- $\exists x_n \in E : x_n \to x \Rightarrow x \in \overline{E} \Leftrightarrow$ for every open $U, x \in U$, we have $U \cap E \neq \emptyset$
- $x \in \overline{E}$ is a limit point of E when for every open $U, x \in U$, we have $(U \{x\}) \cap E \neq \emptyset$
- D dense $\subseteq X$ when $\overline{D} = X$
- $A^O = \emptyset \Leftrightarrow A^C$ dense $\subseteq X$
- D dense in $E \subseteq X \Leftrightarrow \forall x \in E$ and open $U \subseteq X, x \in U$, we have $D \cap U \neq \emptyset$
- X separable when \exists countable dense $D \subseteq X$
- $f: X \to Y$ continuous when $f^{-1}(U)$ is open in X for every open $U \subseteq Y$
- $f: X \to Y$ homeomorphism when f is a bijection and f, f^{-1} are continuous
- X metric space when $\exists d: X \times X \to \mathbb{R}_{\geq 0}$ such that $d(x, y) = d(y, x), d(x, y) + d(y, z) \geq d(x, z), d(x, y) \geq 0 (= 0 \Leftrightarrow x = y)$
- X (real) inner product space when \overline{X} an \mathbb{R} -vector space, \exists bilinear $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{R} : \langle x, y \rangle = \langle y, x \rangle, \langle x, x \rangle \ge 0 (= 0 \Leftrightarrow x = 0)$
- X inner product space, then $|\langle x, y \rangle| \leq ||x|| ||y||$ for any $x, y \in X$ (Cauchy-Schwarz inequality)
- X, Y metric spaces, $f: X \to Y$ uniformly continuous when $\forall \epsilon > 0, \exists \delta > 0 : \rho(f(x), f(y)) < \epsilon$ for all $x, y \in X$ with $d(x, y) < \delta$
- \mathcal{T} a topology, then $\mathcal{B} \subseteq \mathcal{T}$ is a **base** when $\forall U \in \mathcal{T}$, we have $U = \bigcup_{G \in \mathcal{B}: G \subseteq U} G$ $\mathcal{B} \subseteq \mathcal{T}$ a base $\Leftrightarrow \bigcup_{U \in \mathcal{B}} U = X$ and $\forall \{U_1, \dots, U_n\} \subseteq \mathcal{B}$ and $x \in \bigcap U_i, \exists V \in \mathcal{B} : x \in V \subseteq \bigcap U_i$
- S subbase for \mathcal{T} when \mathcal{T} is the weakest topology containing S
- Product topology on $Y = \prod X_i$ is defined by base $\{U_1 \times \cdots \times U_n : U_i \text{ open } \subseteq X_i\}$, i.e. $\pi_i : Y \to X_i$ continuous
- x_n converges to x (i.e., $x_n \to x$) when \forall open $U \subseteq X, x \in U, \exists N \in \mathbb{N} : \forall n > N, x_n \in U$
- X Hausdorff when $\forall x, y \in X, x \neq y, \exists U, V \text{ open } \subseteq X : x \in U, y \in V, U \cap V = \emptyset$
- X Hausdorff, then $(x_n \to x \text{ and } x_n \to y) \Rightarrow x = y$
- Y Hausdorff, $f, g: X \to Y$ continuous, then $\{x \in X : f(x) = g(x)\}$ is closed
- X metric space, $E \subseteq X$, then $x \in \overline{E} \Leftrightarrow \exists \{x_n\} \subseteq E : x_n \to x$
- $f: X \to Y$ continuous $\Rightarrow (x_n \to x \Rightarrow f(x_n) \to f(x)) X$ metric space, then they are equivalent
- $\{x_n\}$ Cauchy when $\forall \epsilon > 0, \exists N \in \mathbb{N} : \forall m, n > N, d(x_m, x_n) < \epsilon$
- convergent \Rightarrow Cauchy \Rightarrow bounded for monotonic sequences, all three are equivalent
- If a Cauchy sequence has a convergent subsequence, the sequence converges, and to the same limit
- X complete when every Cauchy sequence converges
- X complete, $E \subseteq X$, then E closed $\Leftrightarrow E$ complete
- X complete, then $\{f_n : X \to \mathbb{R}\}$ pointwise bounded $\Rightarrow \exists$ open $V \neq \emptyset, M \in \mathbb{R} : |f_n(x)| \leq M$ for all $x \in V$ and all n
- X complete, $f: X \to X$ has $\exists \alpha < 1: d(f(x), f(y)) \le \alpha d(x, y)$, then $\exists ! x \in X: f(x) = x$ and $\forall x_0 \in X, x_n = f^n(x_0), x_n \to x$
- X complete, then G_n dense, open $\subseteq X \Rightarrow \bigcap G_n$ dense in X (Baire category theorem)
- $E \subseteq X$ nowhere dense if $(E^{\hat{C}})^{O} = \emptyset$
- $E \subseteq X$ first category if $E = \bigcup A_n$ where A_n are all nowhere dense (example: \mathbb{Q})
- $E \subseteq X$ second category if E is not first category (example: $\mathbb{R} \mathbb{Q}$)
- $E \subseteq X \mathbf{F}_{\sigma}$ if $E = \bigcup C_n$ where C_n are all closed (example: \mathbb{Q})
- $E \subseteq X \mathbf{G}_{\delta}$ if $E = \bigcap U_n$ where U_n are all open (example: $\mathbb{R} \mathbb{Q}$)
- F_n each first category, G_n each second category, then $\bigcup F_n$ first category, $\bigcap G_n$ second category
- $f: X \to \mathbb{R}$ a function, then $C = \{x \in X : f \text{ continuous at } x\}$ is G_{δ} $(U_n = \{x \in X : \exists \text{ open } V_{\frac{1}{n},x} \subset X : x \in V_{\frac{1}{n},x}, f(x) \in B_{\frac{1}{n}}(f(x))\})$ • Any closed set in \mathbb{R}^n is G_δ
- COUNTEREXAMPLE: $A = ([0,1] \cap \mathbb{Q}) \cup ([2,3] \mathbb{Q})$ is neither F_{σ} nor G_{δ}
- X compact when any open cover $X = \bigcup_{\alpha \to \infty} U_{\alpha}$ has a finite subcover $X = \bigcup_{\alpha \to \infty}^{n} U_{\alpha}$
- X compact, K_n closed $\subseteq X$ with $K_n \neq \emptyset$ and $K_{n+1} \subseteq K_n$ for all n, then $\bigcap_{n=1}^{\infty} K_n \neq \emptyset$ (X, \mathcal{T}) Hausdorff, (X, \mathcal{F}) compact, $\mathcal{T} \subseteq \mathcal{F}$, then $\mathcal{T} = \mathcal{F}$
- X compact, $E \subseteq X$, then E closed $\Rightarrow E$ compact
- X Hausdorff, $E \subseteq X$, then E compact \Rightarrow E closed
- $K \subseteq \mathbb{R}^n$ is compact $\Leftrightarrow K$ is closed and bounded
- X compact, $f: X \to Y$ continuous, then f(X) compact
- X compact, Y Hausdorff, $f: X \to Y$ continuous bijection, then f homeomorphism
- X compact metric space, Y metric space, $f: X \to Y$ continuous, then f uniformly continuous
- X metric space, E ⊆ X bounded if sup{d(x, y) : x, y ∈ E} < ∞
 X metric space, E ⊆ X totally bounded if ∀ε > 0, ∃{x₁,...,x_n} ⊆ E : E ⊆ ∪ B(x_k, ε)
- E totally bounded \Rightarrow E bounded, \overline{E} totally bounded, any $F \subseteq E$ is totally bounded for \mathbb{R}^n , totally bounded \Leftrightarrow bounded
- X metric space, then X compact \Leftrightarrow X complete and totally bounded
- X sequentially compact when every sequence in X has a convergent subsequence
- X metric space, then X compact \Leftrightarrow X sequentially compact
- X compact metric space, Y metric space, then Y complete $\Rightarrow C(X,Y)$ complete in uniform metric $d(f,g) = \sup\{\rho(f(x),g(x))\}$
- Y metric space, $\mathcal{F} \subseteq C(X,Y)$ equicontinuous at $x \in X$ when $\forall \epsilon > 0, \exists$ open $U \subseteq X, x \in U : \forall y \in U, f \in \mathcal{F}, \rho(f(x), f(y)) < \epsilon$
- X compact, Y compact metric space, F ⊆ C(X, Y), then F totally bounded ⇔ F equicontinuous
 X compact, Y compact metric space, F ⊆ C(X, Y) equicontinuous ⇒ every {f_n} ⊆ F has uniformly convergent subsequence
- $X \subset \mathbb{R}$ compact, $\{f_n\} \subseteq C(X, \mathbb{R})$ and $f_n \to f$ uniformly, then $\{f_n\}$ equicontinuous
- X connected when \nexists open $U, V \subseteq X$: $U \cap V = \emptyset, U \cup V = X$ • X connected $\Leftrightarrow \nexists U$ open, closed $\subseteq X: U \neq \emptyset, X$
- $E \subseteq \mathbb{R}$ is connected $\Leftrightarrow E$ is an interval
- X connected, $f: X \to Y$ continuous, then f(X) connected
- If E_{α} connected for all α and $\bigcap E_{\alpha} \neq \emptyset$, then $\bigcup E_{\alpha}$ connected
- E connected $\Rightarrow E$ connected
- For each $x \in X$, $C_x = \bigcup_{\text{connected } E \subseteq X: x \in E} E$, then the C_x are connected and closed, and partition X
- The polynomial functions are dense in $C([a, b], \mathbb{R})$ with the uniform topology (Stone-Weierstrass)
- $\mathcal{A} \subseteq P(X)$ algebra when $\emptyset \in \mathcal{A}$ and $\forall A, B \in \mathcal{A}, A^C, A \cup B \in \mathcal{A}$
- $\mu : \mathcal{A} \to \mathbb{R}^*_{>0}$ additive when $\mu(A \cup B) = \mu(A) + \mu(B)$ for $A \cap B = \emptyset$
- For $x \in X$, point mass at x is $\delta_x : P(X) \to \mathbb{R}$ with $\delta_x(A) = 1$ if $x \in A$ and 0 otherwise

- $\overline{A} \neq \overline{A^O}, A^O \neq (\overline{A})^O$
 - $(E^O)^C = \overline{(E^C)}$

- $\mathcal{A} \subseteq P(X)$ σ -algebra when \mathcal{A} algebra and $\forall \{A_k\} \subseteq A, \bigcup A_k \in \mathcal{A}$
- \mathcal{B} Borel algebra is σ -algebra generated by closed subsets of X
- \mathcal{A} algebra, $\mu : \mathcal{A} \to \mathbb{R}^*_{\geq 0}$ countably additive if $\mu(\bigcup A_k) = \sum \mu(A_k)$ for countably many disjoint $A_k \in \mathcal{A}$ and $\bigcup A_k \in \mathcal{A}$
- μ additive, then μ countably additive $\Leftrightarrow (A_n \in \mathcal{A}, A_n \subseteq A_{n+1} \text{ for all } n, \bigcup A_n \in \mathcal{A} \Rightarrow \mu(\bigcup A_n) = \lim_{n \to \infty} \mu(A_n))$
- $\mathcal{A} \ \sigma$ -algebra, $\mu : \mathcal{A} \to \mathbb{R}^*_{>0}$ measure when μ is countably additive
- \mathcal{A} σ -algebra, μ, ν measures on \mathcal{A} , then so are $\mu + \nu, t\mu$ (for $t \in \mathbb{R}^+$), and μ_A (where $\mu_A(E) = \mu(A \cap E)$)
- \mathcal{A} σ -algebra, \mathcal{M} directed set of measures on \mathcal{A} ($\mu \leq \nu$ when $\forall A \in \mathcal{A}, \mu(A) \leq \nu(A)$), then $\sup \mathcal{M}$ is a measure on \mathcal{A}
- $\mu^* : P(X) \to \mathbb{R}^*_{\geq 0}$ outer measure when $\mu^*(\emptyset) = 0, A \subseteq B \Rightarrow \mu^*(A) \leq \mu^*(B), \text{ and } \forall \{A_n\} \subseteq P(X), \mu^*(\bigcup A_n) \leq \sum \mu^*(A_n)$
- μ^* outer measure on $X, E \subseteq X$ μ^* -measurable when $\forall A \subseteq X, \ \mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^C)$ (we always have \leq)
- $\mu^*(E) = 0 \Rightarrow E$ measurable
- μ^* outer measure on X, $\mathcal{M} = \{\mu^*\text{-measurable sets}\}$, then $\mu^*_{\mathcal{M}}$ a measure on X
- m^* Lebesgue outer measure when $m^*(E) = \inf\{\sum \ell(I_n) : E \subseteq \bigcup I_n\}$
- If $A \subseteq \mathbb{R}^n$ is Lebesgue measurable, \exists Borel $F, G: F \subseteq A \subseteq G$ and m(G-A) = m(A-F) = 0
- Lebesgue outer measure is translation invariant
- $A, B \subseteq \mathbb{R}$ measurable, $A \subseteq E \subseteq B$, then E measurable
- If m(E) > 0, then E contains a non-measurable set
- COUNTEREXAMPLE: $A = \{\text{representatives for } \sim\} \subset [0,1] \text{ where } x \sim y \text{ when } x y \in \mathbb{Q} \text{ is not Lebesgue measurable}$
- COUNTEREXAMPLE: Fat Cantor set is nowhere dense but has positive Lebesgue measure
- (take [0, 1], at *n*th step subtract width $\frac{1}{2^{2n}}$ interval from each of the 2^{n-1} remaining intervals)
- COUNTEREXAMPLE: Cantor set C is perfect and bounded, hence compact and uncountable, but m(C) = 0 and C is nowhere dense (because it is closed and contains no interval) - C is also totally disconnected
- μ measure on \mathcal{A} , then $\mu(\bigcup E_n) \leq \sum \mu(E_n)$ for any $E_n \in \mathcal{A}$ (not necessarily disjoint)
- μ measure on \mathcal{A} and $\mu(E_1) < \infty$ and $E_{n+1} \subseteq E_n$ for all n, then $\mu(\bigcap E_n) = \lim_{n \to \infty} \mu(E_n)$
- $\liminf E_n = \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} E_m$ (all but finitely many), $\limsup E_n = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} E_m$ (infinitely many)
- μ measure on $\mathcal{A}, E_n \in \mathcal{A}$, then $\mu(\liminf E_n) \leq \liminf \mu(E_n)$
- μ measure on $\mathcal{A}, E_n \in \mathcal{A}, \sum \mu(E_n) < \infty$, then $\mu(\limsup E_n) = 0$
- $f: X \to Y$ continuous, then $B \subseteq Y$ Borel $\Rightarrow f^{-1}(B) \subseteq X$ Borel

• $f: X \to \overline{\mathbb{R}} \mathcal{A}$ -measurable when $f^{-1}(\infty), f^{-1}(-\infty), f^{-1}(U) \in \mathcal{A}$ for all open $U \in \mathbb{R}$

- f measurable $\Leftrightarrow \{x: f(x)(>, \geq, \leq, <)t\} \in \mathcal{A} \Leftrightarrow f^{-1}(B) \in \mathcal{A}$ whenever B Borel or $B = \{\infty\}, \{-\infty\}$
- f_n, f, g measurable $\Rightarrow |f|, f^2, f + g, fg, \sup f_n, \inf f_n, \limsup f_n, \liminf f_n$ all measurable
- f_n, f measurable, $f_n \to f$ converges in measure when, $\forall \epsilon > 0$, $\lim \mu(\{x : | f(x) f_n(x) | \ge \epsilon\}) = 0$
- f simple if image is finite
- $f \ge 0$ measurable, then $\exists f_n \ge 0$ simple measurable : $f_n \uparrow$ and $\lim f_n = f$ pointwise (use $f_n = \sum_{k=1}^{n2^n} \frac{k-1}{2^n} \mathbf{1}_{A_{n,k}} + n \mathbf{1}_{B_n}$ where $A_{n,k} = \sum_{k=1}^{n2^n} \frac{k-1}{2^n} \mathbf{1}_{A_{n,k}} + n \mathbf{1}_{B_n}$ $\{x: (k-1)2^{-n} < f(x) \le k2^{-n}\}$ and $B_n = \{x: f(x) > n\}$
- f measurable, then $\exists f_n$ simple measurable such that $f_n \to f$ pointwise when f is bounded, $f_n \to f$ uniformly
- $f = \sum c_k \mathbf{1}_{A_k} \ge 0$ simple measurable, integral of f is $\int f = \sum c_k \mu(A_k)$ (note $0 \le \int f d\mu \le \infty$)
- $\int f d\mu \leq \int g d\mu$ if $f \leq g$, $\int (f+g) d\mu = \int f d\mu + \int g d\mu$, $\int t f d\mu = t \int f d\mu$ for $t \geq 0$
- $f \ge 0$ measurable, then **integral** of f is $\int f d\mu = \sup\{\int g d\mu : 0 \le g \le f, g \text{ simple measurable}\}$
- $f \ge 0$, then $\int f d\mu = 0 \Leftrightarrow f = 0$ a.e.
- For any f≥ 0 measurable, ν(E) = ∫_E fdμ is a measure on A
 f_n ≥ 0 measurable with f_n ↑, then ∫ lim f_ndμ = lim ∫ f_ndμ (monotone convergence)
- $f = \lim f_n = \sup f_n$ is measurable because sup's are, so $\int f d\mu$ exists. $f_n \leq f_{n+1}$, so $\int f_n d\mu \leq \int f_{n+1} d\mu$, so $\lim \int f_n d\mu$ exists (though could be ∞). $f_n \leq f$, so $\lim \int f_n d\mu \leq \int f d\mu$. Let g simple measurable have $0 \leq g \leq f$, and fix $0 < \epsilon < 1$, and let $A_n = \{x \in X : f_n(x) \geq (1 - \epsilon)g(x)\}$ - then $A_n \subseteq A_{n+1}$ for all *n* because $f_n \uparrow$, and $\bigcup A_n = X$ because $\lim f_n = \sup f_n \ge g$. Becuase $\int f_n d\mu \ge \int_{A_n} f_n d\mu \ge (1-\epsilon) \int_{A_n} g d\mu$ and $\nu(E) = \int_E g d\mu \text{ is a measure, } \int_{A_n} g d\mu \to \int g d\mu \text{, so that } \lim \int f_n d\mu \ge (1-\epsilon) \int g d\mu \text{ for all } \epsilon > 0 \text{, so } \lim \int f_n d\mu \ge \int g d\mu \text{, thus } \lim \int f_n d\mu \ge \int f d\mu.$ • $f_n \ge 0$, then $\int \liminf f_n d\mu \le \liminf \int f_n d\mu$ (Fatou's lemma)
- COUNTEREXAMPLE: $f_n = n \mathbf{1}_{(0,\frac{1}{n})}$ has $\liminf f_n = 0$ and hence $\int \liminf f_n d\mu = 0$, but $\liminf \int f_n d\mu = \liminf 1 = 1$
- f measurable, integral of f is $\int f = \int f^+ d\mu \int f^- d\mu f$ integrable (or summable) if $\int |f| d\mu < \infty$
- f_n measurable, $f_n \to f$, and $|f_n| \le g$ where g integrable, then f integrable, and $\int f d\mu = \lim \int f_n d\mu$ (dominated convergence)
- $\mu(\{x: f(x) > t\}) \leq \frac{1}{t} \int f d\mu$ (Chebyshev's inequality)
- μ a measure on X with $\mu(X) = 1, f: X \to J$ integrable for some interval J, ϕ convex on J, then $\phi(\int f d\mu) \leq \int \phi(f) d\mu$ (Jensen's inequality)
- $1 measurable, then <math>\int fgd\mu \le (\int f^p d\mu)^{\frac{1}{p}} (\int g^q d\mu)^{\frac{1}{q}}$ if $f \in L^p$ and $g \in L^q$, $fg \in L^1$ and $|\int fg| \le ||f||_p ||g||_q$ f bounded, then f measurable $\Leftrightarrow f \in L^1$ (Holder's inequality of the second seco (Holder's inequality)
- $1 \le p < \infty, f_n \in L^p, f_n \to f$ in L^p , then $\lim \int |f_n|^p = \int |f|^p$
- $1 \le p < \infty, f_n, f \in L^p, f_n \to f$ a.e., then $f_n \to f$ in $L^p \Leftrightarrow ||f_n||_p \to ||f||_p$
- Always: $f_n \to f$ in $L^p \Rightarrow$ in measure if $\mu(X) < \infty$, a.e. \Rightarrow in measure if $|f_n| \le g \in L^p$, $L^p \Leftrightarrow$ in measure and a.e. \Rightarrow in measure • COUNTEREXAMPLE: $f_1 = \mathbf{1}_{[0,1]}, f_2 = \mathbf{1}_{[0,\frac{1}{2}]}, f_3 = \mathbf{1}_{[\frac{1}{2},1]}, \text{ etc. } f_n \to 0 \text{ in measure, } L^p \text{ but } f_n \not\to f \text{ pointwise a.e.}$
- COUNTEREXAMPLE: $f_n = n \mathbf{1}_{[\frac{1}{n}, \frac{2}{n}]}$, then $f_n \to 0$ pointwise a.e., $f_n \to 0$ in measure, but $||f_n||_p = 1$, so cannot converge to 0 in L^p COUNTEREXAMPLE: $f_n = \mathbf{1}_{[n,n+1]}$, then $f_n \to 0$ everywhere, but $f_n \not\to 0$ in measure $f \in L^1([a, b])$ and $\forall x \in [a, b], \int_a^x f dt = 0$, then f = 0 a.e. $\sum_{n \to \infty} f(f_n) = \sum_{n \to \infty} f(f_n) = \sum_{n \to \infty} f(f_n)$. Graph of a measurable function has

- $\sum \int |f_n| < \infty \Rightarrow \sum f_n$ converges, and $\int \sum f_n = \sum \int f_n$ $\int |f|^p < \infty \Rightarrow F(t) \le Ct^{-p}, f \in L^1 \Rightarrow nF(n) \to 0, \int |f| < \infty \Rightarrow \sum F(n) < \infty$ for $\mu(X) < \infty$, they are equivalent f measurable, $E \subseteq \mathbb{R}^n$ measurable, then $\int_E |f|^p dm = \int_0^\infty pt^{p-1}m(\{x \in E : |f(x)| > t\})dt$ $T : \mathbb{R}^n \to \mathbb{R}^n$ linear transformation, $A \subseteq \mathbb{R}^n$ Lebesgue measurable, then T(A) is as well and $m(T(A)) = |\det(T)|m(A)$

- T invertible, $f: \mathbb{R}^n \to \mathbb{R}$ measurable, and either $f \ge 0$ or f integrable, $\int f dm = |\det(T)| \int f \circ T dm$
- U, V open $\subseteq \mathbb{R}^n, \phi: U \to V$ homeomorphism, $\phi, \phi^{-1} \in C^1$, then for any $f \ge 0$ measurable on $V, \int_V f dm = \int_U (f \circ \phi) |J_{\phi}| dm$
- $f \ge 0$ Borel on \mathbb{R}^n , $F(x) = \int_{\mathbb{R}^\ell} f(x, \cdot)dm$, $G(y) = \int_{\mathbb{R}^k} f(\cdot, y)dm$, then F, G Borel and $\int_{\mathbb{R}^n} fdm = \int_{\mathbb{R}^k} Fdm = \int_{\mathbb{R}^\ell} Gdm$ f Borel on \mathbb{R}^n and integrable, then $\int_{\mathbb{R}^n} fdm = \int_{\mathbb{R}^k} \int_{\mathbb{R}^\ell} f(x, y)dydx = \int_{\mathbb{R}^\ell} \int_{\mathbb{R}^k} f(x, y)dxdy$ (Fubini-Tonelli theorem) COUNTEREXAMPLE: μ Lebesgue, ν counting, $A = \{(x, y) : x = y\} \subset [0, 1]^2$, $\int \int \mathbf{1}_A d\mu d\nu = 0$ but $\int \int \mathbf{1}_A d\nu d\mu = 1$

Graph of a measurable function has measure 0