. ElanE:xnHx#méf@foreveryopenU,xeU,WehaveUﬂE#Q)

e 1 € E is a limit point of E when for every open U, z € U, we have (U —{z}) N E # 0

e D dense C X when D = X ’Z#F,AO;&(Z)O‘

o A° =) & A® dense C X

D densein EC X < Vo€ Eand open U C X, z € U, we have DNU # ()

X separable when 3 countable dense D C X (E°)C = (E°)
f:X — Y continuous when f~*(U) is open in X for every open U C Y

f: X — Y homeomorphism when f is a bijection and f, f~! are continuous

X metric space when 3d : X X X — Rx>¢ such that d(z,y) = d(y, z), d(z,y) + d(y, z) > d(z,2), d(z,y) >0(=0z=1y)

X (real) inner product space when X an R-vector space, 3 bilinear (-,-) : X x X — R : (z,y) = (y,x

X inner product space, then [(z,y)| < ||z||||ly|| for any z,y € X (Cauchy-Schwarz inequality)

X,Y metric spaces, f : X — Y uniformly continuous when Ve > 0, 36 > 0: p(f(z), f(y)) < € for all z,y € X with d(z,y) <6
T a topology, then B C 7 is a base when YU € 7, we have U = g cp.acy G
BCTabase & UycpU=XandV {U1,...,Un} CBandxc NU;, IV eB:zcVCNU

S subbase for 7 when 7 is the weakest topology containing S

Product topology on Y =[] X; is defined by base {U; x --- x U, : U; open C X;}, i.e. m; : Y — X, continuous

zn converges to z (i.e., zn, — x) when Vopen U C X,z € U,IN € N:Vn > N,z, € U

X Hausdorff when Vz,y € X, x #y, 3U,Vopen C X :z €U, yecV, UNV =0

X Hausdorff, then (z, — xz and 2, — y) =z =1y

Y Hausdorff, f,g: X — Y continuous, then {z € X : f(z) = g(x)} is closed

X metric space, E C X, then2 € £ < 3z, CE:2, — 2

f:X — Y continuous = (z, — = = f(zn) — f(z)) - X metric space, then they are equivalent

{z»} Cauchy when Ve > 0, IN € N:Vm,n > N, d(xm,zn) < €

convergent = Cauchy = bounded - for monotonic sequences, all three are equivalent

If a Cauchy sequence has a convergent subsequence, the sequence converges, and to the same limit

X complete when every Cauchy sequence converges

X complete, £ C X, then F closed < E complete

X complete, then {f, : X — R} pointwise bounded = Jopen V # @, M € R: |fn(z)] < M for all z € V and all n

X complete, f: X — X has Ja < 1:d(f(z), f(y)) < ad(z,y), then Fz € X : f(z) =2 and Voo € X, zn = " (20), Tn —

X complete, then Gy, dense, open C X = (|G, dense in X (Baire category theorem)

E C X nowhere dense if (E)° =0

E C X first category if E = J A, where A,, are all nowhere dense (example: Q)

E C X second category if F is not first category (example: R — Q)

ECXF, if E=JC, where C, are all closed (example: Q)

E C X G;s if E=(\U, where U, are all open (example: R — Q)

F,, each first category, G, each second category, then J F;, first category, [| G second category

f+X — R a function, then C' = {z € X : f continuous at z} is G5 (Un ={z € X :Jopen V1 , C X:z€V1 , f(z) €B
Any closed set in R™ is G5 " "
COUNTEREXAMPLE: A = ([0,1] N Q) U ([2, 3] — Q) is neither F nor Gs

X compact when any open cover X = |J U, has a finite subcover X = |JI_, U;

X compact, K, closed C X with K, # 0 and Kny1 C K, for all n, then (), Kn # 0

(X,7) Hausdorfl, (X, F) compact, 7 C F, then T = F

X compact, £ C X, then E closed = F compact

X Hausdorff, E C X, then E compact = FE closed

K CR" is compact < K is closed and bounded

X compact, f: X — Y continuous, then f(X) compact

X compact, Y Hausdorff, f : X — Y continuous bijection, then f homeomorphism

X compact metric space, Y metric space, f : X — Y continuous, then f uniformly continuous

X metric space, E C X bounded if sup{d(z,y) : z,y € E} < o0

X metric space, E C X totally bounded if Ve > 0, 3{z1,...,2,} CE: E CJ B(zg,¢€)

E totally bounded = E bounded, E totally bounded, any F C E is totally bounded - for R, totally bounded < bounded
X metric space, then X compact < X complete and totally bounded

X sequentially compact when every sequence in X has a convergent subsequence

X metric space, then X compact < X sequentially compact

X compact metric space, Y metric space, then Y complete = C(X,Y’) complete in uniform metric d(f, g) = sup{p(f(z), g(z))}
Y metric space, F C C(X,Y) equicontinuous at x € X when Ve > 0,3 open U C X,z € U:Vy e U, f € F,p(f(z), f(y)) < e
X compact, Y compact metric space, F C C(X,Y), then F totally bounded < F equicontinuous

X compact, Y compact metric space, F C C(X,Y) equicontinuous = every {f»} C F has uniformly convergent subsequence
X C R compact, {fn} € C(X,R) and f, — f uniformly, then {f.} equicontinuous

X connected when B open U,VC X: UNV =0, UUV =X

X connected < 3 U open, closed C X: U # 0, X

FE C R is connected < FE is an interval

X connected, f: X — Y continuous, then f(X) connected

If E, connected for all @ and () Eq # 0, then |J Fo connected

E connected = E connected

For each z € X, C, =

3=

connected ECX:zek &> then the C, are connected and closed, and partition X

The polynomial functions are dense in C([a, b],R) with the uniform topology (Stone-Weierstrass)

A C P(X) algebra when ) € A and VA,Bec A, ASAUBec A

o i: A— Ry, additive when u(AU B) = u(A) + u(B) for ANB =10
e For z € X, point mass at z is §, : P(X) — R with 0,(A) =1 if x € A and 0 otherwise

Y{(z,z) >0(=0< 2z =0)



A C P(X) o-algebra when A algebra and V{A,} C A, |JAr € A
B Borel algebra is o-algebra generated by closed subsets of X
A algebra, p: A — R%, countably additive if u(|J Ax) = > u(Ax) for countably many disjoint Ay € A and |J Ar € A

u additive, then p countably additive < (Ap € A, Ap C Apyq foralln, JAn € A= pu(JAR) = limp—oo p(Ar))

A o-algebra, p : A — R%, measure when p is countably additive

A o-algebra, p, v measures on A, then so are u 4 v, tu (for t € RY), and pa (where pa(E) = p(AN E))

A o-algebra, M directed set of measures on A (u < v when VA € A, u(A) < v(A)), then sup M is a measure on A

w* i P(X) — RY, outer measure when p*(#) =0, AC B = u*(A) < p*(B), and V{A,} C P(X),pu" (U An) <> " (An)

p* outer measure on X, F C X p*-measurable when VA C X, u*(A) = p* (AN E) + u* (AN E°) (we always have <)

u*(E) = 0= E measurable

" outer measure on X, M = {u*-measurable sets}, then pj, a measure on X

m” Lebesgue outer measure when m™(E) = inf{}_¢([,): ECJI.}

If A CR" is Lebesgue measurable, 3 Borel F,G: F C AC G and m(G—A)=m(A—-F)=0

Lebesgue outer measure is translation invariant

A, B C R measurable, A C E C B, then E measurable

If m(E) > 0, then E contains a non-measurable set

COUNTEREXAMPLE: A = {representatives for ~} C [0,1) where  ~ y when z —y € Q is not Lebesgue measurable

COUNTEREXAMPLE: Fat Cantor set is nowhere dense but has positive Lebesgue measure

(take [0,1], at nth step subtract width g3 interval from each of the 2"~ remaining intervals)

COUNTEREXAMPLE: Cantor set C' is perfect and bounded, hence compact and uncountable, but m(C) = 0 and C' is nowhere dense (because it
is closed and contains no interval) - C' is also totally disconnected

w measure on A, then pu(|J Ern) <> u(Ey) for any E, € A (not necessarily disjoint)

w measure on A and p(E1) < oo and Eny1 C FE, for all n, then u(() En) = limp—oo u(En)
liminf B, = U3, Noo_,, Em (all but finitely many), limsup E, = (>, U;-_,, Em (infinitely many) ’ {z :sup fu(z) >t} =U{z: fu(z) >t} ‘
p measure on A, E, € A, then y(liminf E,) < liminf pu(E,,)
p measure on A, E, € A, > u(Ey) < oo, then p(limsup E,) =0 ’ {z :inf fo(z) <t} =U{z: fn(z) <t} ‘
f:X — Y continuous, then B CY Borel = f~'(B) C X Borel

f: X — R A-measurable when f~!(c0), f~!(—00), f1(U) € A for all open U € R

f measurable < {z: f(z)(>,>,<,<)t} € A< f'(B) € A whenever B Borel or B = {0}, {0}
fn, f, g measurable = |f|, f2, f + g, fg,sup fn,inf fn,limsup f,,liminf f, all measurable

fn, [ measurable, f, — f converges in measure when, Ve > 0, lim u({z : |f(z) — fu(z)| > €}) =0
f simple if image is finite

f > 0 measurable, then 3 f, > 0 simple measurable : f, T and lim f, = f pointwise (use f, =
{z:(k—1)27" < f(z) <k27"} and B, = {z: f(z) > n})

f measurable, then 3 f,, simple measurable such that f, — f pointwise - when f is bounded, f, — f uniformly

f =3 crkla, >0 simple measurable, integral of f is [ f = ckp(Ax) (note 0 < [ fdp < oo)

[ fdu < [gduif f <g, [(f+9)du= [ fdu+ [gdp, [tfdu=t [ fdu fort >0

[ > 0 measurable, then integral of f is [ fdu = sup{[ gdp : 0 < g < f, g simple measurable}

f>0,then [ fdu=0< f=0ae.

For any f > 0 measurable, v(E) = [, fdu is a measure on A

fn > 0 measurable with f, T, then [lim fndy = lim [ frdp (monotone convergence)

f =lim fn = sup f» is measurable because sup’s are, so [ fdy exists. fn < fn41, 50 [ fadp < [ faridp, so lim [ fndp exists (though could be
00). fn < f,s0lim [ fndp < [ fdp. Let g simple measurable have 0 < g < f, and fix 0 < e < 1, and let A, = {z € X : fa(z) > (1 —€)g(z)}
- then A, C Apyq for all n because fn 1, and |J An = X because lim f, = sup fn > g. Becuase [ fndy > fA,, fadp > (1 —€) fAn gdp and
v( fE gdp is a measure, fA gdp — [ gdp, so that lim [ frdp > (1—¢) [ gdp for all € > 0, so lim [ fndp > [ gdu, thus lim [ fodp > [ fdp.
fn 2 0, then [liminf fndp < lim inf [ fndp (Fatou’s lemma)

COUNTEREXAMPLE: f, = nl(o 1y has liminf f, = 0 and hence Jliminf fp,dp = 0, but liminf [ fody =liminfl =1

f measurable, integral of fis [ f = [ fTdu— [ f~du - f integrable (or summable) if [ |f|du < oo

fn measurable, fn — f, and |fn| < g where g integrable, then f integrable, and [ fdu = lim | fndp (dominated convergence)

pw{x: f(z) > t} 1 [ fdu (Chebyshev’s inequality)

/4 & measure on X s W1th w(X) =1, f: X — J integrable for some mlterval J, ? convex on J, then ¢([ fdu) < fqb )du (Jensen’s inequality)
1<p<oo,q=; 1,f,g>0meabu1r:auble then [ fgdp < ([ fPdu)» fqu,u Yo -if fe P and g € LY, fge L' and|ff9|<“f‘|p”9“q

f bounded, then f measurable < f € L* (Holder’s inequality)
1<p<oo, fan € LP, fn— fin LP, then lim [ |fa|? = [ |fI?

1< p< 00 for f € L, fu = f ae, then fu = f in I & || fally — 1l

Always: f, — f in LP = in measure - if (X)) < o0, a.e. = in measure - if |f,| < g € LP, L? < in measure and a.e. = in measure
COUNTEREXAMPLE: f1 = 1j9,1], f2 = 1.1, fa = 1[1 1), ete. fn. — 0 in measure, L” but fn 7/ f pointwise a.e.

COUNTEREXAMPLE: f, = 711[712 2y, then . — 0 pointwise a.e., fn — 0 in measure, but |l fnllp = 1, so cannot converge to 0 in L”
COUNTEREXAMPLE: fr, = 1}, n41], then f,, — 0 everywhere, but frn 7 0 in measure
f € L'([a,b]) and Vz € [a,b], [ fdt =0, then f =0 a.e. ’ Graph of a measurable function has measure 0
S [ 1fn] < o0 =Y fn converges, and [> fn =Y [ fn
JIfIP <oco=F(t)<Ct P feL =nF(n)—0, [|f] <oco= Y F(n) < oo - for u(X) < oo, they are equivalent

[ measurable, E C R" measurable, then [, |f[Pdm = [ ptPi'm({x € E: |f(x)| > t})dt

T :R™ — R" linear transformation, A C R™ Lebesgue measurable, then T'(A) is as well and m(T'(A4)) = |det(T)|m(A)

T invertible, f : R™ — R measurable, and either f 2 0 or f integrable, [ fdm = |det(T)| [ f o Tdm

U,V open CR", ¢: U -V homeomorphism gb o e C’1 then for any f > 0 measurable on V, [, fdm = [, (f o ¢)|Js|dm
f > 0 Borel on R”, = [pe f(z,-)dm, G(y) = [pr f(-,y)dm, then F, G Borel and [p, fdm = [;, Fdm = [,, Gdm

f Borel on R™ and mtegrable then fw fdm ka Joe [z y)dydat = fW fmk z,y)dxdy (Fubini-Tonelli theorem)
COUNTEREXAMPLE: u Lebesgue, v counting, A = {(z,y) : z =y} C [0,1]%, [[ 1adudv =0 but [[ Ladvdu =1

n2™

it} 2,, 1,4"k + nlp, where A, =




