
• ∃xn ∈ E : xn → x⇒ x ∈ E ⇔ for every open U , x ∈ U , we have U ∩ E 6= ∅
• x ∈ E is a limit point of E when for every open U , x ∈ U , we have (U − {x}) ∩ E 6= ∅
• D dense ⊆ X when D = X A 6= AO, AO 6= (A)O

• AO = ∅ ⇔ AC dense ⊆ X
• D dense in E ⊆ X ⇔ ∀x ∈ E and open U ⊆ X, x ∈ U , we have D ∩ U 6= ∅
• X separable when ∃ countable dense D ⊆ X (EO)C = (EC)
• f : X → Y continuous when f−1(U) is open in X for every open U ⊆ Y
• f : X → Y homeomorphism when f is a bijection and f, f−1 are continuous
• X metric space when ∃d : X ×X → R≥0 such that d(x, y) = d(y, x), d(x, y) + d(y, z) ≥ d(x, z), d(x, y) ≥ 0 (= 0⇔ x = y)
• X (real) inner product space when X an R-vector space, ∃ bilinear 〈·, ·〉 : X ×X → R : 〈x, y〉 = 〈y, x〉, 〈x, x〉 ≥ 0 (= 0⇔ x = 0)
• X inner product space, then |〈x, y〉| ≤ ‖x‖‖y‖ for any x, y ∈ X (Cauchy-Schwarz inequality)
• X,Y metric spaces, f : X → Y uniformly continuous when ∀ε > 0, ∃δ > 0 : ρ(f(x), f(y)) < ε for all x, y ∈ X with d(x, y) < δ
• T a topology, then B ⊆ T is a base when ∀U ∈ T , we have U =

⋃
G∈B:G⊆U G

• B ⊆ T a base ⇔
⋃
U∈B U = X and ∀ {U1, . . . , Un} ⊆ B and x ∈

⋂
Ui, ∃V ∈ B : x ∈ V ⊆

⋂
Ui

• S subbase for T when T is the weakest topology containing S
• Product topology on Y =

∏
Xi is defined by base {U1 × · · · × Un : Ui open ⊆ Xi}, i.e. πi : Y → Xi continuous

• xn converges to x (i.e., xn → x) when ∀ open U ⊆ X, x ∈ U , ∃N ∈ N : ∀n > N, xn ∈ U
• X Hausdorff when ∀x, y ∈ X, x 6= y, ∃U, V open ⊆ X : x ∈ U , y ∈ V , U ∩ V = ∅
• X Hausdorff, then (xn → x and xn → y) ⇒ x = y
• Y Hausdorff, f, g : X → Y continuous, then {x ∈ X : f(x) = g(x)} is closed
• X metric space, E ⊆ X, then x ∈ E ⇔ ∃{xn} ⊆ E : xn → x
• f : X → Y continuous ⇒ (xn → x⇒ f(xn)→ f(x)) - X metric space, then they are equivalent
• {xn} Cauchy when ∀ε > 0, ∃N ∈ N : ∀m,n > N , d(xm, xn) < ε
• convergent ⇒ Cauchy ⇒ bounded - for monotonic sequences, all three are equivalent
• If a Cauchy sequence has a convergent subsequence, the sequence converges, and to the same limit
• X complete when every Cauchy sequence converges
• X complete, E ⊆ X, then E closed ⇔ E complete
• X complete, then {fn : X → R} pointwise bounded ⇒ ∃ open V 6= ∅,M ∈ R : |fn(x)| ≤M for all x ∈ V and all n
• X complete, f : X → X has ∃α < 1 : d(f(x), f(y)) ≤ αd(x, y), then ∃!x ∈ X : f(x) = x and ∀x0 ∈ X, xn = fn(x0), xn → x
• X complete, then Gn dense, open ⊆ X ⇒

⋂
Gn dense in X (Baire category theorem)

• E ⊆ X nowhere dense if (EC)O = ∅
• E ⊆ X first category if E =

⋃
An where An are all nowhere dense (example: Q)

• E ⊆ X second category if E is not first category (example: R−Q)
• E ⊆ X Fσ if E =

⋃
Cn where Cn are all closed (example: Q)

• E ⊆ X Gδ if E =
⋂
Un where Un are all open (example: R−Q)

• Fn each first category, Gn each second category, then
⋃
Fn first category,

⋂
Gn second category

• f : X → R a function, then C = {x ∈ X : f continuous at x} is Gδ (Un = {x ∈ X : ∃ open V 1
n
,x ⊂ X : x ∈ V 1

n
,x, f(x) ∈ B 1

n
(f(x))})

• Any closed set in Rn is Gδ
• Counterexample: A = ([0, 1] ∩Q) ∪ ([2, 3]−Q) is neither Fσ nor Gδ
• X compact when any open cover X =

⋃
Uα has a finite subcover X =

⋃n
i=1 Ui

• X compact, Kn closed ⊆ X with Kn 6= ∅ and Kn+1 ⊆ Kn for all n, then
⋂∞
n=1Kn 6= ∅

• (X, T ) Hausdorff, (X,F) compact, T ⊆ F , then T = F
• X compact, E ⊆ X, then E closed ⇒ E compact
• X Hausdorff, E ⊆ X, then E compact ⇒ E closed
• K ⊆ Rn is compact ⇔ K is closed and bounded
• X compact, f : X → Y continuous, then f(X) compact
• X compact, Y Hausdorff, f : X → Y continuous bijection, then f homeomorphism
• X compact metric space, Y metric space, f : X → Y continuous, then f uniformly continuous
• X metric space, E ⊆ X bounded if sup{d(x, y) : x, y ∈ E} <∞
• X metric space, E ⊆ X totally bounded if ∀ε > 0, ∃{x1, . . . , xn} ⊆ E : E ⊆

⋃
B(xk, ε)

• E totally bounded ⇒ E bounded, E totally bounded, any F ⊆ E is totally bounded - for Rn, totally bounded ⇔ bounded
• X metric space, then X compact ⇔ X complete and totally bounded
• X sequentially compact when every sequence in X has a convergent subsequence
• X metric space, then X compact ⇔ X sequentially compact
• X compact metric space, Y metric space, then Y complete ⇒ C(X,Y ) complete in uniform metric d(f, g) = sup{ρ(f(x), g(x))}
• Y metric space, F ⊆ C(X,Y ) equicontinuous at x ∈ X when ∀ε > 0, ∃ open U ⊆ X, x ∈ U : ∀y ∈ U, f ∈ F , ρ(f(x), f(y)) < ε
• X compact, Y compact metric space, F ⊆ C(X,Y ), then F totally bounded ⇔ F equicontinuous
• X compact, Y compact metric space, F ⊆ C(X,Y ) equicontinuous ⇒ every {fn} ⊆ F has uniformly convergent subsequence
• X ⊂ R compact, {fn} ⊆ C(X,R) and fn → f uniformly, then {fn} equicontinuous
• X connected when @ open U, V ⊆ X: U ∩ V = ∅, U ∪ V = X
• X connected ⇔ @ U open, closed ⊆ X: U 6= ∅, X
• E ⊆ R is connected ⇔ E is an interval
• X connected, f : X → Y continuous, then f(X) connected
• If Eα connected for all α and

⋂
Eα 6= ∅, then

⋃
Eα connected

• E connected ⇒ E connected
• For each x ∈ X, Cx =

⋃
connected E⊆X: x∈E E, then the Cx are connected and closed, and partition X

————————————————————————————————————————
• The polynomial functions are dense in C([a, b],R) with the uniform topology (Stone-Weierstrass)

————————————————————————————————————————
• A ⊆ P (X) algebra when ∅ ∈ A and ∀A,B ∈ A, AC, A ∪B ∈ A
• µ : A → R∗≥0 additive when µ(A ∪B) = µ(A) + µ(B) for A ∩B = ∅
• For x ∈ X, point mass at x is δx : P (X)→ R with δx(A) = 1 if x ∈ A and 0 otherwise



• A ⊆ P (X) σ-algebra when A algebra and ∀{Ak} ⊆ A,
⋃
Ak ∈ A

• B Borel algebra is σ-algebra generated by closed subsets of X
• A algebra, µ : A → R∗≥0 countably additive if µ(

⋃
Ak) =

∑
µ(Ak) for countably many disjoint Ak ∈ A and

⋃
Ak ∈ A

• µ additive, then µ countably additive ⇔ (An ∈ A, An ⊆ An+1 for all n,
⋃
An ∈ A ⇒ µ(

⋃
An) = limn→∞ µ(An))

• A σ-algebra, µ : A → R∗≥0 measure when µ is countably additive
• A σ-algebra, µ, ν measures on A, then so are µ+ ν, tµ (for t ∈ R+), and µA (where µA(E) = µ(A ∩ E))
• A σ-algebra, M directed set of measures on A (µ ≤ ν when ∀A ∈ A, µ(A) ≤ ν(A)), then supM is a measure on A
• µ∗ : P (X)→ R∗≥0 outer measure when µ∗(∅) = 0, A ⊆ B ⇒ µ∗(A) ≤ µ∗(B), and ∀{An} ⊆ P (X), µ∗(

⋃
An) ≤

∑
µ∗(An)

• µ∗ outer measure on X, E ⊆ X µ∗-measurable when ∀A ⊆ X, µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ EC) (we always have ≤)
• µ∗(E) = 0⇒ E measurable
• µ∗ outer measure on X, M = {µ∗-measurable sets}, then µ∗M a measure on X
• m∗ Lebesgue outer measure when m∗(E) = inf{

∑
`(In) : E ⊆

⋃
In}

• If A ⊆ Rn is Lebesgue measurable, ∃ Borel F,G : F ⊆ A ⊆ G and m(G−A) = m(A− F ) = 0
• Lebesgue outer measure is translation invariant
• A,B ⊆ R measurable, A ⊆ E ⊆ B, then E measurable
• If m(E) > 0, then E contains a non-measurable set
• Counterexample: A = {representatives for ∼} ⊂ [0, 1) where x ∼ y when x− y ∈ Q is not Lebesgue measurable
• Counterexample: Fat Cantor set is nowhere dense but has positive Lebesgue measure

(take [0, 1], at nth step subtract width 1
22n interval from each of the 2n−1 remaining intervals)

• Counterexample: Cantor set C is perfect and bounded, hence compact and uncountable, but m(C) = 0 and C is nowhere dense (because it
is closed and contains no interval) - C is also totally disconnected

• µ measure on A, then µ(
⋃
En) ≤

∑
µ(En) for any En ∈ A (not necessarily disjoint)

• µ measure on A and µ(E1) <∞ and En+1 ⊆ En for all n, then µ(
⋂
En) = limn→∞ µ(En)

• lim inf En =
⋃∞
n=1

⋂∞
m=nEm (all but finitely many), lim supEn =

⋂∞
n=1

⋃∞
m=nEm (infinitely many) {x : sup fn(x) > t} =

⋃
{x : fn(x) > t}

• µ measure on A, En ∈ A, then µ(lim inf En) ≤ lim inf µ(En)
• µ measure on A, En ∈ A,

∑
µ(En) <∞, then µ(lim supEn) = 0 {x : inf fn(x) < t} =

⋃
{x : fn(x) < t}

• f : X → Y continuous, then B ⊆ Y Borel ⇒ f−1(B) ⊆ X Borel
————————————————————————————————————————
• f : X → R A-measurable when f−1(∞), f−1(−∞), f−1(U) ∈ A for all open U ∈ R
• f measurable ⇔ {x : f(x)(>,≥,≤, <)t} ∈ A ⇔ f−1(B) ∈ A whenever B Borel or B = {∞}, {−∞}
• fn, f, g measurable ⇒ |f |, f2, f + g, fg, sup fn, inf fn, lim sup fn, lim inf fn all measurable
• fn, f measurable, fn → f converges in measure when, ∀ε > 0, limµ({x : |f(x)− fn(x)| ≥ ε}) = 0
• f simple if image is finite
• f ≥ 0 measurable, then ∃ fn ≥ 0 simple measurable : fn ↑ and lim fn = f pointwise (use fn =

∑n2n

k=1
k−1
2n 1An,k + n1Bn where An,k =

{x : (k − 1)2−n < f(x) ≤ k2−n} and Bn = {x : f(x) > n})
• f measurable, then ∃ fn simple measurable such that fn → f pointwise - when f is bounded, fn → f uniformly
• f =

∑
ck1Ak ≥ 0 simple measurable, integral of f is

∫
f =

∑
ckµ(Ak) (note 0 ≤

∫
fdµ ≤ ∞)

•
∫
fdµ ≤

∫
gdµ if f ≤ g,

∫
(f + g)dµ =

∫
fdµ+

∫
gdµ,

∫
tfdµ = t

∫
fdµ for t ≥ 0

• f ≥ 0 measurable, then integral of f is
∫
fdµ = sup{

∫
gdµ : 0 ≤ g ≤ f, g simple measurable}

• f ≥ 0, then
∫
fdµ = 0⇔ f = 0 a.e.

• For any f ≥ 0 measurable, ν(E) =
∫
E
fdµ is a measure on A

• fn ≥ 0 measurable with fn ↑, then
∫

lim fndµ = lim
∫
fndµ (monotone convergence)

f = lim fn = sup fn is measurable because sup’s are, so
∫
fdµ exists. fn ≤ fn+1, so

∫
fndµ ≤

∫
fn+1dµ, so lim

∫
fndµ exists (though could be

∞). fn ≤ f , so lim
∫
fndµ ≤

∫
fdµ. Let g simple measurable have 0 ≤ g ≤ f , and fix 0 < ε < 1, and let An = {x ∈ X : fn(x) ≥ (1− ε)g(x)}

- then An ⊆ An+1 for all n because fn ↑, and
⋃
An = X because lim fn = sup fn ≥ g. Becuase

∫
fndµ ≥

∫
An

fndµ ≥ (1 − ε)
∫
An

gdµ and

ν(E) =
∫
E
gdµ is a measure,

∫
An

gdµ→
∫
gdµ, so that lim

∫
fndµ ≥ (1− ε)

∫
gdµ for all ε > 0, so lim

∫
fndµ ≥

∫
gdµ, thus lim

∫
fndµ ≥

∫
fdµ.

• fn ≥ 0, then
∫

lim inf fndµ ≤ lim inf
∫
fndµ (Fatou’s lemma)

• Counterexample: fn = n1(0, 1
n

) has lim inf fn = 0 and hence
∫

lim inf fndµ = 0, but lim inf
∫
fndµ = lim inf 1 = 1

• f measurable, integral of f is
∫
f =

∫
f+dµ−

∫
f−dµ - f integrable (or summable) if

∫
|f |dµ <∞

• fn measurable, fn → f , and |fn| ≤ g where g integrable, then f integrable, and
∫
fdµ = lim

∫
fndµ (dominated convergence)

• µ({x : f(x) > t}) ≤ 1
t

∫
fdµ (Chebyshev’s inequality)

• µ a measure on X with µ(X) = 1, f : X → J integrable for some interval J , φ convex on J , then φ(
∫
fdµ) ≤

∫
φ(f)dµ (Jensen’s inequality)

• 1 < p <∞, q = p
p−1

, f, g ≥ 0 measurable, then
∫
fgdµ ≤ (

∫
fpdµ)

1
p (

∫
gqdµ)

1
q - if f ∈ Lp and g ∈ Lq, fg ∈ L1 and |

∫
fg| ≤ ‖f‖p‖g‖q

• f bounded, then f measurable ⇔ f ∈ L1 (Holder’s inequality)
• 1 ≤ p <∞, fn ∈ Lp, fn → f in Lp, then lim

∫
|fn|p =

∫
|f |p

• 1 ≤ p <∞, fn, f ∈ Lp, fn → f a.e., then fn → f in Lp ⇔ ‖fn‖p → ‖f‖p
• Always: fn → f in Lp ⇒ in measure - if µ(X) <∞, a.e. ⇒ in measure - if |fn| ≤ g ∈ Lp, Lp ⇔ in measure and a.e. ⇒ in measure
• Counterexample: f1 = 1[0,1], f2 = 1[0, 12 ], f3 = 1[ 12 ,1]

, etc. fn → 0 in measure, Lp but fn 6→ f pointwise a.e.
• Counterexample: fn = n1[ 1

n
, 2

n
], then fn → 0 pointwise a.e., fn → 0 in measure, but ‖fn‖p = 1, so cannot converge to 0 in Lp

• Counterexample: fn = 1[n,n+1], then fn → 0 everywhere, but fn 6→ 0 in measure
• f ∈ L1([a, b]) and ∀x ∈ [a, b],

∫ x
a
fdt = 0, then f = 0 a.e. Graph of a measurable function has measure 0

•
∑ ∫

|fn| <∞⇒
∑
fn converges, and

∫ ∑
fn =

∑ ∫
fn

•
∫
|f |p <∞⇒ F (t) ≤ Ct−p, f ∈ L1 ⇒ nF (n)→ 0,

∫
|f | <∞⇒

∑
F (n) <∞ - for µ(X) <∞, they are equivalent

• f measurable, E ⊆ Rn measurable, then
∫
E
|f |pdm =

∫∞
0
ptp−1m({x ∈ E : |f(x)| > t})dt

• T : Rn → Rn linear transformation, A ⊆ Rn Lebesgue measurable, then T (A) is as well and m(T (A)) = |det(T )|m(A)
• T invertible, f : Rn → R measurable, and either f ≥ 0 or f integrable,

∫
fdm = |det(T )|

∫
f ◦ Tdm

• U, V open ⊆ Rn, φ : U → V homeomorphism, φ, φ−1 ∈ C1, then for any f ≥ 0 measurable on V ,
∫
V
fdm =

∫
U

(f ◦ φ)|Jφ|dm
• f ≥ 0 Borel on Rn, F (x) =

∫
R` f(x, ·)dm, G(y) =

∫
Rk f(·, y)dm, then F , G Borel and

∫
Rn fdm =

∫
Rk Fdm =

∫
R` Gdm

• f Borel on Rn and integrable, then
∫

Rn fdm =
∫

Rk

∫
R` f(x, y)dydx =

∫
R`

∫
Rk f(x, y)dxdy (Fubini-Tonelli theorem)

• Counterexample: µ Lebesgue, ν counting, A = {(x, y) : x = y} ⊂ [0, 1]2,
∫∫

1Adµdν = 0 but
∫∫

1Adνdµ = 1


