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1 Background and Notation

Let K be a field complete with respect to a non-trivial discrete valuation vK , and let L be a finite

separable extension of K of degree n = [L : K]. Let AK be the valuation ring of vK , i.e.

AK = {α ∈ K | vK(α) ≥ 0}.

Then the integral closure of AK in L is a valuation ring AL ⊆ L, and the valuation vL defined by

AL
2 is the unique extension of vK to a discrete valuation on L. Furthermore, L is complete with

respect to vL. Recall that

PK = {α ∈ AK | vK(α) > 0} ⊆ AK , PL = {α ∈ AL | vL(α) > 0} ⊆ AL

are the maximal ideals (in fact, unique prime ideals) of AK and AL. Because a valuation ring is

a PID, we have that PK = (πK) and PL = (πL) for some πK ∈ AK and πL ∈ AL. The elements

πK and πL are called uniformizing parameters, and are clearly determined up to multiplication

by a unit of AK and AL, respectively. We know that every fractional ideal of K is of the form

P iK = (πiK) for some i ∈ Z, and similarly for L. Therefore, because PKAL is a proper ideal of AL,

we have that PKAL = P eL for some e = e(L/K) ≥ 1, called the ramification index of L/K. Finally,

let K = AK/PK and L = AL/PL be the residue fields of K and L. Then f = f(L/K) = [L : K]

is called the residue degree of L/K. They are related by the following result, which is Cor. 1 to

Prop. 3 in Chapter 2 of [3].

Proposition 1. For K, L, n, e, f as above, ef = n.

Proof. This immediately follows from the prime decomposition theorem (Prop. 10 in Chapter 1 of

[3]), a.k.a. the “
∑
eifi = n theorem”, and the fact that AL has only one prime, PL.

1The author was supported by a grant from his father.
2cf. Prop. 2 in Chapter 1, §1 of [2]
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The reason we are interested in the above setup (besides plain-old curiosity) is because it occurs

when we have a Dedekind domain R, its fraction field F = Frac(R), a finite separable extension

E/F , the integral closure S of R in E, a non-zero prime ideal Q ⊂ R and a prime Q ⊂ S lying above

it, and we set K = F̃ and L = Ê, where the tilde and hat denote completion with respect to the

discrete valuations vQ and vQ, respectively. We would then have that PK = QRQ and PL = QSQ,

where RQ and SQ are the localizations of R and S at Q and Q, respectively.

For example, we might have R = Z, F = Q, E a number field, S = OE its ring of integers,

q ∈ Z a prime number and Q ⊂ S a prime ideal lying above it, in which case K = Qq and L = EQ.

The following result, which is the Corollary to Prop. 2 in Chapter 1, §5 of [2], shows that the

ramification and residue information of the prime Q over the prime Q in the extension E/F is

transferred correctly to the completion L/K.

Proposition 2. For F , H, Q, Q, K, L as above, e(Q/Q) = e(L/K) and f(Q/Q) = f(L/K).

In fact, more is true; by Corollary 4 to Theorem 1 in Chapter 1 of [3],

Proposition 3. If E/F is Galois with Γ = Gal(E/F ), then L/K is Galois with

G = Gal(L/K) ∼= D(Q/Q) ⊆ Γ,

where D(Q/Q) is the decomposition group of Q over Q in E/F , and the isomorphism is given by

taking an automorphism of E and extending it to Cauchy sequences in E, i.e. elements of L.

Proof. Recall that

D(Q/Q) = {γ ∈ Γ | γ(Q) = Q}.

The only γ ∈ Γ such that γ : E → E induces an automorphism γ̂ of L = Ê, which is the completion

with respect to vQ, are those with vQ(γ(α)) = vQ(α) for all α ∈ E, which is the case if and only if

γ(Q) = Q. Thus, we get a (clearly injective) homomorphism D(Q/Q)→ G. Because

|D(Q/Q)| = e(Q/Q)f(Q/Q) = e(L/K)f(L/K) = [L : K] = |G|,

the homomorphism is in fact an isomorphism.

Finally, recall the following important subgroup of Γ.

Definition 1. The inertia group of Q over Q in E/F is

I(Q/Q) = {γ ∈ Γ | γ(α) ≡ α mod Q for all α ∈ S}

Note that γ(α) ≡ α mod Q if and only if γ(α) − α ∈ Q if and only if vQ(γ(α) − α) > 0. By the

definition of the isomorphism between D(Q/Q) and G, and by the fact that L is the completion of
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E with respect to vQ, we have that the subgroup of G which is identified with I(Q/Q) ⊆ D(Q/Q)

under our isomorphism is

G0 = {σ ∈ G | vQ(σ(α)− α) > 0 for all α ∈ SQ}.

In general, we define the inertia group of L/K to be

G0 = {σ ∈ G | vL(σ(α)− α) > 0 for all α ∈ AL},

which does not require L and K to have come from some E and F . By the well-known fact that

Gal(L/K) ∼= Γ/I(Q/Q), we also have that Gal(L/K) ∼= G/G0.

The higher ramification groups Gi, which are the subject of this report, are obtained by gen-

eralizing the definition of the inertia group of L/K. Together, they form a filtration of G (i.e., a

decreasing series of normal subgroups of G), the properties of which allow us to draw strong con-

clusions about the structure of G. In particular, we will be interested in determining the structure

of the non-trivial factor groups.

2 Basic Properties

Let K and L, vK and vL, AK and AL, PK and PL, πK and πL be as above. From here on, we will

require that L/K is Galois, with Galois group G = Gal(L/K), and that L/K is separable.

Definition 2. For any i ≥ −1, the ith ramification group Gi is defined to be

Gi = {σ ∈ G | vL(σ(α)− α) > i for all α ∈ AL}.

Note that for any σ ∈ G, we have that σ(α)−α ∈ AL for all α ∈ L, and hence vL(σ(α)−α) ≥ 0

for all α ∈ L. Because vL is discrete, we therefore have that G−1 = G. As defined above, G0 is the

inertia group of L/K. Also note that vL(σ(α)− α) > i if and only if σ(α)− α ∈ P i+1
L if and only

if σ(α) ≡ α mod P i+1
L , so that

Gi = {σ ∈ G | σ(α) ≡ α mod P i+1
L for all α ∈ AL}.

The following result is Proposition 1 in Chapter 1, §9 of [2].

Proposition 4. AL = AK [a] for some a ∈ AL.

The proof of this important proposition requires many other results which are somewhat techni-

cal and unnecessary for the rest of our discussion, so it will be omitted. Note that this proposition

is where the hypothesis that L/K be separable is necessary.
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Definition 3. For some a ∈ AL such that AL = AK [a], define i = iL/K : G→ Z ∪ {∞} by

i(σ) = iL/K(σ) = vL(σ(a)− a).

Among other things, the following proposition shows that this definition is independent of the

choice of generator a ∈ AL.

Proposition 5. For all i ≥ −1, we have the following properties of Gi and i : G→ Z ∪ {∞}:

1. Gi is a normal subgroup of G.

2. σ ∈ Gi if and only if i(σ) ≥ i+ 1.

3. For any σ, τ ∈ G, i(στ) ≥ inf(i(σ), i(τ)).

4. For any σ, τ ∈ G, i(τστ−1) = i(σ).

5. The Gi are decreasing, i.e. Gi ⊆ Gj for i ≥ j.

6. For sufficiently large i, Gi = {idL}.

Proof. For part 1, note that any σ ∈ G naturally induces an automorphism of the ring AL/P
i+1
L

(because σ(P i+1
L ) = P i+1

L for all i). Because Gi is the kernel of the map G → Aut(AL/P
i+1
L ), we

have that Gi is normal in G for all i ≥ −1.

For part 2, note that σ ∈ Gi if and only if vL(σ(α) − α) > i for all α ∈ AL, hence i(σ) =

vL(σ(a)− a) > i, hence i(σ) ≥ i+ 1. Conversely, if i(σ) ≥ i+ 1, then vL(σ(a)− a) ≥ i+ 1, hence

σ(a) ≡ a mod P i+1
L . But because σ ∈ G = Gal(L/K), we have that σ(α) = α for α ∈ AK , so that

certainly σ(α) ≡ α mod P i+1
L for all α ∈ AK , and a generates AL as an algebra over AK , so we

must have that σ(α) ≡ α mod P i+1
L for all α ∈ AL. Thus σ ∈ Gi.

For part 3, note that if j = inf(i(σ), i(τ)) − 1 = inf(i(σ) − 1, i(τ) − 1), then i(σ) ≥ j + 1 and

i(τ) ≥ j + 1, which by part 2 implies σ ∈ Gj and τ ∈ Gj , hence στ ∈ Gj , hence i(στ) ≥ j + 1, and

thus i(στ) ≥ inf(i(σ), i(τ)).

For part 4, note that by part 1, σ ∈ Gi if and only if τστ−1 ∈ Gi for all τ ∈ G, so by part 2,

i(σ) ≥ i+ 1 if and only if i(τστ−1) ≥ i+ 1, for all i. Thus i(τστ−1) = i(σ).

Part 5 is obvious from the definition of the Gi.

For part 6, note that i(idL) = vL(0) = ∞, but if we set m = supσ 6=idL(i(σ)), then no σ ∈ G,

σ 6= idL has i(σ) ≥ m+ 1, so that Gm = {idL}. By part 5, we have Gi = {idL} for all i ≥ m.

Part 2 of this proposition shows that, because the elements of each Gi are what they are,

independent of our choice of generator a ∈ AL in the definition of i = iL/K , we must have that

for any choice, the function is the same. Furthermore, it shows that knowing the function iL/K is

actually equivalent to knowing all the groups Gi.

For a subgroup H ⊆ G = Gal(L/K), let K ′ be the fixed field of H, so that L/K ′ is Galois with

H = Gal(L/K ′). Because the residue field K ′ is an intermediate field of the extension L/K, which

by assumption is separable, we also have that L/K ′ is separable. Thus we can apply our results
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above, so that we get a filtration Hi on H, and a function iL/K′ : H → Z ∪ {∞}. The following

(obvious) result shows that the Hi are easy to compute:

Proposition 6. For any subgroup H ⊆ G, we have Hi = H ∩Gi.

Proof. Because Gi is the kernel of the map G → Aut(AL/P
i+1
L ) and Hi is the kernel of the map

H → Aut(AL/P
i+1
L ), we have that Hi = H ∩Gi.

3 The Structure of Gi/Gi+1

Let UL = AL − PL be the unit group of AL. We define the following subgroups:

Ui = 1 + P iL ⊆ UL.

Note that U0 = UL.

Proposition 7. The quotient map AL → AL/PL = L induces an isomorphism

U0/U1
∼= L

×
.

For each n ≥ 1, the map u 7→ u− 1 induces an isomorphism

Un/Un+1
∼= PnL/P

n+1
L .

Proof. Because U0 = AL − PL, and AL → AL/PL is surjective, and PL is its kernel, we have that

the image of U0 is L
×

. Forgetting about the additive structure, this is a surjective homomorphism

from the group U0 to the group L
×

. The kernel consists of those units which get sent to 1 + PL,

which by definition is U1.

For each n ≥ 1, we have that the map f : Un/Un+1 → PnL/P
n+1
L defined by f(u + Un+1) =

(u− 1) + Pn+1
L is a homomorphism, because for any u, v ∈ Un,

(uv − 1)− (u− 1)− (v − 1) = uv − u− v + 1 = (u− 1)(v − 1) ∈ P 2n
L ⊆ Pn+1

L

and therefore

f(u+ Un+1) + f(v + Un+1) = ((u− 1) + Pn+1
L ) + ((v − 1) + Pn+1

L ) = (u− 1) + (v − 1) + Pn+1
L =

(uv − 1) + Pn+1
L = f(uv + Un+1),

Its inverse is similarly defined and seen to be a homomorphism.

Page 5



Corollary 1. If L is of characteristic p, then for n ≥ 1, Upn ⊆ Upn+1.

Proof. Because Un/Un+1
∼= PnL/P

n+1
L , and PnL/P

n+1
L is an AL-module which is annihilated by PL,

we have that Un/Un+1 is a one-dimensional L-vector space. Therefore, if L is of characteristic p,

then (u+ Un+1)
p = up + Un+1 = 1 + Un+1 for all u ∈ Un, hence Upn ⊆ Un+1.

Theorem 1. Let i ≥ 0. Then σ ∈ Gi if and only if σ(x)
x ∈ Ui for all x ∈ L×.

Proof. Because Gi ⊆ G0 for all i ≥ 1, we can assume σ ∈ G0. By Proposition 6, we can WLOG

replace K by Kr, the fixed field of G0, because it will have the same ramification groups (again

because Gi ⊆ G0 for all i ≥ 1). The intermediate field Kr is the largest subfield such that Kr/K is

unramified, and furthermore has the property that L/Kr is totally ramified. Thus, by Proposition

18 in Chapter 1, §6 of [3], we can now choose a generator a of AL over AKr that is an element of

PL. Suppose that σ(x)
x ∈ Ui for all x ∈ L×. Then in particular σ(a)

a ∈ Ui, so that σ(a)
a − 1 ∈ P iL,

hence vL(σ(a)a − 1) ≥ i, and hence

i(σ) = vL(σ(a)− a) = vL(a(σ(a)a − 1)) = vL(a) + vL(σ(a)a − 1) ≥ i+ 1.

Conversely, if σ ∈ Gi, then for any x ∈ L×, we have that

vL(σ(x)x − 1) = vL(σ(x)−x)
vL(x)

= vL(σ(x)− x) ≥ i+ 1

so that σ(x)
x − 1 ∈ P i+1

L , so that σ(x)
x ∈ Ui+1 ⊆ Ui.

Theorem 2. Let i ≥ 0. Then the function defined by

θi(σ) =
σ(πL)

πL
mod Ui+1

is a homomorphism θi : Gi → Ui/Ui+1 which is independent of the choice of uniformizer πL, and

whose kernel is Gi+1.

Proof. Let σ ∈ Gi. By Theorem 1, σ(πL)
πL
∈ Ui, so θi is a well-defined map from Gi to Ui/Ui+1.

Note that any other uniformizer Π for L differs from πL by a unit, say Π = uπL for u ∈ UL, so that

σ(Π)

Π
=
σ(πL)

πL

σ(u)

u

Because σ ∈ Gi, we have σ(u) ≡ u mod P i+1
L and thus σ(u)

u ≡ 1 mod Ui+1. Therefore, θi is

independent of the choice of uniformizer. To see that θi is a homomorphism, note that for any

σ, τ ∈ Gi,

θi(στ) =
στ(πL)

πL
mod Ui+1 =

σ(πL)

πL

τ(πL)

πL

σ( τ(πL)πL
)

τ(πL)
πL

mod Ui+1
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Because τ(πL)
πL
∈ UL, we again have that σ( τ(πL)πL

) ≡ τ(πL)
πL

mod Ui+1, hence

σ( τ(πL)πL
)

τ(πL)
πL

≡ 1 mod Ui+1

and thus θi(στ) = σ(πL)
πL

τ(πL)
πL

= θi(σ)θi(τ). Finally, note that σ is in the kernel of θi if and only if
σ(πL)
πL
∈ Ui+1, which is the case precisely when

i(σ)− 1 = vL(σ(πL)− πL)− 1 = vL(σ(πL)πL
− 1) ≥ i+ 1,

i.e. i(σ) ≥ i+ 2, which by Proposition 5 is equivalent to σ ∈ Gi+1.

Lemma 1. The group G0/G1 is cyclic, of order relatively prime to the characteristic of L.

Proof. By Proposition 7, U0/U1
∼= L

×
. Because G0 is finite, we have by Theorem 2 that G0/G1 is

isomorphic to a finite subgroup of L
×

. It is well-known that any finite subgroup of the multiplicative

group of a field is cyclic, and it is clear that if the characateristic of L is p > 0, then the order of

any finite subgroup of L
×

is relatively prime to p.

Theorem 3. If the characteristic of L is p > 0, then for every i ≥ 1, the factor group Gi/Gi+1 is

a finite abelian p-group, and in fact a direct sum of cyclic groups of order p; hence G1 is a p-group.

If the characteristic of L is 0, then G1 is trivial, and G0 is cyclic.

Proof. Theorem 2 shows that we have an injection from Gi/Gi+1 into Ui/Ui+1 for all i ≥ 0. The

corollary to Proposition 7 shows that if the characteristic of K is p > 0, then for i ≥ 1, Ui/Ui+1

is an abelian group annihilated by p, hence a direct sum of cyclic groups of order p. Because

G = Gal(L/F ) is finite and Gi ⊆ G for all i, we have that for all i ≥ 1, Gi/Gi+1 is a finite abelian

p-group, and indeed a finite direct sum of cyclic groups of order p. Thus |G1| is a power of p, and

hence G1 is a p-group.

On the other hand, if the characteristic of L is 0, then by Proposition 7, which tells us that

Ui/Ui+1
∼= P iL/P

i+1
L
∼= L for i ≥ 1, we know that Ui/Ui+1 will have no non-trivial finite subgroups

for i ≥ 1 (because L is of characteristic 0). But every Gi is finite, hence Gi/Gi+1 is finite, hence

the image of Gi/Gi+1 in Ui/Ui+1 is finite, and therefore trivial. Thus, for i ≥ 1, we have that

Gi = Gi+1, and by Proposition 5 we know that eventually Gi is trivial, so that every Gi for i ≥ 1 is

trivial. Thus G1 is trivial. Finally, because G1 is trivial and G0/G1 is cyclic by the above Lemma,

we have that G0 is cyclic.
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4 An Application to Puiseux Series

The field of Puiseux series over a field k is a generalization of k((T )), the field of Laurent series over

k, which allows for rational powers of the indeterminate T instead of just integers. Specifically, the

field of Puiseux series k{{T}} over k is defined to be
⋃∞
n=1Kn, where Kn = k((T 1/n)) and the T 1/n

all live in some algebraic closure of k((T )). The following is Puiseux’s Theorem for an arbitrary

field k (when k is complete with respect to a valuation, there is a separate theorem concerning the

subfield of convergent series in k{{T}}).

Puiseux’s Theorem. Let k be an algebraically closed field of characteristic 0. Then the algebraic

closure of k((T )) is k{{T}}.

Proof. We follow the proof in Proposition 8 in Chapter 4 of [3]. Let K = k((T )), and let Kalg be

an algebraic closure of K. Let L/K be a finite Galois subextension of Kalg/K, with Galois group

G = Gal(L/K). Clearly, the residue field of K = k((T )) relative to the prime ideal (T ) in k[[T ]] is

K = k, which is algebraically closed by hypothesis. Because L/K is finite, we must therefore have

that L = K. Because Gal(L/K) ∼= G/G0, we have that G = G0. Because K is of characteristic 0,

then by Theorem 3, we have that G is cyclic. Let L′/K be another finite Galois subextension of

Kalg/K such that [L : K] divides [L′ : K]. Then LL′/K is also finite and Galois, and hence by the

same argument Gal(LL′/K) is cyclic. Because the subgroups of a cyclic group are totally ordered

by inclusion and

|Gal(LL′/L′)| = [LL′ : K]

[L′ : K]
≤ [LL′ : K]

[L : K]
= |Gal(LL′/L)|,

we must have that Gal(LL′/L′) ⊆ Gal(LL′/L) and hence L ⊆ L′. Thus, for any finite Galois

subextension L/K of degree n = [L : K], we have that L ⊆ Kn because [Kn : K] = n, and hence

L ⊆ k{{T}} =
⋃∞
n=1Kn. Because any element a ∈ Kalg is an element of a finite Galois subextension

(e.g., the normal closure in Kalg of K(a)), we have that every element of Kalg is in k{{T}}, and

hence Kalg ⊆ k{{T}}. But

k{{T}} =
⋃∞
n=1Kn = K(T 1/2, T 1/3, . . .) ⊆ Kalg

by definition, so that Kalg = k{{T}}.

5 The Upper Numbering

Many results about higher ramification groups depend on giving them a special renumbering, called

the upper numbering. This is calculated via the Herbrand function. For example, this is used to

establish Herbrand’s Theorem, which describes the ramification groups of a Galois subextension

F/K of L/K in terms of those of L/K itself.
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The proofs of the results in this section require many lemmas which are technical and unneces-

sary for the rest of our discussion, so they will be omitted.

First, we extend the usual (or lower) numbering of the ramification groups to real numbers, by

defining for any real u ≥ −1

Gu = Gi, where i = due.

Definition 4. The Herbrand function φL/K : [−1,∞)→ [−1,∞) is defined by

φL/K(u) =


∫ u

0

1

[G0 : Gt]
dt, if 0 ≤ u

u if − 1 ≤ u ≤ 0

From this definition, it’s clear that the function φL/K is continuous and strictly increasing, and

therefore has an inverse ψL/K : [−1,∞) → [−1,∞). We then define the upper numbering of the

ramification groups by, for any real v ≥ −1,

Gv = GψL/K(v), or equivalently, Gu = GφL/K(u).

Recall that subgroups H ⊆ G correspond to extensions L/F for K ⊆ F ⊆ L, and that to compute

the higher ramification groups of L/F , we have the simple result of Proposition 6: Hi = H ∩ Gi.
Now let H / G be a normal subgroup with fixed field F , so that F/K is a Galois extension with

Galois group isomorphic to G/H. The upper numbering is necessary to state the natural analog

for the higher ramification groups of F/K:

Theorem 4. For a normal subgroup H / G, we have (G/H)v = GvH/H for all real v ≥ −1.

Indeed, as Serre states in [3], “the upper numbering is adapted to quotients, just as the lower

numbering is adapted to subgroups.” We also have the following results.

Herbrand’s Theorem. If v = φL/K(u), then GuH/H = (G/H)v.

Hasse-Arf Theorem. If G is abelian and v is a jump in the filtration in the upper numbering,

i.e. Gv 6= Gv+1, then v is an integer. Equivalently, if Gu 6= Gu+1, then φL/K(u) is an integer.
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