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Review of tangent spaces to an abstract manifold

Let M be a manifold. The set of all smooth, real-valued functions

C∞(M) = {smooth f : M → R}

forms an R-vector space, with operations

(f + g)(p) := f(p) + g(p) (r · f)(p) = r · f(p).

A derivation at a point p ∈M is an R-linear function X : C∞(M)→ R satisfying

X(fg) = f(p)X(g) + g(p)X(f)

(this is a version of the product rule). The collection of all derivations at p ∈ M form an n-dimensional
R-vector space, called TpM , the tangent space of M at p, with operations

(X + Y )(f) := X(f) + Y (f) (r ·X)(f) := r ·X(f)

We call an X ∈ TpM a tangent vector at p. Intuitively, the tangent space is the collection of all possible
“directions in which to take a directional derivative at p”; the X ∈ TpM are the resulting “directional
derivative operators”.

Let φ : U → V be a chart of M whose domain U contains p ∈ M . For each i = 1, . . . , n, define the
coordinate functions xi : U → R by xi = πi ◦φ, where πi : Rn → R is the projection on the ith coordinate.
Then the tangent vectors ∂
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For any chart φ, the corresponding coordinate tangent vectors ∂
∂xi
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p

form a basis for the tangent space

TpM (this was proven earlier in the lectures).

Let γ : (a, b) → M be a curve on M . The tangent vector to γ at t0 ∈ (a, b) is the tangent vector
γ′(t0) ∈ Tγ(t0)M which acts on functions f ∈ C∞(M) by

(γ′(t0))(f) :=
d

dt
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(f ◦ γ) =
d(f ◦ γ)

dt
(t0).

This can be thought of as taking the derivative of f “along” the curve γ.

We can see that this is a special case of the pushforward. Recall that, given any smooth map of manifolds
g : M → N and a point p ∈ M , the pushforward g∗ : TpM → Tg(p)N is the linear map which takes a
tangent vector X ∈ TpM to the tangent vector g∗X ∈ Tg(p)N which acts on f ∈ C∞(N) by

(g∗X)(f) := X(f ◦ g) ∈ Tg(p)(N).

The tangent space Tt0(a, b) of (a, b) at t0 is 1-dimensional, because (a, b) is a 1-dimensional manifold, and
indeed, Tt0(a, b) is spanned by the tangent vector d

dt |t0 (this arises from the standard chart on (a, b), i.e.

the identity map). Calculating the pushforward of the tangent vector d
dt |t0 by γ∗, we find(
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(f) =
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dt
(t0) = (γ′(t0))(f).



Motivation

It’s kind of weird that tangent vectors at different points on a curve all live in completely unrelated spaces!

If a, b, and c are “nearby” points in the curve γ on the manifold M ,

maybe the tangent vectors at a, b, and c look like this inside TaM , TbM , and TcM , respectively:

Absurd! But how can we capture the idea that nearby tangent spaces should “cohere” or “be related”?
What does it mean for the tangent vector to “smoothly vary” from point to point if the tangent spaces
are all invisible to each other?

Of course, it’d be nice if all tangent vectors to M were elements of some big space. If we were working in
a submanifold of Rn, then we could try to compare the tangent vectors within Rn; but we’re working in
an abstract manifold, so we have to do everything ourselves. How can we solve this problem?

Glue all of the TpM ’s together, and voila, we have a big space that contains all of our tangent vectors!



The tangent bundle

We define the tangent bundle of M to be the set

TM :=
∐
p∈M

TpM

where
∐

denotes the disjoint union. We will not be giving TM the disjoint union topology, though.

As a part of the definition of the disjoint union, each X ∈ TpM is now labeled with the point it came
from; i.e., an element of TM looks like an ordered pair (p,X), where X ∈ TpM . The set TM comes with
a natural map π : TM →M , defined by π(p,X) = p. Clearly, this means that π−1(p) = TpM .

TM has a manifold structure! (though really, what else did you expect?) It has dimension 2n when
M has dimension n; intuitively, this is because we have n degrees of freedom from M , and then n more
degrees of freedom from the tangent space at each point. We construct it as follows:

Given a chart φ : U → V of M , with coordinate functions x1, . . . , xn, define the map φ̃ : π−1(U)→ R2n by

φ̃
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p,

n∑
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= (x1(p), . . . , xn(p), v1, . . . , vn).

The image of φ̃ is V ×Rn, which is an open subset of R2n. Also, φ̃ is bijective onto its image. This means
we can simply “import” the topology from V × Rn, and put it on π−1(U); now, π−1(U) is homeomorphic
to an open subset of R2n via φ̃.

So, we want to simply take all of our charts φ of M , construct the corresponding maps φ̃ on TM , and
declare those to be our charts on TM . But before we can do that, we have to check that they are smoothly
compatible. So, let φ : U → V and ψ : W → Y be two charts of M , having coordinate functions x1, . . . , xn

and y1, . . . , yn respectively, and transition function t = (ψ ◦ φ−1) : φ(U ∩W )→ ψ(U ∩W ). Let t1, . . . , tn

be the coordinate functions of t. Finally, let φ̃ and ψ̃ be the corresponding soon-to-be-charts of TM .

Recall the statement of the chain rule using tangent vectors:
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Let φ(p) = (x1(p), . . . , xn(p)) ∈ Rn. The transition map (ψ̃ ◦ φ̃−1) : φ(U ∩W )× Rn → ψ(U ∩W )× Rn is
given by

(ψ̃ ◦ φ̃−1)(x1(p), . . . , xn(p)︸ ︷︷ ︸
φ(p)

, v1, . . . , vn) =

(
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)
The transition ψ̃ ◦ φ̃−1 applies t to the first n coordinates, and applies the matrix

(
∂ti

∂xj
(φ(p))

)
ij

to the

second n coordinates. The map t is smooth because t was the transition function of the charts φ and ψ on
M , and linear transformations are always smooth, so together, this means that the transition ψ̃ ◦ φ̃−1 is
smooth.

Thus, TM is indeed a smooth manifold of dimension 2n.

But there is still the matter of “coherence” - we’ve made a big space where every TpM is represented, but
how are “nearby” TpM ’s related?



The vector bundle structure on TM

Proposition. For any p ∈M , there exists an open U ⊆M with p ∈ U such that

• there is a diffeomorphism Φ : π−1(U)
∼−→ U × Rn,

• the following triangle commutes:
π−1(U)

π
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Φ // U × Rn
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U

(where π1 : U × Rn → U is the projection on the first factor), and

• for all q ∈ U , the map Φ restricted to π−1(q) = TqM , i.e. the map Φ|
TqM

: TqM → {q} × Rn, is a

linear isomorphism.

Proof. For any p ∈M , there is a chart φ : U → V of M whose domain U contains p. Let x1, . . . , xn be the
coordinate functions of φ. Then define Φ : π−1(U)→ U × Rn by

Φ

(
q,

n∑
i=1

vi
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)
= (q, v1, . . . , vn).

Clearly, we have that π1 ◦ Φ = π. When we fix q (i.e. restrict Φ to a particular TqM), this is also linear.

Let φ̃ : π−1(U)→ V × Rn be the chart of TM corresponding to φ. Then the composition

π−1(U)
Φ−−→ U × Rn φ× idRn−−−−−−→ V × Rn

equals φ̃, which is a diffeomorphism (simply look at the definition of φ̃). Also note that, because φ : U → V
is a diffeomorphism, so is (φ× idRn) : U × Rn → V × Rn. Because Φ ◦ (φ× idRn) is a diffeomorphism and
φ× idRn is a diffeomorphism, we must have that Φ is itself a diffeomorphism. This, together with the fact
that π = π1 ◦ Φ, forces Φ to be bijective on fibers, i.e. Φ|

TqM
: TqM → {q} × Rn has to be a bijection for

all q ∈ U . We’ve already verified these maps are linear, so they are in fact isomorphisms.

The above property is makes TM a bundle, in the proper sense. The diffeomorphisms φ are called local
trivializations. Here is an illustration of a local trivialization (taken from Lee’s Introduction to Smooth
Manifolds, p.104):



Here are some examples of tangent bundles:

• TS1 = S1 × R, the cylinder.

• TT2 = T2 × R2, the product of the torus and the plane.

• TRn = Rn × Rn, i.e. 2n-dimensional Euclidean space.

Hmmm. . . maybe this isn’t so interesting a concept after all?

Actually, if M is an n-manifold, then TM ∼= M ×Rn if and only if M is the product of a Lie group and
some number of copies of S7 (the examples I gave above were all Lie groups). When this is the case, we
say that M is parallelizable. The only spheres that are Lie groups are S1 and S3. In general, it is not so
easy to describe the tangent bundle to a manifold in such a nice way.

Vector bundles in general

The structure we found on TM with the local trivializations is just one example of a general concept, that
of a vector bundle.

If π : E →M is a surjective smooth map of manifolds, and for any p ∈M ,

• Ep := π−1(p) is a k-dimensional vector space for all p ∈M ,

• there exists an open U ⊆M with p ∈ U with a diffeomorphism Φ : π−1(U)
∼−→ U × Rk such that

π−1(U)

π
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commutes, and

• Φ|Eq : Eq → {q} × Rk is a linear isomorphism for all q ∈ U ,

then we say that π : E → M is a rank-k vector bundle over M . The maps Φ are called local
trivializations, and the open sets U they are defined over are called trivializing neighborhoods. The
vector space Ep is called the fiber over p.

The easiest example of a vector bundle is the trivial bundle over M , where E = M ×Rk and π : E →M
is just projection on the first factor. Such a bundle can take as a trivializing neighborhood all of M . (Also,
do you see why the Φ’s are called “trivializations” now?)

The first example of a non-trivial bundle is the Mobius bundle over S1. This bundle models the Mobius
strip, hence the name. We let E = [0, 1]× R/ ∼, where

(a, b) ∼ (c, d) ⇐⇒ b = −d and

{
a = 0, c = 1, or

a = 1, c = 0



This takes the infinite strip [0, 1]×R, and glues together the edges in a way that gives it the characteristic
half-twist of the Mobius strip. We’ll denote the equivalence class of (x, y) under ∼ by 〈x, y〉. We let
M = S1, define π : E →M by

π(〈x, y〉) = e2πix

(which is easily checked to be well-defined).

Let U = S1 − {1}, so that π−1(U) = (0, 1) × R/ ∼, which (after looking at the definition of ∼) is just
(0, 1)× R itself. We can let the local trivialization Φ1 over U be the identity map to (0, 1)× R.

Let V = S1 − {−1}, so that π−1(V ) =
(
[0, 1

2) ∪ (1
2 , 1]

)
×R/ ∼. We define the local trivialization over V to

be the map

Φ2(〈x, y〉) =

{
(x− 1

2 , y) if x > 1
2 ,

(x+ 1
2 , y) if x < 1

2

which is kind of a pain to check is smooth, but it is.

Here is a nice illustration of the Mobius bundle (taken from Lee’s Introduction to Smooth Manifolds, p.106):

Operations on vector bundles

Basically, anything you can do with a vector space, you can do with a bundle, by “unstitching” the bundle,
doing that operation to each fiber, and then “stitching” them all up again. For example, given bundles
π1 : E →M and π2 : F →M , we can create

• the dual bundle π∗1 : E∗ →M , for which (E∗)p := (Ep)
∗,

• the direct sum bundle (π1 ⊕ π2) : E ⊕ F →M , for which (E ⊕ F )p := Ep ⊕ Fp,

• the tensor bundle (π1 ⊗ π2) : E ⊗ F →M , for which (E ⊗ F )p := Ep ⊗ Fp,

• the alternating product bundle (π1 ∧ π2) : E ∧ F →M , for which (E ∧ F )p := Ep ∧ Fp,

and so on. Also, given a bundle π : E → N and a smooth map of manifolds f : M → N , we can create
the pullback bundle f∗π : f∗E → M , defined by (f∗E)p := Ef(p) (the fiber over p ∈ M is just taken to
be the fiber over f(p) ∈ N in the original bundle).



Maps of vector bundles

The definition of a map of bundles is straightforward. Given two bundles π1 : E → M and π2 : B → N ,
a smooth bundle map between them consists of a pair of smooth maps of manifolds, F : E → B and
f : M → N , such that the following diagram commutes:

E1

π1
��

F // E2

π2
��

M
f
// N

and such that the restriction to each fiber F |Ep : Ep → Bf(p) is linear. The map F actually determines the
map f , so we usually only refer to F as being the bundle map.

Vector fields as sections of the tangent bundle

Finally, remember that part of our motivation for defining the tangent bundle was that we had no notion
of a “smoothly varying” choice of vector at each point, because all the tangent spaces were disconnected
from each other. Now that we have the manifold structure on TM , we can go back and fix this with a
precise notion of “smooth vector field on M”:

For any sets X and Y and function f : X → Y , a section of f is a function g : Y → X such that
(f ◦ g) : Y → Y is the identity map.

Given a manifold M , the natural projection map π : TM → M is smooth. A vector field is a smooth
map of manifolds σ : M → TM that is a section of π, i.e. π ◦ σ = idM . The condition of being a section
is exactly what we need to ensure that we actually send p ∈ M to a tangent vector at p (i.e. an element
of TpM); we don’t want to be assigning tangent vectors from all over the manifold willy-nilly to whatever
points we feel like!

In general, a section of a bundle has an analogous definition. Two very important! types of
sections in differential topology and geometry are:

• Differential forms, which are sections of the bundle π :
∧k(T ∗M)→M .

The symbol
∧k denotes the kth alternating power operation, and T ∗M (known as the cotangent

bundle) is the dual bundle of the tangent bundle TM .

• Riemannian metrics, which are sections of the bundle π : S2(T ∗M) → M that at each fiber are
positive-definite.

The symbol S2 denotes the symmetric square operation.


