Playing Fast and Loose With Geometric Series
by Zev Chonoles

Act 1

Given a function f(z), let the symbol /f stand for / f(t)dt.
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Let’s say we want to find the function f(z) that satisfies
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Rearranging, we have

Factoring,

Multiplying both sides by the inverse,

Applying the geometric series,
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which can be easily checked to be the correct answer.



Act 2

n—1

Given a function f(n), let the symbol Z f stand for Z f(k).
k=0

Let’s say we want to find the function f(n) that satisfies

Yof=f-1

1=f->f
1:(1—2)1'.
f:(l—Z)_ll.

Rearranging, we have

Factoring,

Multiplying both sides by the inverse,

Applying the geometric series,
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which can be easily checked to be the correct answer.



Act 3

Let € be really small. Given a function f(x), let the symbol Sf stand for the function f(z — €).
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Define the “derivative” D = ——, so that the symbol D f stands for the function fl@) = fle=e)
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Let’s say we want to find the function D~!f.

Applying the geometric series,
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which is the “antiderivative” of f, as it is reminiscent of the Riemann sum for

/_OO £(#) dt.



