 2,

µ(f(T )) = (−1)deg f

(
discf
p

)
.

Proof. For relatively prime monic polynomials f and g in (Z/p)[T ],(
disc(fg)

p

)
=

(
(discf)(discg)c2f,g

p

)
=
(

discf
p

)(
discg
p

)
.

Since cf,g ∈ Z/p and cf,g 6= 0. Therefore, the function f(T ) 7→ (−1)degf (discf
p )

is multiplicative on relatively prime polynomials in (Z/p)[T ]. And, by Prob-
lem 8, for any monic irreducible polynomial π of degree m,

(−1)m
(

disc(f)
p

)
= (−1)m(−1)m−1 = −1 = µ(π).

For irreducible π and k ≥ 2,

µ(πk) = 0 and (−1)deg(πk)

(
disc(πk)

p

)
= 0.

Since f(T ) 7→ µ(f(T )) and f(T ) 7→ (−1)degf (discf
p ) are multiplicative func-

tions that agree on powers of irreducibles, they must be the same func-
tion.

Remark The same proof applies in all finite fields of characteristic p > 2,
if we replace the Legendre symbol with an appropriate quadratic character
symbol (1 at quadratic residues, −1 at quadratic non-residues, and 0 at
zero).

6 Quadratic Reciprocity

Theorem 6.1. (Law of Quadratic Reciprocity) For primes p, q 6= 2,(
p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4.

Proof. Let p, q be distinct odds primes. Viewing T q − 1 as a polynomial in
(Z/p)[T ], we will compute disc(T q − 1) in two different ways, first using the
Mobius function, and then from the definition of the discriminant.
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Let f(T ) = T q−1
T−1 viewed in (Z/p)[T ]. Let the order of p mod q be j and let α

be a root of f(T ) in some extension of Z/p. Then, by Theorem 2.9, we have
that

∏j−1
i=0 (T − αpi

) divides f(T ). Since that polynomial is irreducible and
all divisors of f are of that form, we have that f , which is of degree q − 1,
has all of its irreducible factors of degree j, and so the number of irreducible
factors of f is q−1

j . Therefore, µ(f(T )) = (−1)
q−1

j . Going into Zq, let x
be a generator of Uq. Let k = gcd(Indx(p), q − 1). Then (−1)k = (pq ) and
k = q−1

j . Thus disc(T q − 1) = −(pq ).

Now we evaluate the discriminant directly from its definition. First, we
need to introduce some new notation. Let ζ be a primitive qth root of unity
in some extension of Z/p. Then define

Qi(T ) =
T q − 1
T − ζi

=
q−1∑
k=0

ζi(q−k)T kQi(ζi) =
q−1∑
i=0

1 = q.

We can then derive

disc(T q − 1) = (−1)q(q−1)/2
q−1∏
i=0

∏
j 6=i

(ζi − ζj)

= (−1)q(q−1)/2
q−1∏
i=0

Qi(ζi)

= (−1)(q−1)/2qq.

To prove the law of quadratic reciprocity, we have

−
(
p

q

)
= disc(T q − 1)

= (−1)q
(

disc(T q − 1)
p

)
= −

(
(−1)(q−1)/2qq

p

)

= −
(
q

p

)
(−1)(p−1)(q−1)/4.

But all values of quadratic characters are one or negative one. Thus(
p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4.

8



7 Analogous Formula in (Z/2)[T ]

Remark Several times in this section, we will use the fact that certain ex-
pressions in the roots of an integral polynomial are always integers. More
specifically, rational polynomial expressions that are symmetric in the roots.
Polynomial expressions in the roots of an integral polynomial must be al-
gebraic integers, since algebraic integers are closed under sum and product.
And, expressions symmetric in the roots must be rational, because permu-
tation of the roots fixes Q. But, rational algebraic integers are rational
integers, and therefore this class of expressions will always be integral.

Lemma 7.1. (Hensel’s Lemma) Let f(T ) ∈ Z/pn, where f is irreducible
over Z/p. Let Rn = Z/pn[T ]/(f(T )). Then, if g ∈ Rn[x], r ∈ R1, g(r) = 0,
g′(r) 6= 0, then there exists a unique s ∈ Rn such that s ≡ r mod p and
g(r) = 0.

Remark Hensel’s Lemma allows us to lift the roots of a polynomial over
Z/2 to any Z/2k, so initially it may seem that Z/4 would satisfy our needs.
However, we assert that discf ≡ 0, 1 (mod 4) for any f ∈ Z[T ], and therefore
Z/4 provides us with no information different from that in Z/2.

Proof. For some f ∈ Z[T ] of degree n with roots αk, consider δ(f)′2 −
δ(f)2. First, we consider the relevant products as indexed from 1 to some k
(irrelevant of the actual ordering, simply for convenience). We denote by

(α2
i ± 2αiα′i + α′2i )

the relevant term in each product, when the square is expanded. This gives:

δ(f)′2 − δ(f)2 =
k∏
i=1

(α2
i + 2αiα′i + α′2i )−

k∏
i=1

(α2
i − 2αiα′i + α′2i )

Define the following products:

Pi =
∏

1≤j<i
(α2

j − 2αjα′j + α′2j )

Qi =
∏
i<g≤k

(α2
g + 2αgα′g + α′2g )
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Then,

δ(f)′2 − δ(f)2 =
k∑
i=1

Pi
(
(α2

i + 2αiα′i + α′2i )− (α2
i − 2αiα′i + α′2i )

)
Qi

=
k∑
i=1

Pi(4αiα′i)Qi = 4
k∑
i=1

Pi(αiα′i)Qi

So, 4 | (δ(f)′2− δ(f)2)⇒ 4 | (δ(f)′2−discf)⇒ discf ≡ δ(f)′2 (mod 4). We
already know δ(f)′ ∈ Z, so the discriminant is a square modulo 4. But, the
only squares modulo 4 are 0 and 1, so discf ≡ 0, 1 (mod 4).

Thus, our polynomial roots will be lifted to Z/8 via Hensel’s Lemma,
where this problem does not occur.

Theorem 7.2. For any monic f(T ) ∈ (Z/8)[T ] that is irreducible in Z/2
of degree n, there exists an automorphism φ of (Z/8)[T ]/(f(T )) that acts
as an n-cycle on the elements corresponding to roots of f and fixes precisely
Z/8.

Proof. Let f(T ) ∈ (Z/8)[T ] satisify the hypotheses. Let αi be the roots
in Z/8[T ]/(f(T )) lifted from Z/2[T ]/(f(T )) with αi ≡ T 2i

mod 2, where
0 ≤ i ≤ n − 1. Define φ mapping Z/8[T ]/(f(T )) to itself by φ(1) = 1 and
φ(T ) = α1. Then φ is a well-defined homomorphism, as is its restriction to
Z/2[T ]/(f(T )). Since it sends T to T 2, it is the Frobenius automorphism.
And, since φ is a homomorphism, it sends roots of f to roots of f , and, as
noted before, since it is the Frobenius automorphism, φ sends αi 7→ αi+1

and αn−1 7→ α0. So, φ acts as an n-cycle on the roots.

We know φ(1) = 1, so φ must fix Z/8. Suppose g0 is fixed by φ. Then,
the reduction of g0 to (Z/2)[T ]/(f(T )) must be an integer in Z/2, so there
exists some g′0 ∈ Z/8 where 2 | (g0 − g′0). So, for some g1, 2g1 = (g − g′),
and g1 is fixed by φ as well. Applying the same argument to g2 shows that
g1− g′1 for some g′1 ∈ Z/8 is equal to 2g2 for some g2. Iterating again allows
us to find a g′2 where 2g3 = g2 − g′2 for some g3. So, we have that g0 differs
from an element of Z/8 by a multiple of 8, and therefore g0 ∈ Z/8.

Lemma 7.3. (Multiplicativity of discriminants) If f, g ∈ (Z/8)[T ] are monic,
then

disc(fg) = disc(f)disc(g)c2f,g
where cf,g ∈ Z/8 depends on f and g. Moreover, cf,g = 0, 2, 4, 6 iff f and g
have a non-constant common divisor.
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Proof. The proof goes along the same lines as in the previous case. Let f, g
be polynomials in (Z/8)[T ] of degree m,n, respectively. Let the roots of f
be αi and the roots of g be βj . Then let cf,g =

∏
i,j (αi − βj), just as in

the previous proof. But, we now use the previously defined automorphism
φ and apply it to cf,g. The result is exactly the same since φ permutes the
roots of both polynomials, therefore it must fix cf,g so we have cf,g ∈ Z/8.
Note that:

disc(fg) =
∏
i<j

(αi − αj)2
∏
i<j

(βi − βj)2
∏
i,j

(αi − βj)2 = disc(f)disc(g)c2f,g

when f and g are relatively prime. If they are not, cf,g = c2f,g = 0, but the
discriminant is zero if and only if f and g share a root, so the formula goes
through in that case as well.

Theorem 7.4. We have an analogous but not identical formula in Z/2:

µ(f(T )) = (−1)deg f

(
discf

2

)
Where the Legendre symbol is just replaced with the Kronecker Symbol.

Proof. The proof for irreducibles and powers of irreducibles goes by the
same exact argument that it did in the odd prime case. And, the Kronecker
symbol is multiplicative in the same way that the Legendre symbol is, so the
multiplicative argument holds here as well, so the new formula is correct.

Remark The proof for general finite fields of characteristic 2 is not so simple
as it was for characteristic p > 2. The entirety of the argument holds, except
for a small detail in the proof of multiplicativity of discriminants. We must
show that among the possible discriminants, the product of two non-squares
is a square. This fails in general; for example, in Z/8, 5 · 7 = 3, but none of
3, 5, or 7 are squares. So, we must exclude some number of terms and only
look at those that can be discriminants.

Proposition 7.5. Suppose we are looking at F = F2n, where F is a finite
field of degree n of characteristic 2. Let R2 be the ring containing Z/4 that
is F lifted by Hensel’s Lemma. And, let R3 be the lifting of R2 by Hensel’s
Lemma, containing Z/8. Then, the subset P of R3 composed of all elements
that reduce to a square in R3 (i.e. possible discriminants) contains an equal
number of squares and non-squares.
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Proof. Since F has characteristic 2, all non-zero elements of F are squares.
That is, there are 2n − 1 squares in F . Now, since (x + 2y)2 ≡ x2 mod 4,
the number of squares in R2 is the same as the number in F , namely 2n−1.
Thus, the number of possible discriminants in R3 is equal to 22n−2n. Now, if
x2 = y2 in R3, then 8 | (x2−y2) or 8 | (x−y)(x+y) and then either 4 | (x−y)
or 4 | (x+y). But each equivalence class under x ≡ y ⇐⇒ x2 = y2 has size
2n+1, so there are 22n−1 − 2n−1 perfect squares in R3. Thus, our collection
contains all possible discriminants, and precisely half of the elements are
perfect squares.

So, within this collection the multiplicativity argument applies, so we
can complete the proof as we did for Z/2, and our formula holds for all
fields of characteristic 2. Combining with our previous result, we have that
our formula holds in all finite fields.
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