- $\exists x_{n} \in E: x_{n} \rightarrow x \Rightarrow x \in \bar{E} \Leftrightarrow$ for every open $U, x \in U$, we have $U \cap E \neq \emptyset$
- $x \in \bar{E}$ is a limit point of E when for every open $U, x \in U$, we have $(U-\{x\}) \cap E \neq \emptyset$
- D dense $\subseteq X$ when $\bar{D}=X$ $\bar{A} \neq \overline{A^{O}}, A^{O} \neq(\bar{A})^{O}$
- $A^{O}=\emptyset \Leftrightarrow A^{C}$ dense $\subseteq X$
- D dense in $E \subseteq X \Leftrightarrow \forall x \in E$ and open $U \subseteq X, x \in U$, we have $D \cap U \neq \emptyset$
- X separable when \exists countable dense $D \subseteq X$
- $f: X \rightarrow Y$ continuous when $f^{-1}(U)$ is open in X for every open $U \subseteq Y$
- $f: X \rightarrow Y$ homeomorphism when f is a bijection and f, f^{-1} are continuous
- X metric space when $\exists d: X \times X \rightarrow \mathbb{R}_{\geq 0}$ such that $d(x, y)=d(y, x), d(x, y)+d(y, z) \geq d(x, z), d(x, y) \geq 0(=0 \Leftrightarrow x=y)$
- X (real) inner product space when X an \mathbb{R}-vector space, \exists bilinear $\langle\cdot, \cdot\rangle: X \times X \rightarrow \mathbb{R}:\langle x, y\rangle=\langle y, x\rangle,\langle x, x\rangle \geq 0(=0 \Leftrightarrow x=0)$
- X inner product space, then $|\langle x, y\rangle| \leq\|x\|\|y\|$ for any $x, y \in X$ (Cauchy-Schwarz inequality)
- X, Y metric spaces, $f: X \rightarrow Y$ uniformly continuous when $\forall \epsilon>0, \exists \delta>0: \rho(f(x), f(y))<\epsilon$ for all $x, y \in X$ with $d(x, y)<\delta$
- \mathcal{T} a topology, then $\mathcal{B} \subseteq \mathcal{T}$ is a base when $\forall U \in \mathcal{T}$, we have $U=\bigcup_{G \in \mathcal{B}: G \subseteq U} G$
- $\mathcal{B} \subseteq \mathcal{T}$ a base $\Leftrightarrow \bigcup_{U \in \mathcal{B}} U=X$ and $\forall\left\{U_{1}, \ldots, U_{n}\right\} \subseteq \mathcal{B}$ and $x \in \bigcap U_{i}, \exists V \in \mathcal{B}: x \in V \subseteq \bigcap U_{i}$
- S subbase for \mathcal{T} when \mathcal{T} is the weakest topology containing S
- Product topology on $Y=\prod X_{i}$ is defined by base $\left\{U_{1} \times \cdots \times U_{n}: U_{i}\right.$ open $\left.\subseteq X_{i}\right\}$, i.e. $\pi_{i}: Y \rightarrow X_{i}$ continuous
- x_{n} converges to x (i.e., $x_{n} \rightarrow x$) when \forall open $U \subseteq X, x \in U, \exists N \in \mathbb{N}: \forall n>N, x_{n} \in U$
- X Hausdorff when $\forall x, y \in X, x \neq y, \exists U, V$ open $\subseteq X: x \in U, y \in V, U \cap V=\emptyset$
- X Hausdorff, then $\left(x_{n} \rightarrow x\right.$ and $\left.x_{n} \rightarrow y\right) \Rightarrow x=y$
- Y Hausdorff, $f, g: X \rightarrow Y$ continuous, then $\{x \in X: f(x)=g(x)\}$ is closed
- X metric space, $E \subseteq X$, then $x \in \bar{E} \Leftrightarrow \exists\left\{x_{n}\right\} \subseteq E: x_{n} \rightarrow x$
- $f: X \rightarrow Y$ continuous $\Rightarrow\left(x_{n} \rightarrow x \Rightarrow f\left(x_{n}\right) \rightarrow f(x)\right)$ - X metric space, then they are equivalent
- $\left\{x_{n}\right\}$ Cauchy when $\forall \epsilon>0, \exists N \in \mathbb{N}: \forall m, n>N, d\left(x_{m}, x_{n}\right)<\epsilon$
- convergent \Rightarrow Cauchy \Rightarrow bounded - for monotonic sequences, all three are equivalent
- If a Cauchy sequence has a convergent subsequence, the sequence converges, and to the same limit
- X complete when every Cauchy sequence converges
- X complete, $E \subseteq X$, then E closed $\Leftrightarrow E$ complete
- X complete, then $\left\{f_{n}: X \rightarrow \mathbb{R}\right\}$ pointwise bounded $\Rightarrow \exists$ open $V \neq \emptyset, M \in \mathbb{R}:\left|f_{n}(x)\right| \leq M$ for all $x \in V$ and all n
- X complete, $f: X \rightarrow X$ has $\exists \alpha<1: d(f(x), f(y)) \leq \alpha d(x, y)$, then $\exists!x \in X: f(x)=x$ and $\forall x_{0} \in X, x_{n}=f^{n}\left(x_{0}\right), x_{n} \rightarrow x$
- X complete, then G_{n} dense, open $\subseteq X \Rightarrow \bigcap G_{n}$ dense in X (Baire category theorem)
- $E \subseteq X$ nowhere dense if $\left(E^{C}\right)^{O}=\emptyset$
- $E \subseteq X$ first category if $E=\bigcup A_{n}$ where A_{n} are all nowhere dense (example: \mathbb{Q})
- $E \subseteq X$ second category if E is not first category (example: $\mathbb{R}-\mathbb{Q}$)
- $E \subseteq X \mathbf{F}_{\sigma}$ if $E=\bigcup C_{n}$ where C_{n} are all closed (example: \mathbb{Q})
- $E \subseteq X \mathbf{G}_{\delta}$ if $E=\bigcap U_{n}$ where U_{n} are all open (example: $\mathbb{R}-\mathbb{Q}$)
- F_{n} each first category, G_{n} each second category, then $\bigcup F_{n}$ first category, $\cap G_{n}$ second category
- $f: X \rightarrow \mathbb{R}$ a function, then $C=\{x \in X: f$ continuous at $x\}$ is $G_{\delta}\left(U_{n}=\left\{x \in X: \exists\right.\right.$ open $\left.\left.V_{\frac{1}{n}, x} \subset X: x \in V_{\frac{1}{n}, x}, f(x) \in B_{\frac{1}{n}}(f(x))\right\}\right)$
- Any closed set in \mathbb{R}^{n} is G_{δ}
- Counterexample: $A=([0,1] \cap \mathbb{Q}) \cup([2,3]-\mathbb{Q})$ is neither F_{σ} nor G_{δ}
- X compact when any open cover $X=\bigcup U_{\alpha}$ has a finite subcover $X=\bigcup_{i=1}^{n} U_{i}$
- X compact, K_{n} closed $\subseteq X$ with $K_{n} \neq \emptyset$ and $K_{n+1} \subseteq K_{n}$ for all n, then $\bigcap_{n=1}^{\infty} K_{n} \neq \emptyset$
- (X, \mathcal{T}) Hausdorff, (X, \mathcal{F}) compact, $\mathcal{T} \subseteq \mathcal{F}$, then $\mathcal{T}=\mathcal{F}$
- X compact, $E \subseteq X$, then E closed $\Rightarrow E$ compact
- X Hausdorff, $E \subseteq X$, then E compact $\Rightarrow E$ closed
- $K \subseteq \mathbb{R}^{n}$ is compact $\Leftrightarrow K$ is closed and bounded
- X compact, $f: X \rightarrow Y$ continuous, then $f(X)$ compact
- X compact, Y Hausdorff, $f: X \rightarrow Y$ continuous bijection, then f homeomorphism
- X compact metric space, Y metric space, $f: X \rightarrow Y$ continuous, then f uniformly continuous
- X metric space, $E \subseteq X$ bounded if $\sup \{d(x, y): x, y \in E\}<\infty$
- X metric space, $E \subseteq X$ totally bounded if $\forall \epsilon>0, \exists\left\{x_{1}, \ldots, x_{n}\right\} \subseteq E: E \subseteq \bigcup B\left(x_{k}, \epsilon\right)$
- E totally bounded $\Rightarrow E$ bounded, \bar{E} totally bounded, any $F \subseteq E$ is totally bounded - for \mathbb{R}^{n}, totally bounded \Leftrightarrow bounded
- X metric space, then X compact $\Leftrightarrow X$ complete and totally bounded
- X sequentially compact when every sequence in X has a convergent subsequence
- X metric space, then X compact $\Leftrightarrow X$ sequentially compact
- X compact metric space, Y metric space, then Y complete $\Rightarrow C(X, Y)$ complete in uniform metric $d(f, g)=\sup \{\rho(f(x), g(x))\}$
- Y metric space, $\mathcal{F} \subseteq C(X, Y)$ equicontinuous at $x \in X$ when $\forall \epsilon>0, \exists$ open $U \subseteq X, x \in U: \forall y \in U, f \in \mathcal{F}, \rho(f(x), f(y))<\epsilon$
- X compact, Y compact metric space, $\mathcal{F} \subseteq C(X, Y)$, then \mathcal{F} totally bounded $\Leftrightarrow \mathcal{F}$ equicontinuous
- X compact, Y compact metric space, $\mathcal{F} \subseteq C(X, Y)$ equicontinuous \Rightarrow every $\left\{f_{n}\right\} \subseteq \mathcal{F}$ has uniformly convergent subsequence
- $X \subset \mathbb{R}$ compact, $\left\{f_{n}\right\} \subseteq C(X, \mathbb{R})$ and $f_{n} \rightarrow f$ uniformly, then $\left\{f_{n}\right\}$ equicontinuous
- X connected when \nexists open $U, V \subseteq X: U \cap V=\emptyset, U \cup V=X$
- X connected $\Leftrightarrow \nexists U$ open, closed $\subseteq X: U \neq \emptyset, X$
- $E \subseteq \mathbb{R}$ is connected $\Leftrightarrow E$ is an interval
- X connected, $f: X \rightarrow Y$ continuous, then $f(X)$ connected
- If E_{α} connected for all α and $\bigcap E_{\alpha} \neq \emptyset$, then $\bigcup E_{\alpha}$ connected
- E connected $\Rightarrow \bar{E}$ connected
- For each $x \in X, C_{x}=\bigcup_{\text {connected } E \subseteq X: x \in E} E$, then the C_{x} are connected and closed, and partition X
- The polynomial functions are dense in $C([a, b], \mathbb{R})$ with the uniform topology (Stone-Weierstrass)
- $\mathcal{A} \subseteq P(X)$ algebra when $\emptyset \in \mathcal{A}$ and $\forall A, B \in \mathcal{A}, A^{C}, A \cup B \in \mathcal{A}$
- $\mu: \mathcal{A} \rightarrow \mathbb{R}_{\geq 0}^{*}$ additive when $\mu(A \cup B)=\mu(A)+\mu(B)$ for $A \cap B=\emptyset$
- For $x \in X$, point mass at x is $\delta_{x}: P(X) \rightarrow \mathbb{R}$ with $\delta_{x}(A)=1$ if $x \in A$ and 0 otherwise
- $\mathcal{A} \subseteq P(X) \sigma$-algebra when \mathcal{A} algebra and $\forall\left\{A_{k}\right\} \subseteq A, \bigcup A_{k} \in \mathcal{A}$
- \mathcal{B} Borel algebra is σ-algebra generated by closed subsets of X
- \mathcal{A} algebra, $\mu: \mathcal{A} \rightarrow \mathbb{R}_{\geq 0}^{*}$ countably additive if $\mu\left(\bigcup A_{k}\right)=\sum \mu\left(A_{k}\right)$ for countably many disjoint $A_{k} \in \mathcal{A}$ and $\bigcup A_{k} \in \mathcal{A}$
- μ additive, then μ countably additive $\Leftrightarrow\left(A_{n} \in \mathcal{A}, A_{n} \subseteq A_{n+1}\right.$ for all $\left.n, \bigcup A_{n} \in \mathcal{A} \Rightarrow \mu\left(\bigcup A_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)\right)$
- $\mathcal{A} \sigma$-algebra, $\mu: \mathcal{A} \rightarrow \mathbb{R}_{\geq 0}^{*}$ measure when μ is countably additive
- $\mathcal{A} \sigma$-algebra, μ, ν measures on \mathcal{A}, then so are $\mu+\nu, t \mu\left(\right.$ for $t \in \mathbb{R}^{+}$), and μ_{A} (where $\mu_{A}(E)=\mu(A \cap E)$)
- $\mathcal{A} \sigma$-algebra, \mathcal{M} directed set of measures on $\mathcal{A}(\mu \leq \nu$ when $\forall A \in \mathcal{A}, \mu(A) \leq \nu(A))$, then $\sup \mathcal{M}$ is a measure on \mathcal{A}
- $\mu^{*}: P(X) \rightarrow \mathbb{R}_{\geq 0}^{*}$ outer measure when $\mu^{*}(\emptyset)=0, A \subseteq B \Rightarrow \mu^{*}(A) \leq \mu^{*}(B)$, and $\forall\left\{A_{n}\right\} \subseteq P(X), \mu^{*}\left(\bigcup A_{n}\right) \leq \sum \mu^{*}\left(A_{n}\right)$
- μ^{*} outer measure on $X, E \subseteq X \mu^{*}$-measurable when $\forall A \subseteq X, \mu^{*}(A)=\mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{C}\right)$ (we always have \leq)
- $\mu^{*}(E)=0 \Rightarrow E$ measurable
- μ^{*} outer measure on $X, \mathcal{M}=\left\{\mu^{*}\right.$-measurable sets $\}$, then $\mu_{\mathcal{M}}^{*}$ a measure on X
- m^{*} Lebesgue outer measure when $m^{*}(E)=\inf \left\{\sum \ell\left(I_{n}\right): E \subseteq \bigcup I_{n}\right\}$
- If $A \subseteq \mathbb{R}^{n}$ is Lebesgue measurable, \exists Borel $F, G: F \subseteq A \subseteq G$ and $m(G-A)=m(A-F)=0$
- Lebesgue outer measure is translation invariant
- $A, B \subseteq \mathbb{R}$ measurable, $A \subseteq E \subseteq B$, then E measurable
- If $m(E)>0$, then E contains a non-measurable set
- Counterexample: $A=\{$ representatives for $\sim\} \subset[0,1)$ where $x \sim y$ when $x-y \in \mathbb{Q}$ is not Lebesgue measurable
- Counterexample: Fat Cantor set is nowhere dense but has positive Lebesgue measure
(take $[0,1]$, at nth step subtract width $\frac{1}{2^{2 n}}$ interval from each of the 2^{n-1} remaining intervals)
- Counterexample: Cantor set C is perfect and bounded, hence compact and uncountable, but $m(C)=0$ and C is nowhere dense (because it is closed and contains no interval) - C is also totally disconnected
- μ measure on \mathcal{A}, then $\mu\left(\bigcup E_{n}\right) \leq \sum \mu\left(E_{n}\right)$ for any $E_{n} \in \mathcal{A}$ (not necessarily disjoint)
- μ measure on \mathcal{A} and $\mu\left(E_{1}\right)<\infty$ and $E_{n+1} \subseteq E_{n}$ for all n, then $\mu\left(\bigcap E_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)$
- $\lim \inf E_{n}=\bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} E_{m}$ (all but finitely many), $\lim \sup E_{n}=\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} E_{m}$ (infinitely many)
- μ measure on $\mathcal{A}, E_{n} \in \mathcal{A}$, then $\mu\left(\liminf E_{n}\right) \leq \liminf \mu\left(E_{n}\right)$
- μ measure on $\mathcal{A}, E_{n} \in \mathcal{A}, \sum \mu\left(E_{n}\right)<\infty$, then $\mu\left(\lim \sup E_{n}\right)=0$
$\left\{x: \sup f_{n}(x)>t\right\}=\bigcup\left\{x: f_{n}(x)>t\right\}$
- $f: X \rightarrow Y$ continuous, then $B \subseteq Y$ Borel $\Rightarrow f^{-1}(B) \subseteq X$ Borel
- $f: X \rightarrow \overline{\mathbb{R}} \mathcal{A}$-measurable when $f^{-1}(\infty), f^{-1}(-\infty), f^{-1}(U) \in \mathcal{A}$ for all open $U \in \mathbb{R}$
- f measurable $\Leftrightarrow\{x: f(x)(>, \geq, \leq,<) t\} \in \mathcal{A} \Leftrightarrow f^{-1}(B) \in \mathcal{A}$ whenever B Borel or $B=\{\infty\},\{-\infty\}$
- f_{n}, f, g measurable $\Rightarrow|f|, f^{2}, f+g, f g, \sup f_{n}, \inf f_{n}, \lim \sup f_{n}, \lim \inf f_{n}$ all measurable
- f_{n}, f measurable, $f_{n} \rightarrow f$ converges in measure when, $\forall \epsilon>0, \lim \mu\left(\left\{x:\left|f(x)-f_{n}(x)\right| \geq \epsilon\right\}\right)=0$
- f simple if image is finite
- $f \geq 0$ measurable, then $\exists f_{n} \geq 0$ simple measurable : $f_{n} \uparrow$ and $\lim f_{n}=f$ pointwise (use $f_{n}=\sum_{k=1}^{n 2^{n}} \frac{k-1}{2^{n}} \mathbf{1}_{A_{n, k}}+n \mathbf{1}_{B_{n}}$ where $A_{n, k}=$ $\left\{x:(k-1) 2^{-n}<f(x) \leq k 2^{-n}\right\}$ and $\left.B_{n}=\{x: f(x)>n\}\right)$
- f measurable, then $\exists f_{n}$ simple measurable such that $f_{n} \rightarrow f$ pointwise - when f is bounded, $f_{n} \rightarrow f$ uniformly
- $f=\sum c_{k} \mathbf{1}_{A_{k}} \geq 0$ simple measurable, integral of f is $\int f=\sum c_{k} \mu\left(A_{k}\right)$ (note $\left.0 \leq \int f d \mu \leq \infty\right)$
- $\int f d \mu \leq \int g d \mu$ if $f \leq g, \int(f+g) d \mu=\int f d \mu+\int g d \mu, \int t f d \mu=t \int f d \mu$ for $t \geq 0$
- $f \geq 0$ measurable, then integral of f is $\int f d \mu=\sup \left\{\int g d \mu: 0 \leq g \leq f, g\right.$ simple measurable $\}$
- $f \geq 0$, then $\int f d \mu=0 \Leftrightarrow f=0$ a.e.
- For any $f \geq 0$ measurable, $\nu(E)=\int_{E} f d \mu$ is a measure on \mathcal{A}
- $f_{n} \geq 0$ measurable with $f_{n} \uparrow$, then $\int \lim f_{n} d \mu=\lim \int f_{n} d \mu$ (monotone convergence)
$f=\lim f_{n}=\sup f_{n}$ is measurable because sup's are, so $\int f d \mu$ exists. $f_{n} \leq f_{n+1}$, so $\int f_{n} d \mu \leq \int f_{n+1} d \mu$, so lim $\int f_{n} d \mu$ exists (though could be $\infty)$. $f_{n} \leq f$, so $\lim \int f_{n} d \mu \leq \int f d \mu$. Let g simple measurable have $0 \leq g \leq f$, and fix $0<\epsilon<1$, and let $A_{n}=\left\{x \in X: f_{n}(x) \geq(1-\epsilon) g(x)\right\}$ - then $A_{n} \subseteq A_{n+1}$ for all n because $f_{n} \uparrow$, and $\bigcup A_{n}=X$ because $\lim f_{n}=\sup f_{n} \geq g$. Becuase $\int f_{n} d \mu \geq \int_{A_{n}} f_{n} d \mu \geq(1-\epsilon) \int_{A_{n}} g d \mu$ and $\nu(E)=\int_{E} g d \mu$ is a measure, $\int_{A_{n}} g d \mu \rightarrow \int g d \mu$, so that $\lim \int f_{n} d \mu \geq(1-\epsilon) \int g d \mu$ for all $\epsilon>0$, so $\lim \int f_{n} d \mu \geq \int g d \mu$, thus $\lim \int f_{n} d \mu \geq \int f d \mu$.
- $f_{n} \geq 0$, then $\int \lim \inf f_{n} d \mu \leq \lim \inf \int f_{n} d \mu$ (Fatou's lemma)
- Counterexample: $f_{n}=n \mathbf{1}_{\left(0, \frac{1}{n}\right)}$ has $\liminf f_{n}=0$ and hence $\int \lim \inf f_{n} d \mu=0$, but $\lim \inf \int f_{n} d \mu=\lim \inf 1=1$
- f measurable, integral of f is $\bar{\eta} f=\int f^{+} d \mu-\int f^{-} d \mu-f$ integrable (or summable) if $\int|f| d \mu<\infty$
- f_{n} measurable, $f_{n} \rightarrow f$, and $\left|f_{n}\right| \leq g$ where g integrable, then f integrable, and $\int f d \mu=\lim \int f_{n} d \mu$ (dominated convergence)
- $\mu(\{x: f(x)>t\}) \leq \frac{1}{t} \int f d \mu$ (Chebyshev's inequality)
- μ a measure on X with $\mu(X)=1, f: X \rightarrow J$ integrable for some interval J, ϕ convex on J, then $\phi\left(\int f d \mu\right) \leq \int \phi(f) d \mu$ (Jensen's inequality)
- $1<p<\infty, q=\frac{p}{p-1}, f, g \geq 0$ measurable, then $\int f g d \mu \leq\left(\int f^{p} d \mu\right)^{\frac{1}{p}}\left(\int g^{q} d \mu\right)^{\frac{1}{q}}-$ if $f \in L^{p}$ and $g \in L^{q}, f g \in L^{1}$ and $\left|\int f g\right| \leq\|f\|_{p}\|g\|_{q}$
- f bounded, then f measurable $\Leftrightarrow f \in L^{1}$
(Holder's inequality)
- $1 \leq p<\infty, f_{n} \in L^{p}, f_{n} \rightarrow f$ in L^{p}, then $\lim \int\left|f_{n}\right|^{p}=\int|f|^{p}$
- $1 \leq p<\infty, f_{n}, f \in L^{p}, f_{n} \rightarrow f$ a.e., then $f_{n} \rightarrow f$ in $L^{p} \Leftrightarrow\left\|f_{n}\right\|_{p} \rightarrow\|f\|_{p}$
- Always: $f_{n} \rightarrow f$ in $L^{p} \Rightarrow$ in measure - if $\mu(X)<\infty$, a.e. \Rightarrow in measure - if $\left|f_{n}\right| \leq g \in L^{p}, L^{p} \Leftrightarrow$ in measure and a.e. \Rightarrow in measure
- Counterexample: $f_{1}=\mathbf{1}_{[0,1]}, f_{2}=\mathbf{1}_{\left[0, \frac{1}{2}\right]}, f_{3}=\mathbf{1}_{\left[\frac{1}{2}, 1\right]}$, etc. $f_{n} \rightarrow 0$ in measure, L^{p} but $f_{n} \nrightarrow f$ pointwise a.e.
- Counterexample: $f_{n}=n \mathbf{1}_{\left[\frac{1}{n}, \frac{2}{n}\right]}$, then $f_{n} \rightarrow 0$ pointwise a.e., $f_{n} \rightarrow 0$ in measure, but $\left\|f_{n}\right\|_{p}=1$, so cannot converge to 0 in L^{p}
- Counterexample: $f_{n}=\mathbf{1}_{[n, n+1]}$, then $f_{n} \rightarrow 0$ everywhere, but $f_{n} \nrightarrow 0$ in measure
- $f \in L^{1}([a, b])$ and $\forall x \in[a, b], \int_{a}^{x} f d t=0$, then $f=0$ a.e.

Graph of a measurable function has measure 0

- $\sum \int\left|f_{n}\right|<\infty \Rightarrow \sum f_{n}$ converges, and $\int \sum f_{n}=\sum \int f_{n}$
- $\int|f|^{p}<\infty \Rightarrow F(t) \leq C t^{-p}, f \in L^{1} \Rightarrow n F(n) \rightarrow 0, \int|f|<\infty \Rightarrow \sum F(n)<\infty$ - for $\mu(X)<\infty$, they are equivalent
- f measurable, $E \subseteq \mathbb{R}^{n}$ measurable, then $\int_{E}|f|^{p} d m=\int_{0}^{\infty} p t^{p-1} m(\{x \in E:|f(x)|>t\}) d t$
- $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ linear transformation, $A \subseteq \mathbb{R}^{n}$ Lebesgue measurable, then $T(A)$ is as well and $m(T(A))=|\operatorname{det}(T)| m(A)$
- T invertible, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ measurable, and either $f \geq 0$ or f integrable, $\int f d m=|\operatorname{det}(T)| \int f \circ T d m$
- U, V open $\subseteq \mathbb{R}^{n}, \phi: U \rightarrow V$ homeomorphism, $\phi, \phi^{-1} \in C^{1}$, then for any $f \geq 0$ measurable on $V, \int_{V} f d m=\int_{U}(f \circ \phi)\left|J_{\phi}\right| d m$
- $f \geq 0$ Borel on $\mathbb{R}^{n}, F(x)=\int_{\mathbb{R}^{\ell}} f(x, \cdot) d m, G(y)=\int_{\mathbb{R}^{k}} f(\cdot, y) d m$, then F, G Borel and $\int_{\mathbb{R}^{n}} f d m=\int_{\mathbb{R}^{k}} F d m=\int_{\mathbb{R}^{\ell}} G d m$
- f Borel on \mathbb{R}^{n} and integrable, then $\int_{\mathbb{R}^{n}} f d m=\int_{\mathbb{R}^{k}} \int_{\mathbb{R}^{\ell}} f(x, y) d y d x=\int_{\mathbb{R}^{\ell}} \int_{\mathbb{R}^{k}} f(x, y) d x d y$ (Fubini-Tonelli theorem)
- Counterexample: μ Lebesgue, ν counting, $A=\{(x, y): x=y\} \subset[0,1]^{2}, \iint \mathbf{1}_{A} d \mu d \nu=0$ but $\iint \mathbf{1}_{A} d \nu d \mu=1$

